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ABSTRACT

Articulated objects are ubiquitous in daily life. Our goal is to achieve a high-
quality reconstruction, segmentation of independent moving parts, and analysis of
articulation. Recent methods analyze two different articulation states and perform
per-point part segmentation, optimizing per-part articulation using cross-state cor-
respondences, given a priori knowledge of the number of parts. Such assump-
tions greatly limit their applications and performance. Their robustness is reduced
when objects cannot be clearly visible in both states. To address these issues, in
this paper, we present a novel framework, Articulation in Motion (AiM). We infer
part-level decomposition, articulation kinematics, and reconstruct an interactive
3D digital replica from a user—object interaction video and a start-state scan. We
propose a dual-Gaussian scene representation that is learned from an initial 3DGS
scan of the object and a video that shows the movement of separate parts. It
uses motion cues to segment the object into parts and assign articulation joints.
Subsequently, a robust, sequential RANSAC is employed to achieve part mobility
analysis without any part-level structural priors, which clusters moving primi-
tives into rigid parts and estimates kinematics while automatically determining
the number of parts. The proposed approach separates the object into parts, each
represented as a 3D Gaussian set, enabling high-quality rendering. Our approach
yields higher quality part segmentation than all previous methods, without prior
knowledge. Extensive experimental analysis on both simple and complex ob-
jects validate the effectiveness and strong generalization ability of our approach.
Project could be found at https://haocai-1997.github.i0/AiM/,

1 INTRODUCTION

Everyday environments are abounded with articulated objects [} composed of multiple rigid parts
linked by joints (Mueller| 2019) ( e.g.doors with revolute joints and drawers with prismatic joints).
Modeling of these objects is valuable for practical applications across scene understanding (Jia et al.,
2024;|Huang et al.,|2024b), robotics (Kerr et al.,[2024; Wu et al.,[2025b), mixed reality (MR) (Taylor,
et al.| [2020; Jiang et al.|[2024), and embodied Al applications (Puig et al.|[2023;Zhou et al.| [2025).
Advances in neural 3D representations (Mildenhall et al., 2021} [Kerbl et al.l 2023)) enable high-
fidelity object-level 3D reconstruction; however, reconstructing the part-level structure, articulation
dynamics, and functionality of articulated objects remains a challenge.

Substantial efforts have been devoted to building 3D physics-consistent and interaction-ready asser-
tions of articulated objects from RGB or RGB-D observations (Wei et al., [2022; Song et al.| 2024;
Wu et al) 2025a). Some approaches (Mu et al.| 2021} Jiang et al.| |2022bj Heppert et al., 2023)
rely on the parameters of known joints in learning articulated shape representations. However, col-
lecting such data at scale can be time-consuming and often has limited generalization to previously
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Figure 1: Left: Prior two-state methods often degrade on the sequences from closed-start to open-end. Right:
Results of AiM, compared to ground truth (GT) geometry.

unseen objects. To mitigate these issues, some unsupervised, part-level reconstruction methods have
been proposed (Liu et all, 2023a; [Deng et al.l 2024} Weng et al |, 2024} [Liu et al, [2025)). Most of
them assume multi-view observations of the objects in two distinct articulation states, denoted as
start and end states. [Liu et al.| (2023a)); [Deng et al| (2024) recovered a deformation field between
the NeRF-based start-state and end-state geometries. However, optimization is unstable and highly
sensitive to initialization. Similarly, the 3D Gaussian splatting (3DGS) based method
learns a per-Gaussian start-to-end deformation field, enabling static-dynamic segmentation
of up to one moving part per step. As deformation is defined over all Gaussians, threshold-based
separation is prone to noise. Lately, given a known number of articulated parts, DTA
simultaneously reconstructs a start and end point cloud, predicts per-part segmentation prob-
abilities, and estimates articulation parameters via linear blend skinning (Kavan et al.,[2007) to align
the parts across the two states. Meanwhile, ArtGS constructs start and end Gaus-
sian sets and uses their geometric correspondence to initialize a canonical mid-state Gaussian set. It
then learns part-center locations, predicts Gaussian-to-part assignments 2024c), and
optimizes per-part articulation following the blend skinning [2024). Although effective,
these two-state methods degrade substantially when the number of articulated parts is unknown (as
shown in Fig. [2), and their stability is limited by the reliance on geometric correspondence between
the two state. Specifically, the commonly used two-state input setting has inherent limitations: Many
articulated objects cannot be well represented by only a start and an end state. When the end state
reveals regions absent in the start state, breaking cross-state correspondence (e.g.the interior of a
refrigerator or oven, as shown in Fig. 2], these methods are prone to degraded segmentation.

We introduce a new framework, namely Articulation in Motion (AiM), that reconstructs the ge-
ometry, segmentation, and kinematics of articulated objects by analyzing a video of their articulated
motion, which is simple, practical, and better aligned with the way humans learn articulation through
continuous interaction (Fig. [3) rather than using isolated start and end states. Furthermore, contin-
uous motion cues avoid cross-state correspondence failures when the end state reveals newly seen
regions (see Fig. [[]and Fig. 2). We do not assume a known number of articulated parts, any prior
knowledge of their joint types or motion parameters, or visibility along the entire motion. We re-
cover the articulation parameters stably for interactive manipulation. It comprises three stages (see
Fig. 3] and Fig. [5): I) 3DGS is used to reconstruct the initial geometry and appearance. II) We
present a dual-Gaussian scene representation, which contains the pre-built start-state Gaussian and
a deformable 3DGS 2024). While the deformable GS tracks motion on the interaction
video, a pre-built start-state Gaussian is gradually pruned as a static base, achieving dynamic-static
disentanglement based on the motion cues. /1]) Depending on the trajectories of only-moving Gaus-
sians, an optimization-free sequential Random Sample Consensus algorithm (RANSAC) clusters
them into rigid parts and estimates per-part articulation parameters without any part prior.

* We present Articulation in Motion (AiM), which reconstructs part-level articulated objects, with
extracted joints, based on a video that shows the objects’ degrees of freedom. Such input is
unhindered by artificial limitations, such as the need to show all parts of the objects, at the full
extent of their motions, clearly visible in exactly two discrete moments. It opens a way to use
natural videos, such as interaction with objects, and accumulates the information along the video.

* We propose a dual-Gaussian representation to disentangle the statics and dynamics, and track the
moving primitives. Additionally, we introduce a static-during-motion detection module to handle
newly revealed but static regions during interaction.



Published as a conference paper at ICLR 2026

* Our method achieves robust part segmentation and articulation estimation using Sequential
RANSAC, without any structural prior.

* Extensive experiments demonstrate that our method can independently segment stably and accu-
rately moving parts of the object, reconstruct the geometry and articulation parameters of each
part, and its appearance, under challenging scenarios.

2 RELATED WORKS

Articulated object reconstruction from videos or images. This work focuses on articulated ob-
jects, composed of rigid parts and connected by joints. For such objects, research has focused
primarily on improving piecewise rigidity, identifying part-level mobility, and enabling control-
lable 3D model generation. REACTO reconstructs the canonical object state,
represented by NeRF, and learns a deformation field with enhanced part rigidity from a captured
video. However, REACTO reconstructs articulated objects as a single unified surface, without

part-level geometry, which limits physical realistic interaction. [Jiang et al. (2022b); [Liu et al.
(20234); Deng et al.| (2024); [Weng et al. (2024); [Liu et al.| (2025) proposed to reconstruct articu-

lated objects at the part level and estimating joint parameters from multi-view RGB/RGB-D ob-
servations of two different articulation states, i.e.the state before interaction and the end state af-
ter interaction. PARIS learns a deformable field that applies two inverse mo-
tion parameters to a hypothetical intermediate-state NeRF. Similarly, REArtGS 2025a))
builds on 3DGS to learn a static-to-dynamic deformation field for the intermediate state and iden-
tify the dynamic part. Both are limited to objects with one moving sub-part. To support multi-
ple movable parts, Weng et al| (2024); [Deng et al| (2024); [Liu et al.| (2025)) directly predict part-
wise segmentation probabilities for each point and learn the motion parameters per part to con-
struct the cross-state correspondence fields, similar to linear blend skinning (Kavan et al., [2007).

Part mobility analysis. Analyzing the
mobility of articulated objects is essential
for reconstructing interactive 3D models,
which typically involves the estimation
of part segmentation and motion prop-
erties estimation, e.g.joint type, axis and
state. For supervised learning, Jiang et al.
2022a)); [Sun et al| (2024); [Wang et al.
2024); [Qian et al| (2022); Jain et al.

2021) leverage advanced network archi-
tectures to predict part mobility directly
from a single RGB image or a motion rect input number of parts (4) and generates over segmentation
video, while (2019); Weng| 20 e toht: Visual i g- i
| ; Right: Visual results of DTA and ArtGS with closed
?t. al. (]2021[); Liu et al| (2023b; 20_22[) start and open-end states. The static part is gray and moving
jointly predict part-level 3D segmentation  part is green. In contrast, AiM requires no geometric priors
and per-part motion properties fromasin-  and robustly recovers accurate part-level segmentation from
gle point cloud. While these methods can  the continuous closed-start—open-end interaction process.
achieve promising results, their general-
ization is fundamentally limited by the availability and diversity of annotated datasets. Conse-
quently, the latest work has explored unsupervised solutions. A representative two-state-based
pipeline (Yi et al, 2018}, [Song & Yang) 2022; [Zhong et al. 2023} [Liu et all, [2023a; [Weng et al.}
2024;[Wu et al.,[20254) predict the part segmentation probabilities for each point and the articulation
parameters per part, supervised by the point correspondence field between 3D shapes of two given
input states. However, these methods depend on the input part number, lacking sufficient generaliza-
tion to real-world scenarios with unknown structural details, e.g.for objects with unknown structural
details, optimization becomes unstable. It often fails to converge to the correct number of parts (see
Fig.[2). Additionally, as shown in Fig. 2] capturing multi-view observations for two distinct states
can easily introduce ambiguities when cross-state correspondences are undefined for regions that
appear only in the end state, instead, inspired by (Shi et al} [202T} [Yan et all, 2019), which segment
point clouds using trajectories from registered sequences, our framework infers part-level structure
and articulation information from the motion trajectories in a single video. In particular, we first
propose a novel dual-Gaussian representation, which jointly optimizes a 3DGS and a deformable
3DGS 2024), to achieve static-dynamic disentanglement based on motion cues in the
video. Secondly, in addition to the trajectories of cleanly partitioned moving Gaussians, we use the

Ours

Figure 2: Left: DTA and ArtGS can not recover from an incor-
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Figure 3: Overview of first two stages. I) 3DGS start-state {G} reconstruction from a multi-view RGB scan.
II) A deformable 3DGS {QM ,t} tracks motion video, while joint optimization prunes moving components
from {G°}. Pruned static Gaussian set {G; } encodes the static base. An SDMD module handles newly
revealed but static Gaussians. Together, these yield two separated Gaussian sets ({G; } and {G",t}) for the
articulation analysis (Fig.[5).

robust and optimization-free sequential RANSAC (Yan & Pollefeys|, 2005} [Magri & Fusiello, [2016)
to analyze their motion patterns, group them into rigid parts, and predict the articulation parameters.
This enables stable motion-based part segmentation and articulation estimation, thereby avoiding
the need for priors. RSRD [2024), POD and Video2Articulation [Peng|
(2025)), use a similar video-based input protocol, but both focus on per-part pose tracking and
require the segmentation masks from pre-trained models. Therefore, these approaches cannot au-
tonomously perform part segmentation, where their performance is fundamentally bounded by the
quality of the pre-trained segmentation models (See Fig. ??). In contrast, our approach achieves
part segmentation and enables independent control of each part through understanding the physical
dynamics in the video.

Dynamic Gaussian splatting. 3DGS provides an explicit point-based represen-
tation, enabling real-time, differentiable splatting-based rendering. As a result, there is increasing
interest in extending 3DGS to dynamic scene modeling (Duisterhof et al., 2023}, [Luiten et al., 2024}
[Yang et al. [2024; (Wu et al.| 2024). [Cuiten et al (2024) tracks attribute changes of each Gaussian
primitive while [Yang et al.| (2024) learns an MLP-based deformation field from time and primitive
positions to represent scene flow. Additionally, several methods (Wu et al., 2024} [Duisterhof et al.]
introduce more efficient representations to encode temporal and structural information, and
employ motion clustering strategies for compactness. Tracking all Gaussians is expensive, and mo-
tion can reduce motion-based segmentation (see Fig. ??). Our dual-Gaussian detects static parts of
the geometry, represented by 3DGS, while moving geometry is tracked using deformable 3DGS;
clear dynamic-static disentanglement enables stable segmentation.

3 OUR METHOD

Articulation in Motion includes three stages. Stage I: We reconstruct a 3DGS model (preliminar-
ies €.g.3DGS and Deformable 3DGS please see Appendix ??.) of the object on an initial static
state {G°}. Stage II: Given a video in which parts of the object are moved, we propose a novel
dual-Gaussian representation (Sec. [3.1)) that jointly optimizes {G°} that models the static part of
the object and a deformable GS {G**,t} that captures the moving parts of the object. Moreover,
a novel static-during-motion detection (SDMD) module handles the newly static parts that are re-
vealed during the video and adds them to the static part of the object. After obtaining {GM,} with
the time-dependent deformation, we infer the trajectories of each moving primitive and introduce
the sequential RANSAC to group the moving primitives in Stage 111, achieve motion-based part seg-
mentation and articulation estimation (Sec. [3.2). The entire training is supervised solely by RGB
observations: the start-state scan and the monocular video frames. We now describe the details.

3.1 DUAL-GAUSSIAN FOR DYNAMIC-STATIC DISENTANGLEMENT

To achieve motion-based part segmentation and articulation analysis, it is essential to accurately
describe the trajectories of Gaussian primitives based on the given motion video. Although D-
3DGS (Yang et al 2024) can learn time-dependent deformation fields from motion cues in the
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video, it assigns a displacement to all Gaussians, including static ones. This introduces noise that
may harm segmentation and articulation estimation, especially with multiple moving parts, where
all-Gaussian trajectories confuse the part-level structure (Fig. ??). To address this issue, we propose
a dual-Gaussian representation that comprises two sets of Gaussians to separately model the static
base body and the moving components in the given video. The methodology is visually summarized
in Fig.[3] Firstly, we train a vanilla 3DGS based on multi-view of the object in a start state, namely
{G®}, following Eq. ??. Subsequently, given the motion video, we follow D-3DGS to initialize a
moving Gaussian set {G* ¢} and train it with Eq. ??, to make these Gaussians capture the moving
parts in the video and predict the spatiotemporal deformation field. We jointly render and optimize
both sets, {G°} U {GM,t}, directing {G} to model motion cues and removing these moving
elements from {G®} to obtain the static base {G}'}, achieving clean dynamic—static disentanglement
for subsequent part mobility analysis. Newly emerging regions, initially captured by the moving
Gaussian set, are identified by a static-during-motion detection (SDMD) module, which locates
locally rigid components, estimates their local rigid motions, and reassigns them to the static set
according to the predicted transformations.

Dual-Gaussian joint optimization. Using the multi-view scan of the start state, we model the
object’s geometry and appearance via the original 3DGS pipeline. Following the standard train-
. . . o ) N,

ing settings, we obtain a set of initial Gaussians gs(ui, SiyTiy Oiy ) ;—1» Where N, denotes the
total number of Gaussians, including both static and dynamic components. Thereafter, we initial-
ize a sparse point cloud and prepare to learn a time-indexed deformable Gaussian set, denoted as
{GM (g, s5,75), t};v ™. Then, we employ an MLP-based deformation network Fy alongside the

moving Gaussian set to capture the motion trajectory. Specifically, {G™ (15, sj,7;)} ;V ™ represents

the geometric priors in the canonical space, while the changes (§p, d7) in the position and rotations
are learned by the deformation network as:

(Opj, 075) = Fo(v(s9(15)), (1)), M
where ¢ is the input time index, sg represents a stop-gradient operation, and -y indicates the position
encoding (Vaswani et al., [2017). We employ the same network architecture with D-3DGS [Yang
et al.| (2024). To constrain the moving Gaussian set to encode only continuously moving content
in the video, while the start-state Gaussian set {G°} remains static-focused, we jointly optimize
these two Gaussian sets. As shown in Fig. 3] during the initial 10k iterations of the optimiza-
tion, we freeze all attributes of {G°} except opacity o, while {G™ ¢} and the deformation net-
work Fy are trained with the normal adaptive density control. In this process, we progressively
prune the moving elements of {G*} as their opacity decreases over time to obtain the static Gaus-
sian set, namely {G>}, while {G" ¢} fits the moving components in the video (See Fig. ??).
In the following iterations, we unfreeze the static Gaussian set, _
and jointly perform densification and pruning on both sets. ece oooe i
Through the differentiable rendering on the combination of il S A

Figure 4: Renderings of start state

{g,f} and {GM ¢t = t'}, we supervise the total training pro- G
cess with the video frame at the corresponding timestep ¢t =1'.
Since previously unseen areas in the start state, e.g.the interior
structures of refrigerators, washing machines, and cabinets,
will be captured by the moving Gaussian set, we interpolate

an SDMD detection module that audits the moving Gaussian

set and prevents static leakage.

atiqns, we kfjreeze all position-related attribute.s of {QS 1, gl- (left), end state (middle). Without
lowing {G™,} to thoroughly learn the moving parts while gpMD detection, some newly revealed
also adapting to newly revealed static content (Fig. ). Al- gggic parts are wrongly associated with
though such content becomes stationary once revealed, it is  the moving Gaussian set (right).

often already occupied by moving Gaussians, which hampers

the static set from learning this geometry. To address this, we introduce a static-during-motion de-
tection (SDMD) scheme. During joint densification and pruning, we perform trajectory inference
for the moving Gaussians {G* ¢} every 2,000 iterations at ¢ € {0, 0.5, 1}. We then apply sequen-
tial RANSAC with the Kabsch algorithm (Magri & Fusiello, 2016) and a fixed inlier threshold of
0.05 to the resulting trajectory sequence to extract locally rigid motion patterns (details in Sec.[3.2).

Groups whose motion magnitude falls below the preset threshold (defined in Sec. [3.2) are identified
as static, and their Gaussian primitives are reassigned from {G* ¢} to {G5}. Compared with a

{

DRk

Static-during-Motion Detection. During the first 10k iter-
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Figure 5: Stage III: Motion-based part segmentation and articulation analysis. As the clean {QM ,t} pro-
vides time-varying trajectories, Sequential RANSAC groups trajectories into rigid parts (multi-part supported)
without priors or optimization, and directly outputs per-part articulation parameters. The green (top) and purple
(bottom) points are our predicted moving Gaussians.

simple motion-distance filter, our SDMD avoids misassignment near the joint axis (where motion
trajectories are near zero).

3.2 MOTION-BASED PART MOBILITY ANALYSIS

Existing methods typically assume a known number of object parts to infer part mobility. In practice,
they input the ground-truth part count to establish cross-state correspondences, which then serve as
priors for clustering-based part segmentation. In contrast, our core idea is to understand the part
mobility based on the motion cues in the interaction videos. Once the dual-Gaussian representation
decouples the static base and dynamic components, we recover accurate, time-parameterized tra-
jectories for the moving Gaussian primitives over arbitrary time horizons with selectively sampled
timesteps. This enables motion-based part segmentation by clustering moving Gaussians with the
same motion patterns into rigid parts. Therefore, as shown in Fig.[5] based on the clean inferred mo-
tion trajectories, we introduce a simple, robust, purely analysis-based sequential RANSAC
to achieve the part segmentation and estimate articulation parameters. Built on
sequential RANSAC with Kabsch solver (Magri & Fusiello, 2016), AiM automatically recovers the
part number and its kinematic parameters, i.e., joint type, axis direction, and motion magnitude.

Part segmentation. From the time-dependent moving Gaussian set {G ¢} with learned deforma-
tion field Fy, we can infer the centers positions of moving Guassian at timestep ¢ as P; = { ,u%}fv:l
Furthermore, we can easily obtain the one-to-one corresponding trajectory between timestep ¢ and
t’, recorded as {P;_,+}. To extract rigid parts, we employ a sequential RANSAC with a Kab-
sch solver [1976). Unlike conventional start-end matching methods (t =0 v.s. t = 1) or
pre-trained segmentation driven approaches, that require structural priors from manual input or pre-
trained models, our method aggregates evidence across trajectories spanning multiple time windows
to capture diverse motions and improve robustness. For one trajectory of time window {P,_,;}, the
optimal rigid transform is estimated by Kabsch solver, as
2
(Rl too) = argmin ) ( pi — (Rptiva + t)H , @)

it
1€Smin

where Syin is a randomly sampled minimal set. The residual error of each moving Gaussian {GM },
is defined as: o M
ert; = [|piy — (Rasphiva + tas)|l- ©)

A Gaussian QiM is accepted as an inlier if err; < €;;,. After Ngmpling iterations, the largest consen-
sus set is selected as the support set. The motion parameters (R, t) are subsequently re-estimated
from all inliers using the Kabsch solver to obtain one motion hypothesis. The identified inliers are
removed, and the process is repeated on the remaining Gaussians. The procedure terminates when
no valid support set is found, when the maximum iteration budget Npax iter 1S reached, or when the
largest inlier set is small. This sequential RANSAC yields a collection of support sets, each cor-
responding to one rigid part. In this work, to balance accuracy and efficiency, we simultaneously
employ the trajectories of two time windows, Py_,0.5 and Py_1, and compute the mean residual
error across them to determine inliers, as:

ey = 2|l 5 — (R 0502 + t5 0.5l

+ %H//'z,Ml - (RS—HN% + t(*)—>1)||' 4)
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Table 1: Part segmentation performance on articulated objects. (a) Two-part; (b) Three-part; (¢) Complex
objects. For two-part objects, 3D IoU(%) reported as mean=std over 10 trials while for three-part and complex
objects, we report mean 3D IoU(%) over 10 trials D,.4 represents average over all movable parts. £’ denotes
failure. Higher is better; best highlighted; underline indicates comparative results.

(a) Two-part objects

3D 10U (%) 4 | Method | Two-part objects

| | Fridge | Oven | Scissor | USB | Washer | Blade | Storage
PARIS | 85.23 92.19.633 | 83.131571 I 98.5310.48 | 87.841060 | 86.7313.15
Static DTA 66.014+338 86304184 | 88.49410.04 | 83.2 3
Part ArtGS 84.704407 | 88.624030 | 9451404 | 90.914157
Ours-b 81.27 4284 | 55.15414.96 F 83.5941.41
Ours 92421105 | 92934130 | 96981020 | 84.331165 | 914lio7s
PARIS | 55972 67.81415.00 F 32.754929.62 | 344241085 | 42.88
Dynamic DTA 52.06 53.5847.4 7981427 5.9715.64 27.92411.62 | 39.01410.74
Part ArtGS | 58.78.136.40 75.044.9.69 86.85.1037 | 35.62:36.43 | 28.95116.08 | 65.3019.6¢
Ours-b | 57.09417.60 77744375 | 553641452 F 41.7643.31 | 35.54196.04
Ours 751941461 92214109 | 91954118 | 68.52113580 | 439246097 | 69.01.7.42
PARIS | 70.60419.40 | 68.80425 7547 19.01 F 65.6441434 | 6113165 64.81.410.08
DTA 69.16413.5 66.17112.75 | 59.7945.41 83.05.42.2¢ 47234680 55.57 +6.80 63944 57
Mean ArtGS | 73.24193.42 | 80.12494.13 | 79.8746.19 87. 734210 | 65.06420.21 59.931552 76.9916.17
Ours-b | 70.40411.13 | 83484586 | 79514326 | 55.26414.51 F 62.6841047 | 62.06413.79
Ours 81.60+10.48 | 93.66-09s | 92311112 | 92441124 | 82751799 | 64021420 | 80.211737
(b) Three-part objects (c) Complex objects
| 3DIoU | PARIS-m | DTA | ArtGS | Ours | 3DIoU (%) | DTA | ArtGS | Ours
S 89.77 88.53 | 92.23 | 94.20 S 87.95 | 93.32 | 97.01
Storage Dy . 55.32 | 51.78 | 94.95 Storage 7545 Dy 26.38 | 52.23 | 79.34
47024 D, 60.72 | 96.00 | 79.75 Mean 35.18 | 58.14 | 81.87
S 89.55 81.05 | 94.80 | 95.42 S 89.81 | 90.44 | 91.75
Fridge Dy 25.73 55.28 | 88.53 | 89.95 Tables ;49 Daug 37.29 | 38.07 | 43.92
11304 Dy 45.31 61.19 | 80.48 | 91.42 Mean 4780 | 48.55 | 53.49

Per-part articulation parameters estimation. With the selected support sets, we employ the Kab-
sch algorithm to estimate the rigid transformation {(Ry, )}, K is the number of support
sets, i.e., the number of parts. Furthermore, we extract the underlying articulation parameters to
characterize the motion. We follow existing works (Liu et al.l [2023a; 2025} [Weng et al., [2024) and
focus on the following joint articulation parameters: the joint axis position p, joint axis direction
u, translation distance @, rotation angle ©, and joint type (prismatic or revolute). According to
Rodrigues’ rotation formula (Rodrigues, |1840), the rotation matrix R, can be expressed as:

Ry = cos Ol + sin Ok [ug]x + (1 — cos Or)(ur ® ug), 5)

where direction uy, is a unit vector, I is the identity matrix, [-]« is the cross product and ® is the
outer product. From Eq.[5] we can obtain the uj, and Oy, respectively, as:

Rx[2,1] — R[1,2] B
L Rx[0,2] — Rk[2,0] | , © = arccos (M> . (6)

u = ———
2sin Oy Ry[1,0] — Ri[0, 1] 2

For the translation distance ® and the position p (start point) of joint axis, we can calculate them
based on the rotation matrix Ry and translation component t;, as:

.t _
b= | pe= (Re =D (@ ta), ™

For the joint type, inspired by (Shi et al.l 2021} [Liu et al., [2025), we classify the joint type as
the revolute when the rotation degree © exceeds a threshold €,.¢,,,; = 10° (about 0.17 radians) and
prismatic by contrast. Based on this, during static-during-motion detection, a region in moving
Gaussian set is considered static if the rotation angle © and translation magnitude ® are no greater
than 0.1 radians and 0.05 units, respectively.

4 EXPERIMENT

4.1 DATASET, METRICS, AND IMPLEMENTATION

Dataset. We select various articulated objects from PartNet-Mobility (Mo et al., 2019). We rendered
a video of articulated motion using a camera trajectory around the object. To verify the effectiveness
of our prior-free part segmentation, we render objects with multiple parts moving simultaneously
in a variety of motions. For two-state baselines, we render 100 random upper-hemisphere views
of the start and end states, respectively. Our benchmarks include challenging 8 two-part objects,
2 three-part objects, and 2 multi-part objects. Most interior parts are gradually revealed over time,
reflecting real-world applications. (Additional examples are provided in the Appendix ??.)
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Table 2: Mesh reconstruction comparison. (a) Two-part objects; (b) Three-part objects; (¢) Complex objects.
For two-part objects, we report CD distance (mm) as mean=.q across 10 trials. For three-part and complex
objects, we only report mean value, while we report average CD for movable parts. Lower (]) is better.

(a) Two-part objects

Metric | Method

Two-part objects

\ | Fridge | Oven Scissor | USB Washer |  Blade | Storage
DTA 3.1940.80 9.1043.59 941+1.00 2.0440.12 5.03.5 44 0.3319.00 4.94 1014
CD-S | AMGS | 1.58 00¢ | 839000 0.80+0.99 11.012043 | 6634017 123 0.01 7.5010 15
Ours-b 4734053 10.0841 43 2224407 34611173 1.90+0.06 72741078
Ours 3.4510.00 10.3640.73 0.140.00 1.54. .14 9.2540.99 1.76+0.02 7.0940.49
DTA 4.08+0.60 77.61 158659 | 141.99435 39 1.9040.51 481.06-166.34 19.3042.09 67.3313.03
CD-m | ArtGS | 4351947 | 64341566 53. 71190882 | 50.00L19.77 | 155.65100.79 | 473.7217.62 6.9210.54
Ours-b | 18.2714.22 5174054 73.13450.33 19.46.40.46 F 110.46436.00 | 88.85+73.10
Ours 2214018 1.63.10 .25 0.27 1003 0.89.0.10 21.03.1 02 2.36.0.09 18.9542 57
(b) Three-part objects (c) Complex objects
| L | PARIS-m | DTA | ArGS | Ours 1 ‘ DTA ‘ ArtGS ‘ Ours
CD-s 8.05 320 | 358 | 1037
Storage | CD-Dy . 275.87 | 253.69 | 0.81 Storage CD-s 2.08 2.96 2.63
47024 | CD-D, 28770 | 121 | 27.35 8€47648 | CD-mguy | 200.15 | 71.17 | 8.36
CD-s 691 290 | 293 | 8.16 - -
Fridge | CD-Dy | 29829 | 2995 | 12.83 | 3.85 Table; 240 CD-s %’7’6’ 365 | 3.08
11304 | CD-Dy | 189.85 | 323.06 | 12.17 | 212 : CD-mgyyy | 152.93 | 51.40 | 4.99

Table 3: Quantitative evaluation of articulation estimation. (a) Two-part; (b) Three-part; (c) Complex
objects. For complex objects, we report the average of all moving parts. Due to the different magnitudes of part
motion for revolute and prismatic joints, we report both of them. F' denotes failure. WT' denotes that more
than 6 out of 10 trials result in an incorrect joint-type prediction. — indicates prismatic joints w/o rotation axis.

(a) Two-part objects

Metric ‘ Method ‘ Two-part objects

| Fridge | Oven | Scissor | USB | Washer | Blade | Storage
Axis | DTA 1862350 539, 1011 5 0220011 | 173440550 | 1.652035 | 8.1826.50
Ang ArtGS WT WT 239119 23.86135.02 WT 1.3140.14 | 0.000.01
Ours-b 6.7613 .40 3.3643.31 5.1240.46 6.65+4.20 F 0.251420 | 1.7240.67
Ours 2.7041.73 0.27 10.25 1.60.0.38 0.59.10.30 1.6310.00 | 0.1810.17 | 1.5240.88
Axis DTA 1.7541.20 4981438 8.841 476 0.01.10.01 26.50.42.41
Pos ArtGS W1 WT 1.73 4170 6.01+5.60 WT
Ours-b 1.2210.86 1.24 1056 0.8610.55 0.841¢.37 F — -
Ours 0.86..0.31 1131068 0.7510.05 1454071 1124029 - -
PARIS 167.60414.49 | 144.80411.20 | 122.05442 5 F 86.1313.11 0.08.+0.06 | 0.1040.02
Part DTA | 17017741543 | 1421045560 | 1505041109 | 0324015 | 764311107 | 0024000 | 0.0740.06
Motion ArtGS W1 WT 99.09.167.18 120.05419.63 WT 0.144+0.00 | 0.00+0.00
Ours-b 10.67£3.49 7.6441.77 5.2010.40 169414 55 F 0.254420 | 1721067
Ours 6.76..3 40 3361331 5.1240.46 6.654.20 690,555 | 0.01000 | 0.0210.00
(b) Three-part objects (c) Complex objects
[ Methods | Do ‘ Dy
| | Axis Ang | Axis Pos | Part Motion | Axis Ang | Axis Pos | Part Motion | 4 | Angauy | Poseq,, | Motiony,, | Motion?,,
DTA 58.63 38.59 96.56 0.50 0.01 Storage | ArtGS 12.78 3.34 81.93 0.18
Storage | ArGS 20.63 3.83 107.56 1.75 0.13 47648 Ours 0.58 131 10.56 0.02
ams | Ours 0.56 126 166 103 - 0.06 — - — -
DTA 22.02 359.06 178.80 9.48 6.22 38.36 Table ANGs | 3310 ‘ 242 ‘ 82.29 ‘ V43
Fridge | ArGS 13.94 16.95 176.52 333 1579 11.81 29 | Ours | L19 0.81 L10 0.01
11304 Ours 0.68 3.58 3.57 1.67 0.68 4.81

Metrics. We conduct comparisons from three perspectives: 1) Part segmentation performance. To
consider the points inside the surface, we voxelize the meshes and evaluate part-level segmentation
with 3D Intersection-over-Union (loU) (Nie et al., 2021); 2) Reconstruction quality. Following
prior works, we compute the bi-directional Chamfer Distance (mm) to measure the reconstruction
quality; 3) Articulation estimation accuracy. Following prior works, We report the Axis Ang Err
(°), Axis Pos Err (0.1m), and Part Motion (° or m). (More details please refer to Appendix ??).

Implementation Details. We evaluate against recent state-of-the-art methods, PARIS* ﬂ DTA, and
ArtGS, that use RGB—Depth inputs. Our approach requires an RGB video with 200 frames for two-
and three-part objects and 500 frames for more complex objects. We present a baseline, Ours-b,
which replaces the proposed dual-Gaussian representation with a single deformable 3D Gaussian
shape (3DGS). Following ArtGS, we use a truncated signed distance function (TSDF) volume for
mesh reconstruction, render depth maps, and marching cubes (Huang et al.,[2024a).

4.2 QUALITATIVE AND QUANTITATIVE EVALUATION

Part segmentation. As shown in Tab. [T} our method attains the best 3D IoU on almost all objects
in both two-part and multi-part settings. On complex objects, the gains are large, e.g., on Storage

TPARIS is augmented with depth supervision
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Figure 6: Qualitative results of part segmentation and articulation estimation on two two-part objects (fridge,
left; oven, middle) and a complex multi-part object (Storage-47648, right). For the complex object, each pre-
dicted joint axis is visualized using the same color as its corresponding part segmentation mask. Across the
two-part objects, DTA and ArtGS often struggle with mis-segmentation and inaccurate joint-axis/type predic-
tions. In contrast, our method produces clean part segmentation and consistent joint-axis estimation across all
objects, demonstrating strong robustness.

(6 moving parts), our mean dynamic-part IoU exceeds the prior SOTA by +27.11%. Standard devi-
ations are consistently lower, indicating greater stability than two-state inference (e.g., DTA/ArtGS
on Fridge, Oven). Compared with Ours-b, the dual-Gaussian dynamic—static separation further im-
proves accuracy by suppressing static interference.

Mesh reconstruction. We report mesh-reconstruction results in Tab. 2] Despite using RGB-only
inputs, our CD on static parts is competitive with PARIS and ArtGS, and our errors on dynamic
parts are much lower e.g., Storagey7e4s: 8.36 vs. 71.17 (ArtGS); Table: 4.99 vs. 51.40.

Articulation estimation. Our framework attains highly accurate joint predictions (see Tab.[3). For
two-part objects, our axis-angle errors are consistently minimal (e.g., Oven: 0.27° vs. 5.39° of
DTA). For complex objects, the improvements are striking: on Storage, we reduce axis-angle error
from 12.78° (ArtGS) to 0.58°, and part motion errors to nearly zero (0.02 for prismatic joints). This
evidences the advantage of dual-Gaussian representation and motion-based fitting.

Analysis of Two-State Limitations. From qualitative and quantitative results, it can be observed
that two-state methods strongly rely on geometric correspondence between the start and end states.
Once this correspondence is broken, such as the end state reveals interior regions absent from the
start under the close-start/open-end setting, these methods are forced to match dissimilar geometry,
leading to degraded part segmentation and unstable articulation estimation. Most notably, on two-
part objects such as the fridge and oven in Fig. [6] the newly revealed interior structures cause the
canonical mid-state Gaussian initialization in ArtGS to fail. This disturbed canonical Gaussian
initialization propagates to articulation estimation and results in joint-type errors, often predicting a
prismatic joint instead of the correct revolute joint. By contrast, DTA is relatively more stable due
to its symmetric optimization of both the start-to-end and end-to-start transformations, yet it still
misclassifies newly revealed structures, e.g., predicting the oven interior as dynamic or assigning
large portions of the moving fridge door to the static part.

Summary. Overall, compared to two-state motion inference, our method demonstrates stronger and
more stable performance under a challenging close-start/open-end setting. In the two- and three-part
datasets, Articulation in Motion achieves the best results on the vast majority of objects. On com-
plex objects, our approach shows a clear advantage, significantly surpassing prior methods (more
visualizations in Appendix ??). For mesh reconstruction, while our approach still has limitations in
overall mesh fidelity compared with NeRF-based methods, the strength of our part mobility analysis
enables consistently superior reconstruction of dynamic parts over prior state-of-the-art.

4.3 ABLATION STUDY

Effectiveness of start state scan. As shown in Tab. ] while directly training the dual-Gaussian
representation with a set of random Gaussians as the static, 3D IoU” avg drops from 79.34% to
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Table 4: Ablation studies on complex objects. We report the average metrics of dynamic parts. And we
calculate the mean across three trials.

Anguug | Poseqyy | Motiong,, | Motion?,

avg avg

} CD-muy, | 3DIoUZ, 1

ArtGS 12.78 3.34 81.93 0.18 71.17 52.23
w/o start state scan 1.57 1.49 20.61 0.05 97.65 37.60
Storage w/o SDMD 2.62 1.41 14.72 0.06 91.52 71.45
47648 w/o dual-GS 2.95 1.77 15.36 0.08 17.43 67.66
w/o RANSAC 3.80 1.41 12.62 0.38 78.54 67.06
Full 0.58 1.31 10.56 0.02 8.36 79.34
ArtGS 33.19 2.42 82.29 0.43 51.40 38.07

w/o start state scan F
Table w/o SDMD 11.62 1.49 23.74 0.21 18.05 37.10
31249 w/o dual-GS 1.49 0.94 1.47 0.37 6.26 41.74
w/o RANSAC 1.28 0.91 1.25 0.37 6.02 40.65
Full 1.19 0.81 1.10 0.01 4.99 43.92

37.60%. On Table, the pipeline cannot detect the moving Gaussians. These results indicate that the
start state can anchor the shape and appearance of objects and is essential for capturing motion cues.

Effectiveness of the static-during-motion detection (SDMD). Disabling SDMD consistently
harms dynamic geometry and motion recovery. In particular, the sharp increase in CD-maDvg in
both storage and table shows that the filtering of static noise during motion capture is critical to part
mobility analysis. (More visual results please see Fig. ?? in Appendix.)

Effectiveness of dual-GS representation. We assess the dual-Gaussian representation by replacing
it with the original deformable-3DGS. Across metrics, articulation accuracy and part-segmentation
IoU degrade markedly without our dual-Gaussian representation. This confirms that explicit dy-
namic—static disentanglement is a cornerstone for prior-free part mobility analysis.

Effectiveness of sequential RANSAC. We first attempted prior-free density clustering with DB-
SCAN (Ester et al.,{1996), which failed to produce valid partitions across objects. We then applied
K-means (Pham et al., 2004) with the provided part count, yielding reasonable groups but infe-
rior articulation and segmentation. In contrast, sequential RANSAC delivers the best prior-free
performance while remaining robust to motion variability. Given our accurate motion trajectories,
K-means outperforms ArtGS, underscoring the quality of our motion cue extraction.

5 CONCLUSION AND LIMITATION

Conclusion. In this work, we presented a novel pipeline, Articulation in Motion, to achieve a
prior-free and stable part-mobility analysis. Compared to previous works based on two-state shape
correspondence, our method utilizes more natural motion and human-object interaction videos as
input. It introduced a dual-Gaussian scene representation to analyze motion cues in the video. With
the dual-Gaussian dynamic—static separation, we obtained clean motion trajectories; coupled with
the robustness of sequential RANSAC, this enables prior-free part segmentation and articulation on
unseen objects. Comprehensive experimental evaluations validated the effectiveness and stability of
the proposed Articulation in Motion in diverse challenging scenarios.

Limitations and future work. Our AiM generates higher quality segmentation of articulated objects
and recovery of their degrees of freedom (DoF) compared to prior work. We do not require the use
of depth sensing, as done by most prior art techniques; however, we do utilize a video that captures
the DoFs of the object’s parts. Such a video contains more information than a three-dimensional
reconstruction of the object at the start and end states. Yet, in many common cases, this is easier to
capture compared to the former type of data: some objects contain many DoFs, and some are de-
pendent on each other, making it hard to capture all of them with only two static states. The capture
of a video is a more natural way for a person to introduce an object, where they can expose each
DoF at a time. Capturing the whole geometry of internal parts, such as drawers, an extended blade
of a knife, or the blades of a scissors, requires the full disassembly of the articulated object. The
generated geometry is limited to the visible geometry and, as such, may be limited in its application
for developing interactive models. Future work may utilize a data-driven approach to complete such
parts of the whole geometry, given a dataset of these parts.
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