
Under review as a conference paper at ICLR 2024

GRAPH NEURAL NETWORKS WITH DIRECTIONAL EN-
CODINGS FOR ANISOTROPIC ELASTICITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulating the behavior of nonlinear and anisotropic materials is a central problem
with applications across engineering, computer graphics, robotics, and beyond.
While conventional mesh-based simulations provide accurate and reliable predic-
tions, their computational overhead typically prevents their use in interactive ap-
plications. Graph neural networks (GNN) have recently emerged as a compelling
alternative to conventional simulations for time-critical applications. However, ex-
isting GNN-based methods cannot distinguish between deformations in different
directions and are thus limited to isotropic materials. To address this limitation,
we propose a novel and easy-to-implement GNN architecture based on directional
encodings of edge features. By preserving directional information during message
passing, our method has access to the full state of deformation and can thus model
anisotropic materials. We demonstrate through a set of qualitative and quantitative
evaluations that our approach outperforms existing mesh-based GNN approaches
for modeling anisotropic materials.

1 INTRODUCTION

From plant leaves to animal muscle and from woven textiles to fiber-reinforced composites—many
natural and engineered materials are strongly anisotropic, i.e., their stress response varies signifi-
cantly depending on the direction of deformation. Simulating such anisotropic materials properties
is crucial for many applications in science and engineering (1). Conventional simulation methods
typically rely on mesh-based finite element discretizations for numerical solutions of the underly-
ing partial differential equations. While these methods can capture intricate material behavior with
high accuracy, they come at a substantial computational cost. Striking a balance between accuracy
and efficiency, learning-based methods have emerged as a promising alternative to conventional
simulations. Arguably the closest analogy to mesh-based simulation is a mesh-based deep neural
representation. Indeed, existing works built on mesh-based graph neural networks (MGNN) have
shown promising results (2; 3). While existing MGNN methods have focused on isotropic mate-
rials so far, accounting for anisotropy might seem a straightforward extension. Unfortunately, the
message passing architectures of current MGNNs rely on spatial averaging of edge features, which
discards all directional information on deformation. As we show in our analysis, discarding direc-
tional information means that existing MGNNs are unable to model anisotropic materials.

In this work, we present a novel feature encoding scheme designed to preserve directional informa-
tion during message passing. We decompose edge features into components along three material-
space basis vectors and aggregate these components separately during message passing. In this
way, feature averaging takes into account the material-space orientation of the edges, leading to
significantly improved preservation of anisotropic information. This improvement requires mini-
mal changes to standard mesh-based graph neural networks, thus allowing for easy integration into
existing frameworks. We validate our approach on a set of qualitative and quantitative examples
and demonstrate that our approach outperforms the state-of-the-art method for capturing material
anisotropy.

1

Under review as a conference paper at ICLR 2024

Orthogonal FibersParallel Fibers

de
fo
rm

Figure 1: Anisotropic Elasticity. We apply our approach to model the nonlinear deformation of an
elastic cantilever beam under gravitational load. The beam is made from an isotropic base material
augmented with reinforcing fibers (see insets). On the left, fibers are oriented in parallel to the
direction of gravity, which leads to only minor stiffening compared to the base material. On the
right, fibers run along the axis of the beam, leading to significantly reduced deflection for this load
case. Rest and deformed states are shown in orange and blue, respectively.

2 RELATED WORK

Simulation of Deformable Objects Simulating deformable objects plays a pivotal role across
various disciplines, including mechanical engineering, computer graphics, and robotics. Among
existing approaches, which include particle-based (4; 5; 6), grid-based (7; 8; 9; 10) and hybrid
methods (11; 12), mesh-based representations are arguably the most prevalent choice (13; 14; 15;
16). The computer graphics community has made great strides in efficient, robust, and accurate
mesh-based simulation of deformable bodies (17; 18; 19; 20; 21). Although dimension reduction
techniques exist (22; 23; 24; 25), the associated computational costs for native scale simulation are
often too significant for real-time applications or rapid design explorations. Our approach falls into
the same category of using mesh representation for the input geometry, however, we use mesh-based
graph neural networks to reduce online computation time significantly.

Simulation of Anisotropic Materials Realistic simulating of many phenomena in nature must
take into account their inherent material anisotropy, e.g. muscle deformation (26), plant biome-
chanics (27), material fracture (28), etc. Within the scope of this work, we focus on simulating
deformable objects within the hyperelastic regime. Within this realm of research, many forms
of anisotropic energies have been extensively studied, for instance, transverse isotropic elastic-
ity (29; 30; 31), orthotropic elasticity (32), and generalized anisotropic elasticity (33; 34). We
focus on transverse isotropic elastic material where a base isotropic material is augmented with
freely oriented fibers to achieve directional-dependent properties. This allows for easy integration
into existing isotropic formulations. While anisotropic material properties have been extensively
studied for mesh-based simulation, representing directional-dependent behavior with neural repre-
sentation remains unexplored. We identify a key limitation factor for existing mesh-based neural
representations and propose a simple yet effective strategy for better capturing material anisotropy.

Neural Representation Deep neural representations hold substantial promise as alternatives for
modeling complex physical systems while significantly reducing computational requirements when
compared to conventional approaches (35; 36; 37). One stream of research relies on ground-truth
simulation data for learning surrogate models, e.g. for fluid dynamics (38), character animation (39),
and modeling nonlinear material properties (40; 41). With the advancement of physics-informed
learning (42), another line of research leverages physical laws directly as loss functions to enable
self-supervised learning (43; 44; 45; 46). In this manner, neural networks learn not only from exist-
ing data but also from the inherent physics governing the system. We also opt for an unsupervised
training strategy where the variational formulation of the physics laws directly as loss functions.

2

Under review as a conference paper at ICLR 2024

However, to the best of our knowledge, our work is the first to explore material anisotropy for neural
representations of deformable solids with graph neural networks.

Mesh-based Graph Neural Networks Recent advancements in graph-based neural network ar-
chitectures (47; 48; 49) offer a new paradigm for soft-body simulations (2; 50; 51). Specifically,
mesh graph networks have emerged as a promising alternative to conventional finite element meth-
ods for simulating, for instance, fluid (52; 53), solid (54; 55; 2), cloth (3), etc. Unlike grid-based
methods (56; 57; 35), their unstructured nature allows for easy generation of simulation domains
and resolutions. Most related to our approach is MeshGraphNet (2), where an encoder-processor-
decoder network architecture is leveraged to predict accelerations per time step. While their ap-
proach is able to capture a range of phenomena governed by physics PDEs, challenges remain for
material anisotropy. We propose a novel and easy-to-implement edge feature decomposition opera-
tion to encode directional information during training. As we demonstrate in the result section, this
modification significantly improves the performance of learning anisotropic material properties.

3 METHOD

In this section, we describe the machinery required for training GNNs with directional encodings.
Our approach builds upon an encoder-processor-decoder network architecture with a novel edge
feature decomposition scheme aimed at capturing material anisotropy (Sec. 3.1). We adopt a self-
supervised training paradigm and use the variational formulation for implicit Euler as the loss func-
tion 3.2. We provide sampling, training, and implementation details in Sec 3.3.

3.1 MODEL ARCHITECTURE

Figure 2: Pipeline. Our method takes the current states of a deformable object and its boundary
conditions as input and predicts end-of-time-step accelerations using a graph neural network. These
accelerations are then used to obtain the deformed state for the next time step (first row). We leverage
an encoder-processor-decoder architecture and propose a novel edge decomposition operation to
encode directional information during message passing (second row).

We define the simulation mesh as a graph G = (V,E) with nodes V and edges E. Each node is as-
sociated with a coordinate vector x and additional physical parameters such as mass, external forces,
and Dirichlet boundary conditions. We refer to these parameters as vertex features v. Likewise, we
use e to denote edge features, which include relative vertex positions and fiber orientations.

Our neural representation builds on the encode-process-decode architecture (48), where two distinct
multilayer perceptrons (MLPs) are used as encoders to extract vertex and edge features. The encoded

3

Under review as a conference paper at ICLR 2024

features are then processed with a set of MLPs during a fixed number L of message passing steps. In
each step, all edge and vertex features are processed using the same MLPs, but each step has its own
vertex and edge MLP. Finally, a decoder MLP is used to transform vertex features to end-of-time-
step accelerations. The predicted accelerations are used to update vertex positions. See Figure 2 for
an overview.

Encoding and Decoding Our encoder and decoder MLPs largely follow MeshGraphNets (2). The
input vertex and edge features are transformed into latent feature vectors through encoder MLPs fv
and fe,

ṽ = fv(v), ẽ = fe(e), (1)
where ṽ and ẽ denote updated feature vectors. The vertex decoder fv→a maps vertex features to
end-of-time-step accelerations for a given vertex,

a = fv→a(v) , (2)

which are then used to compute end-of-step positions.

Direction-aware Message Passing Our key contribution lies in the message passing step where
we leverage directional encodings to better preserve information on anisotropic states of deforma-
tion. Specifically, we update per vertex and edge feature as

ẽ = e+ fv→e(e,v0,v1),

ṽ = v + fe→v(v,
∑

ej∈Ni

ωx,jej ,
∑

ej∈Ni

ωy,jej ,
∑

ej∈Ni

ωz,jej), (3)

where v0 and v1 are the vertex features for the two endpoints of a given edge, ej loops over the
features for all edges incident to vertex i, and fv→e and fe→v are the edge and vertex processor
MLPs respectively. We use + to denote residual connections (58).

It is important to note that MeshGraphNet (2) aggregates edge features directly to update vertex
features. This operation, however, does not distinguish deformations in different directions. To
understand this problem, consider a mesh edge that is oriented along the x-axis in material space.
Since the edge stores relative position between its endpoints, it cannot sense deformation along the
y- and z-directions, which leave relative positions along the x-axis unchanged. Nevertheless, the
feature aggregation scheme used in MeshGraphNets does not consider this dependence of sensing
capacity on edge orientation, which ultimately limits its ability to capture directional deformation
and model material anisotropy. By contrast, our novel encoding scheme projects mesh edges onto
an orthonormal material-space basis such as to measure their capacity to sense deformation along
different coordinate axes. The resulting coordinates are then used to decompose the original edge
feature into three weighted components that are averaged individually. Using this directional en-
coding, an edge that aligns well with a given direction of deformation is given more authority to
determine the averaged feature than an edge that is almost orthogonal to that direction. As a result,
our method is able to preserve directional deformation during message passing and can thus better
model anisotropic materials. We note that the edge weights ωx,j , ωy,j , and ωz,j are computed from
the rest state edge vectors and remain constant during training. Concretely, the weights for a given
edge Ej are computed as

ωx,j =
Ej

||Ej ||
· Ex, ωy,j =

Ej

||Ej ||
· Ey, ωz,j =

Ej

||Ej ||
· Ez, (4)

where Ex, Ey and Ez are unit-length basis vectors. We further note that this modification requires
minimal changes to standard mesh-based graph neural network architectures, allowing for easy in-
tegration of our approach into an existing framework. As we demonstrate in the result section,
our directional feature encoding scheme leads to significantly improved performance for learning
material anisotropy.

3.2 PHYSICS-BASED LOSS FUNCTION

Spatial Discretization We resort to tetrahedral finite elements with linear basis functions to model
the nonlinear dynamics of deformable solids. Our network operates on the edges and nodes of the
simulation mesh and performs message passing on the corresponding graph. Adhering to standard
finite element practice, our loss functions by summation of per-element potentials.

4

Under review as a conference paper at ICLR 2024

Loss Function To allow for efficient self-supervised learning, we formulate our loss function to
directly penalize the violation of the dynamic equilibrium conditions. To enable robust time stepping
for larger step sizes, we use backward Euler integration, i.e., a first-order accurate implicit time
stepping scheme (59). Instead of directly solving the resulting system of nonlinear equations, we
follow the variational formulation of Martin et al. (17) and convert the root finding problem into an
energy minimization problem. We use the corresponding incremental potential as our physics-based
loss function during training. Defining end-of-time-step positions and accelerations as xt+1 and
at+1, our total loss function reads

Ltotal(a
t+1,xt+1) = Lelastic(x

t+1) + Lexternal(x
t+1) + Lkinetic(a

t+1) . (5)

Our Lelastic term captures the elastic energies for both isotropic and anisotropic deformation. We
focus on transversely isotropic materials, where anisotropic fibers are embedded in an isotropic
base material. Such materials are widely used for physics-based modeling of, e.g., fiber-reinforced
composites, and biological tissue. We adopt the widely used Saint Venant–Kirchhoff model (60)
for the isotropic base material and augment it with an anisotropic term that models the effect of
embedded fibers with a given orientation. The elastic energy for a given tetrahedron element is
defined as

Lelastic(x
t+1) = v̄

(
λ

2
(tr(E))2 + µtr(E2) + κ(dTFTFd− 1)2

)
, (6)

where E = 1
2 (F

TF − I) is the nonlinear Green strain, F is the deformation gradient, and d is the
fiber direction. Furthermore, v̄ is the undeformed volume of an element, and λ and µ are Lamé
parameters for defining the material properties. Finally, κ is the Young’s modulus for fiber stiffness.

The kinetic energy term is defined as

Lkinetic(a
t+1) =

1

2
(∆vt+1)T(∆vt+1 ⊙mv), (7)

where ∆t is the simulation time step size, ∆vt+1 = ∆tat+1 are velocity increments and ⊙ de-
notes element-wise vector-vector multiplication between the velocity increments and masses for all
vertices within an element.

We further define the external energy corresponding to the work done by external loads as

Lexternal(x
t+1) = fext · xt+1, (8)

where fext is a vector containing all external forces.

3.3 TRAINING AND IMPLEMENTATION DETAILS

Sample Generation We generate our training samples using combinations of simple geometries,
e.g. rectangular and cylindrical beams (36 in total) with different mesh topologies and resolutions.
The training mesh resolution is between 60 to 120 elements. We uniformly sample the force di-
rection and magnitude (0 − 10kN/m3) applied to each mesh element. For non-uniform loading
scenarios, we add additional forces to each element with a probability of 5%. Magnitude and direc-
tion are randomly sampled for each element (0 − 15kN/m3). Finally, we include traction samples
with a probability of 10% with fixed direction in +z axis and amplitudes between 0− 100kN/m3.
For material anisotropy, we uniformly sample fiber orientations and magnitudes between 0 − 10E
where E is the Young’s Modulus of the base material which is fixed to be 100kPa. To increase
stability for long-time inference rollouts, we find it crucial to sample not only undeformed states
with random forces but also deformed states with non-zero kinetic and elastic energies. We apply
the above parameter sampling procedure to these pre-deformed samples as well.

Training Our framework is implemented in C++ using LibTorch. We use the Adam (61) optimizer
with a learning rate of 5 × 10−5 and a weight decay rate of 10−4 per one hundred iterations. Each
training sample is unique and randomly sampled. The batch size is set to 1 and we train a total of
672, 000 epochs. All of our MLPs have two hidden layers with 128 neurons per layer and SiLU
activation functions (62). Layer normalization is applied to all layers except the final decoder MLP.
All input features except the one-hot encoded anchored vertices are normalized. The encoder MLPs
produce output features of size 128, while the vertex decoder yields features of size 3. Following
MeshGraphNets, we perform 15 message-passing steps.

5

Under review as a conference paper at ICLR 2024

Vertex input features consist of a one-hot-ended vector containing Dirichlet boundary conditions,
vertex velocities, vertex mass and vertex external forces. Edge input features consist of two vectors
containing the edge direction of both undeformed configuration and current deformation. Both
vectors are normalized and their norm is added as a separate feature. Additionally, all edges contain
another vector with fiber direction and magnitude.

During training, we introduce perturbations to both nodal velocity and positions using zero-mean
noise. The variance for velocities is stochastically sampled from the range of 0−5×10−2m/s, while
the variance for position noise falls within the interval of 0 − 10−3m. This perturbation process,
akin to MeshGraphNets, plays a pivotal role in ensuring the stability of the neural network for long
rollouts. The network is trained on a workstation with an AMD Ryzen 7 5800X CPU and an NVIDIA
GeForce RTX 3080Ti GPU. Training takes around 5 days, whereas inference takes 9ms for a mesh
of 100 elements.

The Lamé parameters are computed from Young’s modulus (100kPa) and Poisson’s ratio (0.48) of a
soft rubber-like material. When performing time stepping, we use a step size ∆t of 0.02s. We will
release our code upon acceptance.

4 RESULTS

In this section, we compare our results to the state-of-the-art mesh graph neural network, Mesh-
GraphNets (2) on a set of qualitative and quantitative experiments. Since MeshGraphNets are trained
in a supervised fashion, for fair comparisons, we implemented an unsupervised version using their
network architectures with only modifications to the loss function to accommodate self-supervised
learning. We demonstrate that our approach outperforms this baseline in terms of convergence
speed, the ability to capture material anisotropy, and volume preservation for nearly incompressible
materials. We further use a standard finite element solver to generate ground truth data for reference.

Convergence We begin by comparing our approach with MeshGraphNets for different numbers of
test rollouts (Figure 3). We generate 15 random configurations, i.e. different mesh topologies, force
magnitudes, and directions, as test sets for all approaches and compute the difference in energy
with respect to the ground truth value obtained from our reference simulation. After each training
iteration, we evaluate all networks on the same test sets for different numbers of rollout steps in order
to gauge their stability for sequences of different lengths. In particular, longer rollouts are useful to
test whether predictions are converging toward static equilibrium. As can be seen from Figure 3, our
approach consistently improves on MeshGraphNets, showing substantially faster convergence in all
cases. It can also be noted that our method converges to equilibrium states with lower total energy.

Figure 3: Network convergence. We compare the convergence behavior for our approach with
MeshGraphNets on a test set for different rollout lengths. As can be seen in these figures, our
approach converges to lower energy states much faster while remaining stable for longer horizons.

We attribute the significant discrepancy of MeshGraphNets to its limited ability to capture the
anisotropic fibers. To verify this hypothesis, we visualize the energy difference to ground truth
data for the fiber term and the sum of all terms separately. In this example (Figure 4), a beam with
fibers along its long axis is loaded along the fiber direction. As can be seen from the plot shown to
the left, the error in the fiber term for MeshGraphNets dominates the overall energy profile, leading
to 10 times larger error compared to our method.

6

Under review as a conference paper at ICLR 2024

𝐹

Testing Configuration

Figure 4: Fiber and total energy error. A beam under uni-axial tension with fibers aligned with
the direction of loading (right). We report the fiber and total energy error compared to simulation
references (left). Due to the limited capability of capturing material anisotropy, the error from the
fiber term dominates the overall error leading to significant deviation from ground truth data. Our
approach, on the other hand, demonstrates 10 times higher accuracy.

Anisotropic Elasticity To quantify the difference in terms of capturing anisotropic elasticity, we
compare our approach with MeshGraphNet on a set of uniaxial loading test cases with fiber rein-
forcements in different magnitudes and directions (see Figure 5). When fiber reinforcements are
collinear with the loading direction, they introduce strong resistant forces upon tensioning. Conse-
quently, larger stress magnitudes for a given strain rate. As can be seen in the slopes of the curves
in Figure 5 (a,b), our model successfully captures this highly anisotropic behavior for different fiber
stiffness whereas MeshGraphNets leads to poor matching behavior. Note that for strong fibers, the
predictions from MeshGraphNets deviate already for small strain. When fibers are aligned orthog-
onal to the loading directions, they have minimal effects on the directional stress magnitude. This
behavior is again captured by our model (Figure 5 (c)).

(a) Strong fibers (κ = 5E) in par-
allel direction

(b) Weak fibers (κ = E/5) in par-
allel direction

(c) Fibers (κ = E/5) in orthogonal
direction

Figure 5: Strain-stress curves. We compare our approach with MeshGraphNets on a set of uniaxial
loading cases with different fiber orientations and magnitudes. We use E to denote Young’s modulus
of the base material. The predictions from our approach track the ground truth solution consistently
better than MeshGraphNets and do not suffer from instabilities for larger strain rates.

Volume Preservation In addition to capturing explicit material anisotropy, direction encodings
also facilitate learning volumetric effects pertaining to the Poisson ratio, i.e. when a tension load is
applied in one direction, causing the orthogonal directions to contract in order to preserve the ma-
terial volume. In this experiment, we compare our approach and MeshGraphNets to the reference
simulation on volume preservation of a beam under a constant tensile force. We report the maximum
relative percentage error over all elements in Figure 6. As can be seen from this plot, MeshGraph-
Nets leads to volume change up to 60% whereas our approach exhibits almost zero volume changes.

Tip Displacements Complementing previous examples where tension modes are examined, we
now shift to bending modes for more analysis. In this example, we quantitatively validate our
approach by comparing the tip displacement error for a cantilever beam to its reference simulation.

7

Under review as a conference paper at ICLR 2024

Figure 6: Volume preservation error. We plot the maximum relative percentage error for all elements
in a deformed beam under tension. While our directional feature encoding leads to almost zero
volume change compared to the simulation baseline, MeshGraphNets permits volume changes up to
60%.

We consider two extreme testing scenarios for fiber orientations, one that is aligned with gravity
in its rest shape (more deformation) and one that is orthogonal to it (less deformation). They are
referred to as parallel and orthogonal in Table 1. We test all approaches with two beam topologies,
namely rectangular (row 1-6) and cylindrical beams (row 7-12). For this set of experiments, we use
the same stiffness for both the base material and the fibers. As reported in Table 1, our approach
consistently outperforms the baseline method in terms of accuracy across all tested scenarios and
beam topologies.

Fiber Orientation Beam Topology Method Tip Displacement Error(m)
parallel rectangular MeshGraphNets 0.0399
parallel rectangular ours 0.0119

orthogonal rectangular MeshGraphNets 0.0902
orthogonal rectangular ours 0.0510

parallel cylindrical MeshGraphNets 0.1111
parallel cylindrical ours 0.0776

orthogonal cylindrical MeshGraphNets 0.1400
orthogonal cylindrical ours 0.0977

Table 1: Tip displacement comparisons. We consider two types of beam structures under gravita-
tional force with one end of the beams fixed and leaving the other end free. Reinforcement fibers
are set to be either parallel or orthogonal to gravity. As can be seen from the tip displacement errors
reported, our approach demonstrates significantly higher accuracy compared to MeshGraphNets.

Imbalanced Forces In this experiment, we consider the physically imbalanced force in the con-
figuration generated by MeshGraphNets and our approach. The gradient of our loss function w.r.t.
nodal positions amounts to the force equilibrium condition governed by Newton’s second law of
motion, which should vanish at stable configurations. We therefore refer to the nonzero gradients as
imbalanced forces. In Table 2, we report the imbalanced force magnitude from network predictions
for a cantilever beam under static force equilibrium configurations. Same as in the previous exam-
ple, we use the same stiffness for both the base material and fiber reinforcements. We apply a force
density with its direction with gravity with two magnitudes (1000N/m3 and 5000N/m3). The fiber
directions are varied from 45 to 90 degrees with 90 being orthogonal to the force direction. As can
be seen from the statistics for average and maximum nodal imbalance forces, our approach reduces
the mean error by 80% on average and the maximum error up to 90%.

Generalization Finally, we demonstrate that our network generalizes to unseen geometries with
different fiber layouts (Figure 7). In the first example, we add fibers to a T-shaped deformable object
to resist bending load whereas in the second one, the fibers resist compression force for a Y-shape
geometry. The applied forces and fiber orientations are shown in the insets.

8

Under review as a conference paper at ICLR 2024

Fiber Direction Force Density (N/m3) Method Imbalanced Force (N) Max/Mean
45◦ 5000 MeshGraphNets 77.84 / 16.71
45◦ 5000 ours 14.01 / 3.747
45◦ 1000 MeshGraphNets 46.40 / 12.20
45◦ 1000 ours 4.321 / 1.446
60◦ 5000 MeshGraphNets 76.36 / 16.83
60◦ 5000 ours 18.92 / 4.205
60◦ 1000 MeshGraphNets 42.98 / 12.07
60◦ 1000 ours 4.760 / 1.608
90◦ 5000 MeshGraphNets 67.89 / 16.25
90◦ 5000 ours 18.78 / 4.447
90◦ 1000 MeshGraphNets 44.69 / 11.86
90◦ 1000 ours 4.105 / 1.841

Table 2: Physically imbalanced force. We compare the physically imbalanced force in the predic-
tions from MeshGraphNets and our approach for different fiber orientations and force densities. Our
approach significantly reduces both the average and the peak error.

Without Fiber With Fiber Without Fiber With Fiber

!

!

Figure 7: Network generalization. We apply our approach to geometries significantly different from
our training set. As can be seen from these two examples, the embedded reinforcement fibers play
a crucial role in determining the deformed configurations. This material anisotropy is faithfully
captured by our approach. The rest and deformed states are shown in orange and blue respectively.

5 CONCLUSION

We have presented a novel mesh-based graph neural network architecture for learning the elastody-
namics of anisotropic elastic materials. Whereas state-of-the-art approaches are limited to isotropic
materials, we propose a novel and easy-to-implement edge feature decomposition scheme that pre-
serves directional information during message passing and thus allows for the modeling of material
anisotropies. We demonstrate on a set of qualitative and quantitative examples that our approach
outperforms the state-of-the-art method by significant margins. Although we focus on nonlinear
elasticity in this work, we believe that our feature decomposition scheme can benefit other applica-
tions of graph neural networks that involve direction-dependent behavior.

5.1 LIMITATION AND FUTURE WORK

While our approach generalizes well to unseen meshes with similar resolution, we would like to
leverage hierarchical representations (51; 50) to apply our approach across a wider range of mesh
resolutions. Another interesting avenue for future research is to leverage our neural representation
as an efficient and smooth surrogate model for inverse design tasks, e.g. shape optimization, where
analytical derivatives can be easily obtained through auto differentiation of the network. Finally,
our current formulation enables efficient self-supervised learning of anisotropic material properties
through physics-based training losses. In the future, we would like to include measurements from
real data to obtain neural representations of fiber-reinforced mechanical metamaterials.

9

Under review as a conference paper at ICLR 2024

REFERENCES

[1] William Fortune Smith. Principles of materials science and engineering. 1986.

[2] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks, 2021.

[3] Artur Grigorev, Bernhard Thomaszewski, Michael J. Black, and Otmar Hilliges. Hood: Hier-
archical graphs for generalized modelling of clothing dynamics, 2023.

[4] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and ap-
plication to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–
389, 1977.

[5] Alexey Shutov and Vladislav Klyuchantsev. On the application of sph to solid mechanics. In
Journal of Physics: Conference Series, volume 1268, page 012077. IOP Publishing, 2019.

[6] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new paradigm for ani-
mating highly deformable bodies. In Computer Animation and Simulation’96: Proceedings of
the Eurographics Workshop in Poitiers, France, August 31–September 1, 1996, pages 61–76.
Springer, 1996.

[7] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Transactions on Graphics
(TOG), 24(3):965–972, 2005.

[8] Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel. Flip: a low-dissipation, particle-
in-cell method for fluid flow. Computer Physics Communications, 48(1):25–38, 1988.

[9] Francis H Harlow. The particle-in-cell method for numerical solution of problems in fluid
dynamics. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 1962.

[10] Robert W Sumner, James F O’Brien, and Jessica K Hodgins. Animating sand, mud, and snow.
In Computer Graphics Forum, volume 18, pages 17–26. Wiley Online Library, 1999.

[11] Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. Application of a particle-in-cell
method to solid mechanics. Computer physics communications, 87(1-2):236–252, 1995.

[12] Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. The
affine particle-in-cell method. ACM Transactions on Graphics (TOG), 34(4):1–10, 2015.

[13] Wing Kam Liu, Shaofan Li, and Harold S Park. Eighty years of the finite element method:
Birth, evolution, and future. Archives of Computational Methods in Engineering, 29(6):4431–
4453, 2022.

[14] Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its basis and
fundamentals. Elsevier, 2005.

[15] Ted Belytschko, Wing Kam Liu, Brian Moran, and Khalil Elkhodary. Nonlinear finite elements
for continua and structures. John wiley & sons, 2014.

[16] Eftychios Sifakis and Jernej Barbic. Fem simulation of 3d deformable solids: a practitioner’s
guide to theory, discretization and model reduction. In Acm siggraph 2012 courses, pages
1–50. 2012.

[17] Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. Example-
based elastic materials. In ACM SIGGRAPH 2011 papers, pages 1–8. 2011.

[18] Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. Incremental potential contact:
intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph., 39(4):49,
2020.

[19] Theodore Kim and David Eberle. Dynamic deformables: implementation and production prac-
ticalities. In ACM SIGGRAPH 2020 Courses, pages 1–182. 2020.

10

Under review as a conference paper at ICLR 2024

[20] Breannan Smith, Fernando De Goes, and Theodore Kim. Stable neo-hookean flesh simulation.
ACM Transactions on Graphics (TOG), 37(2):1–15, 2018.

[21] Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. Invertible finite elements for robust simu-
lation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 131–140, 2004.

[22] Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. Interactive material design using model
reduction. ACM Transactions on Graphics (TOG), 34(2):1–14, 2015.

[23] Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. Expediting precomputa-
tion for reduced deformable simulation. ACM Trans. Graph, 34(6), 2015.

[24] Theodore Kim and Doug L James. Skipping steps in deformable simulation with online model
reduction. In ACM SIGGRAPH Asia 2009 papers, pages 1–9. 2009.

[25] Theodore Kim and John Delaney. Subspace fluid re-simulation. ACM Transactions on Graph-
ics (TOG), 32(4):1–9, 2013.

[26] Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee Lee.
Dexterous manipulation and control with volumetric muscles. ACM Transactions on Graphics
(TOG), 37(4):1–13, 2018.

[27] Bohan Wang, Yili Zhao, and Jernej Barbič. Botanical materials based on biomechanics. ACM
Transactions on Graphics (TOG), 36(4):1–13, 2017.

[28] Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang, Ziyin Qu, Jiecong Lu, Meggie Cheng,
and Chenfanfu Jiang. Anisompm: Animating anisotropic damage mechanics: Supplemental
document. ACM Trans. Graph, 39(4), 2020.

[29] Theodore Kim, Fernando De Goes, and Hayley Iben. Anisotropic elasticity for inversion-safety
and element rehabilitation. ACM Transactions on Graphics (TOG), 38(4):1–15, 2019.

[30] Daniel Garcia-Gonzalez, A Jérusalem, Sara Garzon-Hernandez, Ramón Zaera, and A Arias. A
continuum mechanics constitutive framework for transverse isotropic soft tissues. Journal of
the Mechanics and Physics of Solids, 112:209–224, 2018.

[31] Jeffrey A Weiss, Bradley N Maker, and Sanjay Govindjee. Finite element implementation of
incompressible, transversely isotropic hyperelasticity. Computer methods in applied mechanics
and engineering, 135(1-2):107–128, 1996.

[32] Yijing Li and Jernej Barbič. Stable anisotropic materials. IEEE transactions on visualization
and computer graphics, 21(10):1129–1137, 2015.

[33] Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. Numerical coarsen-
ing using discontinuous shape functions. ACM Transactions on Graphics (TOG), 37(4):1–12,
2018.

[34] Chenfanfu Jiang, Theodore Gast, and Joseph Teran. Anisotropic elastoplasticity for cloth, knit
and hair frictional contact. ACM Transactions on Graphics (TOG), 36(4):1–14, 2017.

[35] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.
Prediction of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, 64:525–545, 2019.

[36] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the Na-
tional Academy of Sciences, 118(21):e2101784118, 2021.

[37] Yue Li, Marc Habermann, Bernhard Thomaszewski, Stelian Coros, Thabo Beeler, and Chris-
tian Theobalt. Deep physics-aware inference of cloth deformation for monocular human per-
formance capture. In 2021 International Conference on 3D Vision (3DV), pages 373–384.
IEEE, 2021.

11

Under review as a conference paper at ICLR 2024

[38] Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. In
Computer Graphics Forum, volume 37, pages 171–182. Wiley Online Library, 2018.

[39] Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbic. A deep emulator for secondary
motion of 3d characters. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5932–5940, 2021.

[40] Mahdad Eghbalian, Mehdi Pouragha, and Richard Wan. A physics-informed deep neural
network for surrogate modeling in classical elasto-plasticity. Computers and Geotechnics,
159:105472, 2023.

[41] Yue Li, Stelian Coros, and Bernhard Thomaszewski. Neural metamaterial networks for non-
linear material design. arXiv preprint arXiv:2309.10600, 2023.

[42] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear par-
tial differential equations. Journal of Computational physics, 378:686–707, 2019.

[43] Jonas Zehnder, Yue Li, Stelian Coros, and Bernhard Thomaszewski. Ntopo: Mesh-free topol-
ogy optimization using implicit neural representations. Advances in Neural Information Pro-
cessing Systems, 34:10368–10381, 2021.

[44] Navami Kairanda, Marc Habermann, Christian Theobalt, and Vladislav Golyanik. Neural-
clothsim: Neural deformation fields meet the kirchhoff-love thin shell theory. arXiv preprint
arXiv:2308.12970, 2023.

[45] Hugo Bertiche, Meysam Madadi, and Sergio Escalera. Neural cloth simulation. ACM Trans-
actions on Graphics (TOG), 41(6):1–14, 2022.

[46] Honglin Chen, Rundi Wu, Eitan Grinspun, Changxi Zheng, and Peter Yichen Chen. Implicit
neural spatial representations for time-dependent pdes. In International Conference on Ma-
chine Learning, pages 5162–5177. PMLR, 2023.

[47] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE transactions on neural networks, 20(1):61–80,
2008.

[48] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
et al. Relational inductive biases, deep learning, and graph networks. arxiv 2018. arXiv preprint
arXiv:1806.01261, 2018.

[49] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[50] Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Mul-
tiscale meshgraphnets. arXiv preprint arXiv:2210.00612, 2022.

[51] Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based
physical simulation with bi-stride multi-scale graph neural network. 2023.

[52] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Pe-
ter Battaglia. Learning to simulate complex physics with graph networks. In International
conference on machine learning, pages 8459–8468. PMLR, 2020.

[53] Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable
pde solvers and graph neural networks for fluid flow prediction. In international conference
on machine learning, pages 2402–2411. PMLR, 2020.

[54] Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction
graph networks. arXiv preprint arXiv:2212.03574, 2022.

12

Under review as a conference paper at ICLR 2024

[55] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning
mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

[56] Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke flows with cnn-based feature
descriptors. ACM Transactions on Graphics (TOG), 36(4):1–14, 2017.

[57] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating
eulerian fluid simulation with convolutional networks. In International Conference on Machine
Learning, pages 3424–3433. PMLR, 2017.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[59] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Seminal Graphics Papers:
Pushing the Boundaries, Volume 2, pages 767–778. 2023.

[60] Javier Bonet and Richard D Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge university press, 1997.

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[62] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

13

	Introduction
	Related Work
	Method
	Model Architecture
	Physics-based Loss Function
	Training and Implementation Details

	Results
	Conclusion
	Limitation and Future Work

