

ARTICULATION IN MOTION: PRIOR-FREE PART MOBILITY ANALYSIS FOR ARTICULATED OBJECTS BY DYNAMIC-STATIC DISENTANGLEMENT

Hao Ai^{1†}, Wenjie Chang^{2†}, Jianbo Jiao^{1§}, Ales Leonardis^{1§}, Eyal Ofek^{1§§}

¹ School of Computer Science, University of Birmingham, Birmingham, UK

² University of Science and Technology of China

ABSTRACT

Articulated objects are ubiquitous in daily life. Our goal is to achieve a high-quality reconstruction, segmentation of independent moving parts, and analysis of articulation. Recent methods analyze two different articulation states and perform per-point part segmentation, optimizing per-part articulation using cross-state correspondences, given a priori knowledge of the number of parts. Such assumptions greatly limit their applications and performance. Their robustness is reduced when objects cannot be clearly visible in both states. To address these issues, in this paper, we present a novel framework, *Articulation in Motion* (AiM). We infer part-level decomposition, articulation kinematics, and reconstruct an interactive 3D digital replica from a user–object interaction video and a start-state scan. We propose a dual-Gaussian scene representation that is learned from an initial 3DGS scan of the object and a video that shows the movement of separate parts. It uses motion cues to segment the object into parts and assign articulation joints. Subsequently, a robust, sequential RANSAC is employed to achieve part mobility analysis *without any part-level structural priors*, which clusters moving primitives into rigid parts and estimates kinematics while automatically determining the number of parts. The proposed approach separates the object into parts, each represented as a 3D Gaussian set, enabling high-quality rendering. Our approach yields higher quality part segmentation than all previous methods, without prior knowledge. Extensive experimental analysis on both simple and complex objects validate the effectiveness and strong generalization ability of our approach. Project could be found at <https://haoai-1997.github.io/AiM/>.

1 INTRODUCTION

Everyday environments are abounded with articulated objects *, composed of multiple rigid parts linked by joints (Mueller, 2019) (*e.g.* doors with revolute joints and drawers with prismatic joints). Modeling of these objects is valuable for practical applications across scene understanding (Jia et al., 2024; Huang et al., 2024b), robotics (Kerr et al., 2024; Wu et al., 2025b), mixed reality (MR) (Taylor et al., 2020; Jiang et al., 2024), and embodied AI applications (Puig et al., 2023; Zhou et al., 2025). Advances in neural 3D representations (Mildenhall et al., 2021; Kerbl et al., 2023) enable high-fidelity object-level 3D reconstruction; however, reconstructing the part-level structure, articulation dynamics, and functionality of articulated objects remains a challenge.

Substantial efforts have been devoted to building 3D physics-consistent and interaction-ready assertions of articulated objects from RGB or RGB-D observations (Wei et al., 2022; Song et al., 2024; Wu et al., 2025a). Some approaches (Mu et al., 2021; Jiang et al., 2022b; Heppert et al., 2023) rely on the parameters of known joints in learning articulated shape representations. However, collecting such data at scale can be time-consuming and often has limited generalization to previously

[†]Equal contribution.

[‡]Corresponding author: e.ofek@bham.ac.uk

[§]Equal advice.

*In this work, we only discuss the human-made articulated objects with rigid parts.

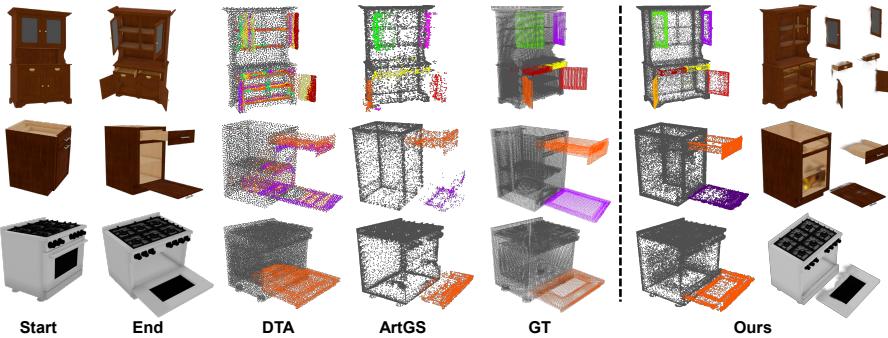


Figure 1: **Left:** Prior two-state methods often degrade on the sequences from closed-start to open-end. **Right:** Results of AiM, compared to ground truth (GT) geometry.

unseen objects. To mitigate these issues, some unsupervised, part-level reconstruction methods have been proposed (Liu et al., 2023a; Deng et al., 2024; Weng et al., 2024; Liu et al., 2025). Most of them assume multi-view observations of the objects in two distinct articulation states, denoted as *start* and *end* states. Liu et al. (2023a); Deng et al. (2024) recovered a deformation field between the NeRF-based start-state and end-state geometries. However, optimization is unstable and highly sensitive to initialization. Similarly, the 3D Gaussian splatting (3DGS) based method (Wu et al., 2025a) learns a per-Gaussian start-to-end deformation field, enabling static-dynamic segmentation of up to one moving part per step. As deformation is defined over all Gaussians, threshold-based separation is prone to noise. Lately, given a known number of articulated parts, DTA (Weng et al., 2024) simultaneously reconstructs a *start* and *end* point cloud, predicts per-part segmentation probabilities, and estimates articulation parameters via linear blend skinning (Kavan et al., 2007) to align the parts across the two states. Meanwhile, ArtGS (Liu et al., 2025) constructs *start* and *end* Gaussian sets and uses their geometric correspondence to initialize a canonical mid-state Gaussian set. It then learns part-center locations, predicts Gaussian-to-part assignments (Huang et al., 2024c), and optimizes per-part articulation following the blend skinning (Song et al., 2024). Although effective, these two-state methods degrade substantially when the number of articulated parts is unknown (as shown in Fig. 2), and their stability is limited by the reliance on geometric correspondence between the two state. Specifically, the commonly used two-state input setting has inherent limitations: Many articulated objects cannot be well represented by only a start and an end state. When the end state reveals regions absent in the start state, breaking cross-state correspondence (e.g. the interior of a refrigerator or oven, as shown in Fig. 2), these methods are prone to degraded segmentation.

We introduce a new framework, namely *Articulation in Motion* (AiM), that reconstructs the geometry, segmentation, and kinematics of articulated objects by analyzing a video of their articulated motion, which is simple, practical, and better aligned with the way humans learn articulation through continuous interaction (Fig. 3) rather than using isolated start and end states. Furthermore, continuous motion cues avoid cross-state correspondence failures when the end state reveals newly seen regions (see Fig. 1 and Fig. 2). We do not assume a known number of articulated parts, any prior knowledge of their joint types or motion parameters, or visibility along the entire motion. We recover the articulation parameters stably for interactive manipulation. It comprises three stages (see Fig. 3 and Fig. 5): *I*) 3DGS is used to reconstruct the initial geometry and appearance. *II*) We present a dual-Gaussian scene representation, which contains the pre-built start-state Gaussian and a deformable 3DGS (Yang et al., 2024). While the deformable GS tracks motion on the interaction video, a pre-built start-state Gaussian is gradually pruned as a static base, achieving dynamic-static disentanglement based on the motion cues. *III*) Depending on the trajectories of only-moving Gaussians, an optimization-free sequential Random Sample Consensus algorithm (RANSAC) clusters them into rigid parts and estimates per-part articulation parameters *without any part prior*.

- We present *Articulation in Motion* (AiM), which reconstructs part-level articulated objects, with extracted joints, based on a video that shows the objects’ degrees of freedom. Such input is unhindered by artificial limitations, such as the need to show all parts of the objects, at the full extent of their motions, clearly visible in exactly two discrete moments. It opens a way to use natural videos, such as interaction with objects, and accumulates the information along the video.
- We propose a *dual-Gaussian representation* to disentangle the statics and dynamics, and track the moving primitives. Additionally, we introduce a static-during-motion detection module to handle newly revealed but static regions during interaction.

- Our method achieves robust part segmentation and articulation estimation using Sequential RANSAC, without any structural prior.
- Extensive experiments demonstrate that our method can independently segment stably and accurately moving parts of the object, reconstruct the geometry and articulation parameters of each part, and its appearance, under challenging scenarios.

2 RELATED WORKS

Articulated object reconstruction from videos or images. This work focuses on articulated objects, composed of rigid parts and connected by joints. For such objects, research has focused primarily on improving piecewise rigidity, identifying part-level mobility, and enabling controllable 3D model generation. REACTO (Song et al., 2024) reconstructs the canonical object state, represented by NeRF, and learns a deformation field with enhanced part rigidity from a captured video. However, REACTO reconstructs articulated objects as a single unified surface, without part-level geometry, which limits physical realistic interaction. Jiang et al. (2022b); Liu et al. (2023a); Deng et al. (2024); Weng et al. (2024); Liu et al. (2025) proposed to reconstruct articulated objects at the part level and estimating joint parameters from multi-view RGB/RGB-D observations of two different articulation states, *i.e.* the state before interaction and the end state after interaction. PARIS (Liu et al., 2023a) learns a deformable field that applies two inverse motion parameters to a hypothetical intermediate-state NeRF. Similarly, REArtGS (Wu et al., 2025a) builds on 3DGGS to learn a static-to-dynamic deformation field for the intermediate state and identify the dynamic part. Both are limited to objects with one moving sub-part. To support multiple movable parts, Weng et al. (2024); Deng et al. (2024); Liu et al. (2025) directly predict part-wise segmentation probabilities for each point and learn the motion parameters per part to construct the cross-state correspondence fields, similar to linear blend skinning (Kavan et al., 2007).

Part mobility analysis. Analyzing the mobility of articulated objects is essential for reconstructing interactive 3D models, which typically involves the estimation of part segmentation and motion properties estimation, *e.g.* joint type, axis and state. For supervised learning, Jiang et al. (2022a); Sun et al. (2024); Wang et al. (2024); Qian et al. (2022); Jain et al. (2021) leverage advanced network architectures to predict part mobility directly from a single RGB image or a motion video, while Wang et al. (2019); Weng et al. (2021); Liu et al. (2023b; 2022) jointly predict part-level 3D segmentation and per-part motion properties from a single point cloud. While these methods can achieve promising results, their generalization is fundamentally limited by the availability and diversity of annotated datasets. Consequently, the latest work has explored unsupervised solutions. A representative two-state-based pipeline (Yi et al., 2018; Song & Yang, 2022; Zhong et al., 2023; Liu et al., 2023a; Weng et al., 2024; Wu et al., 2025a) predict the part segmentation probabilities for each point and the articulation parameters per part, supervised by the point correspondence field between 3D shapes of two given input states. However, these methods depend on the input part number, lacking sufficient generalization to real-world scenarios with unknown structural details, *e.g.* for objects with unknown structural details, optimization becomes unstable. It often fails to converge to the correct number of parts (see Fig. 2). Additionally, as shown in Fig. 2, capturing multi-view observations for two distinct states can easily introduce ambiguities when cross-state correspondences are undefined for regions that appear only in the end state, instead, inspired by (Shi et al., 2021; Yan et al., 2019), which segment point clouds using trajectories from registered sequences, our framework infers part-level structure and articulation information from the motion trajectories in a single video. In particular, we first propose a novel dual-Gaussian representation, which jointly optimizes a 3DGGS and a deformable 3DGGS (Yang et al., 2024), to achieve static-dynamic disentanglement based on motion cues in the video. Secondly, in addition to the trajectories of cleanly partitioned moving Gaussians, we use the

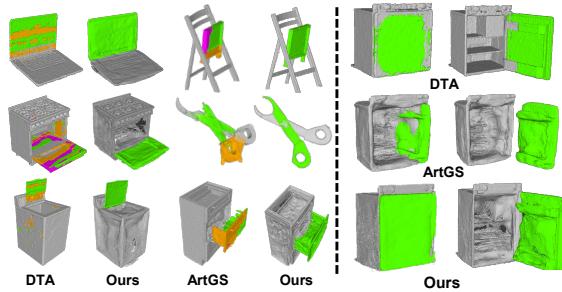


Figure 2: **Left:** DTA and ArtGS can not recover from an incorrect input number of parts (4) and generates over segmentation results; **Right:** Visual results of DTA and ArtGS with closed-start and open-end states. The static part is gray and moving part is green. In contrast, AiM requires no geometric priors and robustly recovers accurate part-level segmentation from the continuous closed-start→open-end interaction process.

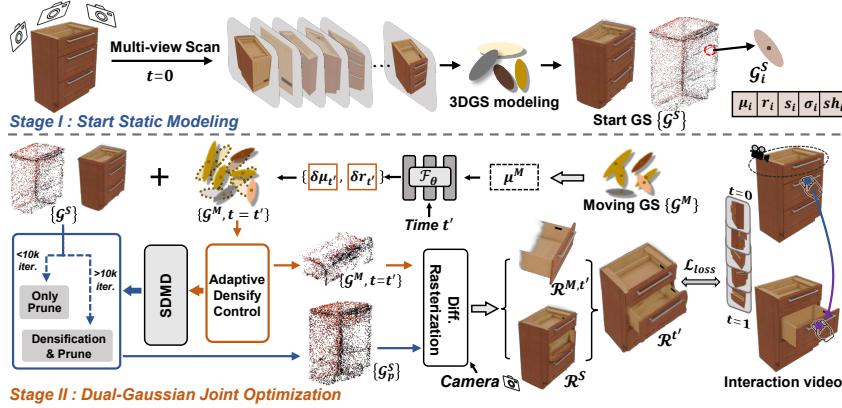


Figure 3: Overview of **first two stages**. I) 3DGS start-state $\{\mathcal{G}^S\}$ reconstruction from a multi-view RGB scan. II) A deformable 3DGS $\{\mathcal{G}^M, t\}$ tracks motion video, while joint optimization prunes moving components from $\{\mathcal{G}^S\}$. Pruned static Gaussian set $\{\mathcal{G}_p^S\}$ encodes the static base. An SDMD module handles newly revealed but static Gaussians. Together, these yield two separated Gaussian sets ($\{\mathcal{G}_p^S\}$ and $\{\mathcal{G}^M, t\}$) for the articulation analysis (Fig. 5).

robust and optimization-free sequential RANSAC (Yan & Pollefeys, 2005; Magri & Fusiello, 2016) to analyze their motion patterns, group them into rigid parts, and predict the articulation parameters. This enables stable motion-based part segmentation and articulation estimation, thereby avoiding the need for priors. RSRD (Kerr et al., 2024), POD (Wu et al., 2025c) and Video2Articulation Peng et al. (2025), use a similar video-based input protocol, but both focus on per-part pose tracking and require the segmentation masks from pre-trained models. Therefore, these approaches cannot autonomously perform part segmentation, where their performance is fundamentally bounded by the quality of the pre-trained segmentation models (See Fig. ??). In contrast, our approach achieves part segmentation and enables independent control of each part through understanding the physical dynamics in the video.

Dynamic Gaussian splatting. 3DGS (Kerbl et al., 2023) provides an explicit point-based representation, enabling real-time, differentiable splatting-based rendering. As a result, there is increasing interest in extending 3DGS to dynamic scene modeling (Duisterhof et al., 2023; Luiten et al., 2024; Yang et al., 2024; Wu et al., 2024). Luiten et al. (2024) tracks attribute changes of each Gaussian primitive while Yang et al. (2024) learns an MLP-based deformation field from time and primitive positions to represent scene flow. Additionally, several methods (Wu et al., 2024; Duisterhof et al., 2023) introduce more efficient representations to encode temporal and structural information, and employ motion clustering strategies for compactness. Tracking all Gaussians is expensive, and motion can reduce motion-based segmentation (see Fig. ??). Our dual-Gaussian detects static parts of the geometry, represented by 3DGS, while moving geometry is tracked using deformable 3DGS; clear dynamic-static disentanglement enables stable segmentation.

3 OUR METHOD

Articulation in Motion includes three stages. *Stage I*: We reconstruct a 3DGS model (preliminaries e.g. 3DGS and Deformable 3DGS please see Appendix ??.) of the object on an initial static state $\{\mathcal{G}^S\}$. *Stage II*: Given a video in which parts of the object are moved, we propose a novel dual-Gaussian representation (Sec. 3.1) that jointly optimizes $\{\mathcal{G}^S\}$ that models the static part of the object and a deformable GS $\{\mathcal{G}^M, t\}$ that captures the moving parts of the object. Moreover, a novel static-during-motion detection (SDMD) module handles the newly static parts that are revealed during the video and adds them to the static part of the object. After obtaining $\{\mathcal{G}^M, t\}$ with the time-dependent deformation, we infer the trajectories of each moving primitive and introduce the sequential RANSAC to group the moving primitives in *Stage III*, achieve motion-based part segmentation and articulation estimation (Sec. 3.2). The entire training is supervised solely by RGB observations: the start-state scan and the monocular video frames. We now describe the details.

3.1 DUAL-GAUSSIAN FOR DYNAMIC-STATIC DISENTANGLEMENT

To achieve motion-based part segmentation and articulation analysis, it is essential to accurately describe the trajectories of Gaussian primitives based on the given motion video. Although D-3DGS (Yang et al., 2024) can learn time-dependent deformation fields from motion cues in the

video, it assigns a displacement to all Gaussians, including static ones. This introduces noise that may harm segmentation and articulation estimation, especially with multiple moving parts, where all-Gaussian trajectories confuse the part-level structure (Fig. ??). To address this issue, we propose a dual-Gaussian representation that comprises two sets of Gaussians to separately model the static base body and the moving components in the given video. The methodology is visually summarized in Fig. 3. Firstly, we train a vanilla 3DGS based on multi-view of the object in a start state, namely $\{\mathcal{G}^S\}$, following Eq. ???. Subsequently, given the motion video, we follow D-3DGS to initialize a moving Gaussian set $\{\mathcal{G}^M, t\}$ and train it with Eq. ??, to make these Gaussians capture the moving parts in the video and predict the spatiotemporal deformation field. We jointly render and optimize both sets, $\{\mathcal{G}^S\} \cup \{\mathcal{G}^M, t\}$, directing $\{\mathcal{G}_t^M\}$ to model motion cues and removing these moving elements from $\{\mathcal{G}^S\}$ to obtain the static base $\{\mathcal{G}_p^S\}$, achieving clean dynamic–static disentanglement for subsequent part mobility analysis. Newly emerging regions, initially captured by the moving Gaussian set, are identified by a static-during-motion detection (SDMD) module, which locates locally rigid components, estimates their local rigid motions, and reassigns them to the static set according to the predicted transformations.

Dual-Gaussian joint optimization. Using the multi-view scan of the start state, we model the object’s geometry and appearance via the original 3DGS pipeline. Following the standard training settings, we obtain a set of initial Gaussians $\mathcal{G}^S(\mu_i, s_i, r_i, \sigma_i, h_i)_{i=1}^{N_s}$, where N_s denotes the total number of Gaussians, including both static and dynamic components. Thereafter, we initialize a sparse point cloud and prepare to learn a time-indexed deformable Gaussian set, denoted as $\{\mathcal{G}^M(\mu_j, s_j, r_j), t\}_{j=1}^{N_m}$. Then, we employ an MLP-based deformation network F_θ alongside the moving Gaussian set to capture the motion trajectory. Specifically, $\{\mathcal{G}^M(\mu_j, s_j, r_j)\}_{j=1}^{N_m}$ represents the geometric priors in the canonical space, while the changes $(\delta\mu, \delta r)$ in the position and rotations are learned by the deformation network as:

$$(\delta\mu_j, \delta r_j) = \mathcal{F}_\theta(\gamma(sg(\mu_j)), \gamma(t)), \quad (1)$$

where t is the input time index, sg represents a stop-gradient operation, and γ indicates the position encoding (Vaswani et al., 2017). We employ the same network architecture with D-3DGS Yang et al. (2024). To constrain the moving Gaussian set to encode only continuously moving content in the video, while the start-state Gaussian set $\{\mathcal{G}^S\}$ remains static-focused, we jointly optimize these two Gaussian sets. As shown in Fig. 3, during the initial 10k iterations of the optimization, we freeze all attributes of $\{\mathcal{G}^S\}$ except opacity σ , while $\{\mathcal{G}^M, t\}$ and the deformation network \mathcal{F}_θ are trained with the normal adaptive density control. In this process, we progressively prune the moving elements of $\{\mathcal{G}^S\}$ as their opacity decreases over time to obtain the static Gaussian set, namely $\{\mathcal{G}_p^S\}$, while $\{\mathcal{G}^M, t\}$ fits the moving components in the video (See Fig. ??). In the following iterations, we unfreeze the static Gaussian set, and jointly perform densification and pruning on both sets. Through the differentiable rendering on the combination of $\{\mathcal{G}_p^S\}$ and $\{\mathcal{G}^M, t = t'\}$, we supervise the total training process with the video frame at the corresponding timestep $t = t'$. Since previously unseen areas in the start state, e.g. the interior structures of refrigerators, washing machines, and cabinets, will be captured by the moving Gaussian set, we interpolate an SDMD detection module that audits the moving Gaussian set and prevents static leakage.

Static-during-Motion Detection. During the first 10k iterations, we freeze all position-related attributes of $\{\mathcal{G}^S\}$, allowing $\{\mathcal{G}^M, t\}$ to thoroughly learn the moving parts while also adapting to newly revealed static content (Fig. 4). Although such content becomes stationary once revealed, it is often already occupied by moving Gaussians, which hampers the static set from learning this geometry. To address this, we introduce a static-during-motion detection (SDMD) scheme. During joint densification and pruning, we perform trajectory inference for the moving Gaussians $\{\mathcal{G}^M, t\}$ every 2,000 iterations at $t \in \{0, 0.5, 1\}$. We then apply sequential RANSAC with the Kabsch algorithm (Magri & Fusiello, 2016) and a fixed inlier threshold of 0.05 to the resulting trajectory sequence to extract locally rigid motion patterns (details in Sec. 3.2). Groups whose motion magnitude falls below the preset threshold (defined in Sec. 3.2) are identified as static, and their Gaussian primitives are reassigned from $\{\mathcal{G}^M, t\}$ to $\{\mathcal{G}_p^S\}$. Compared with a

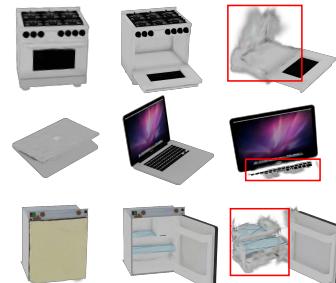


Figure 4: Renderings of start state (left), end state (middle). Without SDMD detection, some newly revealed static parts are wrongly associated with the moving Gaussian set (right).

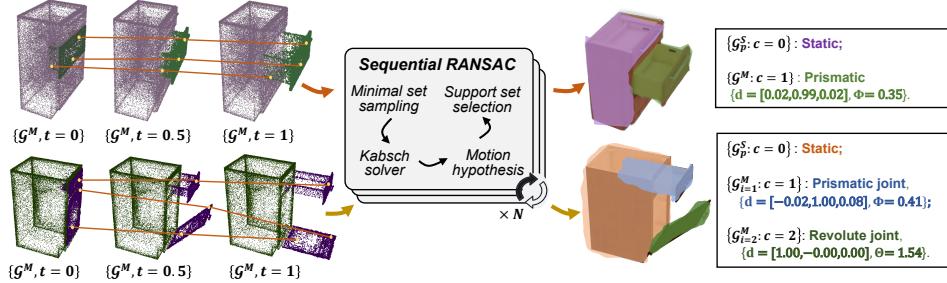


Figure 5: **Stage III: Motion-based part segmentation and articulation analysis.** As the clean $\{\mathcal{G}^M, t\}$ provides time-varying trajectories, Sequential RANSAC groups trajectories into rigid parts (multi-part supported) without priors or optimization, and directly outputs per-part articulation parameters. The green (top) and purple (bottom) points are our predicted moving Gaussians.

simple motion-distance filter, our SDMD avoids misassignment near the joint axis (where motion trajectories are near zero).

3.2 MOTION-BASED PART MOBILITY ANALYSIS

Existing methods typically assume a known number of object parts to infer part mobility. In practice, they input the ground-truth part count to establish cross-state correspondences, which then serve as priors for clustering-based part segmentation. In contrast, our core idea is to understand the part mobility based on the motion cues in the interaction videos. Once the dual-Gaussian representation decouples the static base and dynamic components, we recover accurate, time-parameterized trajectories for the moving Gaussian primitives *over arbitrary time horizons with selectively sampled timesteps*. This enables motion-based part segmentation by clustering moving Gaussians with the same motion patterns into rigid parts. Therefore, as shown in Fig. 5, based on the clean inferred motion trajectories, we introduce a simple, robust, purely analysis-based sequential RANSAC (Magri & Fusielo, 2016) to achieve the part segmentation and estimate articulation parameters. Built on sequential RANSAC with Kabsch solver (Magri & Fusielo, 2016), AiM automatically recovers the part number and its kinematic parameters, *i.e.*, joint type, axis direction, and motion magnitude.

Part segmentation. From the time-dependent moving Gaussian set $\{\mathcal{G}^M, t\}$ with learned deformation field \mathcal{F}_θ , we can infer the centers positions of moving Guassian at timestep t as $\mathcal{P}_t = \{\mu_{i,t}^M\}_{i=1}^{N_t}$. Furthermore, we can easily obtain the one-to-one corresponding trajectory between timestep t and t' , recorded as $\{\mathcal{P}_{t \rightarrow t'}\}$. To extract rigid parts, we employ a sequential RANSAC with a Kabsch solver (Kabsch, 1976). Unlike conventional start-end matching methods ($t = 0$ *v.s.* $t = 1$) or pre-trained segmentation driven approaches, that require structural priors from manual input or pre-trained models, our method aggregates evidence across trajectories spanning multiple time windows to capture diverse motions and improve robustness. For one trajectory of time window $\{\mathcal{P}_{a \rightarrow b}\}$, the optimal rigid transform is estimated by Kabsch solver, as

$$(\mathbf{R}_{a \rightarrow b}^*, \mathbf{t}_{a \rightarrow b}^*) = \arg \min_{\mathbf{R}, \mathbf{t}} \sum_{i \in \mathcal{S}_{\min}} \left\| \mu_{i,b}^M - (\mathbf{R} \mu_{i,a}^M + \mathbf{t}) \right\|^2, \quad (2)$$

where \mathcal{S}_{\min} is a randomly sampled minimal set. The residual error of each moving Gaussian $\{\mathcal{G}_i^M\}$, is defined as:

$$\text{err}_i = \left\| \mu_{i,b}^M - (\mathbf{R}_{a \rightarrow b}^* \mu_{i,a}^M + \mathbf{t}_{a \rightarrow b}^*) \right\|. \quad (3)$$

A Gaussian \mathcal{G}_i^M is accepted as an inlier if $\text{err}_i < \epsilon_{in}$. After N_{sampling} iterations, the largest consensus set is selected as the support set. The motion parameters (R, t) are subsequently re-estimated from all inliers using the Kabsch solver to obtain one motion hypothesis. The identified inliers are removed, and the process is repeated on the remaining Gaussians. The procedure terminates when no valid support set is found, when the maximum iteration budget $N_{\text{max,iter}}$ is reached, or when the largest inlier set is small. This sequential RANSAC yields a collection of support sets, each corresponding to one rigid part. In this work, to balance accuracy and efficiency, we simultaneously employ the trajectories of two time windows, $\mathcal{P}_{0 \rightarrow 0.5}$ and $\mathcal{P}_{0 \rightarrow 1}$, and compute the mean residual error across them to determine inliers, as:

$$\begin{aligned} \text{err}_i = & \frac{1}{2} \left\| \mu_{i,0.5}^M - (\mathbf{R}_{0 \rightarrow 0.5}^* \mu_{i,0}^M + \mathbf{t}_{0 \rightarrow 0.5}^*) \right\| \\ & + \frac{1}{2} \left\| \mu_{i,1}^M - (\mathbf{R}_{0 \rightarrow 1}^* \mu_{i,0}^M + \mathbf{t}_{0 \rightarrow 1}^*) \right\|. \end{aligned} \quad (4)$$

Table 1: **Part segmentation performance on articulated objects.** (a) Two-part; (b) Three-part; (c) Complex objects. For two-part objects, 3D IoU(%) reported as mean \pm std over 10 trials while for three-part and complex objects, we report mean 3D IoU(%) over 10 trials. D_{avg} represents average over all movable parts. F denotes failure. Higher is better; **best** highlighted; underline indicates comparative results.

3D IoU (%) \uparrow		Method	Two-part objects					
			Fridge	Oven	Scissor	USB	Washer	Blade
Static Part	PARIS	85.23 \pm 9.20	92.19 \pm 6.33	83.13 \pm 3.71	F	98.53 \pm 0.48	87.84 \pm 2.60	86.73 \pm 3.18
	DTA	86.27 \pm 6.58	91.11 \pm 3.50	66.01 \pm 3.38	86.30 \pm 1.84	88.49 \pm 10.94	83.22 \pm 2.03	88.87 \pm 1.84
	ArtGS	87.69 \pm 10.46	94.55 \pm 3.76	84.70 \pm 4.27	88.62 \pm 2.32	94.51 \pm 4.04	90.91 \pm 1.57	88.68 \pm 2.66
	Ours-b	83.70 \pm 4.70	94.46 \pm 2.31	81.27 \pm 2.84	55.15 \pm 14.96	F	83.59 \pm 1.41	88.57 \pm 3.07
	Ours	88.01 \pm 6.37	97.72 \pm 0.52	92.42 \pm 1.05	92.93 \pm 1.30	96.98 \pm 2.22	84.33 \pm 1.65	91.41 \pm 2.78
Dynamic Part	PARIS	55.97 \pm 29.62	45.42 \pm 43.90	67.81 \pm 15.09	F	32.75 \pm 29.62	34.42 \pm 10.85	42.88 \pm 16.99
	DTA	52.06 \pm 22.22	41.23 \pm 22.06	53.58 \pm 7.44	79.81 \pm 2.71	5.97 \pm 5.64	27.92 \pm 11.62	39.01 \pm 10.74
	ArtGS	58.78 \pm 36.40	65.68 \pm 24.50	75.04 \pm 9.69	86.85 \pm 2.37	35.62 \pm 36.43	28.95 \pm 16.08	65.30 \pm 9.66
	Ours-b	57.09 \pm 17.60	72.50 \pm 9.45	77.74 \pm 3.75	55.36 \pm 14.52	F	41.76 \pm 3.34	35.54 \pm 26.04
	Ours	75.19 \pm 14.61	89.61 \pm 1.50	92.21 \pm 1.19	91.95 \pm 1.18	68.52 \pm 13.80	43.92 \pm 6.97	69.01 \pm 7.42
Mean	PARIS	70.60 \pm 19.40	68.80 \pm 25.11	75.47 \pm 0.01	F	65.64 \pm 14.34	61.13 \pm 6.64	64.81 \pm 10.08
	DTA	69.16 \pm 13.56	66.17 \pm 12.75	59.79 \pm 5.41	83.05 \pm 2.26	47.23 \pm 6.89	55.57 \pm 6.80	63.94 \pm 4.57
	ArtGS	73.24 \pm 23.42	80.12 \pm 14.13	79.87 \pm 6.19	87.73 \pm 2.10	65.06 \pm 20.21	59.93 \pm 8.82	76.99 \pm 6.17
	Ours-b	70.40 \pm 11.13	83.48 \pm .86	79.51 \pm 3.26	55.26 \pm 14.51	F	62.68 \pm 2.47	62.06 \pm 13.79
	Ours	81.60 \pm 10.48	93.66 \pm 0.98	92.31 \pm 1.12	92.44 \pm 1.24	82.75 \pm 7.99	64.12 \pm 4.29	80.21 \pm 7.37

		Three-part objects				Complex objects				
		3D IoU	PARIS-m	DTA	ArtGS	Ours	3D IoU (%)	DTA	ArtGS	Ours
Storage 47024	<i>S</i>	89.77	88.53	92.23	94.20		<i>S</i>	87.95	93.32	97.01
	D_0	55.32	51.78	94.95			D_{avg}	26.38	52.23	97.34
Fridge 11304	<i>S</i>	89.55	81.05	94.80	95.42		Mean	35.18	58.14	81.87
	D_0	25.73	55.28	88.53	89.95					
<i>Table</i> ₃₁₂₄₉	<i>S</i>	45.31	61.19	80.48	91.42		<i>S</i>	89.81	90.44	91.75
	D_{avg}						D_{avg}	37.29	38.07	43.92
	Mean						Mean	47.80	48.55	53.49

Per-part articulation parameters estimation. With the selected support sets, we employ the Kabesch algorithm to estimate the rigid transformation $\{(\mathbf{R}_k, \mathbf{t}_k)\}_{k=1}^K$, K is the number of support sets, *i.e.*, the number of parts. Furthermore, we extract the underlying articulation parameters to characterize the motion. We follow existing works (Liu et al., 2023a; 2025; Weng et al., 2024) and focus on the following joint articulation parameters: the joint axis position \mathbf{p} , joint axis direction \mathbf{u} , translation distance Φ , rotation angle Θ , and joint type (prismatic or revolute). According to Rodrigues' rotation formula (Rodrigues, 1840), the rotation matrix \mathbf{R}_k can be expressed as:

$$\mathbf{R}_k = \cos \Theta_k \mathbf{I} + \sin \Theta_k [\mathbf{u}_k]_{\times} + (1 - \cos \Theta_k) (\mathbf{u}_k \otimes \mathbf{u}_k), \quad (5)$$

where direction \mathbf{u}_k is a unit vector, \mathbf{I} is the identity matrix, $[\cdot]_{\times}$ is the cross product and \otimes is the outer product. From Eq. 5, we can obtain the \mathbf{u}_k and Θ_k , respectively, as:

$$\mathbf{u}_k = \frac{1}{2 \sin \Theta_k} \begin{pmatrix} \mathbf{R}_k[2, 1] - \mathbf{R}_k[1, 2] \\ \mathbf{R}_k[0, 2] - \mathbf{R}_k[2, 0] \\ \mathbf{R}_k[1, 0] - \mathbf{R}_k[0, 1] \end{pmatrix}, \quad \Theta_k = \arccos \left(\frac{\text{tr}(\mathbf{R}_k) - 1}{2} \right). \quad (6)$$

For the translation distance Φ and the position \mathbf{p} (start point) of joint axis, we can calculate them based on the rotation matrix \mathbf{R}_k and translation component \mathbf{t}_k as:

$$\Phi_k = \left| \frac{\mathbf{u}_k \cdot \mathbf{t}_k}{\|\mathbf{u}_k\|^2} \right|, \quad \mathbf{p}_k = (\mathbf{R}_k - \mathbf{I})^{-1} \cdot (\Phi_k \cdot \mathbf{u}_k - \mathbf{t}_k). \quad (7)$$

For the joint type, inspired by (Shi et al., 2021; Liu et al., 2025), we classify the joint type as the revolute when the rotation degree Θ exceeds a threshold $\epsilon_{revol} = 10^\circ$ (about 0.17 radians) and prismatic by contrast. Based on this, during static-during-motion detection, a region in moving Gaussian set is considered static if the rotation angle Θ and translation magnitude Φ are no greater than 0.1 radians and 0.05 units, respectively.

4 EXPERIMENT

4.1 DATASET, METRICS, AND IMPLEMENTATION

Dataset. We select various articulated objects from *PartNet-Mobility* (Mo et al., 2019). We rendered a video of articulated motion using a camera trajectory around the object. To verify the effectiveness of our prior-free part segmentation, we render objects with multiple parts moving simultaneously in a variety of motions. For two-state baselines, we render 100 random upper-hemisphere views of the start and end states, respectively. Our benchmarks include challenging 8 two-part objects, 2 three-part objects, and 2 multi-part objects. Most interior parts are gradually revealed over time, reflecting real-world applications. (*Additional examples are provided in the Appendix ??.*)

Table 2: **Mesh reconstruction comparison.** (a) Two-part objects; (b) Three-part objects; (c) Complex objects. For two-part objects, we report CD distance (mm) as $\text{mean} \pm \text{std}$ across 10 trials. For three-part and complex objects, we only report mean value, while we report average CD for movable parts. Lower (\downarrow) is better.

(a) Two-part objects								
Metric	Method	Two-part objects						
		Fridge	Oven	Scissor	USB	Washer	Blade	Storage
CD-S	DTA	3.19 \pm 0.80	9.10 \pm 3.59	9.41 \pm 1.00	2.04 \pm 0.12	5.03 \pm 3.44	0.33 \pm 0.00	4.94 \pm 0.14
	ArtGS	1.58 \pm 0.28	8.39 \pm 0.29	0.80 \pm 0.99	11.01 \pm 0.43	6.63 \pm 0.17	1.23 \pm 0.01	7.50 \pm 0.15
	Ours-b	4.73 \pm 0.55	10.08 \pm 1.43	2.22 \pm 1.07	34.61 \pm 1.73	F	1.90 \pm 0.06	7.27 \pm 0.78
	Ours	3.45 \pm 0.09	10.36 \pm 0.73	0.14 \pm 0.14	9.25 \pm 0.99	1.76 \pm 0.02	7.09 \pm 0.49	
CD-m	DTA	4.08 \pm 0.60	77.61 \pm 86.59	141.99 \pm 35.39	1.90 \pm 0.51	481.06 \pm 66.34	19.30 \pm 2.09	67.33 \pm 3.03
	ArtGS	43.51 \pm 0.47	64.34 \pm 3.66	53.71 \pm 28.82	50.00 \pm 19.77	155.65 \pm 22.79	473.72 \pm 7.62	6.92 \pm 0.54
	Ours-b	18.27 \pm 4.22	5.17 \pm 2.54	73.13 \pm 50.33	19.46 \pm 0.46	F	110.46 \pm 36.00	88.85 \pm 73.10
	Ours	2.21 \pm 0.18	1.63 \pm 0.25	0.27 \pm 0.03	0.89 \pm 0.10	21.03 \pm 1.02	2.36 \pm 0.09	18.95 \pm 2.57
(b) Three-part objects								
	\downarrow	PARIS-m	DTA	ArtGS	Ours			
Storage 47024	CD-s	8.05	3.20	3.58	10.37			
	CD-D ₀	F	275.87	253.69	0.81			
	CD-D ₁		287.70	1.21	27.35			
Fridge 11304	CD-s	6.91	4.90	2.93	8.16			
	CD-D ₀	298.29	29.95	12.83	3.85			
	CD-D ₁	189.85	323.06	12.17	2.12			
(c) Complex objects								
	\downarrow	DTA	ArtGS	Ours				
Storage 47648	CD-s	2.08	2.96	2.63				
	CD-m _{avg}	200.15	71.17	8.36				
Table 31249	CD-s	2.56	3.65	3.08				
	CD-m _{avg}	152.93	51.40	4.99				

Table 3: **Quantitative evaluation of articulation estimation.** (a) Two-part; (b) Three-part; (c) Complex objects. For complex objects, we report the average of all moving parts. Due to the different magnitudes of part motion for revolute and prismatic joints, we report both of them. *F* denotes failure. *WT* denotes that more than 6 out of 10 trials result in an incorrect joint-type prediction. – indicates prismatic joints w/o rotation axis.

(a) Two-part objects								
Metric	Method	Two-part objects						
		Fridge	Oven	Scissor	USB	Washer	Blade	Storage
Axis Ang	DTA	1.86 \pm 3.80	5.39 \pm 7.16	1.01 \pm 1.23	0.22 \pm 0.11	17.34 \pm 25.59	1.65 \pm 0.35	8.18 \pm 6.80
	ArtGS	WT	WT	2.39 \pm 1.91	23.86 \pm 35.02	WT	1.31 \pm 0.14	0.00 \pm 0.01
	Ours-b	6.76 \pm 3.40	3.36 \pm 3.31	5.12 \pm 0.46	6.65 \pm 4.20	F	0.25 \pm 4.20	1.72 \pm 0.67
	Ours	2.70 \pm 1.73	0.27 \pm 0.25	1.60 \pm 0.38	0.59 \pm 0.30	1.63 \pm 0.90	0.18 \pm 0.17	1.52 \pm 0.88
Axis Pos	DTA	1.75 \pm 1.20	4.98 \pm 4.38	8.84 \pm 4.76	0.01 \pm 0.01	26.50 \pm 42.41	–	–
	ArtGS	WT	WT	1.73 \pm 1.70	6.01 \pm 8.60	WT	–	–
	Ours-b	1.22 \pm 0.86	1.24 \pm 0.86	0.86 \pm 0.55	0.84 \pm 0.37	F	–	–
	Ours	0.86 \pm 0.34	1.13 \pm 0.68	0.75 \pm 0.05	1.45 \pm 0.71	1.12 \pm 0.29	–	–
Part Motion	PARIS	167.60 \pm 14.49	144.80 \pm 11.20	122.05 \pm 42.50	F	86.13 \pm 3.11	0.08 \pm 0.06	0.10 \pm 0.02
	DTA	171.77 \pm 13.43	142.10 \pm 33.62	150.50 \pm 11.29	0.32 \pm 0.15	76.43 \pm 11.27	0.02 \pm 0.00	0.07 \pm 0.06
	ArtGS	WT	WT	99.09 \pm 67.18	120.05 \pm 19.63	WT	0.14 \pm 0.00	0.00 \pm 0.00
	Ours-b	10.67 \pm 3.49	7.64 \pm 1.77	5.20 \pm 0.40	16.94 \pm 1.85	F	0.25 \pm 4.20	1.72 \pm 0.67
Ours	7.67 \pm 3.40	3.36 \pm 3.31	5.12 \pm 0.46	6.65 \pm 4.20	6.90 \pm 2.88	0.01 \pm 0.00	0.02 \pm 0.00	–
(b) Three-part objects								
	Methods	D_0			D_1			
		Axis Ang	Axis Pos	Part Motion	Axis Ang	Axis Pos	Part Motion	
Storage 47024	DTA	58.63	38.59	96.56	0.50	–	0.01	
	ArtGS	20.63	3.83	107.56	1.75	–	0.13	
	Ours	0.56	1.26	1.66	1.03	–	0.06	
Fridge 11304	DTA	22.02	359.06	178.80	9.48	6.22	38.36	
	ArtGS	13.94	46.95	176.52	3.33	15.79	41.81	
	Ours	0.68	3.58	3.57	1.67	0.68	4.81	
(c) Complex objects								
		\downarrow	Ang _{avg}	Pos _{avg}	Motion _{avg}	Motion ^p _{avg}		
Storage 47648	ArtGS	12.78	3.34	81.93	–	0.18		
	Ours	0.58	1.31	10.56	0.02	–		
Table 31249	ArtGS	33.19	2.42	82.29	–	0.43		
	Ours	1.19	0.81	1.10	0.01	–		

Metrics. We conduct comparisons from three perspectives: 1) **Part segmentation performance.** To consider the points inside the surface, we voxelize the meshes and evaluate part-level segmentation with *3D Intersection-over-Union (IoU)* (Nie et al., 2021); 2) **Reconstruction quality.** Following prior works, we compute the *bi-directional Chamfer Distance (mm)* to measure the reconstruction quality; 3) **Articulation estimation accuracy.** Following prior works, We report the *Axis Ang Err (°)*, *Axis Pos Err (0.1m)*, and *Part Motion (° or m)*. (*More details please refer to Appendix ??*).

Implementation Details. We evaluate against recent state-of-the-art methods, PARIS*[†], DTA, and ArtGS, that use RGB–Depth inputs. Our approach requires an RGB video with 200 frames for two- and three-part objects and 500 frames for more complex objects. We present a baseline, *Ours-b*, which replaces the proposed dual-Gaussian representation with a single deformable 3D Gaussian shape (3DGS). Following ArtGS, we use a truncated signed distance function (TSDF) volume for mesh reconstruction, render depth maps, and marching cubes (Huang et al., 2024a).

4.2 QUALITATIVE AND QUANTITATIVE EVALUATION

Part segmentation. As shown in Tab. 1, our method attains the best 3D IoU on almost all objects in both two-part and multi-part settings. On complex objects, the gains are large, e.g., on *Storage*

[†]PARIS is augmented with depth supervision

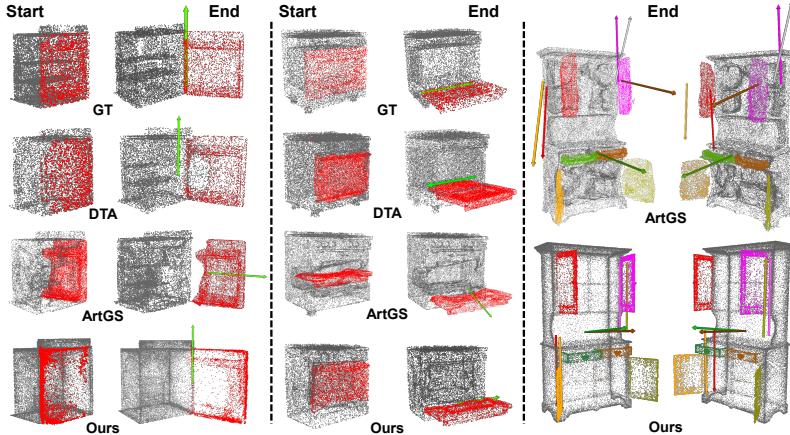


Figure 6: Qualitative results of part segmentation and articulation estimation on two two-part objects (fridge, left; oven, middle) and a complex multi-part object (Storage-47648, right). For the complex object, each predicted joint axis is visualized using the same color as its corresponding part segmentation mask. Across the two-part objects, DTA and ArtGS often struggle with mis-segmentation and inaccurate joint-axis/type predictions. In contrast, our method produces clean part segmentation and consistent joint-axis estimation across all objects, demonstrating strong robustness.

(6 moving parts), our mean dynamic-part IoU exceeds the prior SoTA by **+27.11%**. Standard deviations are consistently lower, indicating greater stability than two-state inference (e.g., DTA/ArtGS on *Fridge*, *Oven*). Compared with *Ours-b*, the dual-Gaussian dynamic–static separation further improves accuracy by suppressing static interference.

Mesh reconstruction. We report mesh-reconstruction results in Tab. 2. Despite using ***RGB-only*** inputs, our CD on static parts is competitive with PARIS and ArtGS, and our errors on dynamic parts are much lower e.g., *Storage*₄₇₆₄₈: 8.36 vs. 71.17 (ArtGS); *Table*: 4.99 vs. 51.40.

Articulation estimation. Our framework attains highly accurate joint predictions (see Tab. 3). For two-part objects, our axis-angle errors are consistently minimal (e.g., *Oven*: 0.27° vs. 5.39° of DTA). For complex objects, the improvements are striking: on *Storage*, we reduce axis-angle error from 12.78° (ArtGS) to 0.58°, and part motion errors to nearly zero (0.02 for prismatic joints). This evidences the advantage of dual-Gaussian representation and motion-based fitting.

Analysis of Two-State Limitations. From qualitative and quantitative results, it can be observed that two-state methods strongly rely on geometric correspondence between the start and end states. Once this correspondence is broken, such as the end state reveals interior regions absent from the start under the close-start/open-end setting, these methods are forced to match dissimilar geometry, leading to degraded part segmentation and unstable articulation estimation. Most notably, on two-part objects such as the fridge and oven in Fig. 6, the newly revealed interior structures cause the canonical mid-state Gaussian initialization in ArtGS to fail. This disturbed canonical Gaussian initialization propagates to articulation estimation and results in joint-type errors, often predicting a prismatic joint instead of the correct revolute joint. By contrast, DTA is relatively more stable due to its symmetric optimization of both the start-to-end and end-to-start transformations, yet it still misclassifies newly revealed structures, e.g., predicting the oven interior as dynamic or assigning large portions of the moving fridge door to the static part.

Summary. Overall, compared to two-state motion inference, our method demonstrates stronger and more stable performance under a challenging close-start/open-end setting. In the two- and three-part datasets, *Articulation in Motion* achieves the best results on the vast majority of objects. On complex objects, our approach shows a clear advantage, significantly surpassing prior methods (**more visualizations in Appendix ??**). For mesh reconstruction, while our approach still has limitations in overall mesh fidelity compared with NeRF-based methods, the strength of our part mobility analysis enables consistently superior reconstruction of dynamic parts over prior state-of-the-art.

4.3 ABLATION STUDY

Effectiveness of start state scan. As shown in Tab. 4, while directly training the dual-Gaussian representation with a set of random Gaussians as the static, 3D IoU^D*avg* drops from **79.34%** to

Table 4: Ablation studies on complex objects. We report the average metrics of dynamic parts. And we calculate the mean across three trials.

		Ang _{avg} ↓	Pose _{avg} ↓	Motion ^r _{avg} ↓	Motion ^p _{avg} ↓	CD-m _{avg} ↓	3D IoU ^D _{avg} ↑
Storage 47648	ArtGS	12.78	3.34	81.93	0.18	71.17	52.23
	w/o start state scan	1.57	1.49	20.61	0.05	97.65	37.60
	w/o SDMD	2.62	1.41	14.72	0.06	91.52	77.45
	w/o dual-GS	2.95	1.77	15.36	0.08	17.43	67.66
	w/o RANSAC	3.80	1.41	12.62	0.38	78.54	67.06
Table 31249	Full	0.58	1.31	10.56	0.02	8.36	79.34
	ArtGS	33.19	2.42	82.29	0.43	51.40	38.07
	w/o start state scan	F					
	w/o SDMD	11.62	1.49	23.74	0.21	18.05	37.10
	w/o dual-GS	1.49	0.94	1.47	0.37	6.26	41.74
	w/o RANSAC	1.28	0.91	1.25	0.37	6.02	40.65
	Full	1.19	0.81	1.10	0.01	4.99	43.92

37.60%. On *Table*, the pipeline cannot detect the moving Gaussians. These results indicate that the start state can anchor the shape and appearance of objects and is essential for capturing motion cues.

Effectiveness of the static-during-motion detection (SDMD). Disabling SDMD consistently harms dynamic geometry and motion recovery. In particular, the sharp increase in CD-m_{avg}^D in both storage and table shows that the filtering of static noise during motion capture is critical to part mobility analysis. (*More visual results please see Fig. ?? in Appendix.*)

Effectiveness of dual-GS representation. We assess the dual-Gaussian representation by replacing it with the original deformable-3DGs. Across metrics, articulation accuracy and part-segmentation IoU degrade markedly without our dual-Gaussian representation. This confirms that explicit dynamic–static disentanglement is a cornerstone for prior-free part mobility analysis.

Effectiveness of sequential RANSAC. We first attempted prior-free density clustering with DB-SCAN (Ester et al., 1996), which failed to produce valid partitions across objects. We then applied K-means (Pham et al., 2004) with the provided part count, yielding reasonable groups but inferior articulation and segmentation. In contrast, sequential RANSAC delivers the best prior-free performance while remaining robust to motion variability. Given our accurate motion trajectories, K-means outperforms ArtGS, underscoring the quality of our motion cue extraction.

5 CONCLUSION AND LIMITATION

Conclusion. In this work, we presented a novel pipeline, *Articulation in Motion*, to achieve a prior-free and stable part-mobility analysis. Compared to previous works based on two-state shape correspondence, our method utilizes more natural motion and human-object interaction videos as input. It introduced a dual-Gaussian scene representation to analyze motion cues in the video. With the dual-Gaussian dynamic–static separation, we obtained clean motion trajectories; coupled with the robustness of sequential RANSAC, this enables prior-free part segmentation and articulation on unseen objects. Comprehensive experimental evaluations validated the effectiveness and stability of the proposed *Articulation in Motion* in diverse challenging scenarios.

Limitations and future work. Our *AiM* generates higher quality segmentation of articulated objects and recovery of their degrees of freedom (DoF) compared to prior work. We do not require the use of depth sensing, as done by most prior art techniques; however, we do utilize a video that captures the DoFs of the object’s parts. Such a video contains more information than a three-dimensional reconstruction of the object at the start and end states. Yet, in many common cases, this is easier to capture compared to the former type of data: some objects contain many DoFs, and some are dependent on each other, making it hard to capture all of them with only two static states. The capture of a video is a more natural way for a person to introduce an object, where they can expose each DoF at a time. Capturing the whole geometry of internal parts, such as drawers, an extended blade of a knife, or the blades of a scissors, requires the full disassembly of the articulated object. The generated geometry is limited to the visible geometry and, as such, may be limited in its application for developing interactive models. Future work may utilize a data-driven approach to complete such parts of the whole geometry, given a dataset of these parts.

ACKNOWLEDGMENTS

This project is partially supported by the Amazon Research Award “PCo3D: Physically Plausible Controllable 3D Generative Models”. The computations in this research were supported by the Baskerville Tier 2 HPC service. Baskerville was funded by the EPSRC and UKRI through the World Class Labs scheme (EP\T022221\1) and the Digital Research Infrastructure programme (EP\W032244\1) and is operated by Advanced Research Computing at the University of Birmingham.

REFERENCES

Jianning Deng, Kartic Subr, and Hakan Bilen. Articulate your nerf: Unsupervised articulated object modeling via conditional view synthesis. *arXiv preprint arXiv:2406.16623*, 2024.

Bardienus P Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu, Mike Zheng Shou, Shuran Song, and Jeffrey Ichniowski. Md-splatting: Learning metric deformation from 4d gaussians in highly deformable scenes. *arXiv preprint arXiv:2312.00583*, 2(3), 2023.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

Nick Heppert, Muhammad Zubair Irshad, Sergey Zakharov, Katherine Liu, Rares Andrei Ambrus, Jeannette Bohg, Abhinav Valada, and Thomas Kollar. Carto: Category and joint agnostic reconstruction of articulated objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21201–21210, 2023.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for geometrically accurate radiance fields. In *ACM SIGGRAPH 2024 conference papers*, pp. 1–11, 2024a.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2024b.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4220–4230, 2024c.

Ajinkya Jain, Rudolf Lioutikov, Caleb Chuck, and Scott Niekum. Screwnet: Category-independent articulation model estimation from depth images using screw theory. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 13670–13677. IEEE, 2021.

Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li, and Siyuan Huang. Scenenever: Scaling 3d vision-language learning for grounded scene understanding. In *European Conference on Computer Vision*, 2024. URL <https://api.semanticscholar.org/CorpusID:267028244>.

Hanxiao Jiang, Yongsen Mao, Manolis Savva, and Angel X Chang. Opd: Single-view 3d openable part detection. In *European Conference on Computer Vision*, pp. 410–426. Springer, 2022a.

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau, Feng Gao, Yin Yang, and Chenfanfu Jiang. Vr-gs: A physical dynamics-aware interactive gaussian splatting system in virtual reality. *ACM SIGGRAPH 2024 Conference Papers*, 2024. URL <https://api.semanticscholar.org/CorpusID:267320640>.

Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto: Building digital twins of articulated objects from interaction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5616–5626, 2022b.

Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. *Foundations of Crystallography*, 32(5):922–923, 1976.

Ladislav Kavan, Steven Collins, Jirí Zára, and Carol O’Sullivan. Skinning with dual quaternions. *Proceedings of the 2007 symposium on Interactive 3D graphics and games*, 2007. URL <https://api.semanticscholar.org/CorpusID:8680967>.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qianqian Wang, Ken Goldberg, and Angjoo Kanazawa. Robot see robot do: Imitating articulated object manipulation with monocular 4d reconstruction. In *Conference on Robot Learning*, 2024. URL <https://api.semanticscholar.org/CorpusID:272910721>.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion analysis for articulated objects. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 352–363, 2023a.

Liu Liu, Han Xue, Wenqiang Xu, Haoyuan Fu, and Cewu Lu. Toward real-world category-level articulation pose estimation. *IEEE Transactions on Image Processing*, 31:1072–1083, 2022.

Liu Liu, Jianming Du, Hao Wu, Xun Yang, Zhenguang Liu, Richang Hong, and Meng Wang. Category-level articulated object 9d pose estimation via reinforcement learning. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 728–736, 2023b.

Yu Liu, Baoxiong Jia, Ruijie Lu, Junfeng Ni, Song-Chun Zhu, and Siyuan Huang. Building interactable replicas of complex articulated objects via gaussian splatting. In *The Thirteenth International Conference on Learning Representations*, 2025.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians: Tracking by persistent dynamic view synthesis. In *2024 International Conference on 3D Vision (3DV)*, pp. 800–809. IEEE, 2024.

Luca Magri and Andrea Fusiello. Multiple model fitting as a set coverage problem. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3318–3326, 2016.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.

Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and Xiaolong Wang. A-sdf: Learning disentangled signed distance functions for articulated shape representation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 13001–13011, 2021.

Andreas Mueller. Modern robotics: Mechanics, planning, and control. *IEEE Control Systems*, 39:100–102, 2019. URL <https://api.semanticscholar.org/CorpusID:208033954>.

Yinyu Nie, Ji Hou, Xiaoguang Han, and Matthias Nießner. Rfd-net: Point scene understanding by semantic instance reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4608–4618, 2021.

Weikun Peng, Jun Lv, Cewu Lu, and Manolis Savva. iTACO: Interactable Digital Twins of Articulated Objects from Casually Captured RGBD Videos. In *3DV 2026*, 2025.

Duc Truong Pham, Stefan Simeonov Dimov, and CD Nguyen. An incremental k-means algorithm. *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, 218(7):783–795, 2004.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A co-habitat for humans, avatars and robots. *arXiv preprint arXiv:2310.13724*, 2023.

Shengyi Qian, Linyi Jin, Chris Rockwell, Siyi Chen, and David F Fouhey. Understanding 3d object articulation in internet videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1599–1609, 2022.

Olinde Rodrigues. Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. *Journal de Mathématiques Pures et Appliquées*, 1e série, 5:380–440, 1840. URL https://www.numdam.org/item/JMPA_1840_1_5__380_0/.

Yahao Shi, Xinyu Cao, and Bin Zhou. Self-supervised learning of part mobility from point cloud sequence. In *Computer Graphics Forum*, volume 40, pp. 104–116. Wiley Online Library, 2021.

Chaoyue Song, Jiacheng Wei, Chuan Sheng Foo, Guosheng Lin, and Fayao Liu. Reacto: Reconstructing articulated objects from a single video. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5384–5395, 2024.

Ziyang Song and Bo Yang. Ogc: Unsupervised 3d object segmentation from rigid dynamics of point clouds. *Advances in Neural Information Processing Systems*, 35:30798–30812, 2022.

Xiaohao Sun, Hanxiao Jiang, Manolis Savva, and Angel Chang. Opdmulti: Openable part detection for multiple objects. In *2024 International Conference on 3D Vision (3DV)*, pp. 169–178. IEEE, 2024.

Catherine Taylor, Robin McNicholas, and Darren P. Cosker. Towards an egocentric framework for rigid and articulated object tracking in virtual reality. *2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)*, pp. 354–359, 2020. URL <https://api.semanticscholar.org/CorpusID:218597438>.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

Ruiqi Wang, Akshay Gadi Patil, Fenggen Yu, and Hao Zhang. Active coarse-to-fine segmentation of moveable parts from real images. In *European Conference on Computer Vision*, pp. 111–127. Springer, 2024.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2motion: Joint analysis of motion parts and attributes from 3d shapes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8876–8884, 2019.

Fangyin Wei, Rohan Chabra, Lingni Ma, Christoph Lassner, Michael Zollhöfer, Szymon Rusinkiewicz, Chris Sweeney, Richard Newcombe, and Mira Slavcheva. Self-supervised neural articulated shape and appearance models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15816–15826, 2022.

Yijia Weng, He Wang, Qiang Zhou, Yuzhe Qin, Yueqi Duan, Qingnan Fan, Baoquan Chen, Hao Su, and Leonidas J Guibas. Captra: Category-level pose tracking for rigid and articulated objects from point clouds. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 13209–13218, 2021.

Yijia Weng, Bowen Wen, Jonathan Tremblay, Valts Blukis, Dieter Fox, Leonidas Guibas, and Stan Birchfield. Neural implicit representation for building digital twins of unknown articulated objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3141–3150, 2024.

Di Wu, Liu Liu, Zhou Linli, Anran Huang, Liangtu Song, Qiaojun Yu, Qi Wu, and Cewu Lu. Reartgs: Reconstructing and generating articulated objects via 3d gaussian splatting with geometric and motion constraints. *arXiv preprint arXiv:2503.06677*, 2025a.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20310–20320, 2024.

Mingxuan Wu, Huang Huang, Justin Kerr, Chung Min Kim, Anthony Zhang, Brent Yi, and Angjoo Kanazawa. Predict-optimize-distill: A self-improving cycle for 4d object understanding. *ArXiv*, abs/2504.17441, 2025b. URL <https://api.semanticscholar.org/CorpusID:278032952>.

Mingxuan Wu, Huang Huang, Justin Kerr, Chung Min Kim, Anthony Zhang, Brent Yi, and Angjoo Kanazawa. Predict-optimize-distill: A self-improving cycle for 4d object understanding. *arXiv preprint arXiv:2504.17441*, 2025c.

Jingyu Yan and Marc Pollefeys. Articulated motion segmentation using ransac with priors. In *International Workshop on Dynamical Vision*, pp. 75–85. Springer, 2005.

Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver Matias van Kaick, Hao Zhang, and Hui Huang. Rpm-net. *ACM Transactions on Graphics (TOG)*, 38:1 – 15, 2019. URL <https://api.semanticscholar.org/CorpusID:220285890>.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20331–20341, 2024.

L. Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, and Leonidas J. Guibas. Deep part induction from articulated object pairs. *ACM Transactions on Graphics (TOG)*, 37:1 – 15, 2018. URL <https://api.semanticscholar.org/CorpusID:52309891>.

Jia-Xing Zhong, Ta-Ying Cheng, Yuhang He, Kai Lu, Kaichen Zhou, Andrew Markham, and Niki Trigoni. Multi-body se (3) equivariance for unsupervised rigid segmentation and motion estimation. *Advances in Neural Information Processing Systems*, 36:76085–76097, 2023.

Qinhong Zhou, Hongxin Zhang, Xiangye Lin, Zheyuan Zhang, Yutian Chen, Wenjun Liu, Zunzhe Zhang, Sunli Chen, Lixing Fang, Qiushi Lyu, et al. Virtual community: An open world for humans, robots, and society. *arXiv preprint arXiv:2508.14893*, 2025.