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ABSTRACT

Foundation models trained on internet-scale data benefit from extensive alignment
to human preferences before deployment. However, existing methods typically
assume a homogeneous preference shared by all individuals, overlooking the di-
versity inherent in human values. In this work, we propose a general reward mod-
eling framework for pluralistic alignment (PAL), which incorporates diverse pref-
erences from the ground up. PAL has a modular design that leverages common-
alities across users while catering to individual personalization, enabling efficient
few-shot localization of preferences for new users. Extensive empirical evaluation
demonstrates that PAL matches or outperforms state-of-the-art methods on both
text-to-text and text-to-image tasks: on Reddit TL;DR Summary, PAL is 1.7%
more accurate for seen users and 36% more accurate for unseen users compared
to the previous best method, with 100× less parameters. On Pick-a-Pic v2, PAL
is 2.5% more accurate than the best method with 156× fewer learned parameters.
Finally, we provide theoretical analysis for generalization of rewards learned via
PAL showcasing the reduction in number of samples needed per user.

Figure 1: (a) Using preference data, the PAL framework learns a personalized reward model for each user i,
r
(i)
θ (·), which captures the user’s preference for any output x given context xc. (b) PAL models the common

perceptions of similarity across users through a shared representation f(·), and represents the individual aspects
of preferences via either a preference point a(i) in PAL-A or a preference mapping z(i)(xc) in PAL-B. In
particular, we assume a low-rank structure using K prototypical preference points or preference mappings;
see Section 2 for details. (c) PAL enables efficient few-shot preference learning for a new user—only a K-
dimensional weight vector is learned. This reduces computational cost as well as data needed for generalization.

1 INTRODUCTION

Foundation models trained on internet data are often not readily deployable and undergo alignment
to human preferences using large amounts of pairwise comparison feedback (Ouyang et al., 2022).
While aligning AI/ML models to human preferences, it is important to consider whose preferences
are we aligning them to? The status quo for popular alignment frameworks is to assume a homo-
geneous preference shared by all humans. However, humans have diverse preferences, values and
opinions (Bakker et al., 2022; Durmus et al., 2024; Nadal & Chatterjee, 2019; Wildavsky, 1987).
The need to capture this plurality in the context of AI alignment was also highlighted recently
by Sorensen et al. (2024). However, the methods suggested therein and other recent works look at
learning multiple rewards with a top-down approach, where the system designer decides the number
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and axes that one should care about (Cheng et al., 2023; Kovač et al., 2023; Ouyang et al., 2022;
Santurkar et al., 2023), e.g., helpfulness vs. harmlessness (Bai et al., 2022b;a; Ganguli et al., 2022;
Rame et al., 2024). In reality, human preferences are more complex than the designer-specified axes
(Bakker et al., 2022), especially on subjective aspects, which leads us to propose the following goal.

Goal: Develop a sample-efficient, personalized reward modeling framework for pluralistic align-
ment from the ground up which learns and generalizes to heterogeneous preferences.

Our Contributions. Towards this goal, we make the following contributions:
1. We propose PAL, a novel, sample-efficient, personalizable reward modeling framework for

pluralistic alignment from the ground up (Section 2). Our modular and versatile framework
achieves superior performance to the state-of-the-art (SoTA) in both language (Section 3.1)
and vision (Section 3.2, 3.3) tasks, while utilizing only a fraction of their learnable parameters.

2. PAL reward models achieve competitive performance with simple 2-layer MLPs on top of
frozen foundation models of varying sizes in practical settings across modalities (Section 3).
PAL enables democratic alignment via strong accuracy-compute optimality (Rege et al., 2023).

3. PAL is complementary to existing alignment frameworks, and works seamlessly across compute
budgets (see Figure 2) demonstrating the strength of its flexible and modular design.

4. We provide sample complexity guarantees for generalization towards new preference pre-
dictions for users in the dataset as well as for unseen users via few-shot learning, in the fully
connected linear layer setting for one of our models (Section 4.1), and we verify these results
with extensive numerical simulations (Section 4.2).

The learned PAL reward models can be used flexibly for personalizing downstream task of alignment
through (i) train-time methods such as PPO-based RLHF (Christiano et al., 2017; Wu et al., 2023a)
and (ii) inference time methods via best-of-n sampling such as controlled decoding (Liu et al., 2024;
Mudgal et al., 2024). In addition, the modular nature of PAL has high potential for future adaptability
as it enables seamlessly updating learned reward models via switching data encoders and distance
metrics, or adding new prototypes to account for dynamically changing heterogeneous preferences.
We note that, in this paper, we focus on developing sample-efficient personalizable reward modeling,
and understanding its efficacy via extensive experiments and theoretical analysis.

Background. Our reward modeling builds on the popular preference learning models, the
Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952) and the ideal point model (Coombs,
1950), both of which are special cases of the linear stochastic transitivity (LST) models. We pro-
vide a brief discussion of these models, including their assumptions and limitations here. Let D
denote the dimension of the representation space of the foundation models. Given a context/prompt
xc ∈ RD, generative model(s) can produce different outputs, denoted by x ∈ RD.1 The LST
models make the following assumption: Suppose each output for the prompt is associated with
a true score s⋆(x;xc) ∈ R. Given any list of alternates, the true scores lead to a true ranking
of them: for any two alternates, xl is preferred over xr if s⋆(xl;xc) > s⋆(xr;xc). However,
when we elicit comparison feedback from humans, the answers may be noisy and are modeled as,
Pr(xl ≻ xr|xc) = h(s⋆(xl;xc) − s⋆(xr;xc))), where h : R → [0, 1] is a strictly monotonic
link function that satisfies h(z) = 1 − h(−z). In other words, Pr(xl ≻ xr|xc) = 1/2 when
s⋆(xl,xc) = s⋆(xr,xc) and Pr(xl ≻ xr|xc) > 1/2 when s⋆(xl,xc) > s⋆(xr,xc).

The BTL model uses the logistic sigmoid function as the link function:

Pr(xl ≻ xr|xc) =
1

1 + exp (s⋆(xr;xc)− s⋆(xl;xc))
. (1)

On the other hand, the ideal point model uses a latent vector a ∈ RD to denote the ideal preference
point of a user, along with (negative) distance-based scoring function; the model is given by,

Pr(xl ≻ xr|xc) = h(dist2(xr,a)− dist2(xl,a)), (2)

where h can be any valid link function. The key idea here is that the larger the difference in distances
between the alternates to the ideal point, the easier it is to choose between them, and hence the

1These representations can be taken from penultimate layer(s) of a foundation model. While we use the
same D for the prompt and output for simplicity, this can easily be extended to different dimensional spaces.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

answer is less noisy. We note that with a sigmoid link function, the ideal point model can be viewed
as the BTL model with a distance-based scoring function.

A key limitation of these approaches is that they assume a single true ranking of the alternates
and model the differences in elicited preference as noisy observations. In reality, the differences in
elicited preferences are not merely noise, instead a reflection of plurality of human preferences.

Figure 2: On Reddit TL;DR, PAL is accuracy-compute op-
timal and shows state-of-the-art (SoTA) performance.

The ideal point model provides a nat-
ural starting point to incorporate in-
dividual preferences since each user
can be modeled using their own latent
preference. However, the assumption
that we know the distance function
that reflects a human notion of sim-
ilarity of alternates can be too strong
in practice. Further, completely in-
dividualized models devoid of any
shared structure will lead to unneces-
sary burden on per user sample com-
plexity for learning and would be dif-
ficult to generalize. Our aim is to cap-
ture the heterogeneity of preferences
while also leveraging commonalities
(Section 2), allowing for sample effi-
cient learning and generalization.

2 PAL: REWARD MODELING FOR PLURALISTIC ALIGNMENT

In this section, we describe our proposed personalizable reward modeling framework that captures
commonalities shared across the population which can be learned using the pooled data and indi-
vidual aspects that is learned per user in a sample efficient way. For user i, given a context xc, the
probability of alternate xl being preferred over xr is as follows,

Pr(xl ≻ xr|xc, i) = h(i)(r
(i)
θ (xr;xc)− r

(i)
θ (xl;xc)), (3)

where h(i) is any valid link function that can depend on the user, and r(i)(·) is the personalized
reward function for user i.2 We do not assume the knowledge of the link function for our learning
algorithms (Section 2.1). We propose two models for the personalized reward function:

PAL-A: Diverse preferences modeled via latent ideal preference points. The shared sense of
similarity of different alternates being compared is modeled as Euclidean distance in an unknown
mapped space, captured by f : R2D → Rd that jointly maps the output and context, (x;xc),
to this unknown space. The latent preference of each user i is modeled using an unknown ideal
preference point a(i) ∈ R2D. How much the user i values output x for given context xc is modeled
as inversely proportional how far away the mapping of (x;xc) is from the user’s ideal point. To
further capture the commonality in the preferences among users, each user’s preference points is
modeled as a convex combination of K prototypical points, that is, a(i) :=

∑K
k=1 w

(i)
k pk where

the weights w(i)
k ≥ 0 and

∑K
k=1 w

(i)
k = 1, and {p1, ...,pK} with pi ∈ R2D are K prototypical

ideal preference points. More formally, the personalized reward function and the corresponding
personalized probabilistic preference model is given by,

PAL-A: r
(i)
θ (x;xc) := ||f(x;xc)− f(a(i))||22, (4)

Pr(xl ≻ xr|xc, i) = h(||f(xr;xc)− f(a(i))||22 − ||f(xl;xc)− f(a(i))||22), (5)

Denoting P := [p1, · · · ,pK ], each user’s preference point a(i) := Pw(i), where w(i) :=

[w
(i)
1 , · · · , w(i)

K ]⊤, lies in the (K − 1)-dimensional simplex, ∆K−1.

2We drop the superscript i on h denoting user specificity for simplicity in the rest of discussions, however,
we note that the link function need not be the same for all users and our learning methods are agnostic to them.
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PAL-B: Diverse preferences modeled via latent preference mappings. Here each user’s pref-
erence also incorporates the given context and is modeled using an unknown preference mapping
z : RD → Rd. The shared sense of similarity of different alternates being compared is modeled
as cosine similarity in an unknown mapped space, f : RD → Sd−1. The commonality in the
preferences among users is captured by modeling each user’s preference mapping as a convex com-
bination of K prototypical mappings, i.e., z(i)(xc) =

∑K
k=1 w

(i)
k gk(xc), where {g1, ..., gK} with

gk : RD → Sd−1 are the prototypical mappings, w(i)
k ≥ 0 and

∑K
k=1 w

(i)
k = 1. Formally, the

personalized reward function and the corresponding probabilistic preference model is given by,

PAL-B: r
(i)
θ (x;xc) := ⟨f(x), z(i)(xc)⟩, (6)

Pri(xl ≻ xr|xc) = h
(
⟨f(xr), z

(i)(xc)⟩ − ⟨f(xl), z
(i)(xc)⟩

)
, (7)

For any context xc, denoting G(xc) := [g1(xc), · · · , gK(xc)], each user’s preference mapping of
the given context is, z(i)(xc) := G(xc)w

(i) with w(i) ∈ ∆K−1.

PAL modeling framework is modular, i.e., it provides a systematic way to incorporate shared and
personalized portions of preferences, as well as transparent way to control multiple notions of com-
plexity via cross validation: (i) the complexity of mapping f (and g’s in PAL-B) captures the shared
human notion of similarity between alternates. If the underlying foundation model used to obtain
the representations of outputs and contexts (x and xc) are rich and semantically meaningful, then
much smaller models suffice in capturing the rewards (Figure 2); (ii) the number of prototypes K
capture the level of heterogeneity of human preferences in the dataset: more diverse preferences
mandate a larger K for good generalization (Figure 5(b); and (iii) in conjunction with the proto-
types, the individualized weights allow for personalization with much fewer samples per user for
both seen and unseen users. This reduces the annotation burden on individuals during data collec-
tion (Figure 5(c)) and the amount of samples needed for few-shot learning for new users arriving on
deployment (Figure 3). We illustrate the PAL framework in Figure 1 and Figure A.2 (Appendix B).

2.1 LEARNING PAL MODELS FROM DIVERSE PREFERENCES

Let D :=
{
{(xl,xr;xc, y)

(i)
j }mi

j=1

}N

i=1
be a dataset of preference comparisons, where mi denotes

the number of pairs answered by user i, and y is the answer given to the pair (y = −1 if xl is
preferred, y = 1 otherwise). This can be looked at as a supervised learning problem with binary
labels. The goal of the learning algorithm in the PAL framework is to learn the mappings and
prototypes shared across the population, and for each user i, the weights w(i) ∈ ∆K−1. For PAL-A,
the mapping f and the prototypes {pk}Kk=1 are shared, while for PAL-B, the mapping f and the
prototype mappings {gk}Kk=1 are shared. These shared portions are learned using data pooled from
all users while the user specific weights are learned using each individual user’s preferences.

Given the comparison dataset D, loss function ℓ : R → [0, 1], model class for fθ and prototypi-
cal mappings {g1, ..., gK}, the learning algorithm for PAL-B starts by randomly initializing these
functions, and user weights w(i) ∈ ∆K−1, i = 1, ..., N . Then, in each iteration until convergence
criteria, the following steps are repeated,

• Sample a random mini-batch
{
(xl,xr;xc, y)

(i)
j

}
of comparison data from D.

• For each comparison j from user i:
– Compute user ideal mappings: z(i)(xc) := [g1(xc) . . . gK(xc)] ·w(i).

– Compute distances: d(i)l,j = ⟨fθ (xl) , z
(i)(xc)⟩, d(i)r,j = ⟨fθ (xr) , z

(i)(xc)⟩.

– Compute loss: ψ(i)
j (xl,xr;xc, y) = ℓ

(
y · (d(i)l,j − d

(i)
r,j)
)

.

• Update Step: argminθ,{g1,...,gK},{w(i)}N
i=1

∑
i,j ψ

(i)
j (xl,xr;xc, y).

Learning steps are similar for PAL-A. See Appendix B for pseudocode details.

2.2 GENERALIZATION OF PREFERENCE PREDICTIONS FOR seen VERSUS unseen USERS:

When learning a reward function from diverse preferences, there are two types of generalization to
consider: Predicting preferences for (1) unseen pairs for seen users, i.e., the people for whom the
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weights have already been learned from the training data; (2) unseen users, i.e., people whose data
was not part of the training data at all. For such new users, a portion of their data will be used
to learn weights to localize them within the learned model while keeping the shared mappings and
prototypes fixed. We also note that the weighted combination of the prototypes, i.e., an average of all
the seen users, can be used as the zero-shot ideal point for new users (e.g. Netflix recommendations
for new accounts). However, we emphasize that it is important for reward functions to generalize to
unseen users and PAL provides a natural way to localize new users, as we demonstrate in Section 3.1.
Section 4.1 provides theoretical guarantees on the per-user sample complexity of PAL for few-shot
generalization to unseen users.

3 EXPERIMENTS ON REAL DATASETS

In this section, we verify the following claims through extensive empirical evaluation:
C1. PAL can effectively capture the diversity of user preferences and outperform status-quo

homogeneous reward models.
C2. Compared to existing pluralistic reward modeling methods, PAL can achieve state-of-the-

art (SoTA) performance with significantly fewer parameters.
C3. PAL works for both text-to-text (T2T) and text-to-image (T2I) tasks.
C4. PAL demonstrates strong few-shot generalization to new, unseen users.

We employ two strategies for defining and training the learnable mapping f between the embed-
dings from a foundation model and latent space. In the Tiny strategy, f is a simple two-layer MLP
operating on a frozen foundation model. In the Large strategy, f is a combination of the founda-
tion model and a two-layer MLP, with both components being learnable. Models employing these
strategies are referred to as PAL-A-Tiny/ PAL-B-Tiny and PAL-A-Large/ PAL-B-Large
respectively. Appendix D.1 describes the general training procedure of our algorithm.

3.1 REDDIT TL;DR SUMMARY (TEXT-TO-TEXT)

Figure 3: On Reddit TL;DR, PAL gen-
eralizes well to unseen data using just
20 samples per unseen user (few-shot).

Dataset. Reddit TL;DR summary dataset curated by Sti-
ennon et al. (2020) contains a series of preferences over
summaries generated by language models. For each pair
of summaries, xl and xr, a labeler i determines if xl is
preferred or not. Each pair is also accompanied by the
unique identifier of the labeler. We used the variant of
the TL;DR dataset proposed by Li et al. (2024), which
uses the summary length as the preference. The major-
ity group prefers longer summaries while the minority
prefers shorter summaries.

Setup. We train PAL with sentence embeddings from
foundation models including OPT-350M (Zhang et al.,
2022), DistilBERT (Sanh et al., 2019), BGE-M3 (Chen
et al., 2024), and gte-Qwen2-1.5B (Li et al., 2023),
which make up Large and Tiny variants depending on
their size (#parameters). The loss design follows the typ-
ical loss of the Reward Model, we use the cumulative loss
which weights the per-token reward loss. Details of the loss function, hyperparameter setting, un-
seen dataset, and training setup are deferred to Appendix D.3.

Baselines. We compare to personalized (Li et al., 2024) and vanilla DPO (Rafailov et al., 2024).

Results. We train our model with 5 different seeds and report the mean and standard devia-
tion. Figure 2 shows the performance of PAL with foundation models of different sizes. PAL
shows strong accuracy-compute optimality with no hyperparameter tuning: compared to SoTA,
PAL-B-Large ( gte-Qwen2-1.5B) is 5.9% more accurate on seen users with 4× less param-
eters while PAL-B-Tiny (DistilBERT) is on-par with 1000× fewer parameters. Furthermore,
Figure 3 illustrates PAL’s ability to generalize effectively to unseen users in few-shot settings. As the
number of samples per unseen user increases, PAL progressively adapts to their preferences. With
just 20 samples per unseen user, PAL achieves performance comparable to that of seen users. Addi-
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Table 1: On Reddit TL;DR Summary,
PAL-B-Large outperforms SoTA P-
DPO on seen users (+1.7%) and un-
seen users (+36%) with 6.3 billion
fewer parameters. Note that we use
only 10 samples per unseen user to lo-
calize their weights.

Model Seen Acc (%) Unseen Acc (%)

Vanilla DPO 58.91 55.37
P-DPO Individual 91.04 55.34
P-DPO Cluster (K = 5) 91.12 54.55

PAL-B-Tiny (K = 2) 79.54 ± 0.54 74.72 ± 0.54
PAL-B-Large (K = 2) 92.82 ± 0.95 91.63 ± 0.54

Figure 4: On Pick-a-Filter, PAL-B-Tiny outperforms homoge-
neous models as user groups become more heterogeneous (↑ β).

tionally, as depicted in Figure D.3 (Appendix D), PAL exhibits superior performance over baseline
models on unseen users, even when provided with as few as 2 samples.

Table 1 reports the performance of PAL-B-Large (OPT-350M) compared to SoTA P-DPO ( (Li
et al., 2024)). We observe that PAL, with around 6.3 billion fewer parameters, is 1.7% more accurate
on seen users, and 36% more accurate on unseen users (C2, C4). Figure 3 shows that for new users,
PAL can match seen user performance with only 20 samples, showing its promising potential to
flexibly adapt to new users. We further highlight PAL’s strong few-shot generalization to unseen
users compared to baselines in Figure D.3 in the Appendix. Lastly, we also show exhaustive results
for all our model configurations based on OPT-350M in Table 3 and 5 (Appendix D.3).

3.2 PICK-A-PIC (TEXT-TO-IMAGE)

In this section, we examine how agnostic PAL is to data modality (C3) via the Pick-a-Pic
dataset (Kirstain et al., 2024). Popular T2I reward models usually require fine-tuning foundation
models with billions of parameters (Wu et al., 2023b; Kirstain et al., 2024; Xu et al., 2024). We
show that PAL achieves competitive performance or SoTA performance while having significantly
fewer parameters than baselines (C2).

Dataset. The Pick-a-Pic dataset (Kirstain et al., 2024) is a large, open dataset for human feedback
in T2I generation. There are two versions of Pick-a-Pic, v1 and v2, where v2 extends v1. To ensure
a fair model evaluation, we divide the v2 test set into “no-leakage” and “leakage” subsets due to
overlap (“leakage”) with the v1 train set. We only consider the 18391 samples with no preference
ties, i.e. one generated image is always preferred to the other. Out of these, 10587 samples (∼ 58%)
overlap with the training and validation sets of v1, which was used to train PickScore Kirstain et al.
(2024) – we call this the v2 “leakage” subset. The remaining 7804 test samples (∼ 42%) in v2 do
not overlap with v1 train and val, ensuring they are distinct for evaluation purposes – we call this the
v2 “no-leakage” subset.

Setup. We train PAL-B with logistic loss on both v1 and v2 for 10 epochs on top of CLIP-H/14 or
PickScore (Kirstain et al., 2024) embeddings. We discuss hyperparameter tuning in Appendix D.5.

Baselines. We compare to SoTA PickScore (Kirstain et al., 2024) and a vanilla CLIP-H/14.

Results. Table 2 shows (a) PAL matches SoTA PickScore when trained on V1 with 165× fewer
parameters (b) PAL exceeds SoTA performance on v2-no-leakage (i.e. fair comparison) by 2%
when training on v1, and by 2.5% if training on v2 (C1, C3). Training PAL from “scratch” i.e. with
CLIP-H embeddings, outperforms training on PickScore embeddings (which were trained on v1).
We note that PAL-B-Tiny (∼6M params) exceeds SoTA performance while training on a single
RTX 4090 GPU (see Appendix E), whereas PickScore (∼1B params) is trained with 8×A100 GPUs
– highlighting the suitability of PAL for efficient and democratic reward modeling (C2).

Remark. Since the data collection process for existing datasets involves the usage of strict
rubrics (Stiennon et al., 2020; Kirstain et al., 2024; Wu et al., 2023b), labeler performance mon-
itoring (Xu et al., 2024), and a disproportionate amount of data provided by a small fraction of
users, these datasets may not be heterogeneous. We note that a strict rubric leads to uniformity as
it essentially crowdsources the criteria of the rubric instead of eliciting the preferences of the users.
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Table 2: Seen user test accuracy of PAL compared to baselines on Pick-a-Pic v2. Entries with asterisk∗ have
inflated accuracy due to the V2 test set overlap with V1 train (See dataset details in Section 3.2).

Model Params Trainset V1 Test Accuracy (%) V2 Test Accuracy (%)

No-Leakage Leakage

CLIP-H/14 986M - 59.23 62.57 58.59
ImageReward 447M - 61.10 - -

HPS v2.1 986M - 66.70 - -
PickScore 986M V1 71.85 68.04 74.16*

PAL-A-Tiny (CLIP-H) 8.4M V1 69.29 ± 0.6 - -
PAL-B-Tiny (CLIP-H) 6.3M V1 71.13 ± 0.3 70.02 ± 0.39 79.32 ± 1.68*
PAL-B-Tiny (CLIP-H) 6.3M V2 - 70.51 ± 0.22 68.67 ± 0.51
PAL-B-Tiny (Pickscore) 6.3M V2 - 70.16 ± 0.19 74.79 ± 0.13*

Therefore, even using PAL with K = 1, we can surpass existing SoTA performance. These results
highlight the need for more nuanced approaches to collect datasets that elicit diverse opinions.

3.3 PICK-A-FILTER (TEXT-TO-IMAGE)

As PickScore has been shown to lack significant heterogeneity (Kirstain et al., 2024), we artifi-
cially inject plurality to create the Pick-a-Filter dataset, and show that PAL significantly surpasses
homogeneous reward models when pluralistic preferences are present (C1, C2, C3).

Dataset. Motivated by a natural human color preference distribution Palmer & Schloss (2010),
we choose adding different color filters to the generated images as the mechanism by which we
explicitly “inject” preference diversity into the v1 dataset (group 1 prefers ’red’ tones and group
2 prefers ’blue’ tones). To avoid the model latching on purely to color features when learning
preferences, we use a hyperparameter called mixture ratio β = Nf/No, whereNf is the number of
v1 pairs we choose to apply filters on, and No is the total number of original v1 pairs. The larger the
β, the more color-filtered v1 pairs in the training set. We show and discuss our careful construction
of Pick-a-Filter in Figure D.7 and Appendix D respectively.

Setup. We train PAL-B-Tiny with logistic loss on the Pick-a-Filter dataset with different mixture
ratios. Detailed training setups are deferred to Appendix D.6.

Baselines. We compare PAL to CLIP-H, following Kirstain et al. (2024), as well as two strong T2I
reward models: ImageReward (Xu et al., 2024) and HPS v2 (Wu et al., 2023b). Note that we cannot
compare to PickScore as its train set overlaps with Pick-a-Filter’s val set (leakage).

Results. Figure 4 shows that PAL-B-Tiny can learn diverse user preference groups across mixture
ratios (C1, C3). We can view β as indicating how much the two user groups prefer their respective
color filters (higher β → affinity for filters). PAL significantly outperforms the homogeneous reward
model in predicting user preferences – at β =1, PAL achieves 95.2% test accuracy compared to
75.4% from the homogeneous reward model (C2).

4 SAMPLE COMPLEXITY FOR LEARNING REWARDS UNDER PAL MODELING

In this section, we shed light on the per-user sample complexity of PAL for (1) generalization to un-
seen pairs involving known users, and (2) few-shot generalization to unseen users. We present the-
oretical guarantees in Section 4.1, and empirical results from numerical simulations in Section 4.2.

4.1 THEORETICAL GUARANTEES

To shed light on the benefits of using mixture modeling approach, we provide theoretical analysis of
PAL-A with fully-connected linear layer in neural network mapping f . For simplicity of exposition,
we subsume the context/prompt vectors into the item embeddings, treating (x;xc) as x ∈ RD.
Consider a class linear transformations, F ⊂

{
f : RD → RD

∣∣ f(x) = Ax,A ∈ RD×D
}

. Then,
the difference of scores between two items for a user with ideal point a = Pw is given by

∥f(xl)− f(a)∥22 − ∥f(xr)− f(a)∥22 = (xl − a)⊤A⊤A(xl − a)− (xr − a)⊤A⊤A(xr − a)

= x⊤
l (A

⊤A)xl − x⊤
r (A

⊤A)xr − 2(xl − xr)
⊤(A⊤A)Pw.

7
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Observe that the right-hand side of the first equality represents the difference between the squared
Mahalanobis distances3 from xl to a and from xr to a, where the Mahalanobis distance is defined by
A⊤A. In other words, the problem is equivalent to simultaneously learning a Mahalanobis distance
and the user ideal points (Xu & Davenport, 2020; Canal et al., 2022).

Now, let M := A⊤A and Q := −2MP. The difference in scores can then be written as:

∥f(xl)− f(a)∥22 − ∥f(xr)− f(a)∥22 = x⊤
l Mxl − x⊤

r Mxr + (xl − xr)
⊤Qw.

Given these reparameterizations from f to M and from P to Q, for the remainder
of this section, we assume that the reward modeling problem is defined over M ∈{
M ∈ RD×D : ∥M∥F ≤ ζM ,M ⪰ 0

}
, Q ∈

{
Q ∈ RD×K : ∥Qk∥2 ≤ ζv ∀k ∈ [K]

}
, and w(i) ∈

∆K−1 for each user i. In addition, we let ℓ : R → [0, 1] be an L-Lipschitz loss function.

Work of Canal et al. (2022, Theorem 3.1) shows that a set of N ≥ Ω(D2) known users, the per-
user sample complexity for generalization to unseen pairs of items is Õ (D). Key questions remain:
Does our mixture modeling lead to improved per-user sample complexity, e.g., Õ(K)? Can we char-
acterize PAL’s generalization ability to unseen users, and determine the per-user sample complexity
for few-shot localization of preference points (going beyond analysis in Canal et al. (2022))?

Generalization for seen users and unseen pairs. Without loss of generality, let us assume that each
user answers m preference comparisons. Let Si =

{(
x
(i)
j,l ,x

(i)
j,r, y

(i)
j

)}m
j=1

denote an i.i.d. sample

of size m from user i, and let S =
⋃N

i=1 Si represent the dataset from N users. Given S, for any
(M,Q, {w(i)}Ni=1), we define its empirical risk R̂S(M,Q, {w(i)}Ni=1) as

1

Nm

∑
(i,j)

ℓ
(
y
(i)
j

(
x
(i)⊤
j,l Mx

(i)
j,l − x

(i)⊤
j,r Mx

(i)
j,r + (x

(i)
j,l − x

(i)
j,r)

⊤Qw(i)
))

. (8)

Let (M̂, Q̂, {̂w(i)}Ni=1) minimize the empirical risk given D, and (M∗,Q∗, {w∗(i)}Ni=1) minimize
the true risk, ES [̂RS(M,Q, {w(i)}Ni=1)]. Theorem 1 below provides an upper bound on the excess
risk. All proofs are deferred to Appendix C; see Section C.1 for the proof of Theorem 1.
Theorem 1. (Seen user generalization) Suppose K < min(N,D), and for each comparison, the
user is asked to compare two items drawn i.i.d. from the uniform distribution on the unit sphere,
Unif(SD−1). Then, with probability at least 1− δ,

ES [̂RS(M̂, Q̂, {̂w(i)}Ni=1)]−ES [̂RS(M
∗,Q∗, {w∗(i)}Ni=1)]

≤ 12L

√
ζ2M +

(
KN
D +K

)
ζ2v

Nm
log(N +D) +

√
2 log 2

δ

Nm
.

To interpret this result in a practical setting, let us further assume that the entries of M∗ and Q∗

are bounded by some constant, and set ζM = D and ζv =
√
D, as done in (Canal et al., 2022).

Then, the above bound becomes Õ
(√

D2+KD+KN
Nm

)
, where Õ hides the parameters δ and L and

ignores logarithmic terms. Observe first that the bound decays as either the number of users N or
the number of samples per userm increases. In addition, whenN ≥ Ω(D2), the bound simplifies to
Õ(
√
K/m), which implies a per-user sample complexity of Õ (K). This contrasts with the existing

result of Õ (D) without mixture modeling (Canal et al., 2022, Theorem 3.1, see also Section C.1.3
in the Appendix). The result captures the intuition that if the users amortize the cost of learning the
common M and Q, then each user only needs to individually learn their weights w(i) ∈ ∆K−1.

Generalization for unseen users. So far, we have discussed the generalization ability of PAL to
unseen pairs among known users, but how well does our model generalize to new users, whose data
was not included in the training set at all? In this work, we provide the first answer to this question in
the context of preference alignment under the ideal point model, leveraging the framework and tools
for multi-task learning and learning-to-learn (Maurer et al., 2016) (Remark C.6 of the Appendix).

3The Mahalanobis distance defined by a symmetric, positive semidefinite matrix M is given by
dM(x,y) :=

√
(x− y)⊤M(x− y).
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Suppose there is a distribution η over a set of users U . Given any representation M and prototypes
Q, along with an i.i.d. sample S =

{
(xj,l,xj,r, yj)

}m
j=1

of m comparisons from some new user
u ∈ U , the natural approach is to few-shot learn the weights that minimize the empirical loss:

w̃S;M,Q := argmin
w∈∆K−1

1

m

m∑
j=1

ℓ
(
yj
(
x⊤
j,lMxj,l − x⊤

j,rMxj,r + (xj,l − xj,r)
⊤Qw

))
;

and one can evaluate the expected performance of (M,Q, w̃S;M,Q) for user u:

L̃(M,Q;u, S) := E(xl,xr,y)

[
ℓ
(
y
(
x⊤
l Mxl − x⊤

r Mxr + (xl − xr)
⊤Qw̃S;M,Q

))]
.

The unseen-user risk of (M,Q) is defined as:L
unseen
user (M,Q) := Eu [L(M,Q;u)], where

L(M,Q;u) := ES

[
L̃(M,Q;u, S)

]
. Suppose that for training, N users are drawn according to

η, and each answers m comparison queries, resulting in the dataset, S1 ∪ . . . ∪ SN . Let (M̂, Q̂) be
components of the minimizer of the empirical risk given by Eq. (8). Theorem 2 provides an upper
bound on its excess risk when compared with

(M∗,Q∗) := argmin
M,Q

Eu

[
min

w∈∆K−1
E(xl,xr,y)

[
ℓ
(
y
(
x⊤
l Mxl − x⊤

r Mxr + (xl − xr)
⊤Qw

))]]
,

which assumes oracle knowledge of each user’s preferences. See Section C.2 for its proof.
Theorem 2. (Unseen user generalization) Suppose K < min(N, d), and for each comparison,
the user is asked to compare two items that are drawn i.i.d. from the uniform distribution on the unit
sphere, Unif(SD−1). Then, with probability at least 1− δ over S1, . . . , SN ,

L
unseen
user (M̂, Q̂)− L

unseen
user (M∗,Q∗) ≤ 18L

√
ζ2M +K2ζ2v

N
+ 3L

√
Kζ2v
Dm

+

√
8 log 4

δ

N
.

Again, let us set ζM = D and ζv =
√
D. The above bound becomes Õ

(√
D2+DK2

N +
√

K
m

)
.

Intuitively, the first term captures how well the common mapping and the prototypes learned on
seen users’ dataset translate to new unseen users. This term decays as the number of seen users N
increases. The second term characterizes how well our few-shot preference localization for a new
unseen user generalizes to unseen pairs of this user. This term indicates a sample complexity of
Õ (K) and suggests efficient generalization, especially since K can be quite small in practice.

4.2 NUMERICAL SIMULATION

In this section, we carefully and systematically examine how PAL adapts to a plurality of preferences
via numerical simulations. To this end, we construct a synthetic, heterogeneous dataset similar to
(Canal et al., 2022), where each item x ∼ N (0, 1dI) and the user weight W ∼ N (0, I). The
true f⋆ is a linear mapping from Rd → Rd. Let K⋆ denote the number of user prototypes and let
P = {pi}K

⋆

i=1 denote the set of user prototypes, where each pi ∼ N (0, 1dI). We assume that the
distance between any pair of user prototypes is lower bounded by some value δ.

Experiment Setting. We study a mixture setting, where each user is located in the convex hull of
P . Let ai denote the ith user. To learn this user’s ideal point, we draw n pairs of items {xl,xr}
uniformly at random and assign the user’s preference as sign(∥f∗(xl) − f∗(ai)∥2 − ∥f∗(xr) −
f∗(ai)∥2). We generate datasets with different K⋆, K, latent dimension d, number of prototypes,
and number of samples per user n. We evaluate PAL-A on these synthetic datasets.

Results. Figure 5 (a) shows that PAL can learn the user ideal points in the representation space.
Figure 5 (b) shows that the homogeneous reward model (K = 1) can only achieve sub-optimal per-
formance when diverse preferences exist. Incorporating plurality via multiple learnable prototypes
with PAL, we gain a significant 7% accuracy boost. Figure 5 (c) shows that as we increase the num-
ber of training samples for seen users, PAL achieves higher test accuracy, and is also more accurate
in capturing the true number of prototypes in the dataset. Figure 5 (d) presents PAL’s potential to
generalize to new unseen users via few-shot learning to only learn their weights. We also studied a
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Figure 5: (a) shows that PAL can accurately capture the user prototypes and each user’s ideal point. We set
d = 2 for visualization of the user’s ideal point. (b) illustrates the performance of PAL on diverse preference
datasets. (c) empirically highlights the importance of the number of samples per seen user and the number of
prototypes in PAL. (d) demonstrates the sample efficiency of the PAL framework on unseen users. With as few
as 40 samples, we can still achieve performance comparable to that of seen users.

.

partition setting, where each user is drawn from P uniformly at random. Figure D.1 in the Appendix
D.2 shows the learned ideal points under partition setting have similar trends to the mixture setting.

To further validate our findings, we also examine PAL’s generalization properties via Anthropic
personas (Perez et al., 2022), which we restrict to Appendix D.4 for brevity.

5 RELATED WORKS

We provide a brief summary of related works here, and a more detailed version in Appendix A.

Popular foundation models (Achiam et al., 2023; Ouyang et al., 2022; Touvron et al., 2023) typically
use RLHF (Azar et al., 2024; Ethayarajh et al., 2024; Rafailov et al., 2024; Stiennon et al., 2020) to
align models after pretraining. These methods assume homogeneity either explicitly or implicitly by
using BTL-model (Bradley & Terry, 1952). Consensus-based methods (Bakker et al., 2022) aims to
find agreement among labelers for specific designed-defined goals (Bai et al., 2022b;a; Irvine et al.,
2023; Ganguli et al., 2022), which prioritize the universal preference (and biases) induced by the la-
belers (Cheng et al., 2023; Kovač et al., 2023; Santurkar et al., 2023). Many works have highlighted
that in reality, humans have diverse preferences (Nadal & Chatterjee, 2019; Sorensen et al., 2024;
Wildavsky, 1987). However, approaches to suit this heterogeneity are still top-down in nature (Rame
et al., 2024; Wang et al., 2024b; Wu et al., 2024), where the system designer makes learning deci-
sions apriori, such as collecting datasets to train diverse rewards or multi-objective training. Li et al.
(2024) propose personalized reward modeling with a cluster structure for users in the dataset, but
model unseen users homogeneously. There is a rich literature on preference learning (Fürnkranz
& Hüllermeier, 2010) and metric learning (Bellet et al., 2022). For the ideal point model, several
works (Ding, 2016; Huber, 1976; Jamieson & Nowak, 2011; Massimino & Davenport, 2021; Singla
et al., 2016) study sample complexity of ranking and localization when the distance is known, and
some recent works (Canal et al., 2022; Wang et al., 2024c; Xu & Davenport, 2020) have studied
simultaneous learning of the Mahalanobis distance which is equivalent to learning a common linear
map along with unknown user preference point(s).

6 CONCLUSIONS

We propose PAL, a novel framework for modeling personalizable rewards for pluralistic alignment
(Section 2) which leverages shared structures across the population while learning to personalize in
a sample-efficient way. We demonstrate that PAL is agnostic to modality, showing strong results
on both text (Section 3.1) and image (Section 3.2, 3.3) tasks. We also provide sample complexity
bounds for generalization of the learned rewards to both seen and unseen users (Section 4.1). Our
work aids in building much-needed foundations toward plurality for the alignment of ML/AI mod-
els. Our experiments also highlight the limitations of many real human preference datasets that are
collected with rubrics that make the dataset homogeneous, and call for a more nuanced approach to
data collection in the future (Section 3.2). While the mixture modeling approach of PAL is flexible,
a limitation of using it in a static setting is that it will not generalize to new users who fall outside the
convex hull of learned prototypes (Section 4.2). A more pragmatic and exciting approach would be
a continually learning prototypes to adapt to new users on the fly, which we leave for future work.
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7 REPRODUCIBILITY STATEMENT

PAL makes a strong case for open, democratic alignment by enabling training alignment modules
with cheap encoders on simple GPUs in relatively short wall clock time (e.g. see Section 3.2, Results
and Appendix E). To enable reproducibility and the practical utility of PAL for downstream tasks,
we describe our algorithm in Appendix B, and give detailed experiment setups in Appendix D. We
provide exhaustive hyper-parameter details for our experiments (Tables 4 in Appendix D). We also
attempt to provide insights over our design choices (which configurations worked and which didn’t
throughout the course of our experimentation) to aid others in using PAL for their own data and
tasks. Lastly, we commit to fully open sourcing all of our code, data, and trained models after
publication.
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A EXTENDED RELATED WORKS

Alignment Status Quo. Popular existing foundation models (Achiam et al., 2023; Anthropic, 2024;
Ouyang et al., 2022; Touvron et al., 2023) typically use RLHF (Christiano et al., 2017; Ethayarajh
et al., 2024; Stiennon et al., 2020; Wu et al., 2023a) to align models after pretraining. Recent
foundation models such as Zephyr (Tunstall et al., 2023) and the Archangel suite4 have shifted to
directly optimizing on human preferences (Azar et al., 2024; Ethayarajh et al., 2024; Rafailov et al.,
2024) to avoid the nuances of RL optimization (Dulac-Arnold et al., 2021). There has also been
significant recent work in collecting large human preference datasets for reward model training in
the text-to-image space (Kirstain et al., 2024; Wu et al., 2023b; Xu et al., 2024) (typically diffusion
models (Rombach et al., 2022)).

Reward Modeling. These existing alignment frameworks generally assume that all humans share
a single unified preference (e.g. LLM “helpfulness” or “harmlessness” (Bai et al., 2022a)) and as-
cribe to the Bradley-Terry (Bradley & Terry, 1952) model of pairwise preferences. Consensus-based
methods (Bakker et al., 2022) aim to find agreement among labelers for specific goals like harmless-
ness (Bai et al., 2022b; Ganguli et al., 2022), helpfulness (Bai et al., 2022a), or engagement (Irvine
et al., 2023). By design, these methods inherently prioritize the universal preference (and biases)
induced by the labelers (Cheng et al., 2023; Kovač et al., 2023; Santurkar et al., 2023). In reality,
humans have diverse, heterogeneous preferences (Nadal & Chatterjee, 2019; Sorensen et al., 2024;
Wildavsky, 1987) that depend on individual contexts, and may even share a group structure (Bakker
et al., 2022). Rewarded soups (Rame et al., 2024) make a case to capture diversity through post-hoc
weight-space interpolation over a mixture of experts that learn diverse rewards. However, these re-
wards are learned by pre-defining what aspects are important which is done by the system designer.
Separate datasets are collected to elicit human preferences on these axes as to how much people
care of them. DPA (Wang et al., 2024b) models rewards as directions instead of scalars, and trains
a multi-objective reward model for RLHF. Wu et al. (2024) propose fine-grained multi-objective
rewards to provide more focused signal for RLHF. Recently, Li et al. (2024) propose personalized

4https://github.com/ContextualAI/HALOs
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Figure A.1: The ideal point model of human preferences assumes that each individual’s preference
can be represented as an “ideal point” in some high-dimensional latent space Rd, which we assume
is via a learned preference mapping f : RD → Rd. Each individual’s preference over items (e.g.
images, text summaries) is a function of the distance between the item and the individual’s ideal
point in the latent embedding space. For example, the yellow user prefers the green text summary,
and the purple user prefers the orange text summary, as they are “closest” under the same distance
metric.

reward modeling by learning a general user embedding and treating each individual as a perturbation
to the embedding. As this preference formulation is still homogeneous for users not in the dataset,
they use the fixed general user embedding for generalizing to unseen users, i.e., do not personalize
to new users.

Recent survey works provide excellent summaries of literature for alignment (Ji et al., 2023) and
reward modeling (Wang et al., 2024a).

Human Preference Datasets. The preference universality assumption also extends into the data
annotation/labeling processing, where labelers are given a rubric to select preferences (e.g. to rank
an image pair considering image aesthetics and image-prompt alignment (Kirstain et al., 2024)).
Due to this rubric, the current largest scale text-to-image generation preference datasets (Kirstain
et al., 2024; Wu et al., 2023b; Xu et al., 2024) show limited diversity among labelers. In the Pick-a-
Pic train set (Kirstain et al., 2024), there are only 701 disagreements among the 12487 image pairs
labeled by different users (94.38% agreement), and there are zero disagreements in validation (1261
pairs) and test (1453 pairs) sets. HPS (Wu et al., 2023b) found that labeler agreement over diffusion
model generations was higher for models of similar quality or size, though this diversity comes with
the caveat of the labelers being provided a rubric to provide their preferences. Imagereward (Xu
et al., 2024) use researcher agreement as a criteria to hire labelers. In the LLM domain, the popular
Summarize from Feedback dataset (Stiennon et al., 2020) is also collected with rigid rubric, with
labeler performance measured via agreement to the preferred answer of the authors. During the
data collection period, only labelers with satisfactory agreement were retained, which led to a small
number of users, all in agreement with the authors’ rubric, being responsible for a majority of labeled
comparisons. Status quo preference datasets used to align foundation models thus suffer from a lack
of diversity due to the nature of their data collection.

Preference learning. There is rich literature on preference learning and ranking in various do-
mains ranging from psychology, marketing, recommendation systems, quantifying social science
surveys to crowdsourced democracy, voting theory and social choice theory. We provide a few
relevant works here and direct reader to surveys such as (Fürnkranz & Hüllermeier, 2010). Rank-
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Figure A.2: Illustration of PAL framework for learning from diverse preferences (Section 2). For
any user i, the probability of preferring xl to xr for the context xc is computed by a reward model
r
(i)
θ which uses a mixture modeling approach to assign a scalar reward to a sample (e.g. xl or xr)

given context (xc). In PAL-A, each user i’s preference a(i) is modeled as a convex combination ofK
prototypical preferences, i.e. a(i) = Pw(i). In PAL-B, each user i’s preference z(i)(xc) is modeled
as a convex combination of K prototypical functions g1 · · · gK , i.e. z(i)(xc) =. Reward functions
formulated using the PAL framework can be used flexibly, e.g., with fixed preference points (PAL-
A), with preference points that are functions of the context/prompt xc (PAL-B).

ing based models, e.g., BTL-model (Bradley & Terry, 1952; Luce, 1959), stochastic transitivity
models (Shah et al., 2016) focus on finding ranking of m items or finding top-k items by pairwise
comparisons (Hunter, 2004; Kenyon-Mathieu & Schudy, 2007; Braverman & Mossel, 2007; Negah-
ban et al., 2012; Eriksson, 2013; Rajkumar & Agarwal, 2014; Shah & Wainwright, 2017). Ranking
m items in these settings requires O(m logm) queries. There is also rich literature that stems from
ideal point model (Coombs, 1950; Huber, 1976; Jamieson & Nowak, 2011; Ding, 2016; Singla et al.,
2016; Xu & Davenport, 2020; Canal et al., 2022). Under the ideal point based models, the query
complexity for ranking m items reduces to O(d logm), where d is the dimension of the domain of
representations which is usually much smaller than the number of items being ranked (Jamieson &
Nowak, 2011). This is due to the fact that once the preference point is learned, it can then be used
to predict rankings of new items without needing more comparisons.

Metric learning has been studied quite extensively and we direct the reader to surveys (Kulis, 2013)
and books (Bellet et al., 2022). In particular, metric learning based on triplet querying has also been
quite extesively studied (Shepard, 1962a;b; 1966; Schultz & Joachims, 2003; Kulis, 2013; Tamuz
et al., 2011; Kleindessner & Luxburg, 2014; Bellet et al., 2015; Bellet & Habrard, 2015; Mason et al.,
2017) which aims to learn the underlying unknown metric under the assumption that the people base
their judgement for a triple query with concepts xa,xb,xc ∈ D on the relative similarities based on
the distances between these concepts under the unknown metric.

Simultaneous metric and preference learning. More recently a few works have considered the
problem of unknown metric in preference learning and proposed methods (Xu & Davenport, 2020;
Canal et al., 2022; Wang et al., 2024c) and provided sample complexity analysis (Canal et al., 2022;
Wang et al., 2024c) for simultaneously learning an unknown Mahalanobis metric and unknown user
preference(s). Learning the unknown Mahalanobis metric can be viewed as learning linear layer on
top of the embeddings from a foundation model. From our reframing of alignment, these works can
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be looked as PAL-A with linear function for f and individual user preferences instead of having any
structure over them.

B DETAILED MODEL OVERVIEW

We illustrate the ideal point model of human preferences in Figure A.1. We show the modeling
mechanism of PAL (Section 2) in slightly more detail in Figure A.2. Algorithm 1 and 2 shows the
pseudocode for our learning algorithm of PAL-A and PAL-B.

Algorithm 1 PAL-A algorithm

Require: Dataset D =
⋃N

i=1

{(
x
(i)
j,l ,x

(i)
j,r;x

(i)
j,c, y

(i)
j

)}mi

j=1
, loss function ℓ, model class for fθ,

prototypes P = [p1, ...,pK ] where pk ∈ RD, user weights W = [w(1), ...,w(N)] where
w(i) ∈ ∆K−1.

1: for each iteration do
2: Sample a mini-batch

{(
x
(i)
j,l ,x

(i)
j,r;x

(i)
j,c, y

(i)
j

)}
▷ random pairs, not ordered by users

3: User Ideal Points: a(i) = P ·w(i)

4: Distances:
5: d

(i)
l,j = ||fθ

(
x
(i)
l,j ;x

(i)
c,j

)
− fθ(a

(i))||22, d
(i)
r,j = ||fθ

(
x
(i)
r,j ;x

(i)
c,j

)
− fθ(a

(i))||22
6: Loss: ψ(i)

j (x
(i)
l,j ,x

(i)
r,j ;x

(i)
c,j , y

(i)
j ) = ℓ(y

(i)
j · (d(i)l,j − d

(i)
r,j))

7: Update Step: argminθ,P,{w(i)}N
i=1

∑
i,j ψ

(i)
j (x

(i)
l,j ,x

(i)
r,j ;x

(i)
c,j , y

(i)
j )

8: end for

Algorithm 2 PAL-B algorithm

Require: Dataset D =
⋃N

i=1

{(
x
(i)
j,l ,x

(i)
j,r;x

(i)
j,c, y

(i)
j

)}mi

j=1
, loss function ℓ, mapping function fθ,

prototype mapping functions {gθk}Kk=1, user weights {w(i) := [w
(i)
1 , ..., w

(i)
K ]}Ni=1.

1: for each iteration do
2: Sample a mini-batch

{(
x
(i)
j,l ,x

(i)
j,r;x

(i)
j,c, y

(i)
j

)}
▷ random pairs, not ordered by users

3: User Ideal Point (conditioned on prompts):

4: a(i) =
[
gθi(x

(i)
c,j), ..., gθK (x

(i)
c,j)
]⊤

·w(i)

5: Distance:
6: d

(i)
l,j = ⟨fθ

(
x
(i)
l,j

)
,a(i)⟩, d

(i)
r,j = ⟨fθ

(
x
(i)
r,j

)
,a(i)⟩

7: Loss: ψ(i)
j (x

(i)
l,j ,x

(i)
r,j ;x

(i)
c,j , y

(i)
j ) = ℓ(y

(i)
j · (d(i)l,j − d

(i)
r,j))

8: Update Step: argminθ,P,{w(i)}N
i=1

∑
ψ
(i)
j (x

(i)
l,j ,x

(i)
r,j ;x

(i)
c,j , y

(i)
j )

9: end for
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C PROOFS AND ADDITIONAL THEORETICAL RESULTS

Additional notation. Given two matrices A and B, we use ⟨A,B⟩ to denote the Frobenius inner
product between them, i.e., ⟨A,B⟩ = tr(A⊤B). As an example, recall that, given the reparame-
terization in Section 4.1, the difference of scores for a user can be written as x⊤

l Mxl − x⊤
r Mxr +

(xl − xr)
⊤Qw; in what follows, for better clarity, we express it in an equivalent form using the

Frobenius inner product,
〈
xlx

⊤
l − xrx

⊤
r ,M

〉
+ ⟨xl − xr,Qw⟩.

C.1 GENERALIZATION FOR SEEN USERS AND UNSEEN PAIRS

C.1.1 PROOF OF THEOREM 1

Theorem 1. (Seen user generalization) Suppose K < min(N,D), and for each comparison, the
user is asked to compare two items drawn i.i.d. from the uniform distribution on the unit sphere,
Unif(SD−1). Then, with probability at least 1− δ,

ES [̂RS(M̂, Q̂, {̂w(i)}Ni=1)]−ES [̂RS(M
∗,Q∗, {w∗(i)}Ni=1)]

≤ 12L

√
ζ2M +

(
KN
D +K

)
ζ2v

Nm
log(N +D) +

√
2 log 2

δ

Nm
.

Proof of Theorem 1. We use standard Rademacher complexity theory; see, e.g., (Shalev-Shwartz
& Ben-David, 2014; Mohri et al., 2018) for general background and (Canal et al., 2022) for its
application in preference and metric learning without mixture modeling.

Recall that ℓ : R → [0, 1] is an L-Lipschitz loss function. Let W =
[
w(1), . . . ,w(N)

]
∈ RK×N

denote the matrix containing the individual weights of all users.

Consider the following class of functions parameterized by M,Q and W:

H =

{
hM,Q,W : (i,xl,xr, y) 7→ ℓ

(
y
(〈
xlx

⊤
l − xrx

⊤
r ,M

〉
+ ⟨xl − xr,QWi⟩

)) ∣∣∣
∥M∥F ≤ ζM , ∥Qk∥2 ≤ ζv ∀k ∈ [K], Wi ∈ ∆K−1 ∀i ∈ [N ]

}
,

where Qk denotes the k-th column of Q, i.e., the k-th prototypical ideal point, and Wi denotes the
i-th column of W, i.e., the weights for user i.

To prove Theorem 1, we use Lemma C.1, which relates the excess risk to the Rademacher complex-
ity of H. In particular, the lemma addresses settings with multiple distributions, where data consists
of i.i.d. samples from each distribution. Similar notions of task-averaged Rademacher complexity
have been considered in (e.g., Ando et al., 2005; Maurer, 2006; Maurer et al., 2016).

Here, to apply Lemma C.1, we slightly abuse notation by considering S as a dataset where, for
each i ∈ [N ] and j ∈ [m], the comparison (x

(i)
j,l ,x

(i)
j,r, y

(i)
j ) is augmented with the user index i:

(i,x
(i)
j,l ,x

(i)
j,r, y

(i)
j ).

Let σ = (σ1, . . . , σN ) ∈ {−1,+1}N be an array of independent Rademacher random variables.
Then, by Lemma C.1, with probability at least 1− δ,

ES [̂RS(M̂, Q̂, {̂w(i)}Ni=1)]− ES [̂RS(M
∗,Q∗, {w∗(i)}Ni=1)] ≤ (∗) +

√
2 log 2

δ

Nm
,

where

(∗) = 2ES,σ

 sup
M,Q,W

1

Nm

N∑
i=1

m∑
j=1

σi,jℓ
(
y
(i)
j

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+
〈
x
(i)
j,l − x

(i)
j,r,QWi

〉)) .
It suffices to show that

(∗) ≤ 12L

√
ζ2M +

(
KN
D +K

)
ζ2v

Nm
log(N +D). (9)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To this end, observe that

(∗)
(a)

≤ 2L

Nm
ES,σ

 sup
M,Q,W

1

Nm

N∑
i=1

m∑
j=1

σi,j

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+
〈
x
(i)
j,l − x

(i)
j,r,QWi

〉)
(b)
=

2L

Nm
ES,σ

sup
M

N∑
i=1

m∑
j=1

σi,j

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
︸ ︷︷ ︸

(i)

+
2L

Nm
ES,σ

 sup
Q,W

N∑
i=1

m∑
j=1

σi,j

〈
x
(i)
j,l − x

(i)
j,r,QWi

〉
︸ ︷︷ ︸

(ii)

,

(10)

where (a) applies Talagrand’s contraction lemma (Mohri et al., 2018, Lemma 5.7) and uses the
observation that, for any i and j, Pr

(
σi,jy

(i)
j = 1

)
= Pr (σi,j = 1) = 1

2 ; and (b) follows because
for C = {a+ b : a ∈ A, b ∈ B}, supC = supA+ supB.

We tackle the two terms separately. For (i), by the Cauchy-Schwarz inequality, we have

(i) ≤ 2L

Nm
ES,σ

sup
M

∥M∥F ·

∥∥∥∥∥∥
N∑
i=1

m∑
j=1

σi,j

(
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r

)∥∥∥∥∥∥
F


(a)

≤ 2L

Nm
ζM ·

√√√√√ES

Eσ

∥∥∥∥∥
n∑

l=1

m∑
i=1

σi,j

(
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r

)∥∥∥∥∥
2

F


(b)

≤ 4L

Nm
ζM ·

√
Nm

= 4L

√
ζ2M
Nm

,

where (a) uses Jensen’s inequality; (b) follows from Lemma C.11 and the observation that for any
realization of S ,

∥∥∥x(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r

∥∥∥
F
≤ 2 for i ∈ [N ] and j ∈ [m], as the items are drawn

from Sd−1.

We now bound term (ii). For each i ∈ [N ] and j ∈ [m], let X(i)
j :=

[
0 · · ·

(
x
(i)
j,l − x

(i)
j,r

)
· · · 0

]
∈

Rd×N have zeros everywhere except for the i-th column. Then,

(ii) =
2L

Nm
ES,σ

 sup
Q,W

N∑
i=1

m∑
j=1

σi,j

〈
X

(i)
j ,QW

〉
(a)

≤ 2L

Nm
sup
Q,W

∥QW∥∗ · ES,σ

∥∥∥∥∥∥
N∑
i=1

m∑
j=1

σi,jX
(i)
j

∥∥∥∥∥∥
2


(b)

≤ 2L

Nm

√
KNζ2v

(
2

√(
Nm

D
+
Nm

N

)
log(N +D) + log(N +D)

)

≤ 4L

√(
KN
D +K

)
ζ2v

Nm
log(N +D) + 2L

√
K
mζ

2
v

Nm
log(N +D),

(c)

≤ 6L

√
2
(
KN
D +K

)
ζ2v

Nm
log(N +D),
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where (a) uses Hölder’s inequality; (b) follows from the observation that ∥QW∥∗ ≤
√

rank(QW)·

∥QW∥F ≤
√
K
∑N

i=1 ∥QWi∥2 and Lemma C.2; (c) uses the facts that
√
a +

√
b ≤

√
2(a+ b)

and 2 log(N +D) ≥ 1 for N,D ≥ 1, along with some algebraic simplifications.

Combining the bounds on (i) and (ii) and by Eq. (10), we have

(∗) ≤ 2L

√4ζ2M
Nm

+

√
18
(
KN
D +K

)
ζ2v

Nm
log(N +D)


(a)

≤ 12L

√
ζ2M +

(
KN
D +K

)
ζ2v

Nm
log(N +D),

where (a) uses the facts that
√
a +

√
b ≤

√
2(a+ b) and 3 log2(N +D) ≥ 1 for N,D ≥ 1. This

completes the proof.

C.1.2 KEY LEMMAS

We now present the key lemmas used in the proof of Theorem 1.
Lemma C.1 (See also Ando et al. (2005); Maurer (2006); Maurer et al. (2016)). Let
H ⊂ {h : [N ]×Z → [0, 1]}, and p1, . . . , pN be probability measures on Z . For each i ∈ [N ],
let Si = {(i, zi,j)}mj=1 where zi,1, . . . , zi,m are i.i.d. data points drawn according to pi, and

S =
⋃N

i=1 Si. Let ĥ ∈ argminh∈H
1

Nm

∑N
i=1

∑m
j=1 h(i, zi,j) minimize the empirical risk, and let

h∗ ∈ argminh∈H
1
N

∑N
i=1 Ezi,1∼pi

[h(i, zi,1)] minimize the true risk.

Then, with probability at least 1− δ over S,

1

N

N∑
i=1

Ezi,1∼pi

[̂
h(i, zi,1)

]
− 1

N

N∑
i=1

Ezi,1∼p1
[h∗(i, zi,1)] ≤ 2RN,m (H) +

√
2 log 2

δ

Nm
.

Here,

RN,m(H) := ES,σ

sup
h∈H

1

Nm

N∑
i=1

m∑
j=1

σi,jh(i, zi,j)


denotes the user-averaged Rademacher complexity of H, where σ = (σi,j)i∈[N ],j∈[m] is an array of
independent Rademacher random variables.

Proof. We use standard techniques for deriving generalization bounds using Rademacher com-
plexity (e.g., Shalev-Shwartz & Ben-David, 2014; Mohri et al., 2018). For any h ∈ H, let
L̂S(h) := 1

Nm

∑N
i=1

∑m
j=1 h(i, zi,j) and L(h) := 1

N

∑N
i=1 Ezi,1∼pi [h(i, zi,1)]. Notice that

L(h) = ES

[̂
LS(h)

]
.

Since ĝ minimizes L̂S(h), we have

L(̂h)− L(h∗) = L(̂h)− L̂S (̂h) + L̂S (̂h)− L̂S(h
∗)︸ ︷︷ ︸

≤0

+̂LS(h
∗)− L(h∗)

≤
(
L(̂h)− L̂S (̂h)

)
+
(̂
LS(h

∗)− L(h∗)
)
.

We first look at the second summand. Notice that h∗ is independent of S. Since h(i, z) ∈ [0, 1]
for any h ∈ H, i ∈ [N ], and z ∈ Z , by Hoeffding’s inequality (Hoeffding, 1994), with probability
1− δ

2 ,

L̂S(h
∗)− L(h∗) ≤

√
log 2

δ

2Nm
.
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Then, by the union bound and a little algebra, it suffices to show that, with probability at least 1− δ
2 ,

sup
h∈H

(
L(h)− L̂S(h)

)
≤ 2RN,m (H) +

√
log 2

δ

2Nm
.

To this end, let κ(S) = suph∈H

(
L(h)− L̂S(h)

)
. It is easy to verify that, since h(i, z) ∈ [0, 1]

for any h ∈ H, i ∈ [N ], and z ∈ Z , κ(S) satisfies the bounded difference property, i.e., for any S ′

that differs from S by exactly one data point, |κ(S)− κ(S ′)| ≤ 1
Nm . We can therefore apply the

bounded difference inequality (e.g., Mohri et al., 2018, Theorem D.8) on κ(S). With probability at
least 1− δ

2 ,

κ(S) ≤ ES [κ(S)] +

√
ln 2

δ

2Nm
.

It only remains to show that ES [κ(S)] ≤ 2RN,m (H), which follows from a standard symmetriza-
tion argument (see, e.g., Mohri et al., 2018, Chapter 3). For each i ∈ [N ], let S ′

i =
{(
i, z′i,j

)}m
i=1

where
{
z′i,j
}m
j=1

is another i.i.d. sample of size m drawn according to pi, and let S ′ =
⋃N

i=1 S ′
i.

Then,

ES [κ(S)] = ES

[
sup
h∈H

(
ES′

[̂
LS′(h)

]
− L̂S(h)

)]

≤ ES,S′

sup
h∈H

 1

Nm

N∑
i=1

m∑
j=1

(
h(i, zi,j)− h(i, z′i,j)

)
= ES,S′,σ

sup
h∈H

 1

Nm

N∑
i=1

m∑
j=1

σi,j
(
h(i, zi,j)− h(i, z′i,j)

)
≤ ES,σ

sup
h∈H

1

Nm

N∑
i=1

m∑
j=1

σi,jh(i, zi,j)

+ ES′,σ

sup
h∈H

1

Nm

N∑
i=1

m∑
j=1

−σi,jh(i, z′i,j)


= 2RN,m(H).

Lemma C.2. For i ∈ [N ] and j ∈ [m], let Zi,j = σi,jDi,j , where σi,j is an independent
Rademacher ramdom variable, and Di,j = [0 . . . ξi,j . . . 0] ∈ RD×N has ξi,j = zi,j−z′i,j ∈ RD

in its i-th column and zeros elsewhere, with zi,j and z′i,j drawn independently from Unif(SD−1).
Then,

E

∥∥∥∥∥∥
N∑
i=1

m∑
j=1

Zi,j

∥∥∥∥∥∥
2

 ≤ 2

√(
Nm

D
+
Nm

N

)
log(N +D) + log(N +D),

where ∥·∥2 denotes the spectral norm.

Proof. For any i ∈ [N ] and j ∈ [m], observe that E [Zi,j ] = 0 and ∥Zi,j∥2 = ∥ξi,j∥2 ≤ 2. The
Lemma then follows straightforwardly from the Matrix Bernstein inequality (e.g., Tropp et al., 2015,
Theorem 1.6.2 , reproduced as Lemma C.10) and Lemma C.3.

Lemma C.3. Under the same definitions as in Lemma C.2,

max


∥∥∥∥∥∥

N∑
i=1

m∑
j=1

E
[
Zi,jZ

⊤
i,j

]∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
N∑
i=1

m∑
j=1

E
[
Z⊤

i,jZi,j

]∥∥∥∥∥∥
2

 ≤ 2

(
Nm

D
+
Nm

N

)
.

Proof. We first show that∥∥∥∥∥∥
N∑
i=1

m∑
j=1

E
[
Zi,jZ

⊤
i,j

]∥∥∥∥∥∥
2

≤ 2Nm

D
≤ 2

(
Nm

D
+
Nm

N

)
.
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This follows from the simple observation that, for any i ∈ [N ] and j ∈ [m],

E
[
Zi,jZ

⊤
i,j

]
= E

[
σ2
i,j · ξi,jξ⊤i,j

]
= E

[
ξi,jξ

⊤
i,j

] (a)
=

2I

D
,

where (a) holds because for any x,x′ drawn independently from Unif(SD−1),

E
[
(x− x′)(x− x′)⊤

]
= E

[
xx⊤]+ E[x′x′⊤] =

2I

D
.

It now suffices to show that∥∥∥∥∥∥
N∑
i=1

m∑
j=1

E
[
Z⊤

i,jZi,j

]∥∥∥∥∥∥
2

≤ 2Nm

N
≤ 2

(
Nm

D
+
Nm

N

)
.

Observe that, for any i ∈ [N ] and j ∈ [m], E
[
Z⊤

i,jZi,j

]
is a matrix in RN×N with zeros everywhere

but in the (i, i)-th entry, which has value

E
[
σ2
i,j · ξ⊤i,jξi,j

]
= tr

(
E
[
ξi,jξ

⊤
i,j

])
= 2.

Therefore, we have
∑N

i=1

∑m
j=1 E

[
Z⊤

i,jZi,j

]
= 2mI, and it follows that its largest singular value is

2m = 2Nm
N .

C.1.3 EXISTING RESULT WITHOUT MIXTURE MODELING (CANAL ET AL., 2022)

For completeness, we adapt (Canal et al., 2022, Theorem 3.1) to our specific setting, and pro-
vide a proof. Recall that, for the class of linear transformations, F , considered in Section 4.1,
the difference of scores for a pair of items (xl,xr) and a user with ideal point a can be written as〈
xlx

⊤
l − xrx

⊤
r ,A

⊤A
〉
+
〈
xl − xr,−2A⊤Aa

〉
.

Let M := A⊤A, v(i) := −2Ma(i), and V :=
[
v(1) . . . v(N)

]
. We consider M ∈{

M ∈ RD×D : ∥M∥F ≤ ζM ,M ⪰ 0
}

and V ∈
{
V ∈ RD×N : ∥Vi∥2 ≤ ζv, ∀i ∈ [N ]

}
, as done

in (Canal et al., 2022). Again, let Si :=
{(

x
(i)
j,l ,x

(i)
j,r, y

(i)
j

)}m
j=1

denote a set of m i.i.d. comparisons

from user i ∈ [N ], and let S :=
⋃N

i=1 Si. Then, the empirical risk of (M,V) given S is:

ĴS(M,V) :=
1

Nm

N∑
i=1

m∑
j=1

ℓ
(
y
(i)
j

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+
〈
x
(i)
j,l − x

(i)
j,r,Vi

〉)
,

where we again assume ℓ : R → [0, 1] is L-Lipschitz. Let (M̃, Ṽ) ∈ argminM,V ĴS(M,V), and

let (M⋆,V⋆) ∈ argminM,V ES

[̂
JS(M,V)

]
.

Proposition C.4 (Canal et al. 2022, Theorem 3.1). Suppose that for each comparison, the user is
asked to compare two items drawn i.i.d. from Unif(SD−1). Then, with probability at least 1− δ,

ES

[̂
JS(M̃, Ṽ)

]
− ES

[̂
JS(M

⋆,V⋆)
]
≤ 6L

√
ζ2M + ζ2vN

Nm
+

√
2 log 2

δ

Nm

Remark C.5. Setting ζM = d and ζv =
√
d, the above excess risk bound becomes Õ

(√
D2+DN

Nm

)
,

where Õ hides the parameters L and δ. When N ≥ Ω(D2), the bound becomes Õ
(√

D
N

)
, which

suggests a per-user sample complexity of Õ (D).

Proof. See (Canal et al., 2022, Section D.1) for the original proof in a slightly different setting. We
include a proof here for the reader’s convenience.
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Consider a class of functions parameterized by M and V:

G =

{
gM,V : (i,xl,xr, y) 7→ ℓ

(
y
(〈
xlx

⊤
l − xrx

⊤
r ,M

〉
+ ⟨xl − xr,Vi⟩

)) ∣∣∣
∥M∥F ≤ ζM , ∥Vi∥2 ≤ ζv ∀i ∈ [N ]

}
,

where Vi denotes the i-th column of V, i.e., the reparameterized ideal point for user i.

We again apply Lemma C.15. Let σ = (σ1, . . . , σN ) be an array of independent Rademacher
random variables. By Lemma C.1, we have, with probability at least 1− δ,

ES

[̂
JS(M̃, Ṽ)

]
− ES

[̂
JS(M

⋆,V⋆)
]
≤ (∗) +

√
2 log 2

δ

Nm
,

where

(∗) := 2ES,σ

 sup
M,V

1

Nm

N∑
i=1

m∑
j=1

σi,jℓ
(
y
(i)
j

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+
〈
x
(i)
j,l − x

(i)
j,r,Vi

〉)) .
It suffices to show that (∗) ≤ 6L

√
ζ2
M+ζ2

vN

Nm .

To this end, we first introduce some definitions and notations. For i ∈ [N ] and j ∈ [m], let

Z
(i)
j := x

(i)
j,lx

(i)⊤
j,l −x

(i)
j,rx

(i)⊤
j,r , and X

(i)
j :=

[
0 . . . 0 x

(i)
j,l − x

(i)
j,r︸ ︷︷ ︸

i-th column

0 . . . 0

]
. Note that Z(i)

j ∈ RD×D

and X
(i)
j ∈ RD×N . Then, let Ξ(i)

j :=
[
Z

(i)
j X

(i)
j

]
∈ RD×(D+N) be the concatenation of Z(i)

j

and X
(i)
j . Since items are all drawn from Unif(SD−1), we have∥∥∥Ξ(i)

j

∥∥∥
F
=

√∥∥∥x(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r

∥∥∥2
F
+
∥∥∥x(i)

j,l − x
(i)
j,r

∥∥∥2
2
≤ 2

√
2. (11)

In addition, let T := [M V] ∈ RD×(D+N) be the concatenation of M and V. Observe that

∥T∥F =

√√√√∥M∥2F +

N∑
i=1

∥Vi∥22 ≤
√
ζ2M + ζ2vN. (12)

We are now ready to bound (*). We have

(∗) = 2

Nm
ES,σ

 sup
M,V

N∑
i=1

m∑
j=1

σi,jℓ
(
y
(i)
j

〈
Ξ

(i)
j ,T

〉)
(a)

≤ 2L

Nm
ES,σ

 sup
M,V

N∑
i=1

m∑
j=1

σi,j

〈
Ξ

(i)
j ,T

〉
(b)

≤ 2L

Nm
sup
M,V

∥T∥F ·

√√√√√√ES

Eσ


∥∥∥∥∥∥

N∑
i=1

m∑
j=1

σi,jΞ
(i)
j

∥∥∥∥∥∥
2

F




(c)

≤ 6L

√
ζ2M + ζ2vN

Nm
,

where (a) uses Talagrand’s contraction lemma (Mohri et al., 2018, Lemma 5.7) and the observation
that Pr

(
σi,jy

(i)
j = 1

)
= Pr (σi,j = 1) = 1

2 for any i and j; (b) uses the Cauchy-Schwarz inequality
and Jensen’s inequality; and (c) uses Eq. (12) and Lemma C.11 along with Eq. (11). This completes
the proof.

5Again, for each i ∈ [N ] and j ∈ [m], we augment the comparison (x
(i)
j,l ,x

(i)
j,r, y

(i)
j ) in S with the user

index i: (i,x(i)
j,l ,x

(i)
j,r, y

(i)
j )
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C.2 GENERALIZATION FOR UNSEEN USERS

Theorem 2. (Unseen user generalization) Suppose K < min(N, d), and for each comparison,
the user is asked to compare two items that are drawn i.i.d. from the uniform distribution on the unit
sphere, Unif(SD−1). Then, with probability at least 1− δ over S1, . . . , SN ,

L
unseen
user (M̂, Q̂)− L

unseen
user (M∗,Q∗) ≤ 18L

√
ζ2M +K2ζ2v

N
+ 3L

√
Kζ2v
Dm

+

√
8 log 4

δ

N
.

Remark C.6. Maurer et al. (2016) consider multi-task learning and learning-to-learn, modeling
each task as a composite function hi ◦ f , where f is a shared representation and hi is task-specific.
They consider two settings: (1) multi-task learning with a given set of tasks, and (2) learning-to-
learn where tasks are drawn from a distribution. Setting (1) is analogous to seen-user generalization,
as studied in (Canal et al., 2022) for simulatenous metric and preference learning. To derive our
generalization bound for unseen users in preference alignment (Theorem 2), we build upon the
framework and employ the proof techniques from setting (2) in (Maurer et al., 2016).

We note that, in our mixture modeling for learning rewards, different users/tasks share not only a
common representation, but also a set of prototypical ideal points. In addition, to the best of our
knowledge, one cannot directly apply the results in (Maurer et al., 2016) to achieve the bound we
present in Theorem 2, particularly the second term which implies Õ (K) sample complexity for
few-shot localization of preferences.

Proof of Theorem 2. We closely follow the proof strategy of (Maurer et al., 2016, Section 4.3),
and tailor it to our specific learning framework and function classes to achieve tighter results (e.g.,
Lemma C.7 and Lemma C.9).

Additional notations. To facilitate our proof, we first introduce some additional notations. For
any user u ∈ U , let Pu denote the data-generating distribution for user u. (To be more precise, we
assume that items for all users and comparison are drawn independently from a common distribution,
specifically Unif(SD−1), but the conditional distribution of the user preference answer y given a pair
of items is user-dependent.) Given any (M,Q,w) and x = (xl,xr), we denote the difference of
scores by

Φ(x;M,Q,w) :=
〈
xlx

⊤
l − xrx

⊤
r ,M

〉
+ ⟨xl − xr,Qw⟩ .

Note that, when the context is clear, we sometimes slightly abuse notation and refer to (xl,xr) as x;
for example, we may denote a sample of m comparisons from some user by {(xj , yj)}mj=1, where
xj = (xj,l,xj,r). Given any representation M, prototypes Q, and a sample of m comparisons from
some user, S = {(xj , yj)}mj=1, recall that w̃S;M,Q ∈ argminw

1
m

∑m
j=1 ℓ (yj · Φ(xj ;M,Q,w));

we also let

ρ(S;M,Q) := min
w∈∆K−1

1

m

m∑
j=1

ℓ (yj · Φ(xj ;M,Q,w)) .

We now prove Theorem 2. Given S1, . . . , SN , consider the following decomposition of the excess
risk:
L
unseen
user (M̂, Q̂)− L

unseen
user (M∗,Q∗)

≤

(
L
unseen
user (M̂, Q̂)− 1

N

N∑
i=1

ρ(Si; M̂, Q̂)

)
︸ ︷︷ ︸

(i)

+

(
1

N

N∑
i=1

ρ(Si; M̂, Q̂)− 1

N

N∑
i=1

ρ(Si;M
∗,Q∗)

)
︸ ︷︷ ︸

(ii), ≤0

+

(
1

N

N∑
i=1

ρ(Si;M
∗,Q∗)− Eu

[
ES∼Pm

u
[ρ(S;M∗,Q∗)]

])
︸ ︷︷ ︸

(iii)

+ Eu

[
ES∼Pm

u
[ρ(S;M∗,Q∗)]

]
− L

unseen
user (M∗,Q∗)︸ ︷︷ ︸

(iv), ≤0

.

(13)
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Let us look at the four terms separately:

(i) Observe that, for any M,Q,

L
unseen
user (M,Q)− 1

N

N∑
i=1

ρ(Si;M,Q)

= Eu

[
ES∼Pm

u

[
E(xl,xr,y)∼Pu

[ℓ (y · Φ(x;M,Q, w̃S;M,Q))]− ρ(S;M,Q)
]]︸ ︷︷ ︸

(1)

+

(
Eu

[
ES∼Pm

u
[ρ(S;M,Q)]

]
− 1

N

N∑
i=1

ρ(Si;M,Q)

)
︸ ︷︷ ︸

(2)

.

Lemma C.7 and Lemma C.9 establish uniform bounds on (1) and (2), respectively. It follows
that, with probability at least 1− δ

2 ,

L
unseen
user (M̂, Q̂)− 1

N

N∑
i=1

ρ(Si; M̂, Q̂) ≤ 18L

√
ζ2M +K2ζ2v

N
+ 3L

√
Kζ2v
Dm

+ 3

√
log 4

δ

2N
.

(14)

(ii) This term is non-positive by the definition of (M̂, Q̂), which are components of the minimizer
of the empirical risk for the seen users.

(iii) Since (M∗,Q∗) does not depend on S1, . . . , SN and ρ(Si;M,Q) ∈ [0, 1] for any i ∈ [N ]
and M,Q, we can apply Hoeffding’s inequality (Hoeffding, 1994). We have, with probability
at least 1− δ

2 ,

1

N

N∑
i=1

ρ(Si;M
∗,Q∗)− Eu

[
ES∼Pm

u
[ρ(S;M∗,Q∗)]

]
≤

√
log 2

δ

2N
. (15)

(iv) This term is non-positive:

For any u ∈ U , let w∗
u ∈ argminw∈∆K−1 E(xl,xr,y)∼Pu

[ℓ (y · Φ(x;M∗,Q∗,w))]. Then,

Eu

[
ES∼Pm

u
[ρ(S;M∗,Q∗)]

]
= Eu

ES∼Pm
u

min
w

1

m

m∑
j=1

ℓ (yj · Φ(xj ;M
∗,Q∗,w))


≤ Eu

ES∼Pm
u

 1

m

m∑
j=1

ℓ (yj · Φ(xj ;M
∗,Q∗,w∗

u))


= Eu

[
E(xl,xr,y)∼Pu

[ℓ (y · Φ(x;M∗,Q∗,w∗
u), y)]

]
=: L

unseen
user (M∗,Q∗).

The proof is completed by combining Eq. (13), Eq. (14), and Eq. (15) and applying the union
bound.

Lemma C.7. With probability at least 1− δ
2 ,

sup
M,Q

Eu

[
ES∼Pm

u
[ρ(S;M,Q)]

]
− 1

N

N∑
i=1

ρ(Si;M,Q) ≤ 18L

√
ζ2M +K2ζ2v

N
+ 3

√
log 4

δ

2N
.

Proof. To avoid cluttering the notation, we denote Eu∼η

[
ES∼Pm

u
[·]
]

by Eu,S [·]. Let ϵ =
(ϵ1, . . . , ϵN ) be an array of independent standard normal random variables. Then, by (Mohri et al.,
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2018, Theorem 3.3) and (Wainwright, 2019, Excercise 5.5), with probability at least 1− δ
2 ,

sup
M,Q

Eu,S [ρ(S;M,Q)]− 1

N

N∑
i=1

ρ(Si;M,Q)

≤
√
2π · Eϵ

[
sup
M,Q

1

N

N∑
i=1

ϵi · ρ(Si;M,Q)

]
+ 3

√
log 4

δ

2N
, (16)

where Eϵ

[
supM,Q

1
N

∑N
i=1 ϵi · ρ(Si;M,Q)

]
is the empirical Gaussian complexity of

{S 7→ ρ(S;M,Q) : M,Q} given S1, . . . , SN , which we bound in the following.

Let γ ∈ RN×m and σ ∈ RN×m×K be arrays of independent standard normal random variables,
where ϵ,γ, and σ are mutually independent. We have

√
mN√
2L

· Eϵ

[
sup
M,Q

1

N

N∑
i=1

ϵi · ρ(Si;M,Q)

]
(a)

≤ Eγ,σ

 sup
M,Q

 N∑
i=1

m∑
j=1

γij

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
Q⊤

(
x
(i)
j,l − x

(i)
j,r

))
k


= Eγ

sup
M

N∑
i=1

m∑
j=1

γij

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉+ Eσ

sup
Q

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
Q⊤

(
x
(i)
j,l − x

(i)
j,r

))
k


(b)

≤ 2
√
ζ2MNm+ Eσ

sup
Q

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
Q⊤

(
x
(i)
j,l − x

(i)
j,r

))
k


(c)

≤ 2
√
ζ2M ·Nm+ 2

√
Kζ2v ·NmK

(d)

≤ 2
√
2 (ζ2M +K2ζ2v )mN, (17)

where

(a) follows from Lemma C.8;

(b) uses the Cauchy-Schwarz inequality, Jensen’s inequality, and Lemma C.11:

Eγ

sup
M

N∑
i=1

m∑
j=1

γij

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉

≤ sup
M

∥M∥F ·

√√√√√√E


∥∥∥∥∥∥

N∑
i=1

m∑
j=1

γij

(
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r

)∥∥∥∥∥∥
2

F


≤ 2ζM

√
Nm;
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(c) again uses the Cauchy-Schwarz inequality and Jensen’s inequality:

Eσ

sup
Q

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
Q⊤

(
x
(i)
j,l − x

(i)
j,r

))
k


= Eσ

sup
Q

K∑
k=1

〈
Qk,

N∑
i=1

m∑
j=1

σijk

(
x
(i)
j,l − x

(i)
j,r

)〉

≤ Eσ

sup
Q

(
K∑

k=1

∥Qk∥2
) 1

2

 K∑
k=1

∥∥∥∥∥∥
N∑
i=1

m∑
j=1

σijk

(
x
(i)
j,l − x

(i)
j,r

)∥∥∥∥∥∥
2

2


1
2



≤
√
Kζ2v ·

√√√√√√ K∑
k=1

Eσ


∥∥∥∥∥∥

N∑
i=1

m∑
j=1

σijk

(
x
(i)
j,l − x

(i)
j,r

)∥∥∥∥∥∥
2

2

,
and for any k ∈ [K], by the independence of the elements of σ,

Eσ


∥∥∥∥∥∥

N∑
i=1

m∑
j=1

σijk

(
x
(i)
j,l − x

(i)
j,r

)∥∥∥∥∥∥
2

2

 =

N∑
i=1

m∑
j=1

E
[
σ2
ijk

]
·
(
x
(i)
j,l − x

(i)
j,r

)⊤ (
x
(i)
j,l − x

(i)
j,r

)
≤ 4Nm;

(d) follows from the simple fact that
√
a+

√
b ≤

√
2(a+ b).

Combining Eq. (16) with Eq. (17) completes the proof.

We now present Lemma C.8 used in the proof of Lemma C.7.
Lemma C.8. Given S1, . . . , SN ,

Eϵ

[
sup
M,Q

1

N

N∑
i=1

ϵi · ρ(Si;M,Q)

]

≤
√
2L√
mN

· Eγ,σ

 sup
M,Q

 N∑
i=1

m∑
j=1

γij

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
Q⊤

(
x
(i)
j,l − x

(i)
j,r

))
k

 .
Proof. We apply the technique used in (Maurer et al., 2016), which utilizes the Sudakov-Fernique
inequality (e.g., Adler, 1990, reproduced as Lemma C.12). To this end, we define two Gaussian
processes, indexed by (M,Q):

YM,Q =

N∑
i=1

ϵi · ρ(Si;M,Q),

where ϵ ∈ RN is an array of independent standard normal random variables, and

WM,Q =

√
2L√
m

 N∑
i=1

m∑
j=1

γij

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M

〉
+

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
Q⊤

(
x
(i)
j,l − x

(i)
j,r

))
k

 ,

where γ ∈ RN×m and σ ∈ RN×m×K are mutually independent arrays of independent standard
normal random variables. By the Sudakov-Fernique inequality (reproduced as Lemma C.12), it
suffices to show that, for any (M,Q) and (M′,Q′),

E
[
(YM,Q − YM′,Q′)2

]
≤ E

[
(WM,Q −WM′,Q′)2

]
.

Then, E
[
supM,Q YM,Q

]
≤ E

[
supM,QWM,Q

]
, which completes the proof.
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Recall that ρ(Si;M,Q) := minw∈∆K−1
1
m

∑m
j=1 ℓ

(
y
(i)
j · Φ(x(i)

j ;M,Q,w)
)

. Since ϵi’s are inde-
pendent, we have

E
[
(YM,Q − YM′,Q′)2

]
=

N∑
i=1

min
w

1

m

m∑
j=1

ℓ
(
y
(i)
j · Φ(x(i)

j ;M,Q,w)
)
−min

w

1

m

m∑
j=1

ℓ
(
y
(i)
j · Φ(x(i)

j ;M′,Q′,w)
)2

.

Now, for any i ∈ [N ],min
w

1

m

m∑
j=1

ℓ
(
y
(i)
j · Φ(x(i)

j ;M,Q,w)
)
−min

w

1

m

m∑
j=1

ℓ
(
y
(i)
j · Φ(x(i)

j ;M′,Q′,w)
)2

(a)

≤ sup
w

 1

m

m∑
j=1

(
ℓ
(
y
(i)
j · Φ(x(i)

j ;M,Q,w)
)
− ℓ

(
y
(i)
j · Φ(x(i)

j ;M′,Q′,w)
))2

(b)

≤ 1

m
sup
w

m∑
j=1

(
ℓ
(
y
(i)
j · Φ(x(i)

j ;M,Q,w)
)
− ℓ

(
y
(i)
j · Φ(x(i)

j ;M′,Q′,w)
))2

(c)

≤ L2

m
sup
w

m∑
j=1

(
Φ(x

(i)
j ;M,Q,w)− Φ(x

(i)
j ;M′,Q′,w)

)2
=
L2

m
sup
w

m∑
j=1

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M−M′

〉
+
〈
(Q−Q′)⊤

(
x
(i)
j,l − x

(i)
j,r

)
,w
〉)2

(d)

≤ 2L2

m

m∑
j=1

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M−M′

〉)2
+

2L2

m
sup
w

m∑
j=1

(〈
(Q−Q′)⊤

(
x
(i)
j,l − x

(i)
j,r

)
,w
〉)2

(e)

≤ 2L2

m

m∑
j=1

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M−M′
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m
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((
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(
x
(i)
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j,r

))
k

)2
.

(18)

where

(a) follows directly from Lemma C.13;

(b) uses the AM-QM inequality;

(c) follows because ℓ is L-Lipschitz, and (yz − yz′)
2
= (z − z′)2 for y ∈ {±1} and z, z′ ∈ R;

(d) uses the simple fact that (a+ b)2 ≤ 2(a2 + b2); and

(e) uses the Cauchy-Schwarz inequality and the fact that for any w ∈ ∆K−1, ∥w∥2 ≤ 1.

We now turn our attention to (WM,Q). Since the elements of γ and σ are independent, it follows
that

E
[
(WM,Q −WM′,Q′)2

]
=

2L2

m
E


 N∑

i=1

m∑
j=1

γij

〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M−M′

〉
+

N∑
i=1

m∑
j=1

K∑
k=1

σijk

(
(Q−Q′)⊤

(
x
(i)
j,l − x

(i)
j,r

))
k

2


=
2L2

m

m∑
j=1

(〈
x
(i)
j,lx

(i)⊤
j,l − x

(i)
j,rx

(i)⊤
j,r ,M−M′

〉)2
+

2L2

m

m∑
j=1

K∑
k=1

((
(Q−Q′)⊤

(
x
(i)
j,l − x

(i)
j,r

))
k

)2
≥ E

[
(YM,Q − YM′,Q′)2

]
,

where the inequality follows from Eq. (18). This completes the proof.
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Lemma C.9. Suppose for any user, when drawing a sample, m pairs of items are independently
drawn from Unif(SD−1). Then,

sup
M,Q

Eu

[
ES∼Pm

u

[
E(xl,xr,y)∼Pu

[ℓ (y · Φ(x;M,Q, w̃S;M,Q))]− ρ(S;M,Q)
]]

≤ 3L

√
Kζ2v
Dm

.

Proof. Let σ = (σi, . . . , σm) be an array of independent Rademacher random variables. We have

sup
M,Q

Eu

ES

E(x,y) [ℓ (y · Φ(x;M,Q, w̃S;M,Q))]− 1

m

m∑
j=1

ℓ (Φ(yj · xj ;M,Q, w̃S;M,Q))


≤ sup

M,Q
Eu

[
ES

[
sup
w

(
E(x,y) [ℓ (y · Φ(x;M,Q,w))]− 1

m

m∑
i=1

ℓ (yj · Φ(xj ;M,Q,w))

)]]
(a)

≤ 2 · sup
M,Q

Eu

ES,σ

sup
w

1

m

m∑
j=1

σj · ℓ (yj · Φ(xj ;M,Q,w))


(b)

≤ 2L · sup
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w

1

m

m∑
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(
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⊤
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⊤
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1

m
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 1

m
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σj · ⟨xj,lx
⊤
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⊤
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=0

=
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w

〈
m∑
j=1

σiQ
⊤(xj,l − xj,r),w
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(c)

≤ 2L

m
· sup

Q

√√√√√√Eu,S,σ


∥∥∥∥∥∥

n∑
j=1

σiQ⊤(xj,l − xj,r)
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2

2


(d)

≤ 2L

m
· sup

Q

√√√√ m∑
j=1

Eσ[σ2
j ] · tr (QQ⊤Eu,S [(xj,l − xj,r)(xj,l − xj,r)⊤])

(e)
=

2L
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· sup

Q

√√√√ 2

D

m∑
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tr (QQ⊤)

(f)

≤ 3L

√
Kζ2v
Dm

,

where

(a) introduces the Rademacher random variables and uses the standard symmetrization technique
(e.g., Shalev-Shwartz & Ben-David, 2014, Lemma 26.2);

(b) uses Talagrand’s contraction lemma (e.g., Mohri et al., 2018, Lemma 5.7) along with the fact
that the loss function ℓ is L-Lipschitz;

(c) uses the Cauchy-Schwarz inequality, Jensen’s inequality and the fact that any vector w ∈
∆K−1 satisfies ∥w∥2 ≤ 1.

(d) follows because σi’s are independent Rademacher random variables and uses the linearity of
expectation and the trace operator;
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(e) uses the observation that for two independent vectors z, z′ from Unif(SD−1),
E
[
(z− z′)(z− z′)⊤

]
= 2

D ID; and

(f) uses the observation that tr(QQ⊤) = ∥Q∥2F ≤ Kζ2v .

C.3 AUXILIARY LEMMAS

Lemma C.10 (Matrix Bernstein, Tropp et al., 2015). Let X1, . . . ,Xm ∈ Rd1×d2 be independent
random matrices such that E [Xi] = 0 and ∥Xi∥ ≤ R for each i ∈ [m]. Let

ι = max

{∥∥∥∥∥
m∑
i=1

E
[
XiX

⊤
i

]∥∥∥∥∥ ,
∥∥∥∥∥

m∑
i=1

E
[
X⊤

i Xi

]∥∥∥∥∥
}
.

Then,

E

[∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
]
≤
√
2ι log(d1 + d2) +

1

3
R log(d1 + d2).

Lemma C.11. Let Z = (Z1, . . . ,Zn) be an array of matrices such that ∥Zi∥F ≤ Bi, and σ =
(σ1, . . . , σn) be an array of independent random variables such that E [σi] = 0 and E

[
σ2
i

]
= 1 for

all i ∈ [n]. Then,

Eσ

∥∥∥∥∥
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∥∥∥∥∥
2

F

 ≤
n∑
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i

Proof. We have
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2
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
=

n∑
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tr
(
Z⊤

i Zi

)
≤

n∑
i=1

B2
i .

Lemma C.12 (Sudakov-Fernique inequality, e.g., Adler, 1990, Theorem 2.9). Let X and Y be two
centered, almost surely bounded Gaussian processes indexed by t ∈ T such that, for all t, s ∈ T ,

E
[
(Xt −Xs)

2
]
≤ E

[
(Yt − Ys)

2
]
.

Then,

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
.

Lemma C.13. Let f and g be functions from X to [0, 1] that are parameterized by w ∈ W . Given
x1, . . . , xn ∈ X , we have(

min
w

1

n

n∑
i=1

f(xi;w)−min
w

1

n

n∑
i=1

g(xi;w)

)
≤ sup

w

(
1

n

n∑
i=1

f(xi;w)− g(xi;w)

)2

.

Proof. Let us consider two cases:
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1. minw
1
n

∑n
i=1 f(xi;w)−minw

1
n

∑n
i=1 g(xi;w) ≥ 0:

Let w∗
g ∈ argmin 1

n

∑n
i=1 g(xi;w). It follows that

0 ≤ min
w

1

n

n∑
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1

n
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w
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n∑
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∗
g)− g(xi;w

∗
g)
)
.

Therefore,(
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w
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n

n∑
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1

n
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w
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)2
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n
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.

2. minw
1
n

∑n
i=1 f(xi;w)−minw

1
n

∑n
i=1 g(xi;w) < 0:

Similarly, let w∗
f ∈ argmin 1

n
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1

n

n∑
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(
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∗
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∗
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)
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It follows that(
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n
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n
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.
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D EXPERIMENT DETAILS

D.1 GENERAL PROCEDURE

We initialize our models with random weights for all of our experiments, including the prototypical
weight for each user. We apply the softmax function to each prototypical weight to ensure that it is
a probability vector. For the unseen user, we initialize its prototypical weight randomly. However,
when we update the model using gradient descent, we fix the learned projectors and the prototypical
points and only update the prototypical weight of the unseen users. During the training of the Large
variant of PAL, we sample # batchsize samples from the preference datasets and concurrently update
the shared foundation model, the mapping functions, and the corresponding user-specific weights
for each sample. For the Tiny variant of PAL, we fix the foundation model and keep updating other
components.

D.2 NUMERICAL SIMULATION

Experiment Setup. We introduce the dataset simulation procedure in Section 4.2. We use the
following hyperparameters to generate the synthetic dataset: d = 16,K = 3, N = 100, n =
100, δ = 1. We generate another 50 comparison pairs per user as the held-out dataset. Note that
here we don’t follow the prompt-guided item generation, i.e. conditioning xc generates xl and
xr. Instead, we directly draw the item {xl, xr} from a normal distribution for simplicity. In the
experimental setup, we apply a toy version of PAL-A, where the distance between the synthetic
item and the user’s ideal point is measured by ∥f(x) − f(u)∥2. We use a projection matrix (i.e.
one-layer MLP network without bias term and activation function) as the model architecture. We
randomly initialize the learnable parameters of prototypical user groups and user weights and use
the Adam optimizer. The projector f has learning rate 5e − 4 and weight decay 1e − 3. The
learning rate of the learnable parameters of prototypical user groups and user weights is 5e − 3.
With the aim of good convergence, we train for 1000 epochs per run. We run multiple trials to
explore the influence of each hyperparameter: 1) varying the number of samples of seen users
n = {20, 40, 60, 80, 100, 400, 800, 1000}, d = {2, 16}, K = 5, N = 250, 2) varying the number of
samples of new users nnew = {5, 10, 20, 30, 40, 50, 100}, d = {2, 16}, K = 5, n = 50, 3) varying
the number of groups K = {2, 3, 4, 5, 6}, d = {2, 16}, n = 50, N = 50 ∗K. We plot the results of
this experiment in Figure 5 and discuss implications in Section 4.2.

We consider two variants of modeling each user’s ideal point through the lens of a shared group
structure of preferences via prototypical ideal points (henceforth referred to as “prototypes”):

S1. Mixture Model: a user ideal point is a convex combination of K prototypes, i.e. lies in the
convex hull of all prototypes.

S2. Partition Model: a user ideal point is one of K prototypes.

To visualize how well PAL can adjust to the true number of user groups present in data, via learnable
prototypical points to represent each group, we consider a simple setting with d = 2, K∗ = 3,
K = {1, 2, 3} and N = 100 and plot the results in Figure D.1 for both partition and mixture
settings. We also plot items in the partition setting in Figure D.2.

Partition Model : With only a single allowed assignment for a learnable prototype (Figure D.1a.,
K = 1), the predicted prototype is approximately the centroid of the true prototypes, i.e. the model
tries to predict a good group assignment on average. Also note that since we have a single prototype,
all predicted user ideal points lie on the prototype itself and performance is close to random. As we
increase the degrees of freedom for learnable prototypes to two (Figure D.1b., K = 2), the model
can predict one prototype close to a true prototype (in red), while the other predicted prototype is
approximately an average of the blue and green true prototypes. User ideal points now lie in the
convex hull of these two predicted prototypes, i.e. the line joining these points. It is only when we
increase K = K∗, i.e. we match the “true” number of groups in the data (Figure D.1c., K = 3), the
model can correctly predict close to all three true prototypes, and user ideal points are concentrated
around the predicted prototypes. These observations extend to Figure D.2, where we additionally
plot normally distributed items. Recall that in our modeling design, the distance between the user
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a . Partition, K = 1 b . Partition, K = 2 c . Partition, K = 3

d . Mixture, K = 1 e . Mixture, K = 2 f . Mixture, K = 3

Figure D.1: In synthetic dataset experiments (Section 4.2), we model user ideal points in two distinct
ways: the partition model and the mixture model. To visualize how PAL performs in these settings,
we set d = 2, K∗ = 3, K = {1, 2, 3} and N = 100 where each user ideal point and prototype is
represented as a point in a two-dimensional space. In both scenarios, as the number of prototypes
or user groups in our model (K) approaches the true number in the synthetic dataset (K∗), the PAL
framework effectively learns both the prototypes and the heterogeneous user ideal points.

ideal point and the item reflects the user’s preference; hence the closer the predicted user ideal point
is to the true ideal point, the higher the performance.

Mixture Model : The results for the mixture model are similar to those of the partition model.
With a single allowed assignment for a learnable prototype (Figure D.1(d.), K = 1), the predicted
prototype is approximately the centroid of the true prototypes. As we increase the degrees of free-
dom to two (Figure D.1(e.), K = 2), predicted prototypes are close to two true prototypes, but one
is neglected. When we increase K = K∗ (Figure D.1(f.), K = 3), matching the true number of
groups in the data, the mixture model successfully predicts prototypes that lie close to all three true
prototypes. This demonstrates that similar to the partition model, the mixture model can also adjust
well to the true number of user groups present in the data.

D.3 REDDIT TL;DR SUMMARY (TEXT-TO-TEXT)

Detials of seen dataset. We train PAL reward models on a variant of the Reddit TL;DR Summary
dataset from Li et al. (2024). In this variant, only the ten workers who gave the most feedback
were chosen (Each user contains at least 1,000 samples). These ten workers are then divided into
a majority and minority group, where the majority prefers the longer response, and the minority
prefers the shorter response. More details about how the dataset is generated can be found in Section
6.1 of Li et al. (2024). This processed dataset contains 20,969 training samples, 2,330 validation
samples, and 4,921 test samples. Each example consists of one user ID, one prompt, two responses,
and the user’s preference.

Details of unseen dataset. We selected all workers, excluding the ten used in the seen dataset, as
candidates for the unseen dataset. From this pool, we filtered users with at least 100 valid comparison
pairs (i.e., no missing values), resulting in a total of 31 users. We randomly assigned 70% of these
users to prefer longer summaries, while the remaining users were designated as preferring shorter
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a . K = 1, Test Acc = 72.2% b . K = 2, Test Acc = 83.96% c . K = 3, Test Acc = 91.26%

Figure D.2: Here we plot all items, the predicted user ideal points, and predicted and true prototypes
in two-dimensional feature space. The items are normally distributed with d = 2,K∗ = 3, N =
100, n = 100. As seen in the figure, when we set the number of prototypes in the model K equal to
the true number of user groups K∗ = 3, PAL can accurately capture the group structure and predict
each user’s ideal preference point, as well as the prototypes that represent each group (K = 3).

Table 3: Seen user test accuracy of PAL vs. P-DPO (Li et al. v2) and vanilla DPO on the Reddit
TL;DR summary dataset. We run 5 trials with K = 2 and K = 1. Our method consistently
performs better than the baseline methods. For the Large version of PAL, we use OPT-350M as
the foundation model.

Model Params Seen User Test Accuracy

PAL-A-Tiny (K = 2) 1.6M 52.91 ± 0.55
PAL-B-Tiny (K = 2) 2.4M 79.54 ± 0.54
PAL-A-Large (K = 2) 352M 90.00 ± 1.89
PAL-B-Large (K = 2) 352M 92.82 ± 0.95
P-DPO Individual 6.7B 91.04
P-DPO Cluster (K = 5) 6.7B 91.12

PAL-A-Tiny (K = 1) 1.6M 49.99 ± 0.17
PAL-B-Tiny (K = 1) 1.6M 51.51 ± 0.08
PAL-A-Large (K = 1) 352M 61.28 ± 2.25
PAL-B-Large (K = 1) 352M 59.96 ± 3.45
Vanilla DPO 6.7B 58.91

summaries. Based on these assignments, the users’ preferences were re-labeled. Given the varying
numbers of few-shot samples in the training set, we partitioned each user’s comparison pairs into
training, validation, and test sets, resulting in multiple datasets.

We leverage multiple pretrained LLMs, including OPT-350M, DistillBERT, Bge-m3, and
gte-Qwen2,6 as the base model, combined with two-layer MLPs utilizing GELU activation. In
the Tiny variant of PAL, we fix the pretrained foundation model and only train the two-layer MLP,
whereas in the Large variant, we also train the foundation model. In our PAL reward model, we
set K = 2 and apply different learning rates for various model components: 9.65e-6 for pretrained
LLMs (Large), 1e-4 for the two-layer MLPs, and 5e-3 for user weights. The higher learning rate of
user weights can enhance the exploration of each user’s weight across user groups. As with typical
reward models, we train for only 1 epoch to avoid overfitting. The hyperparameter configurations
are detailed in Table 4. The training process takes roughly 1 hour on 1×RTX4090 GPU.

The loss design follows the typical loss of the Reward Model, we use the cumulative loss which
weights the per-token reward loss,

6Li et al. (2024) use GPT-J 6.7B. However, the model card for that model on Hugging Face is broken.
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Table 4: The training hyperparameter setting of PAL reward modeling on Reddit TL;DR. The cor-
responding experiment setup is described in Section 3.1.

Hyperparameters Values

K 2
Batch size 4
Projectors mlp-2layer-gelu-dropout0
Epoch 1
Learning rate of LLM 9.65e-6
Learning rate of projectors 1e-4
Learning rate of user weights 5e-3
Weight decay of LLM 0.0
Weight decay of projectors 0.01
Weight decay of user weights 0.0
Loss weighting cumulative
Dimension of preference embedding 512
End of conversation token <|endoftext|>
Maximum sequence length 600

LRM (x, yw, yl; θ) =

∑L
i=1 i · log σ

(
r(x, y

(i)
l )− r(x, y

(i)
w )
)

(L+ 1)L/2

where x is the prompt, y(i) represents the LLM backbone prediction at generation timestep i, yw and
yl separately represent the winning response and the losing response. Note that in our implementa-
tion of PAL-A, we concatenate the prompt and the item on the token level. Therefore, the embedding
for an item produced by a foundation model already contains the information of the prompt. This
implementation allows us to use the embedding directly without needing to concatenate it with the
embedding of the prompt. Table 3 reports the performance of our models and the numbers reported
in Li et al. (2024). We run our model 5 times and report the mean and standard deviation. We want
to note that even though we did not conduct any hyperparameter tuning, With heterogeneous model-
ing (K > 1), PAL-B-Large achieves approximately +1.8% higher prediction accuracy compared
to the state-of-the-art heterogeneous P-DPO (Li et al. (2024)) with 5 clusters. With homogeneous
modeling (K = 1), PAL-A-Large is able to outperform vanilla DPO by +2.4%.

D.3.1 FEW-SHOT GENERALIZATION TO UNSEEN USERS

The procedure for few-shot generalization to unseen users is as follows: We randomly initialize
the user weights, as done during seen user training, and then learn the user weights while keep-
ing the LLM components and MLP projectors fixed. Since only the user weights need to be
learned, the sample efficiency is significantly higher compared to seen user training. Results in-
dicate that with just 20 samples per new user, we can achieve performance comparable to that of
seen user generalization (Figure 3). In Table 5, we compare the performance of PAL-A-Tiny,
PAL-A-Large, PAL-B-Tiny, and PAL-B-Large trained on OPT-350M embeddings when
K = 2 and N = 10, 20, 50, 100. Our results show that PAL-A-Large, PAL-B-Tiny, and
PAL-B-Large outperform the baselines substantially. We note that while P-DPO was state-of-
the-art on seen users, it’s performance drops off dramatically for unseen users (-36.6%), while
PAL-B-Tiny (91.63%) exceeds P-DPO’s state-of-the-art seen accuracy (91.12%) with only
10 samples on unseen users! This indicates the promising potential of PAL for cheap few-shot
adaptation to new, unseen users in a sample-efficient manner.

We observe that increasing sample complexity N from 10 to 100 is impactful only for
PAL-B-Tiny (+3%), while the other configurations gain only +0.4 to +1%. PAL-B vastly out-
performs PAL-A for the same size and sample complexity (up to +27%). Lastly, Large models
outperform their Tiny counterparts across sample complexities from +14.2 to +23.5%.
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Figure D.3: We evaluate few-shot adaptation capabilities via unseen accuracy on the Reddit TL;DR
dataset comparing to state-of-the-art Li et al. (2024) and simple vanilla DPO (Rafailov et al., 2024).

Table 5: Unseen user generalization of PAL compared to baselines on the Reddit TL;DR summary
dataset. Here N refers to the number of samples used to learn the weights for the unseen users,
and seen accuracies are those reported in Table 3. We note that with just 10 samples for each new
(unseen) user, PAL-B-Large exceeds state-of-the-art performance of P-DPO with K=5 (91.12%),
demonstrating the suitability of PAL for few-shot adaptation and generalization to new users.

Model Seen Accuracy (%) Unseen Accuracy (%)

P-DPO individual 91.04 55.34
P-DPO K=5 91.12 54.55
Vanilla DPO 58.91 55.37

PAL-A-TinyK = 2, N = 10

52.91± 0.55

50.12± 1.20
PAL-A-TinyK = 2, N = 20 50.55± 0.43
PAL-A-TinyK = 2, N = 50 50.49± 0.39
PAL-A-TinyK = 2, N = 100 50.40± 0.55

PAL-B-TinyK = 2, N = 10

79.54± 0.54

74.88± 0.79
PAL-B-TinyK = 2, N = 20 77.37± 0.37
PAL-B-TinyK = 2, N = 50 76.19± 0.49
PAL-B-TinyK = 2, N = 100 77.80± 0.07

PAL-A-LargeK = 2, N = 10

90.00± 1.89

73.39± 1.82
PAL-A-LargeK = 2, N = 20 74.04± 2.50
PAL-A-LargeK = 2, N = 50 72.33± 2.36
PAL-A-LargeK = 2, N = 100 74.39± 1.70

PAL-B-LargeK = 2,N = 10

92.82± 0.95

91.63± 1.43
PAL-B-LargeK = 2,N = 20 91.72± 1.40
PAL-B-LargeK = 2,N = 50 92.02± 1.10
PAL-B-LargeK = 2,N = 100 91.97± 1.91

D.3.2 CHOICE OF FOUNDATION MODEL

The choice of foundation model is an important factor that impacts the performance of PAL, es-
pecially for PAL-A-Tiny and PAL-A-Large. This is because the foundation model directly
decides the quality of the embeddings we obtain for the items. Table 6 illustrates that there is a per-
formance gap between using OPT-350M and DistilBERT as the foundation model, especially
for Tiny variants where we do not train the foundation model. The existence of such a gap is possi-
bly due to the fact that DistilBERT is an encoder-based model, which provides a better sentence
embedding than the decoder-based OPT-350M.
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Table 6: Comparison of performance of PAL-A-Tiny and PAL-A-Large with different founda-
tion models on the summary dataset.

Model Foundation Model Seen User Test Accuracy

PAL-A-Tiny (K = 2) OPT-350M 52.91± 0.55
DistilBERT 72.99± 1.21

PAL-A-Large (K = 2) OPT-350M 90± 1.89
DistilBERT 91.75± 0.41

Table 7: Personas used across various “true” number of user groups K⋆ in our heterogeneous per-
sona dataset.

K⋆ Personas

2 interest in art, interest in literature
3 interest in art, interest in literature, interest in math
4 interest in art, interest in literature, interest in math, interest in music
5 interest in art, interest in literature, interest in math, interest in music, interest in science

6 interest in art, interest in literature, interest in math, interest in music, interest in science,
interest in sports

D.4 PERSONA (TEXT-TO-TEXT)

Anthropic’s Persona dataset Perez et al. (2022) consists of a series of personalities (personas), each
corresponding with 500 statements that agree with the persona and 500 statements that do not. We
denote the set of statements that agrees with a persona ρ as S(ρ). We construct a semi-synthetic
dataset using Anthropic’s Persona to evaluate PAL.

Dataset. Let ρ = {ρ1, . . . , ρK⋆} denote the set of personas that exists in our semi-synthetic hetero-
geneous dataset with K⋆ “true” preference (prototypical) groups i.e. each person (user) has one of
the K⋆ personalities. For each ρj ∈ ρ, we generate N synthetic seen and unseen users. For each
seen synthetic user, we generate np queries that ask if the user agrees with a given statement from
the persona dataset. For each unseen synthetic user, we generate np,unseen queries. If the statement
aligns with the persona ρj of the user, i.e. the statement belongs to S(ρj), then the user answers
yes, otherwise no. Table 7 lists the personas used for each K⋆, and Figure D.4 shows a sample
question.

Experiment Setup. We evaluate the performance of PAL-A-Tiny with hinge loss and model
PAL-B-Tiny with logistic loss on the heterogeneous persona dataset in various settings. Both
model utitlize a 2-layer MLP as the f function. To examine the impact of various hyperparameters,
we conduct experiments varying the number of true prototypes in the dataset K⋆, the number of
prototypical groups used in the model K, queries per seen user np, and latent dimension d with a
fixed number of users per group N = 10, 000. Details of the values for each hyperparameter used
are listed below:

(a) varying K⋆ = {2, . . . , 6} and K = {1, . . . , 8} while fixing np = 1000, d = 16,
(b) varying np = {75, 100, 200, 500, 1000} andK = {1, . . . , 5} while fixingK⋆ = 4, and d = 16,
(c) varying d = {4, 8, 16, 32, 64} and K = {1, . . . , 5} while fixing K⋆ = 4, and np = 1000,
(d) varying np,unseen = {1, 10, 20, 50, 100, 200, 500, 1000} andK = {1, . . . , 5} while fixingK⋆ =

4, np = 1000, and d = 16.

Both PAL-A-Tiny and PAL-B-Tiny used the same value, except for d. This is because PAL-A
utilizes a residual connection. Therefore, the latent dimension is fixed to 768, the dimension of the
input embedding.

Results. We repeat these experiments five times and report the results on PAL-A-Tiny in Fig-
ure D.5 and on PAL-B-Tiny in Figure D.6. Both Figure D.6 and Figure D.5 (a, b) illustrate
the generalization performance of PAL-A-Tiny and PAL-B-Tiny on the heterogeneous persona
dataset. We observe that asK → K⋆, the seen accuracy increases to 100% given a sufficient number

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure D.4: An example of a pairwise comparison query with a prompt from our heterogeneous
persona dataset generated using Anthropic’s Personas. For example, a synthetic user assigned the
persona interest in art will have ground truth y = −1 by answering no, whereas a synthetic user
assigned the persona interest in math will have ground truth y = +1 by answering yes.

Figure D.5: Seen accuracy (a,b) and unseen accuracy (c) evaluated on the heterogeneous persona
dataset across the number of prototypes K used in PAL-A-Tiny. The number of true prototypes
K⋆ in (b, c) is 4. We vary (a) the number of true prototypes K⋆, (b) the number of comparisons
per seen user np, (c) the number of comparisons per unseen user np,unseen. Since we used a residual
connection in the PAL-A-Tiny, we could not vary the size of the latent dimension.

of users and number of comparisons per user. Figure D.5 and Figure D.6 (b) shows that as we get
more comparisons per user, we achieve better seen user accuracy, i.e. we can generalize to unseen
pairs for users who are seen (provide training samples) in the dataset. Figure D.6 (c) shows that the
size of latent dimension d does not affect the seen accuracy dramatically. Figure D.5 (c) and Figure
D.6 show the accuracy for unseen users, i.e., users who do not provide training samples. When
K = 1, no further learning is needed to generalize to new users. However, when K > 1, we require
weights over the K prototypes for the new users to be learned. To learn these new user weights, as
discussed in Section 2.2, we fix the K prototypes and the mapping f and use only a few test data
samples to learn the user weights (C4). We use these learned weights to make predictions on the
remaining test data. From Figure D.5 (c) and Figure D.6 (d), we see that for K = 1 the number of
samples used to learn weights makes no difference since there are no weights to learn over a single
prototype. For K = 2, we see that as we use more data for learning the new user weights, the
performance shows diminishing returns until saturation. We also demonstrate that as the number of
prototypes K increases, more comparisons per user are needed to learn the new user weights, since
the dimension of the weight vector increases with K.

D.5 PICK-A-PIC (TEXT-TO-IMAGE)

Dataset. The Pick-a-Pic dataset is a large, open dataset designed to capture human preferences in
text-to-image generation. It includes over 500,000 examples where users compare two AI-generated
images based on a text prompt and choose their preferred one. This dataset is used to align models
with human preferences.

Experiment Setup. We apply PAL-B-Tiny on the Pick-a-Pic dataset. Since the Pick-a-Pic dataset
collection process requires strict rubrics, the labels collected from workers may not reflect the
worker’s diverse preferences. Thus we set K = 1 for the PAL model. We use two-layer MLP
networks with ReLU activation and residual connections as the mapping functions. To avoid over-
fitting we set the dropout rate to 0.5 and weight decay to 1e − 2. We apply different learning rates
for various model components: 1e− 4 for the two-layer MLPs and 5e− 3 for user weights.
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Figure D.6: Seen accuracy (a,b,c) and unseen accuracy (d) evaluated on the heterogeneous persona
dataset across the number of prototypes K used in the PAL-B-Tiny. The number of true pro-
totypes K⋆ in (b, c, d) is 4. We vary (a) the number of true prototypes K⋆, (b) the number of
comparisons per seen user np, (c) the size of latent dimension d, (d) the number of comparisons per
unseen user np,unseen.

Table 8: Number of samples in each split of the newly constructed Pick-a-Filter dataset.

Category Train Val Test

Group 1
Seen 58831 628 1597
Unseen 9527 79 1886
Total 68358 707 3483

Group 2
Seen 57200 404 2096
Unseen 9402 52 1812
Total 66602 456 3908

D.6 PICK-A-FILTER (TEXT-TO-IMAGE)

Dataset: due to the high level of “agreement” among labelers over image preferences on Pick-a-
Pic v1 (Kirstain et al., 2024), we construct a semi-synthetic dataset by applying filters to a subset
of Pick-a-Pic v1, which we call the Pick-a-Filter dataset. To construct the dataset, we consider only
samples that have no ties, i.e. the labeler decides that one image is decisively preferable to the other,
given the text prompt. As Pick-a-Pic provides unique and anonymous user IDs for all preference
pairs, we consider a subset of users who provide samples in both the train and test sets (468 / 4223
users). We further only consider users who provide more than 50 labels (234 / 468 users) and sort
the users by number of samples provided. We split these users into equal groups of 117 each, and we
assume without loss of generality that the first group of users (G1) prefers “cold” tones (blue filter)
and the second group (G2) prefers “warm” tones (red filter). Lastly, we arbitrarily consider the first
50 users (who provide the most number of samples) as “seen” users, i.e. users that provide samples
in both the train and test sets of Pick-a-Filter. We add this seen vs. unseen distinction to evaluate how
well PAL can adapt to unseen (i.e. new) users after training. Currently, our experiments on Pick-
a-Filter (Section 3.3) train on v1-train-seen (116031 samples) and evaluate on v1-test-seen (3693
samples). We show the number of samples in each of these splits in Table 8. After constructing
splits, we apply the following filtering logic:

1. Apply “winning” and “losing” filters to appropriate images depending on label. For G1 the
winning filter is blue, and for G2 the winning filter is red.

2. Randomly shortlist β% of samples to add filters. The remaining (1− β)% of samples will
remain unaltered (default images from Pick-a-Pic v1).

3. Randomly select 50% of above-shortlisted samples to apply a filter to only the winning
image, and the remaining 50% to apply a filter to only losing image

We add these sources of randomness to make learning preferences on Pick-a-Filter less prone to
hacking (e.g. the model could trivially learn to predict an image with a filter as the preferred image).

Experiment Setup. We choose 2-layer MLP networks with ReLU activation and residual connec-
tion as the prompt mapping function gk and the output mapping function f . To avoid overfitting, we
set the dropout rate to 0.5 and weight decay to 1e − 2. We use the Adam optimizer with a learning
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Figure D.7: The construction diagram for the semi-synthetic Pick-a-Filter dataset. It involves ran-
domly selecting approximately 135,000 samples from the Pick-a-Pic v1 dataset and dividing the
user IDs into two disjoint groups. We assume one group prefers images with “cold tone” (blue)
filters and the other with “warm tone” (red) filters. To incorporate diverse color filter preferences,
we randomly select β% of samples per user on which to apply filters.

rate 1e− 4. To evaluate the model’s performance, we use the checkpoint with the highest accuracy
on the validation set.
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E COMPUTATIONAL RESOURCES

We conducted most of our experiments using 4×RTX 4090, each with 24 GB of VRAM. For the
experiments involving a foundation model that has 1.3B parameters or more, we used 2 × A100,
each with 80GB of VRAM. A typical run of the experimentw finished within 2 hours.
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