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ABSTRACT

The recent surge in data availability across many fields, such as medicine, so-
cial science, and marketing, has brought to the forefront the problem of estimat-
ing Individual Treatment Effect (ITE) from observational data to effectively tailor
treatment to personalized characteristics. ITE estimation is known to be a chal-
lenging task because we can only observe the outcome with or without treatment,
but never both. Moreover, observational datasets exhibit selection bias induced by
the treatment assignment policy. In this paper, we present a new approach con-
sisting of two novel aspects. First, we depart from conventional approaches that
minimize the covariate shift. Instead, we incorporate it as a crucial element in ITE
estimation, recognizing that it stems from highly predictive features that exhibit
significant imbalance in observational data. Second, unlike existing methods, our
approach utilizes hypothesis functions to directly estimate outcomes under covari-
ate shift, enhancing reliability across observed and unobserved outcomes. To sup-
port this approach theoretically, we derive a new upper bound of the expected ITE
loss and show that it explicitly depends on the discrepancy between the hypothesis
functions, which are absent from the objectives of existing methods. Based on this
new approach, we present LITE: Laplacian Individual Treatment Effect, a novel
method that leverages Laplacian-regularized representation and incorporates both
the covariate shift and the hypothesis functions for ITE estimation, effectively
bridging observed and unobserved outcomes. We demonstrate LITE on illustra-
tive simulations and two leading benchmarks, where we show superior results
compared to state-of-the-art methods.

1 INTRODUCTION

Individual Treatment Effect (ITE) has come to the forefront of precision medicine (Prosperi et al.,
2020; Glass et al., 2013), targeted marketing (Lemmens & Gupta, 2020), personalized education
(Beemer et al., 2018),and various other fields (Wang et al., 2016) that require individual-level pre-
dictions. ITE specifically aims to quantify the unique outcome of an action (also referred to as
a treatment or intervention) for each individual based on their specific characteristics, which is a
departure from traditional methods that focus on average treatment effect (Abadie & Imbens, 2016).

The focus on individual outcomes is critical, especially since individuals are unlikely to conform to
average behavioral patterns (Schork, 2015). Customizing treatments based on unique characteristics
is therefore essential for achieving both effective and efficient interventions. In this approach, an
individual is characterized by their features, with typically two possible outcomes considered: the
outcome with the applied treatment and the outcome in the absence of the treatment. The objec-
tive is to estimate the difference between these outcomes (i.e., the treatment effect) based on the
individual’s features, enabling to customize treatment policies for that individual.

Accurate estimation of ITE is a challenging task, mainly because only one potential outcome for
each individual is observable based on the applied action (i.e., the factual outcome). Inferring the
unobserved outcome (i.e., the counterfactual outcome) from the outcomes observed in other indi-
viduals often leads to poor estimates due to selection bias (Vokinger et al., 2021) (also referred to
as confounding bias). This bias stems from the assignment policy to treatment or control groups,
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typical in studies where randomized controlled trials (RCTs) are unavailable due to budget consid-
erations , difficulty in recruiting patients, or ethical constraints. For example, suppose a medication
is primarily given to patients with severe symptoms. Using the observed data from the control group
—those not receiving the medication— to predict the counterfactual outcome of the treated group,
i.e., their predicted outcome of lack of treatment, would result in overly optimistic estimates. Con-
versely, using the treated group to predict the outcome of treatment in the control group would likely
result in pessimistic estimates. Furthermore, in observational data, we often lack direct insight into
the mechanisms (i.e., the confounding variables) to infer the treatment policy.

Traditional methods approximate ITE by identifying nearest neighbors using matching techniques
to estimate counterfactuals (Ho et al., 2007; Gu & Rosenbaum, 1993; Dehejia & Wahba, 2002;
Schwab et al., 2018). Tree-based methods (Chipman et al., 2010; Green & Kern, 2012; Lu et al.,
2018; Athey & Imbens, 2016; Wager & Athey, 2018) view forests as an adaptive neighborhood
metric and estimate treatment effects at the leaf nodes (Wager & Athey, 2018). Other approaches
use Gaussian processes for ITE estimation (Alaa & Van Der Schaar, 2017; Alaa & Schaar, 2018).
Representation learning has become central in ITE estimation by harnessing the power of latent
representations (Bengio et al., 2013). To tackle selection bias, these methods (Johansson et al.,
2016; Shalit et al., 2017; Yao et al., 2018; Yoon et al., 2018; Guo et al., 2023; Du et al., 2021;
Johansson et al., 2022) often aim to minimize covariate shift by balancing covariate representations
across groups using distance metric regularization (Johansson et al., 2016; Shalit et al., 2017; Yao
et al., 2018; Guo et al., 2023) or adversarial methods (Yoon et al., 2018; Du et al., 2021), ensuring
that counterfactual predictions are guided by the most reliable aspects of the data (Johansson et al.,
2016). However, we assert that unlike classical domain adaptation, where covariate shift is treated
as an artifact to be mitigated (e.g., blurred vs. clear images), in ITE estimation, the covariate shift
is inherent and directly impacts the causal treatment effect. Directly minimizing covariate shift can
inadvertently reduce predictive components that are essential for understanding the causal treatment
effect (Yoon et al., 2018; Yao et al., 2018; Du et al., 2021), and thus produce biased ITE estimate even
in the limit of infinite data (Johansson et al., 2018). This is because the selection policy is typically
applied based on highly predictive features that often show significant imbalance, as doctors, for
example, usually assign treatments according to these features.

This paper introduces a new approach that revisits the role of covariates and hypothesis functions in
ITE estimation. We present a new upper bound of the ITE estimation error that shifts focus from
the covariate shift to the hypothesis function discrepancies. Following this result, unlike traditional
methods that minimize the covariate shift, our method, termed LITE (Laplacian Individual Treat-
ment Effect), goes beyond this by integrating both covariate and hypothesis considerations into the
ITE estimation process. To this end, we construct a graph within the latent learned representation
space, capturing the covariate shift and serving as our model’s foundational structure. Utilizing
this graph, we compute the graph Laplacian, which in turn, is used for regularizing the hypothesis
functions to allow estimate ITE directly under the shift. Specifically, we use the graph Laplacian
quadratic form to facilitate the smoothness of the hypothesis functions with the geometry of the
learned representation across predicted factual and counterfactual outcomes. We demonstrate LITE
on a simulation and two leading benchmarks. We show that LITE outperforms both established and
recent methods by a large margin, achieving state of the art results.

Our main contributions are as follows:

• Theoretical foundation: We present a new upper bound of the ITE estimation error that
redirects the focus from the covariate shift to the discrepancies between hypothesis func-
tions.

• LITE: We present a new method for ITE estimation that unlike existing methods considers
both the covariate shift and the hypothesis function discrepancies.

• Geometry-aware representation: We utilize Laplacian regularization not only to align
the learned representation with the hypothesis function outcomes, but also to dynamically
learn the graph structure itself through the optimization process.

• State of the art results: LITE demonstrates state of the art results on leading benchmarks.

• Broader impact: Our method is easily extended to handle multiple treatment scenar-
ios, thus enhancing practicality in many fields, and specifically, in healthcare applications,
where multiple treatments are often available.
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2 RELATED WORK

Laplacian regularization has been widely used in various domains (Pang & Cheung, 2017; Liu et al.,
2018; Ziko et al., 2020), and more particularly in semi-supervised learning, as demonstrated by
Belkin et al. (2006); Cabannes et al. (2021); Calder et al. (2023). However, to the best of our
knowledge, its application within the latent space for ITE estimation is novel. Traditional Laplacian
regularization is often applied in the input space, where geometry can be obscured by non-relevant
features. Our approach contrasts with this by promoting geometry-aware structures within the la-
tent space, focusing on predictive features relevant to the task. Furthermore, by incorporating this
Laplacian regularization in the learning objective, the latent representation and the resulting graph
are continuously refined through optimization, systematically aligning the learned representation
geometry with the intrinsic geometry of the underlying data structure.

While covariate balancing helps reduce the impact of selection bias, it might inadvertently reduce
intrinsic differences that are important for accurate ITE estimation (Yoon et al., 2018; Johansson
et al., 2018; Yao et al., 2018; Du et al., 2021). There exist representation learning methods for ITE
estimation that aim to mitigate the adverse nature of covariate balancing. For instance, Yao et al.
(2018) proposed local similarity-preserved representations to prevent the potential loss of local sim-
ilarity information during distribution balancing. Alternatively, Johansson et al. (2018) combined
re-weighting methods to alleviate predictive information loss. Du et al. (2021) employed mutual in-
formation regularization to retain information that is highly predictive of the outcome. Despite such
mitigation strategies, these methods still apply direct minimization while regularized, which can
reduce the crucial intrinsic differences necessary for accurate ITE estimation. Moreover, these ap-
proaches often neglect the critical role of hypothesis functions in addressing selection bias, focusing
instead solely on covariate balancing at the expense of the predictive capacity of these functions.

3 INDIVIDUAL TREATMENT EFFECT BACKGROUND

3.1 PROBLEM FORMULATION

We adopt the framework of potential outcomes Pearl (2009), as originally formulated in Rubin
(1974); Rosenbaum & Rubin (1983), to analyze the ITE. We follow the notations from Shalit et al.
(2017). The ITE problem aims to learn the potential effect of a treatment t based on individual
features x (also referred to as covariates). Within this framework, let X be the input space, T be the
action (treatment) space, and Y be the outcome space. An individual is characterized by features
x ∈ X . In this paper, to simplify the presentation, we assume a binary treatment setting where each
individual is assigned an action t ∈ T = {0, 1}, where 0 denotes the absence of treatment and 1
indicates the presence of treatment. The probability of assigning treatment, given a set of covariates,
is defined as the propensity score π(x) = p(t = 1|x) (Rosenbaum & Rubin, 1983), and reflects the
treatment assignment policy.

For each individual, two potential outcomes exist: Y0 without treatment and Y1 with treatment.
However, in this setting, for each individual, only one of these potential outcomes, either Y0 or Y1,
is observed via y, depending on the applied treatment action:

y =

{
Y0 if t = 0

Y1 if t = 1
.

Definition 1 (Individual treatment effect). The ITE τ(x) (also termed the Conditional Average
Treatment Effect) is defined as the expected difference in potential outcomes for an individual x:

τ(x) = E[Y1 − Y0|x]. (1)

The interest in ITE estimation lies in learning the function τ(x), which quantifies the difference
between the potential outcomes Y1 and Y0 for a given individual with features x. Unlike traditional
learning scenarios, this ITE τ(x) is not directly observable in the training data. Specifically, for each
individual, we only observe one potential outcome, dictated by the applied treatment action.
Definition 2 (PEHE). The expected Precision in Estimation of Heterogeneous Effect (PEHE) (Hill,
2011) loss is defined as:

ϵPEHE =

∫
X
(τ̂(x)− τ(x))2p(x)dx, (2)
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where τ̂(x) is the estimate of the ITE and p(x) is the p.d.f. over the input space X .

Minimizing PEHE enhances the accuracy of ITE estimates, which is crucial for developing targeted
interventions that are optimally tailored to individual characteristics. Our objective is to estimate
the function τ(x) in a manner consistent with causal inference principles (Sauerbrei et al., 2014;
Cousens et al., 2011), using an observational dataset D. This dataset typically consists of n inde-
pendent samples of features, action, and outcome, represented by the tuple (xi, ti, yi).

Two assumptions are commonly considered in ITE estimation.
Assumption 1 (Positivity). There exists a positive probability of receiving any treatment action,
conditional on the individual features. Formally: ∀t ∈ {0, 1},∀x ∈ X , 0 < P (t|x) < 1.

This assumption ensures an overlap between the control and treatment groups. Violation of this pos-
itivity assumption implies that for some x, we lack any observation of one of the potential outcomes,
making the counterfactual outcome estimation even more challenging.
Assumption 2 (Ignorability). The treatment assignment is conditionally independent of the potential
outcomes, given the observed features. Formally: {Y0, Y1} ⊥⊥ t|x.

This condition is crucial for the identifiability of the ITE. The ignorability assumption (often referred
to as “unconfoundedness”) ensures that there are no hidden confounders affecting both treatment
assignment and potential outcomes.

3.2 THE SELECTION BIAS

Our objective is to estimate the ITE τ(x) in Eq. equation 1 by learning two separate functions:
m1(x) = E[Y1|x] and m0(x) = E[Y0|x]. To this end, access to the joint distribution function
p(x, t, Y0, Y1), defined on the input-action-potential outcome space, is essential. However, we have
a sample with the factual outcome: (x1, t1, y1), ..., (xn, tn, yn), where yi ∼ p(Y1|xi) if ti = 1, and
yi ∼ p(Y0|xi) if ti = 0. This provides just a partial view of the joint distribution.
Definition 3 (ITE estimate). For an individual x, let f : X × T → Y be a function that maps
individual and treatment pairs to outcomes. The ITE estimate of the hypothesis f is defined by:

τ̂(x) = f(x, 1)− f(x, 0), (3)

where f(x, 1) and f(x, 0) are the estimates of m1(x) and m0(x), respectively.

One may suggest learning two separate functions: f(x, 1) from individuals who received the treat-
ment and f(x, 0) from those who did not. However, these functions are susceptible to the selection
bias in the observational dataset (Vokinger et al., 2021). More specifically, f(x, 1) and f(x, 0) stem
from different distributions, i.e., the treated and control distributions p(x|t = 1) and p(x|t = 0),
respectively, and these distributions are shifted relative to the covariate marginal p(x).

3.3 THE FACTUAL AND COUNTERFACTUAL LOSSES

Let L : Y×Y → R+ be a loss function. To analyze the loss under the selection bias effect, we define
the factual and counterfactual domains, ptF (Yt, x) ≜ p(Yt, x|t) and ptCF (Yt, x) ≜ p(Yt, x|1 − t),
respectively, where both distributions are conditioned on the treatment assignment.

In the subsequent definitions, we denote the expected loss for an individual and treatment pair (x, t)
as ℓf (x, t) =

∫
Y L(Yt, f(x, t))p(Yt|x)dYt and the proportion of treated individuals as u = p(t =

1). We apply the ignorability assumption, implying that p(Yt|x, t) = p(Yt|x, 1 − t) = p(Yt|x),
and obtain that the potential outcomes are conditionally independent of the treatment, given the
covariates.
Definition 4 (Factual loss). The expected factual loss for a treatment assignment t is defined by:

ϵtF (f) =

∫
X×Y

L(Yt, f(x, t))p
t
F (Yt, x)dxdYt =

∫
X
ℓf (x, t)p(x|t)dx

The factual loss (across all treatment assignments) is then:

ϵF (f) = uϵt=1
F (f) + (1− u)ϵt=0

F (f). (4)
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Definition 5 (Counterfactual loss). The expected counterfactual loss for a treatment assignment t is
defined by:

ϵtCF (f) =

∫
X×Y

L(Yt, f(x, t))p
t
CF (Yt, x)dxdYt =

∫
X
ℓf (x, t)p(x|1− t)dx

The counterfactual loss (across all treatment assignments) is then:

ϵCF (f) = (1− u)ϵt=1
CF (f) + uϵt=0

CF (f). (5)

The following theorem, presented in Shalit et al. (2017), links the ITE estimation with the counter-
factual error.
Theorem 1. The Precision in Estimation of Heterogeneous Effects (PEHE) is bounded by:

ϵPEHE(f) ≤ 2(ϵCF (f) + ϵF (f)− σ2
Y ), (6)

where ϵF (f) and ϵCF (f) denote the factual and counterfactual losses with respect to the squared
loss, respectively, and σ2

Y is the variance of the outcome variable Yt.

This theorem highlights how ITE estimation is tightly linked to counterfactual errors, emphasizing
the critical role of understanding and addressing these errors for accurate ITE estimation. An intu-
itive strategy involves minimizing errors with respect to the factual outcomes, as these are directly
observable and quantifiable. While this empirical approach might seem effective at first glance, it
overlooks the importance of counterfactual outcomes, crucial for ITE estimation. Consequently,
while this intuitive strategy may perform well in terms of factual error, its performance is often
suboptimal for ITE estimation. For more details, we refer the readers to Shalit et al. (2017).

4 PROPOSED APPROACH

To address the challenges associated with estimating ITE, we employ a representation-learning
framework (Bengio et al., 2013), which is widely used in the ITE literature (Johansson et al., 2016;
Shalit et al., 2017; Guo et al., 2023; Yao et al., 2018; Shi et al., 2019). This framework utilizes
a representation function Φ : X → R that maps observed features x into a latent space R via
Φ(x). In this latent space, we use a hypothesis function h with two possible second arguments:
h(Φ(x), t = 0) and h(Φ(x), t = 1), for predicting the potential outcomes Y0 and Y1, respectively.
Our general hypothesis function is then expressed as f(x, t) = h(Φ(x), t).

To effectively capture the complex relationships between observed features x and potential out-
comes, we parameterize Φ(x) and h(Φ, t) using deep neural networks. Specifically, h(Φ, t) is
realized by two separate fully connected networks (Caron et al., 2022), one for each treatment
t ∈ {0, 1}.In addition, Φ is realized using fully connected layers. This parameterization choice lever-
ages the advanced capabilities of neural networks to capture intricate patterns in the data. Moreover,
employing a shared representation Φ(x) across treatment assignments leverages the commonalities
among treated and control groups, enhancing generalization and efficiency. While we use fully
connected layers to realize Φ(x), h(Φ, t = 0), and h(Φ, t = 1), our approach is flexible and can
accommodate alternative network architectures to potentially enhance model performance.

Covariate balancing. Recent methods (Johansson et al., 2016; Shalit et al., 2017; Yao et al., 2018;
Yoon et al., 2018; Guo et al., 2023; Du et al., 2021) emphasize covariate balancing within the latent
representation space through direct covariate shift minimization to mitigate counterfactual error,
an approach underpinned by established theoretical frameworks. This strategy is illustrated by the
following theorem from Shalit et al. (2017).

Let G be a function family g : S → R. For a pair of distributions p1, p2 over S, define the Integral
Probability Metric (IPM) as follows: IPMG(p1, p2) = supg∈G

∫
S
g(s)(p1(s)− p2(s)) ds

Theorem 2 (PEHE upper bound by covariate discrepancy). Assuming a representation function
Φ : X → R, and a hypothesis function h : R×{0, 1} → Y , the PEHE ϵPEHE(h,Φ) can be bounded
by the IPM distance between the distribution of treated and control groups:

ϵPEHE(h,Φ) ≤ 2(ϵt=0
F (h,Φ) + ϵt=1

F (h,Φ) +BΦ · IPMG(p
t=1
Φ , pt=0

Φ )− 2σ2
Y ), (7)

where pΦ is the distribution induced by Φ over R and BΦ is a constant bounding the loss functions.
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This theorem supports an objective function that reduces the discrepancy between treated and control
group distributions in the latent space, aiming to avoid reliance on potentially unreliable data aspects
when generalizing from factual to counterfactual domains (Johansson et al., 2016). This discrepancy
is often quantified using the Wasserstein distance (Villani et al., 2009; Cuturi & Doucet, 2014) or
through adversarial methods (Yoon et al., 2018; Du et al., 2021), among other metrics (Yao et al.,
2018; Guo et al., 2023; Gretton et al., 2012). Formally, the training objective integrates not only
the factual outcome errors but also a term to account for unobserved counterfactual outcomes by
reducing the divergence between the distributions in the latent space:

O(θ) = ϵF (h,Φ) + α · IPMG(p
t=1
Φ , pt=0

Φ ), (8)

where α is a hyperparameter balancing factual accuracy against distributional balance.

While this classical theorem provides valuable insights for ITE estimation, we assert that its direct
application in minimizing the covariate shift might mitigate the significant impact of covariates on
outcomes. In medical settings, for example, treatments are assigned based on predictive features,
introducing the selection bias (Yoon et al., 2018). Therefore, merely reducing these discrepancies
without recognizing their contributions to the causal structure might lead to models that misrepresent
treatment effects and result in suboptimal outcomes.

Hypothesis balancing. We present a theorem that shifts the focus from traditional covariate shifts
to discrepancies within hypothesis functions for assessing counterfactual error. This theorem under-
pins our approach by integrating considerations of both covariate and hypothesis function discrep-
ancies. For proof and further details see Appendix A.
Theorem 3 (PEHE upper bound by hypothesis function discrepancy). Let Φ : X → R be an invert-
ible representation with Ψ its inverse, and let h : R× {0, 1} → Y be a hypothesis function. Recall
that ℓf (x, t) =

∫
Y L(Yt, f(x, t))p(Yt|x)dYt is the expected loss for an individual and treatment

pair (x, t). The PEHE ϵPEHE(h,Φ) is bounded by discrepancies within the hypothesis functions:

ϵPEHE(h,Φ) ≤ 2

(
2ϵF (h,Φ) +

∫
R

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr − σ2

Y

)
, (9)

The term
∫
R

∣∣(ℓh,Φ(Ψ(r), 1) − ℓh,Φ(Ψ(r), 0)
)∣∣dr reflects the difference between the expected loss

predictions for both potential outcomes relative to the learned representation, and is governed by the
hypothesis functions. This difference is primarily induced by the selection bias, as this term may en-
compass estimation errors arising in sparsely-sampled regions where the unobserved counterfactual
labels are insufficiently represented by the estimated functions, which rely on factual labels. While
selection bias is the principal issue, our ITE estimation scheme intentionally goes beyond covariate
shift minimization by integrating the hypothesis functions to estimate outcomes directly under the
shift. This approach advocates for incorporating hypothesis functions in ITE estimation instead of
solely relying on covariate shift minimization. We propose a way to minimize this difference by
demanding smoothness of the hypothesis functions with respect to the learned representation, in
regions with counterfactual relevance. This allows the model to infer counterfactual from factual
samples and, thus, to effectively reduce the difference between prediction losses, and consequently,
the ITE estimation error, as suggested by the new bound.

4.1 LITE: LAPLACIAN INDIVIDUAL TREATMENT EFFECT

We present LITE: Laplacian Individual Treatment Effect, a method that integrates covariate and
hypothesis function discrepancies through a regularized-Laplacian representation. To this end, we
construct a graph within the latent space that captures covariate shift and requires the functions
to maintain smoothness over the defined graph geometry by regularizing the hypothesis functions
relative to the geometry of the learned representation.

Consider an observational dataset D = {(xi, ti, yi)}Ni=1, where xi ∈ Rd are the features, d denotes
the number of features, ti is the treatment indicator, and yi is the factual outcome, all of the ith
sample. In our deep learning framework, this dataset is batch-processed through a neural network
to obtain a representation function Φ(x) into a latent representation space R. This representation
is then input into the hypothesis function h, split into the two branches of treatment assignment
h(Φ, t = 0) and h(Φ, t = 1), which compute the respective potential outcomes.

6
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In the latent space, we construct a graph where each node corresponds to one sample from the batch,
and the edges represent the affinities between these samples, quantified by a radial basis function
(RBF). The adjacency matrix A ∈ Rb×b of the graph, where b denotes the batch size, is defined by:

Aij = exp

(
−∥Φ(xi)− Φ(xj)∥2

2σ2

)
, (10)

where each entry Aij in the matrix represents the weight of the edge between nodes i and j,
capturing the strength of interaction based on the similarity in their latent representations. Here,
Φ(x) ∈ Rr is the latent representation of each sample, where r denotes the latent dimension, and σ
is a scale parameter set to the mean of the pairwise distances, up to some factor. For further details
on the kernel type, scale, and distance metric, see Appendix B.1.

Using this adjacency matrix, we construct the Laplacian L as follows:

L = D −A, (11)

where D is the diagonal matrix with Dii =
∑

j Aij . Then, our objective function is expressed as:

O(θ) = ϵF (h,Φ) + α · SLITE(h,Φ), (12)
where the LITE term SLITE(h,Φ) is given by:

SLITE(h,Φ) =
1

b2
(
hT
0 Lh0 + hT

1 Lh1

)
, (13)

where ht = [h(Φ(x1), t), . . . , h(Φ(xb), t)]
T for t ∈ {0, 1}, and the factual error ϵF (h,Φ) is:

ϵF (h,Φ) =
1

b

b∑
i=1

L(h(Φ(xi), t = ti), yi). (14)

LITE is summarized in Algorithm 1. It is described for binary treatment for simplicity, however,
our approach is flexible and can easily be extended to accommodate multiple treatments. See Ap-
pendix C. LITE is designed to handle large datasets efficiently and is implemented to allow for fast
computation. For further details on scalability and computation time, see Appendix D.

Algorithm 1 The LITE Algorithm
Input: Observational dataset D
Output: Optimized network for ITE prediction
Init: Initialize network parameters θ
while not met early stopping criteria

1: Feed batch from D into Φ to obtain Φ(x) ▷ Latent representation
2: Compute h(Φ(x), t = 0) and h(Φ(x), t = 1) ▷ Potential outcome predictions
3: Construct adjacency graph A ▷ According to Eq. (10)
4: Build the Laplacian operator L ▷ According to Eq. (11)
5: Compute SLITE ▷ According to Eq. (13)
6: Compute factual error ϵF (h,Φ) ▷ According to Eq. (14)
7: Calculate the objective:

O(θ) = ϵF (h,Φ) + α · SLITE(h,Φ)

8: Update θ and validate on a hold-out set
end while
Return θ with lowest validation objective value

The LITE term, expressed in the quadratic form of the Laplacian matrix, is given by:

hT
t Lht =

∑
i,j

Aij(ht[i]− ht[j])
2, (15)

where Aij is defined in equation 10, and ht[k] is the potential outcome of sample k with treatment
assignment t. Minimizing this expression enforces predictions ht[k] and ht[l] are similar when sam-
ples k and l are close according to the geometry in the learned representation space defined by Aij .
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Broadly, the adjacencies in A (based on ∥Φ(xi)−Φ(xj)∥) carry information on the covariate shift,
while |ht[i]− ht[j]| induces the hypothesis function smoothness. The quadratic form minimization
promotes predictions that live in the span of smooth eigenvectors of the Laplacian graph. Our pro-
posed approach leverages available factual labels, ensuring that model predictions are grounded in
observations, while counterfactuals are inferred from them under this smoothness requirement.

We now clarify the connection between Theorem 3 and the LITE method, which employs Laplacian
regularization, highlighting how the regularization enforces smoothness across samples and reduces
the difference between prediction losses for both potential outcomes. Theorem 3 establishes an
upper bound on the ITE error based on differences in expected loss predictions for both potential
outcomes. The graph Laplacian regularization enforces smoothness across samples by minimizing
the quadratic form of both factual and counterfactual samples in the latent space. We argue that
smoothness across outcomes of different samples leads to reducing the difference between pre-
diction losses. In particular, in regions without selection bias, both potential outcome predictions
would ideally have similar levels of predicted losses, and thus, the difference would be small. How-
ever, due to the selection bias, and particularly in regions with severe selection bias, one potential
outcome prediction function is based on factual samples, while the other potential outcome pre-
diction function is insufficiently represented by unobserved counterfactual outcomes. This leads to
higher predicted losses and larger differences between the predicted losses. The Laplacian addresses
the unobserved regions by enforcing smoothness across outcomes of different samples, allowing
the model to infer counterfactual from factual samples and, thus, effectively reducing the difference
between prediction losses.

We note that while our method, LITE, effectively utilizes Theorem 3, the framework of our Theo-
rem is general and can accommodate other alternatives incorporating function handling rather than
covariate minimization. Following this approach, we show that LITE achieves significant empirical
improvements over existing methods.

5 EXPERIMENTS

We evaluate the performance of LITE through a simulation and two leading benchmarks and com-
pare it to both recent and established methods. While both potential outcomes are available for
evaluation, in all the experiments, the optimization process does not involve counterfactual labels.
The source code will be made available on GitHub upon acceptance. For additional details on the
experimental setup, hyperparameter configurations, and other supplementary information, see Ap-
pendix B.

Performance Metrics. We report the ITE estimation error, ϵPEHE =
1
n

∑n
i=1 ((h(xi, 1)− h(xi, 0))− (m1(xi)−m0(xi)))

2, and the absolute error in the estimated
average treatment effect, ϵATE =

∣∣ 1
n

∑n1

i=1(h(xi, 1)− h(xi, 0))− 1
n

∑n
i=1(m1(xi)−m0(xi))

∣∣,
where mi = E[Yi|x]. We consider two evaluation tasks. (i) In-sample evaluation is conducted on
subsets used during optimization, including training and validation sets. Unlike traditional machine
learning scenarios, this task is challenging because counterfactual labels are not available during the
optimization process. (ii) Out-of-sample evaluation is conducted on the test set and involves unseen
data, where neither factual nor counterfactual labels were available during optimization.

5.1 ILLUSTRATIVE SIMULATION

We demonstrate the impact of LITE in mitigating the counterfactual error in a simulation. To this
end, we generate a synthetic dataset with 600 individuals, each characterized by a scalar covariate
x within the range (−2.5, 2.5). The simulated potential outcomes m1(x) and m0(x) are depicted
as dashed lines in Fig. 1(a). The treatment assignment is biased and modeled by the propensity
score function: π(x) = p(t = 1|x) = (1 + e−(−0.1+0.9x))−1. This selection bias is shown in Fig.
1(a), where treated individuals (blue dots) are more likely to have higher x values, while control
individuals (green dots) are more likely to have lower x values, resulting in a skewed distribution
across x. For each individual, we only observe the factual outcome according to the treatment
assignment policy, while the unobserved counterfactual outcomes are depicted as gray dots. In
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Figure 1: Illustrative example of ITE estimation using LITE. (a) The expected outcomes m0 and
m1 (shown as dashed lines) with factual labels for treated and control (in blue and green dots, re-
spectively) and with unobserved counterfactual labels (in gray). (b) The corresponding ITE function
(dotted line) with the unobserved ITE samples. (c) Factual, counterfactual, and ITE error (PEHE)
for varying values of LITE regularization coefficient. (d) Predicted outcomes for the best α value in
terms of PEHE, compared to without using LITE (α = 0). (e) The corresponding ITE estimation.

Fig. 1(b), the ITE function m1 −m0 is shown, with the unobserved ITE samples representing the
difference between factual and counterfactual outcomes.

In Fig. 1(c), we observe the factual, counterfactual, and PEHE errors for different values of the
regularization term α. At α = 0, optimization is based solely on factual error without the LITE
term. As α increases, we see a significant reduction in counterfactual error and consequently a
smaller ITE error (PEHE). These results are averaged over 100 realizations. See more details in
Appendix B. In Fig. 1(d), the predicted outcomes for one realization are presented. We see that
without LITE (α = 0), the model struggles to capture the ground truth in regions with severe
selection bias due to the influence of a few factual labels, creating inconsistent trends in small
sample regimes. In contrast, with LITE (α = 0.1), while not informed by counterfactual labels,
the model ensures consistency in those regions by aligning counterfactual predictions with factual
labels. This refinement lowers the predicted slope in these regions, enabling the model to capture
the true trend more accurately. In Fig. 1(e), we present the corresponding ITE estimation, further
demonstrating the effectiveness of LITE.

5.2 IHDP AND NEWS BENCHMARKS

IHDP. The IHDP dataset Hill (2011) is arguably the most used benchmark for ITE estimation. It
examines the impact of specialist home visits on cognitive test scores and consists of 747 units (608
control, 139 treated) with 25 covariates related to the children and their mothers. These features and
treatment assignments were extracted from a real-world clinical trial, with selection bias introduced
by selectively removing a subset of the patients. We report

√
ϵPEHE and ϵATE for both in-sample and

out-of-sample evaluations. We compare our method to 20 other methods, including both established
and recent state-of-the-art models, whose performance has been reported in the literature.

Tab. 1 presents the results. We see that our method achieves the best ITE estimation, demonstrating
a significant margin compared to state-of-the-art methods. While obtaining the best ITE estimation,
our method achieves the second-best results in terms of Average Treatment Effect (ATE), which are
comparable to the best results obtained by ABCEI. Yet, ABCEI yields much inferior ITE estimation.

News. The News dataset comprises 5,000 New York Times articles, each represented by a 3,477-
word vocabulary, analyzed for consumer opinions on different devices. For more details, see Ap-
pendix B.1. The results are presented in Tab. 2. We see that our method achieves the best results in
terms of both ITE estimation and ATE by a large margin.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we presented a new approach for ITE estimation that diverges from traditional meth-
ods by considering, rather than minimizing, covariate shifts, as well as discrepancies between hy-

9
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Table 1: Results on the IHDP dataset (1000 iterations). The best results are in bold, and the second-
best results are underlined. Values are as reported in the literature (see Table 5 in the appendix for
the references). ’n.r.’ denotes values not reported.

√
ϵPEHE ϵATE

Group Method In-sample Out-of-sample In-sample Out-of-sample

Classic ML regression OLS1 5.8 ± 0.3 5.8 ± 0.3 0.73 ± 0.04 0.94 ± 0.06
OLS2 2.4 ± 0.1 2.5 ± 0.1 0.14 ± 0.01 0.31 ± 0.02

Matching
k-NN 2.1 ± 0.1 4.1 ± 0.2 0.14 ± 0.01 0.79 ± 0.05
PSM 4.92 ± 0.312 4.92 ± 0.312 n.r. 0.78 ± 0.03
PM n.r. 0.84 ± 0.61 n.r. 0.24 ± 0.20

Tree-based
BART 2.1 ± 0.1 2.3 ± 0.1 0.23 ± 0.01 0.34 ± 0.02
R. For. 4.2 ± 0.2 6.6 ± 0.3 0.73 ± 0.05 0.96 ± 0.06
C. For. 3.8 ± 0.2 3.8 ± 0.2 0.18 ± 0.01 0.40 ± 0.03

Gaussian processes CMGP 0.61 ± 0.011 0.76 ± 0.012 0.11 ± 0.10 0.13 ± 0.12
NSGP 0.51 ± 0.013 0.64 ± 0.030 n.r. 0.23 ± 0.01

Representation learning

General TARNET 0.88 ± 0.02 0.95 ± 0.02 0.26 ± 0.01 0.28 ± 0.01
CEVAE 2.7 ± 0.1 2.6 ± 0.1 0.34 ± 0.01 0.46 ± 0.02

Balanced

BLR 5.8 ± 0.3 5.8 ± 0.3 0.72 ± 0.04 0.93 ± 0.05
BNN 2.2 ± 0.1 2.1 ± 0.1 0.37 ± 0.03 0.42 ± 0.03
CFR MMD 0.73 ± 0.01 0.78 ± 0.02 0.30 ± 0.01 0.31 ± 0.01
CFR WASS 0.71 ± 0.02 0.76 ± 0.02 0.25 ± 0.01 0.27 ± 0.01
SITE 0.69 ± 0.0 0.75 ± 0.0 0.22 ± 0.01 0.24 ± 0.01
MitNet n.r. 0.60 ± 0.03 n.r. 0.25 ± 0.01
GANITE 1.9 ± 0.4 2.4 ± 0.4 0.43 ± 0.05 0.49 ± 0.05
ABCEI 0.71 ± 0.0 0.73 ± 0.0 0.09 ± 0.01 0.09 ± 0.01

Geometric LITE (Our Method) 0.35 ± 0.004 0.37 ± 0.005 0.11 ± 0.003 0.12 ± 0.003

Table 2: Results on the News dataset (50 iterations). See Table 6 in the appendix for the references.
√
ϵPEHE ϵATE

Group Method In-sample Out-of-sample In-sample Out-of-sample

Classic ML regression LASSO1 4.23 ± 0.17 4.25 ± 0.17 2.5 ± 0.07 2.5 ± 0.07
LASSO2 2.03 ± 0.08 2.31 ± 0.16 0.33 ± 0.02 0.34 ± 0.03

Gaussian processes CMGP n.r. 2.21 ± 0.05 n.r. n.r.

Representation learning

General TARNet 1.81 ± 0.05 1.93 ± 0.06 0.32 ± 0.04 0.30 ± 0.04
CEVAE n.r. 3.74 ± 0.18 n.r. n.r.

Balanced

CFR WASS 1.83 ± 0.05 1.98 ± 0.06 0.34 ± 0.04 0.37 ± 0.04
SITE 2.20 ± 0.07 2.44 ± 0.09 0.18 ± 0.02 0.22 ± 0.03
ABCEI 1.63 ± 0.05 1.81 ± 0.07 0.18 ± 0.03 0.23 ± 0.04
NOFELITE n.r. 2.18 ± 0.05 n.r. n.r.

Geometric LITE (Our Method) 1.24 ± 0.04 1.44 ± 0.05 0.15 ± 0.02 0.16 ± 0.02

pothesis functions. Building on this approach, we proposed LITE (Laplacian Individual Treatment
Effect), a new method that incorporates both covariate shift and hypothesis function into a Laplacian-
regularized representation. We showed that LITE outperforms established and recent SOTA methods
on leading benchmarks.

LITE is primarily demonstrated on binary treatment frameworks for simplicity. As described in the
paper, it is effective for discrete treatment categories and has been explicitly extended to handle
multiple treatment conditions by generalizing the Laplacian term for multi-treatment scenarios.

However, many practical applications, especially in healthcare, involve treatments with continuous
variables, e.g. dosage levels (Schwab et al., 2020). The treatment effect may depend on the amount
of a drug administered, which requires understanding the dose-response relationship to optimize
outcomes. Future work will explore integrating into LITE methodologies that handle continuous
treatment variables. This extension will involve developing new geometric embeddings or adapting
the existing regularization to accommodate a continuous treatment space. Such advancements could
enhance the model’s utility in precision medicine by enabling nuanced analyses of optimal dosing
strategies.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Simon Cousens, J Hargreaves, Chris Bonell, B Armstrong, J Thomas, BR Kirkwood, and R Hayes.
Alternatives to randomisation in the evaluation of public-health interventions: statistical analysis
and causal inference. Journal of Epidemiology & Community Health, 65(7):576–581, 2011.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In International
conference on machine learning, pp. 685–693. PMLR, 2014.

Rajeev H Dehejia and Sadek Wahba. Propensity score-matching methods for nonexperimental
causal studies. Review of Economics and statistics, 84(1):151–161, 2002.

Vincent Dorie. Npci: Non-parametrics for causal inference. URL: https://github. com/vdorie/npci,
11:23, 2016.

Xin Du, Lei Sun, Wouter Duivesteijn, Alexander Nikolaev, and Mykola Pechenizkiy. Adversarial
balancing-based representation learning for causal effect inference with observational data. Data
Mining and Knowledge Discovery, 35(4):1713–1738, 2021.

Thomas A Glass, Steven N Goodman, Miguel A Hernán, and Jonathan M Samet. Causal inference
in public health. Annual review of public health, 34:61–75, 2013.

Donald P Green and Holger L Kern. Modeling heterogeneous treatment effects in survey experi-
ments with bayesian additive regression trees. Public opinion quarterly, 76(3):491–511, 2012.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Xing Sam Gu and Paul R Rosenbaum. Comparison of multivariate matching methods: Structures,
distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4):405–420,
1993.

Xingzhuo Guo, Yuchen Zhang, Jianmin Wang, and Mingsheng Long. Estimating heterogeneous
treatment effects: mutual information bounds and learning algorithms. In International Confer-
ence on Machine Learning, pp. 12108–12121. PMLR, 2023.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Daniel E Ho, Kosuke Imai, Gary King, and Elizabeth A Stuart. Matching as nonparametric prepro-
cessing for reducing model dependence in parametric causal inference. Political analysis, 15(3):
199–236, 2007.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
ence. In International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Fredrik D Johansson, Nathan Kallus, Uri Shalit, and David Sontag. Learning weighted representa-
tions for generalization across designs. arXiv preprint arXiv:1802.08598, 2018.

Fredrik D Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and rep-
resentation learning for estimation of potential outcomes and causal effects. Journal of Machine
Learning Research, 23(166):1–50, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aurélie Lemmens and Sunil Gupta. Managing churn to maximize profits. Marketing Science, 39
(5):956–973, 2020.

Weifeng Liu, Xueqi Ma, Yicong Zhou, Dapeng Tao, and Jun Cheng. p-laplacian regularization for
scene recognition. IEEE Transactions on Cybernetics, 49(8):2927–2940, 2018.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. Advances in neural information pro-
cessing systems, 30, 2017.

Min Lu, Saad Sadiq, Daniel J Feaster, and Hemant Ishwaran. Estimating individual treatment effect
in observational data using random forest methods. Journal of Computational and Graphical
Statistics, 27(1):209–219, 2018.

Jiahao Pang and Gene Cheung. Graph laplacian regularization for image denoising: Analysis in the
continuous domain. IEEE Transactions on Image Processing, 26(4):1770–1785, 2017.

Judea Pearl. Causal inference in statistics: An overview. 2009.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.
Springer, 2002.

Mattia Prosperi, Yi Guo, Matt Sperrin, James S Koopman, Jae S Min, Xing He, Shannan Rich,
Mo Wang, Iain E Buchan, and Jiang Bian. Causal inference and counterfactual prediction in
machine learning for actionable healthcare. Nature Machine Intelligence, 2(7):369–375, 2020.

Abbavaram Gowtham Reddy and Vineeth N Balasubramanian. Nester: An adaptive neurosymbolic
method for causal effect estimation. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 14793–14801, 2024.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Willi Sauerbrei, Michal Abrahamowicz, Douglas G Altman, Saskia le Cessie, James Carpenter,
and STRATOS initiative. Strengthening analytical thinking for observational studies: the stratos
initiative. Statistics in medicine, 33(30):5413–5432, 2014.

Nicholas J Schork. Personalized medicine: time for one-person trials. Nature, 520(7549):609–611,
2015.

Stefan Schrod, Fabian Sinz, and Michael Altenbuchinger. Adversarial distribution balancing for
counterfactual reasoning. arXiv preprint arXiv:2311.16616, 2023.

Patrick Schwab, Lorenz Linhardt, and Walter Karlen. Perfect match: A simple method for
learning representations for counterfactual inference with neural networks. arXiv preprint
arXiv:1810.00656, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim M Buhmann, and Walter Karlen. Learning
counterfactual representations for estimating individual dose-response curves. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pp. 5612–5619, 2020.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
ization bounds and algorithms. In International conference on machine learning, pp. 3076–3085.
PMLR, 2017.

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
effects. Advances in neural information processing systems, 32, 2019.

Toon Vanderschueren, Jeroen Berrevoets, and Wouter Verbeke. Noflite: Learning to predict individ-
ual treatment effect distributions. Transactions on Machine Learning Research, 2023.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Kerstin N Vokinger, Stefan Feuerriegel, and Aaron S Kesselheim. Mitigating bias in machine learn-
ing for medicine. Communications medicine, 1(1):25, 2021.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Yan Wang, Itai Kloog, Brent A Coull, Anna Kosheleva, Antonella Zanobetti, and Joel D Schwartz.
Estimating causal effects of long-term pm2. 5 exposure on mortality in new jersey. Environmental
health perspectives, 124(8):1182–1188, 2016.

Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation
learning for treatment effect estimation from observational data. Advances in neural information
processing systems, 31, 2018.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International conference on learning rep-
resentations, 2018.

Imtiaz Ziko, Jose Dolz, Eric Granger, and Ismail Ben Ayed. Laplacian regularized few-shot learning.
In International conference on machine learning, pp. 11660–11670. PMLR, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A PROOF OF THEOREM 3

Definition 6. Let pt=1(x) := p(x | t = 1), and pt=0(x) := p(x | t = 0) denote respectively the
treatment and control distributions.
Definition 7. For a representation function Φ : X → R, and for a distribution p defined over X , let
pΦ be the distribution induced by Φ over R. Define pt=1

Φ (r) := pΦ(r | t = 1), pt=0
Φ (r) := pΦ(r |

t = 0), to be the treatment and control distributions induced over R.
Definition 8. Let Φ : X → R be a representation function. Let h : R×{0, 1} → Y be a hypothesis
defined over the representation space R. The expected loss for the unit and treatment pair (x, t) is:

ℓh,Φ(x, t) =

∫
Y
L(Yt, h(Φ(x), t))p(Yt | x)dYt

Assumption 3. The representation function Φ is one-to-one. Without loss of generality, we will
assume that R is the image of X under Φ, and define Ψ : R → X to be the inverse of Φ, such that
Ψ(Φ(x)) = x for all x ∈ X .
Theorem 3 (PEHE upper bound by hypothesis function discrepancy). Let Φ : X → R be an
invertible representation with Ψ its inverse, and a hypothesis function h : R × {0, 1} → Y , the
PEHE ϵPEHE(h,Φ) can be bounded by discrepancies within the hypothesis functions:

ϵPEHE(h,Φ) ≤ 2

(
2ϵF (h,Φ) +

∫
R

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr − σ2

Y

)
, (16)

Proof.
ϵCF (h,Φ)− ϵF (h,Φ) =

[
(1− u) · ϵt=1

CF (h,Φ) + u · ϵt=0
CF (h,Φ)

]
(17)

−
[
(1− u) · ϵt=0

F (h,Φ) + u · ϵt=1
F (h,Φ)

]
= (1− u) ·

[
ϵt=1
CF (h,Φ)− ϵt=0

F (h,Φ)
]

(18)

+ u ·
[
ϵt=0
CF (h,Φ)− ϵt=1

F (h,Φ)
]

= (1− u)

∫
X
pt=0(x)

(
ℓh,Φ(x, 1)− ℓh,Φ(x, 0)

)
dx (19)

+ u

∫
X
pt=1(x)

(
ℓh,Φ(x, 0)− ℓh,Φ(x, 1)

)
dx

Equality in 17 and 19 is by Definitions 5 and, 4. Then by changing of variables using Definition 7
we can get:

ϵCF (h,Φ)− ϵF (h,Φ) = (1− u)

∫
R
pt=0
Φ (r)

(
ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)

)
dr (20)

+ u

∫
R
pt=1
Φ (r)

(
ℓh,Φ(Ψ(r), 0)− ℓh,Φ(Ψ(r), 1)

)
dr

≤ (1− u)
∣∣∫

R
pt=0
Φ (r)

(
ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)

)
dr
∣∣ (21)

+ u
∣∣∫

R
pt=1
Φ (r)

(
ℓh,Φ(Ψ(r), 0)− ℓh,Φ(Ψ(r), 1)

)
dr
∣∣

≤ (1− u)

∫
R
pt=0
Φ (r)

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr (22)

+ u

∫
R
pt=1
Φ (r)

∣∣(ℓh,Φ(Ψ(r), 0)− ℓh,Φ(Ψ(r), 1)
)∣∣ dr

≤ (1− u)

∫
R

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr (23)

+ u

∫
R

∣∣(ℓh,Φ(Ψ(r), 0)− ℓh,Φ(Ψ(r), 1)
)∣∣ dr

=

∫
R

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr (24)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

The transition in 21 utilizes the triangle inequality for integration, while 22 employs the Cauchy-
Schwarz inequality. In 23, we use the fact that the probability terms ptΦ(r) are less than or equal to
one. Thus we get:

ϵCF (h,Φ) ≤ ϵF (h,Φ) +

∫
R

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr

and combining this result into equation 1, we get:

ϵPEHE(h,Φ) ≤ 2(2ϵF (h,Φ) +

∫
R

∣∣(ℓh,Φ(Ψ(r), 1)− ℓh,Φ(Ψ(r), 0)
)∣∣ dr − σ2

Y ). (25)

We note that the inequalities could be applied directly in the input space in Eq. 19 rather than in the
representation space, meaning that the smoothness could also be employed in the input space. We
assert that the input space may be obscured by irrelevant aspects of the data, whereas the represen-
tation space consists of relevant features, making it more suitable the smoothness requirement.

B EXPERIMENTS

B.1 MORE DETAILS ON THE EXPERIMENTAL SETTINGS

Network architecture. Our representation network Φ(x) and the hypothesis networks h(Φ, t = 0)
and h(Φ, t = 1) are realized using fully connected layers with ELU activation functions (Clevert
et al., 2015). While our framework accommodates more complex architectures, the current imple-
mentation achieves robust ITE estimation, demonstrating its effectiveness even when compared to
other methods (Yoon et al., 2018; Du et al., 2021; Louizos et al., 2017) that employ more sophis-
ticated architectures. Following Shalit et al. (2017), we normalize the representation layer. In our
case, this methodology prevents the optimization from favoring solutions that minimize the Lapla-
cian term by trivially setting Φ(x) = 0.

Dataset splitting and optimization. The benchmark datasets are divided into 63/27/10 splits for
training, validation, and testing, in alignment with Johansson et al. (2016); Shalit et al. (2017). The
same test realizations are used to maintain consistency with previous studies. Optimization employs
the Adam optimizer (Kingma & Ba, 2014), using the default parameters: β1 = 0.9, β2 = 0.999, and
ϵ = 10−8. We implement an exponential decay schedule for the learning rate, decreasing it by 0.95
every 50 iterations. The training process includes early stopping (Prechelt, 2002) based on the LITE
objective, as defined in 12, evaluated on the validation set, with a maximum of 10,000 iterations and
a patience of 2,000 iterations for early stopping.

Hyperparameter Selection. We follow the commonly used practice in the literature for hyperpa-
rameter selection (Johansson et al., 2016) based on the PEHE metric on the validation set, while the
hyperparameters are fixed across multiple realizations. Although not applicable to real-world data,
this approach validates the robustness of the selected parameters and prevents overfitting.

Baselines. The comparison encompasses traditional ML regression methods such as Ordinary
Least Squares with treatment as a feature (OLS1), linear regression with separate regressors for each
treatment group (OLS2), and the Least Absolute Shrinkage and Selection Operator with treatment
as a feature (LASSO1), and separate regressors for each treatment group (LASSO2). We also con-
sider matching methods like k−nearest neighbor (k-NN) Ho et al. (2007), propensity-score match-
ing (PSM) Dehejia & Wahba (2002) and perfect match (PM)Schwab et al. (2018). Additionally,
we evaluate tree-based algorithms including Bayesian Additive Regression Trees (BART)Chipman
et al. (2010); Chipman & McCulloch (2016), Random Forests (R. For.) Breiman (2001), and Causal
Forests (C. For.) Wager & Athey (2018), as well as Gaussian processes such as Causal Multi-
task Gaussian Process (CMGP) Alaa & Van Der Schaar (2017) and non-stationary Gaussian Pro-
cess (NSGP)Alaa & Schaar (2018). We also include various representation learning methods in
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our comparison. General representation learning methods are Treatment-Agnostic Representation
Network (TARNET) Shalit et al. (2017), Causal Effect Variational Autoencoder (CEVAE) Louizos
et al. (2017). Balanced representation learning methods are Balancing Linear Regression (BLR)
Johansson et al. (2016), Balancing Neural Network (BNN) Johansson et al. (2016), CounterFactual
Regression with Maximum Mean Discrepancy (CFR MMD) Shalit et al. (2017), CounterFactual
Regression with WASSerstein distance (CFR WASS) Shalit et al. (2017), Similarity preserved Indi-
vidual Treatment Effect (SITE) Yao et al. (2018), Mutual Information Treatment Network (MitNet)
Guo et al. (2023), Adversarial Nets for inference of Individualized Treatment Effects (GANITE)
Yoon et al. (2018), Adversarial Balancing-based Representation learning for Causal Effect Infer-
ence (ABCEI) Du et al. (2021), and NOrmalizing FLows Individual Treatment Effect (NOFLITE)
Vanderschueren et al. (2023).

Kernel type, scale, and distance metric. The selection of the kernel type, scale, and distance
metric may influence the perfomance of our approach. While our method is compatible with var-
ious kernels, we chose to use the Gaussian (RBF) kernel paired with the Euclidean metric in our
experiments, because it is the common practice in manifold learning, kernel methods, and classifi-
cation tasks. The focus of our study was to highlight the innovative aspects of our method rather
than the specifics of kernel selection, which is a standard consideration across kernel-based and
manifold learning techniques. Additionally, since our kernel is built on the latent space and is part
of the loss function, the RBF kernel exhibits properties such as differentiability and smoothness,
which are crucial for stable optimization. To determine the most suitable kernel scale, we employed
cross-validation to identify the optimal bandwidth, as detailed in the Appendix.

Details on the News dataset. The News dataset simulates consumer opinions on news items
viewed on different devices, using 5,000 randomly sampled articles from the New York Times. Each
news item is represented by word counts from a 3,477-word vocabulary. The simulated outcome is
the reader’s opinion, influenced by whether the news is viewed on a desktop (t = 0) or a mobile
device (t = 1). Bias in the “treatment” assignment is based on the similarity between the topic
distribution of the news items and two centroids, indicating a consumer preference for certain topics
on mobile. This dataset enables the analysis of how the device impacts the reader’s experience. For
more details, see Johansson et al. (2016).

Details on the IHDP dataset. We follow Shalit et al. (2017) and use the same simulated outcomes
from the NPCI package Dorie (2016). This dataset includes 1000 realizations for robust evaluation.

Computing resources. All the experiments were performed using Python on NVIDIA DGX A100
systems, each equipped with A100 GPUs and 512 GB of RAM.

B.2 HYPERPARAMETER SELECTION

In the illustrative example, we utilized a learning rate of 1e-2 with a batch size of 100. The kernel
scale factor was set to 1. Both the hypothesis and representation layers were configured with 4 layers
each, and all layers were dimensioned at 25.

Table 3: Hyperparameter grids for IHDP and News Benchmarks.
Parameter IHDP News

Learning rate 1e-2, 1e-3, 1e-4
Batch size 100 200, 500, 1000
Num. Representation layers 5, 7, 9 2, 3, 4
Dim. Representation layers 25, 50, 75 100, 150, 200
Num. Hypothesis layers 5, 7, 9 4, 5, 6
Dim. Hypothesis layers 25, 50, 75 100, 150, 200
LITE Reg term (α) 0:0.1:10
Kernel scale (σ) 0.05:0.05:1
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Table 4: Selected parameter settings for IHDP and News datasets.
Parameter IHDP News

Learning rate 1e-3 1e-2
Batch size 100 500
Num. Representation layers 9 2
Dim. Representation layers 25 150
Num. Hypothesis layers 9 5
Dim. Hypothesis layers 25 100
LITE Reg term (α) 9.6 1.9
Kernel scale (σ) 0.1 0.35

B.3 REFERENCES FOR REPORTED PERFORMANCE METRICS.

The results of the competing methods in Tables 1 and 2 were sourced from the original papers where
available, as detailed in Tables 5 and 6 respectively.

Table 5: References for reported performance metrics on the IHDP dataset (1000 iterations). ’n.r.’
denotes values not reported.

√
ϵPEHE ϵATE

Group Method Within-sample Out-of-sample Within-sample Out-of-sample

Classic ML regression OLS1 Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
OLS2 Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)

Matching
k-NN Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
PSM Alaa & Schaar (2018) Alaa & Schaar (2018) n.r. Chen et al. (2019)
PM n.r. Schwab et al. (2018) n.r. Schwab et al. (2018)

Tree-based
BART Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
R. For. Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
C. For. Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)

Gaussian processes CMGP Alaa & Schaar (2018) Alaa & Schaar (2018) Reddy & Balasubramanian (2024) Reddy & Balasubramanian (2024)
NSGP Alaa & Schaar (2018) Alaa & Schaar (2018) n.r. Guo et al. (2023)

Representation learning

General TARNET Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
CEVAE Louizos et al. (2017) Louizos et al. (2017) Louizos et al. (2017) Louizos et al. (2017)

Balanced

BLR Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
BNN Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
CFR MMD Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
CFR WASS Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017) Shalit et al. (2017)
SITE Du et al. (2021) Du et al. (2021) Du et al. (2021) Du et al. (2021)
MitNet n.r. Guo et al. (2023) n.r. Guo et al. (2023)
GANITE Yoon et al. (2018) Yoon et al. (2018) Reddy & Balasubramanian (2024) Reddy & Balasubramanian (2024)
ABCEI Du et al. (2021) Du et al. (2021) Du et al. (2021) Du et al. (2021)

Table 6: References for reported performance metrics on the News dataset (50 iterations). ’n.r.’
denotes values not reported.

√
ϵPEHE ϵATE

Group Method In-sample Out-of-sample In-sample Out-of-sample

Classic ML regression LASSO1 Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023)
LASSO2 Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023)

Gaussian processes CMGP n.r. Vanderschueren et al. (2023) n.r. n.r.

Representation learning

General TARNet Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023)
CEVAE n.r. Vanderschueren et al. (2023) n.r. n.r.

Balanced

CFR WASS Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023)
SITE Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023)
ABCEI Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023) Schrod et al. (2023)
NOFELITE n.r. Vanderschueren et al. (2023) n.r. n.r.

C EXTENSION TO MULTI-TREATMENT FRAMEWORK

LITE is outlined in Algorithm 1. While presented for binary treatment for clarity, the method
is adaptable and can be readily extended to handle multiple treatments. Specifically, extensions
to multi-treatment scenarios involve adding hypothesis functions for each treatment condition.
These functions are optimized through the Laplacian framework by generalizing LITE as follows:
SLITE(h,Φ) = 1

b2

∑m
t=0 h

T
t Lht, where m is the number of treatments. This extension ability
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presents an advantage over many existing methods that cannot be extended easily. For example,
the covariate balancing metric in classical methods is typically designed only for binary cases.

D LITE SCALABILITY AND COMPUTATION TIME

LITE is designed to handle large datasets efficiently and is implemented to allow for fast computa-
tion.

While some methods struggle with scalability on high-dimensional data, LITE mini-batching train-
ing enhances scalability, allowing us to handle large datasets efficiently.

The computation involves two key steps. First, the computation of predicted potential outcomes
involves calculating both factual and counterfactual samples by simply forwarding them through the
network. Second, the computation of the Laplacian operator requires calculating pairwise distances
between samples within the representation layer for kernel construction. This step encompasses
the primary computational burden. The kernel construction in the representation space is common
also to covariate shift minimization methods like CFRNET (Shalit et al., 2017) employing MMD or
Wasserstein distance for shift minimzation. The Wasserstein distance, which generally offers better
performance over the MMD, requires additional computational steps involving Sinkhorn-Knopp
(Cuturi, 2013) iterations to compute the Wasserstein distance.

For the early stopping phase of optimization, we employ the entire validation set to ensure a com-
prehensive geometric inference. This validation set for the News dataset includes 1,350 samples in
a single batch, each with a latent space dimension of 150. We optimize pairwise distances using
vectorized operations, significantly reducing processing time to just 0.002 seconds on a GPU.

To further illustrate the efficiency of LITE compared to CFRNET Wasserstein distance (using the
POT package), we created a Colab notebook, which is available here(Please note: the reported time
from the first run may be inaccurate due to server GPU initialization. It is recommended to run it
twice).

The results show that LITE takes 0.0012 seconds on a GPU, while the CFRNET Wasserstein Dis-
tance takes 0.017 seconds, making LITE 14 times faster – an order of magnitude difference. On a
T4 GPU, LITE remains highly efficient, taking less than 2 seconds for 1,000 optimization iterations,
with the potential for even better performance on advanced GPUs.
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