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ABSTRACT

Reinforcement post training (RPT) has recently shown promise in improving the
reasoning abilities of large language models (LLMs). However, it remains unclear
how well these improvements generalize to new domains, as prior work evaluates
RPT models on data from the same domains used for fine-tuning. To understand the
generalizability of RPT, we conduct two studies. (1) Observational: we compare a
wide range of open-weight RPT models against their corresponding base models
across multiple domains, including both seen and unseen domains in their fine-
tuning data. (2) Interventional: we fine-tune LLMs with RPT on single domains
and evaluate their performance across multiple domains. Both studies converge on
the same conclusion that, although RPT brings substantial gains on tasks similar to
the fine-tuning data, the gains generalize inconsistently and can vanish on domains
with different reasoning patterns.

1 INTRODUCTION

Large language models (LLMs) demonstrate strong capabilities across diverse reasoning settings.
In mathematics and quantitative reasoning, recent models achieve near-expert performance on
benchmarks including GSM8K, MATH, and AIME (Cobbe et al., [2021; Lightman et al.| 2023}
Jial [2024; Tunstall & Jial [2024). In code generation and program synthesis, LLMs similarly show
substantial progress across challenging evaluations (Austin et al., 2021} |Chen et al., 2021} Jain
et al.l 2024} |Shi et al. 2024; Zhuo et al., [2025; MatrixStudio, 2024} |Aider-Al [2025). Beyond
these structured domains, LLMs also perform well on knowledge-intensive reasoning spanning
legal, financial, and biomedical tasks (Guha et al. 2023} Zhang et al.; Jin et al.,|2019} |Griot et al.|
2025). A growing body of work shows that reinforcement post-training (RPT) can yield large
performance gains on these tasks. Recent RPT-enhanced models achieve dramatic improvements in
competition-level mathematics and coding benchmarks, in some cases matching or exceeding top
human competitors (Shao et al.,|2024} |Luo et al.| [2025ajb; |Su et al.| 2025b; Zhao et al., [2025a; [Yuan
et al.,2024; |Cui et al., 2025} [Xie et al., 2025; [Teaml 2025a; He et al.,|2025; [Liu et al., 2025 \Google
DeepMind, 2025} [x AIl 20255 |Granite Embedding Team),2024;|OpenAl et al.| [2024; |Anthropic, [2025)).
This raises an important question: does RPT provide generalizable improvements, as broadly as those
achieved through pretraining?

Existing evaluation frameworks and RPT setups provide limited evidence to answer this question. To
address it systematically, we design a two-stage investigation pipeline (Figure[Ta).

First, prior work evaluates RPT models within their fine-tuning domains (Luo et al., 2025bja).
To overcome this limitation, we conduct an observational study in which we evaluate 14 recent
open-weight RPT models with publicly disclosed fine-tuning data alongside their corresponding
base models across a wide range of domains, including legal, financial, and medical benchmarks,
spanning their seen and unseen domains. This study is designed to provide an initial view into the
generalizability of RPT.

Additionally, we notice that these RPT models, as a representative selection of existing open-weight
models such as DeepSeek R1 (DeepSeek-Al et al.;[2025) and RLVR (Su et al., 2025a), are fine-tuned
on mixed domain data. The presence of such confounding factors makes it difficult to isolate and
interpret the generalizability of RPT at a finer granularity. To strengthen our findings, we conduct an
interventional study in which we fine-tune LLMs via RPT on math, coding, and knowledge-intensive
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(a) Overview of our two-stage investigation pipeline. (b) Summary of RPT generalizability.

Figure 1: The method (a) and key findings (b) of our work. Through a unified multi-domain evaluation
framework combining observational and interventional studies, we find that RPT exhibits limited
generalizability across domains.

reasoning data and evaluate their performance on both in-domain and out-of-domain tasks. We
illustrate our methodology in detail in Section [3]

As we summarize in Figure [Ib] our findings show that gains from RPT on domains involving
structured reasoning patterns (e.g., math, code) generalize well within and across structured domains,
but fails to generalize to unstructured domains. In contrast, gains from RPT on unstructured domains
(e.g., legal, finance) do not generalize well within unstructured domains, but show transferability to
structured domains. We analyze these results comprehensively in Section

Our findings suggest that RPT models are most effective when the target task shares similar reasoning
patterns with the RPT data. Consequently, while RPT remains a powerful method for improving
LLMs’ performance, its benefits are largely limited to the domains represented in the fine-tuning data
and do not generalize to a wide range of new, unseen domains.

2 BACKGROUND

In this section, we introduce the motivation behind our study. We begin by demonstrating the strong
performance of LLMs fine-tuned via RPT across various reasoning tasks, particularly in mathematics
and coding. We then discuss the limitations of existing work in understanding the mechanisms and
boundaries of RPT. We close by introducing the data-domain taxonomy grounds our investigations.

RPT models demonstrate promising performance across a wide range of tasks. RPT models
have achieved remarkable improvements on complex reasoning benchmarks. For example, Gemini
2.5 Pro (Google DeepMind, [2025) achieves over 90% accuracy on AIME 2024 (Jia, |2024), a math
competition benchmark. Grok 3 Beta (xAll [2025)) solves roughly 80% of the tasks in LiveCodeBench
v5 (Jain et al.,|2024), a coding benchmark, while Claude 3.7 Sonnet (Anthropic}[2025)) reaches around
85% accuracy on GPQA Diamond (Rein et al., 2023)), a benchmark for graduate-level scientific
reasoning.

Out-of-domain generalizability of RPT models remains understudied. Despite impressive
results, recent work has examined the limitations of RPT models and the opaque nature of their
underlying reasoning capabilities (Teaml 2025b; Yue et al.,|2025; Ma et al., [2025; Ye et al.,|2025]).
In particular, there is growing interest in the role of RPT data, especially the extent to which RPT
algorithms rely on large, diverse corpora to achieve generalization (Zhao et al.| 2025a).

While RPT models benefit from training on diverse, mixed-domain data, this diversity makes it
difficult to directly assess their generalizability to unseen domains. As a result, prior work evaluates
RPT models on tasks within the same domains as their training data (Team, |2025b}; |Yue et al., 2025
Ma et al., 2025; |Ye et al.| [2025)). However, many reasoning tasks remain underrepresented or entirely
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absent from existing training corpora. Exploring the generalizability of LLMs trained with RPT to
such tasks is therefore essential for identifying the boundaries of their applicability in real-world,
complex scenarios.

Understanding RPT generalizability requires a systematic view of reasoning domains. Fol-
lowing the task suites defined in prior work (Su et al.,|2025a), we focus on three major domains of
interest: code, math, and knowledge-intensive reasoning (Figure[Ib). These domains are chosen to
capture a broad spectrum of reasoning challenges commonly seen in language model evaluations. The
knowledge-intensive reasoning domain can be further divided into application-specific subdomains
such as legal, finance, medical, etc. In this paper, we not only examine performance across the
high-level domains, but also evaluate how reasoning patterns and generalization behaviors vary across
subdomains.

Among the three, we consider math and code domain tasks to follow structured reasoning patterns,
where solutions follow deterministic logical steps and require precise syntax and formal semantics
(Su et al., 2025a)). In contrast, tasks within the knowledge-intensive reasoning domain require more
flexible and context-sensitive reasoning, referred to here as unstructured reasoning. We define
unstructured reasoning as problem-solving processes that do not adhere to a fixed sequence of logical
operations and lack a well-defined intermediate representation or symbolic grounding. Such tasks
demand broader world knowledge, interpretive judgment, and the ability to handle ambiguity or
incomplete information. For instance, legal and financial question answering may involve interpreting
lengthy documents, extracting relevant information from loosely connected statements, or evaluating
conflicting evidence. We quantify the rationale of such divisions in Appendix [B}

3 STUDY DESIGN

We present our study design that aims to investigate the generalizability of RPT. We propose the
following research questions (RQs) that have not been systematically examined in prior work.

(RQ1) Cross-domain generalization. To what extent do the capabilities acquired through RPT
transfer to tasks from domains not included in the training data?

(RQ2) Role of reasoning structure. How does the structure of reasoning required by a task
affect generalization? Do skills learned from highly structured domains (e.g., mathematics, code
generation) transfer to less-structured domains (e.g., medical or legal reasoning), and vice versa?

(RQ3) Intra-domain generalization. How effectively do RPT gains generalize across subdomains
within the same domain?

(RQ4) Stability of generalization. Is the generalizability of RPT consistent across different
hyperparameters, such as model size, training algorithm, and the number of RPT steps?

To address these research questions, we design a two-stage pipeline. First, we perform an obser-
vational study by evaluating 14 RPT models, each compared against its corresponding base model
across a diverse set of benchmarks, spanning their seen and unseen domains. Because existing
RPT models are typically trained with different configurations (e.g., different RL algorithms and
hyperparameters) on multi-domain data, it is challenging to isolate the effect of RPT itself from the
advantages brought by specific configuration or data.

To mitigate confounding factors, we further conduct an interventional study, where we fine-tuned three
RPT models from the same base model with the same configuration, each on a disjoint single-domain
dataset. We then evaluate these trained models using the same benchmarks as in the observational
analysis. In the rest of this section, we describe our settings of evaluation and experimental studies
for both studies.

3.1 EVALUATION SETTINGS

Benchmarks. For evaluation, we use 16 popular benchmarks, covering a wide range of domains and
difficulty levels. We categorize these benchmarks into the following three representative domains:
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* Math: For easier questions, we use GSM8K (Cobbe et al., 2021)) and MATH-500 (Lightman et al.,
2023)), while for more challenging problems, we select AIME 2024 (Jia, [2024) and AMC 2023
(Tunstall & Jia, [2024).

* Code: We use easy coding problems, including MBPP (Austin et al., 2021) and HumanEval
(Chen et al} |2021)), and relatively challenging problems, including BigCodeBench (Zhuo et al.|
2025)), LiveCodeBench (Jain et al., 2024}, USACO (Shi et al.| [2024), and Codeforces (MatrixStudio,
2024). To test programming language generalization, we also include the multi-language benchmark
Polyglot (Aider-AlL 2025)).

* Knowledge-intensive reasoning: We use high-quality benchmarks that are not mathematics nor
programming problems for knowledge-intensive reasoning, including PubMedQA (Jin et al.| [2019)
and MedQA (Griot et al., [2025) for medical reasoning, TabFact (Chen et al., 2019) for fact
verification, LegalBench (Guha et al., |2023)) for legal reasoning, and FinBench (Zhang et al.) for
financial problem solving.

Generation Configurations. For all benchmarks, we use a consistent sets of generation hyperparam-
eters across all models. The maximum response length is set to min{16192, C'}, where C' denotes
the model’s context window. For each model, we run the small benchmarks (i.e., AMC 2023 and
AIME 2024) 16 times, while executing all other benchmarks once. For prompting, we apply each
model’s default chat template and system prompt. We evaluate models under 8B parameters on a
single 24 GB RTX A5000 GPU, 8-16B parameters on a single 80 GB H100 GPU, and models above
16B parameters on two 80 GB H100 GPUs.

Evaluation Metrics. To assess whether RPT improves the accuracy performance within or across

domains, we report the aggregated accuracy improvement AE?) of an RPT model ¢ over its base
model j for a given domain D: ‘
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where NV, is the number of problems in ¢, R; is the number of repetitions we executed for ¢, A; ; is
the accuracy of model ¢ on benchmark ¢, and A; ; is the accuracy of model j on benchmark ¢.

In addition, to ensure statistical significance in our findings, we applied the Cochran-Mantel-Haenszel
(CMR) test (Agresti, 2013)), a statistical test for analyzing stratified categorical data. We treat each
benchmark as an independent stratum—that is, a random sample of distinct downstream tasks. Given
an RPT model 7, a base model j, and a domain D of benchmarks, we calculate the common odds
ratio estimate (¢; ;p) that estimates the correlation between the RPT process and the accuracy

improvement on D:
i) _ D ovep NieRiAi (1 — Ajy)
]
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An odds ratio greater than 1 indicates improvement due to RPT; a value less than 1 indicates a
decrease in accuracy due to RPT. We evaluate the statistical significance under the null hypothesis
Hy 955) = 1 against the alternative hypothesis H; : 91(?) # 1, using the standard CHM test
statistics, ’
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which follows a chi-squared distribution asymptotically with 1 degree of freedom. For all reported
values, an asterisk (*) denotes statistical significance at p < 0.05.

3.2 EXPERIMENTAL SETTINGS

Observational Study. To ensure a comprehensive and representative evaluation of RPT model
generalizability, we adopt a systematic approach to selecting models for our observational study:

* Stage 1. We collect the 466 models from Hugging Face applying the following filtering criteria: as of
April 23rd, 2025: (1) the model supports Text Generation tasks, (2) its model card description
contains the keyword reasoning, chain—-of-thought, and/or chain of thought and
(3) the model has received at least 10 likes.
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Table 1: Selected RFT models for observational analysis. The RET Domain (s) refers to the
domain(s) covered in the RFT training data.

(Model ID) RPT Model Base Model \ RPT Domain(s)
(1) DeepScaleR-1.5B-Preview (Luo et al.}|2025b DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-Al et al.}2025) | Math
(2) DeepCoder-1.5B-Preview ( 20252} DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-Al et al,"ﬁ Code
(3) Skywork-01-Open-! Llama -8B ( Llama-3.1-8B-Instruct (Meta AI| 20! Code, Math
(4) Eurus-2-7B-PRIME \ Eurus-2-7B-SFT ( STY Code, Math
(5) Absolute_Zero_Reasoner-Coder-3b \ Qwen2.5-Coder-3B (H Code
(6) Absolute_Zero_Reasoner-Coder-7b (Zhao et al | Qwen?2.5-Coder-7B (Hur et al.| Code
(7) ZR1-1.5B Zyphra w DeepSeek-R 1-Distill-Qwen-1.5B { Code, Math
(8) Llama-3.1-Nemotron-Nano-8B-v1 W Llama-3.1-8B-Instruct 4 Instruction Following
9) Thespls -Llama-3.1-8B Meta-Llama-3.1-8B-Instruct-abliterated ( 2024) Chat
mmm DeepSeek-R1-Distill-Qwen-1.5B (DecpScek-Al et al. w Math
DeepSeek-R1-Distill-Qwen-7B w Code, Math
Llama-3.1-8B-Instruct ( 12024b Finance
OREAL-7B-SFT )| Math
DeepSeek-R1-Distil[-Qwen-1.5B Math
B-P DeepSeek-R1-Distill-Qwen-14B Code
( OREAL-32B-SFT (Lyu et al.| 2025} Math
Qian et al. {2025 Qwen3-14B (Team Finance
(J(\)Abiolute Zero_Reasoner-Coder-14b 1Zhao et al.] 2()25a| Qwen2.5-Coder- u1 et al. 2()24I 'Yang et al.] 2024| Code

e Stage 2. We use o4-mini [2025)) to prefilter models potentially trained with RPT, based
on their model card descriptions. This automatic filtering is followed by manual verification,
resulting in 31 models that we confirm to be RPT models.

*» Stage 3. From the 31 RPT models, we manually select 12 that meet the following criteria: (1) the
RPT datasets are publicly disclosed, (2) the model sizes range from 1.5B to 8B parameters, and (3)
the base models are not purely pretrained models, ensuring they can generate coherent responses
and follow basic instructions for evaluating reasoning capabilities.

We evaluate Absolute_Zero Reasoner—Coder-3B, fine-tuned with limited RPT data but
demonstrating strong performance on math and code reasoning tasks. We view it as a representative
case for examining RPT generalizability. We also evaluate the variants of all selected RPT models
with more parameters, whenever such variants are available.

We finalize our selection of 18 RPT models, with the details, including base models and RPT
domains, presented in Table[I] For each RPT model and its corresponding base model, we compare
performance across 16 benchmarks.

Interventional Study.  To isolate the effect of RPT from other training configurations, in-
cluding datasets, algorithms, and hyperparameters, we trained three RPT models based on
DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-Al et al.,[2025)) on three disjoint datasets—
math, code, and knowledge-intensive reasoning—respectively. We curated training datasets based on
existing datasets that leads to performant RPT models and cleaned them to ensure that the training
datasets does not overlap with our evaluation sets. We built the following datasets:

* Math: we uniformly sampled 40,000 problems from a combination of the math split of Eurus-2-RL
(Cui et al., [2025)), which originates from the NuminaMath-CoT dataset (LI et al., [2024).

* Code: we uniformly sampled 40,000 deduplicated problems from a combination of KodCode (Xu

et al.,[2025)), DeepCoder-Preview (Luo et al.,[2025a), Apps (Hendrycks et al., 2021)), TACO
et al.,[2023), and the code split of Eurus-2-RL (Cui et al,[2025).

* Knowledge-intensive Reasoning: we selected 40,000 high-quality, non-math, and non-code data
from the multi-subject RLVR dataset (Su et al.| [2025b). To achieve that, we applied 03-mini
(OpenAl, 2025) to exclude math-related, code-related, or fact-recall questions.

We applied consistent settings for all three RPT training processes. In terms of the RL algorithm,
we applied Group Relative Policy Optimization (GRPO) with the same setting as DeepCoder
, with the reward definitions and dynamics included in Appendix [D} In terms of
hyperparameters, we trained each of the dataset for one epoch with a batch size of 64 and a context
length of 8,192. To stabilize the training process, we used a learning rate of 10~° and an entropy
coefficient of 0. We fine-tuned the models on 8 80GB H100 GPUs.

Furthermore, we conducted four additional experiments under alternative settings, to validate our
conclusions about the generalizability of RPT,
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Table 2: Existing Open-sourced RPT models achieve significantly larger accuracy gains A (%) and
odds ratios # on in-domain (ID) tasks compared to out-of-domain (OOD) tasks.

Metric (1) (2) (3) 4 (5 (6) 7)) (8) (9 (100 (11) (12) (13) (14) (15 (16) (17) (18) | Avg.
AUD) 4 540 461 696 1162 -627 30.2 282 707 -2601 431 -427 -384 041 -059 -1.87 061 -3.60 2501 | 2.87
A0OD) 167 401 -2641 -370 255 2331 -547 1322 473 -133 739 2789 844 034 568 -0.04 -543 2434 |-3.19
AUD) _ A©OD) | 373 060 3337 1532 -882 5343 830 -615 -213 564 312 2405 -885 -025 381 065 18 067 | 607
4UD) 1 136*  1.45°  1.59*  2.37° 0.52°  22.47%  1.22°  1.34*  0.34*  1.28* 0.72°  0.83° 097 097 087 106 085" 1558 | 3.10
§O0D) ¢ 1.07* 118" 0.31*  0.86* 1.15* 041* 0.80* 1.98" 0.68* 0.95* 0.69* 0.30° 1.47° 099 0.71* 1.00 0.70* 850" | 132
gUP /gOOD) | 127 122 515 275 045 5461 153 068 050 135 103 274 066 098 122 106 120 183 | 446

1. We trained with DAPO (Yu et al.| [2025), a state-of-the-art RL algorithm.
2. We extended the training process to 2 epochs and evaluated intermediate checkpoints.
3. We trained with L1lama—-3.2-3B-Instruct (Meta Al 2024a) as the base model.

4 FINDINGS

In this section, we present the findings of our study based on results from observational and interven-
tional studies. We summarize our findings as follows:

* (RQI) RPT does not exhibit generalizability in arbitrary unseen domains (Section ..

* (RQ2) RPT demonstrates cross-domain generalizability when reasoning patterns are similar, such
as mutual transfer between math and code, but fails to generalize across distinct reasoning patterns,
such as from math or code to knowledge-intensive reasoning (Section [4.2).

* (RQ3) Intra-domain generalizability of RPT strongly depends on the structural similarity between
subdomain tasks (Section 4.3)).

* (RQ4) The generalizability of RPT is consistent across different hyperparameters (Section {.4).
4.1 RPT GAINS DO NOT GENERALIZE TO ARBITRARY UNSEEN DOMAINS

Existing RPT models fail to transfer beyond their training domains. We begin by analyzing
our observational study, which evaluates a diverse set of existing RPT models using multi-domain
tasks. Specifically, we compare the performance improvements of each model in tasks from the
same domain as their training data (I D), and tasks that are out-of-domain with their training data
(OOD). For instance, (1) DeepScaleR-1.5B-Preview is trained exclusively on math-related
data. Therefore, I D tasks for this model include GSM8K, MATH500, AIME 2024, and AMC 2023,
while all other tasks (e.g., legal, medical, coding) are OO D.

We present the results in Table[2] Across the table, RPT models exhibit considerably higher improve-
ments on /D tasks compared to OOD tasks, with a 2.87% increase in pass@1 for ID tasks, but a 3.19%
decrease for OOD tasks. For example, (/) DeepScaleR-1.5B-Preview shows a 5.1% gain in pass@1
on math domain tasks, but only 1.7% in others, representing a 3x drop. This lack of generalizability
stems from the RPT algorithm itself rather than simply from overfitting to large-scale training data:
notably, a similar trend is observed in (6) Absolute_Zero_Reasoner—-Coder—7B, which was
fine-tuned on a near-zero amount of data. Despite its minimal training data exposure, this model
experiences a 23.31% decrease in pass@1 accuracy on unseen domains, while achieving a 30.12%
improvement within its RPT domain. We also observe that the generalizability of RPT algorithms is
sensitive to the training data, implementation details, and finetuning strategy. For example, although
all trained on math data, (/) DeepScaleR-1.5B-Preview demonstrates improvements in both
ID and OOD tasks, whereas (7) ZR1-1.5B and (/0) STILL-3-1.5B-Preview show statisti-
cally significant performance gains in I D tasks as well as statistically significant performance drops
on OOD tasks. These findings suggest that the gains from RPT are largely domain-specific: models
significantly improve on tasks similar to their training data, but fail to generalize robustly to other
unseen domains.

Single-domain finetuning reinforces evidence of RPT’s limited generalizability. To further
dissect the generalizability limitations identified in our observational study, we conduct a more
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In-Domain Out-of-Domain I In-Domain Out-of-Domain
Math-RPT | 13
Model -1.81
Code-RPT | 4.21 1.38*
Model -1.08 0.96*
Knowledge-RPT| |7:10 0.88* :
Model 0.54 1.04
3 2 1o 1 2 3 4 07 08 09 10 11 12 13 14 15
Pass@1 Improvement (%) Odds Ratio

Figure 2: RPT models on single domains show significant pass@ 1 improvements over base models
and higher odds ratios on in-domain tasks, but not on out-of-domain tasks. No single-domain model
achieves statistically significant gains in out-of-domain tasks.
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Figure 3: Multi-domain evaluation results of existing RPT models. We highlight in-domain results
with frames. RPT shows mutual generalizability between math and code, one-way transfer from
knowledge-intensive reasoning to math and code, but no generalization from math or code to
knowledge-intensive reasoning.

controlled investigation by isolating models fine-tuned exclusively on single domains. To do so, we
analyze our interventional study results, where I D corresponds to the training domain, while OO D
include all tasks from the remaining two domains in our evaluation.

As shown in Figure[2] none of the models fine-tuned on a single domain exhibit statistically significant
improvement on OO D tasks. Both the Math-RPT model and the Code-RPT model show performance
drops on OOD tasks with statistical significance, in contrast to the statistically significant gains they
achieve in-domain. The Knowledge-RPT model also demonstrates no statistically significant gains
on its OOD tasks.

4.2 RPT GAINS GENERALIZE ACROSS DOMAINS WITH SIMILAR REASONING PATTERNS

Structured-to-structured generalization is effective. We observe that models fine-tuned on math
and code data exhibit strong mutual generalizability. In our observational analysis (Figure [3), models
fine-tuned exclusively on math or code demonstrate transferable performance gains across these two
domains. For example, models fine-tuned on math domain data achieve an average improvement
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Figure 4: Multi-domain evaluation results of single domain RPT models. We highlight RPT domains
with frames. RPT demonstrates generalizability from math to code and from knowledge-intensive
reasoning to math, but shows no generalizability from math or code to knowledge-intensive reasoning.

of 2.18% in pass@1 on math domain tasks and 4.77% on code domain tasks. Similarly, models
fine-tuned on code domain data improve by 9.49% in pass@1 on code domain tasks and 15.44% on
math domain tasks. In both cases, the improvement is even greater on the non-finetuned domain,
suggesting that math and code tasks share common structured reasoning patterns that enable RPT to
generalize effectively across these domains.

Structured reasoning patterns that are more foundational tend to exhibit stronger cross-domain
transfer. Building on the findings from our observational study, we further examine the generalizabil-
ity across structured reasoning domains using interventional study results from models fine-tuned on
single domains (Figure[d). We observe that the generalizability from math to code is notably stronger
and more consistent than the reverse. This aligns with the intuition that mathematical reasoning is a
more fundamental form of structured thinking, serving as the backbone for coding tasks, and thus
enables better cross-domain transfer when used as RPT data. We provide a quantitative analysis of
reasoning trace similarity across structured domains in Appendix [B1}

Structured-to-unstructured generalization is limited. Models trained on structured reasoning
domains—such as math and code—exhibit substantially reduced improvements when evaluated on
knowledge-intensive domain tasks. In our observational study (Figure [3), models fine-tuned on
structured reasoning domains (i.e., math, code, or both) achieve an average improvement of -0.27%
in pass@1 on knowledge-intensive domain tasks, compared to significant gains of 11.08% on math
and 5.82% on code tasks. While the improvements in math and code domain tasks are statistically
significant, the performance drops on knowledge-intensive reasoning tasks, indicating a lack of
generalizability to unstructured domains. For instance, in the (/) DeepScaleR-1.5B-Preview
and (2) DeepCoder—1.5B-Preview pair, the observed gains in math and code domain tasks are
both significantly higher than those in knowledge-intensive domain tasks. Our interventional study
results further confirm this trend (Figure [): while the Math-RPT model shows improvements in
both math and code domain tasks, its performance drops notably on knowledge-intensive domain
tasks. Similarly, the Code-RPT model shows a statistically significant drop in performance on
knowledge-intensive reasoning tasks. These results suggest that although structured reasoning skills
generalize well across similarly structured domains, they fail to transfer effectively to domains that
require less structured, more heterogeneous reasoning patterns.

Unstructured-to-structured generalization is promising. RPT models trained on unstructured
knowledge-intensive domain data still exhibit measurable gains in structured tasks. In our observa-
tional study (Figure 3)), knowledge-intensive domain RPT models show substantially higher pass@1
improvements on math (21.40%) and code (12.16%) tasks compared to tasks within the knowledge-
intensive reasoning domain. Similarly, in our interventional analysis (Figure ), the Knowledge-RPT
model achieves statistically significant gains on math domain tasks and shows no noticeable degrada-
tion on code domain tasks, while underperforming on tasks within its own domain. This suggests
that unstructured reasoning patterns encompass broader representational complexity and implicitly
subsume the essential components of structured reasoning, functioning as a conceptual superset.
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Table 3: RPT configuration variants consistently fail to improve generalizability, as shown by accuracy

gains A (%) and odds ratios 6 on in-domain (ID) tasks versus out-of-domain (OOD) tasks across
different base models and RPT algorithms.

Base Model + RPT Algorithm AUD) 4 AOOD) 4 AUD) _ A(OOD) | jID) 4 §(OOD) 4 §ID) /§(0OD)
DeepSeek-R1-Distill-Qwen-1.5B + GRPO | 3.13 181 4.94 1.1881%  0.9269" 12812
Llama-3.2-3B-Instruct + GRPO 6.47 1.41 5.06 1.4694*  1.0635* 1.3817
DeepSeek-R1-Distill-Qwen-1.5B + DAPO | 3.96 -1.27 5.23 1.2395*  0.9482* 1.3070

4.3 INTRA-DOMAIN RPT GAINS DEPEND ON SUBDOMAIN STRUCTURAL SIMILARITY

Structured reasoning patterns generalize effectively within domain. Consistent with prior work
on math and code reasoning, our observational study shows that models fine-tuned on structured
domains generalize well across tasks within the same domain (Figure[3). On average, models trained
on math data achieve a pass@ 1 improvement of 2.18% on math tasks, while models trained on code
data show an average improvement of 9.49% on code tasks. Our interventional analysis further
confirms this trend where structured-domain models (i.e., the Code-RPT model and the Math-RPT
model) exhibit the largest gains on tasks from their corresponding training domain (Figure d). These
results suggest that data following consistent and structured reasoning templates facilitates reliable
generalization within the same domain, as downstream tasks can leverage similar inductive patterns.

Unstructured reasoning patterns lack intra-domain consistency. In contrast, models trained
on knowledge-intensive domain (unstructured) data demonstrate limited or negative transfer to
other unstructured tasks from different domains in our observational study (Figure 3. For instance,
Finol-8B (model (12)), fine-tuned on financial data, exhibits notable performance drops when
evaluated on all unrelated knowledge-intensive domain tasks. Its pass@1 on PubMedQA (medical
domain) declines from 3.26% to 1.28%, on LegalBench (legal domain) from 6.42% to 4.84%,
and on TabFact declines from 64.18% to 48.39% (general tabular knowledge). Our interventional
results reinforce this observation: the Knowledge-RPT model underperforms the base model on
knowledge-intensive domain tasks, with the degradation in accuracy being statistically significant
(Figure ). This suggests that, unlike structured domains, unstructured reasoning tasks are highly
diverse and domain-specific. They lack a shared logical template, making it difficult for RPT to
generalize even within what is nominally the same domain.

We provide quantitative evidence for intra-domain diversity of different domains in Appendix
4.4 RPT GENERALIZABILITY REMAINS WEAK ACROSS CONFIGURATION VARIANTS

RPT generalizability is consistent across different algorithms. By comparing the in-domain and
out-of-domain performance differences between GRPO and DAPO on the math domain (Table ,
we observe that both algorithms yield similar gain gaps. This suggests that despite their procedural
differences, the core optimization behavior of RPT dominates, leading both algorithms to learn
essentially the same domain-specific reasoning patterns.

RPT generalizability is consistent across different base models. By comparing the in-domain and
out-of-domain performance differences between base models of DeepSeek-R1-Distill-Qwen-1.5B
and Llama-3.2-3B-Instruct on the math domain (Table E]) we observe that both base models similar
gain gaps. This suggests that the lack of generalizability in RPT is inherent to the RPT process itself,
rather than a consequence of the base model architecture or pretraining data.

RPT generalizability decreases as training steps increases. As we show in Figure[5| the gap
between in-domain and out-of-domain gains increases as the number of training steps increases and
eventually stabilizes. This indicates that model generalizability gradually declines as RPT progresses.
The reason is that increased exposure to the domain-specific data leads the model to overfit, improving
in-domain performance while offering diminishing gains out-of-domain. The eventual convergence
from a full epoch onwards occurs because the model is repeatedly trained on the same finite collection
of data, limiting further changes in the in-domain—out-of-domain gap. We conduct more fine-grained
evaluations and analyses in Appendix
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Figure 5: In-domain and out-of-domain improvements during RPT training on the math domain. The
gap between in-domain and out-of-domain improvements grows as training progresses.

Larger model size do not lead to better generalizability. By comparing performance differences
across model-size variants within the same model family, we find that the average in-domain gain
increases by 16.5% more than the out-of-domain gain as model size grows. This pattern is consistent
with the intuition that larger models are more prone to overfitting the domains on which they were
RPT-trained, thereby amplifying in-domain improvements without corresponding generalization
benefits. We present detailed results and analysis in Appendix [C|

5 RELATED WORK

RPT algorithms and frameworks. RPT with verifiable reward has received significant attention
in building powerful reasoning models, following the release of OpenAl ol (OpenAl et al.| [2024)
and DeepSeek-R1 (DeepSeek-Al et al., [2025). RPT models has proven effective for a broad range
of tasks with well-defined correctness: ranging from structured tasks such as math (Xiong et al.|
2025} (Cut et al., [2025)) and coding (Wei et al.| 2025} |Shojaee et al., [2023} [Le et al., 2022} |Shen &
Zhang 2024), to unstructured tasks like search engine use (Jin et al., 2025) and open-ended question
answering (Su et al}2025a)). However, all these models are trained and evaluated on tasks within a
single domain or task type. Even works on general knowledge (Su et al.,|2025a)) remain confined to
open-ended question answering tasks, without testing transfer across fundamentally different task
types. In contrast, our work directly addresses this cross-domain generalization gap.

Limitations of RPT. Despite the recent successes of RPT in improving language model reasoning
capabilities, the limitations of RPT in general have been widely studied. At the training phase, SFT
with LLM reasoning traces, without RL, has been shown to be effective enough (Teaml 2025bj |Yue
et al.,2025). At the inference phase, the quality of reasoning models depends crucially on their ability
to scale under test-time compute constraints (Muennighoff et al., 2025 [Zhao et al.,|2025b). Moreover,
the effectiveness of LLMs’ lengthy “thinking” processes has also been challenged (Ma et al., 2025}
Ye et al.|[2025). Building on these observations, our work aims to examine the limitations of RPT at
a finer granularity, specifically its data generalizability across the training and inference phases.

6 CONCLUSION

In this paper, we identify important limitations in the generalizability of RPT across domains.
Through both observational and interventional studies, we consistently find that while RPT produces
substantial improvements within training domains, its generalization to unseen domains is limited. In
particular, while there is evidence of cross-domain transfer between structured domains like math
and code, there is little evidence of transfer to unstructured domains. Our work emphasizes the need
for a more nuanced understanding of cross-domain knowledge transfer in LLMs.
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7 REPRODUCIBILITY STATEMENT

We will opensource our code, data, and models upon acceptance.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

No LLMs were used in the ideation, writing, or preparation of this paper. All content was conceived,
drafted, and revised solely by the authors.

B REASONING TEMPLATE ANALYSIS

To better interpret the generalizability across domains, we analyze the reasoning templates used
in different types of tasks. Specifically, we randomly sampled min(dataset size, 100) tasks from
each evaluation benchmark, resulting in 1,470 task instances in total. We then used Claude Sonnet
4.5 (Anthropicl 2025)), the state-of-the-art periphery reasoning model with exposed reasoning traces,
to complete the selected tasks. Next, we collected the generated reasoning traces and used GPT-
40 (OpenAll 2024) to tag each step of the reasoning traces using the following taxonomy:

* READ_RESTATE: Restating or understanding the question.

» SETUP: Defining variables, listing assumptions, establishing context, or initializing struc-
tures.

* PLAN: High-level strategy, decomposition, or outlining an algorithm.

« EXECUTE_STEP: Any intermediate logical, mathematical, algorithmic, computational, or
transformational operation.

* CONTROL_FLOW: Branching, case analysis, loops, recursion, or considering alternative
scenarios.

* VERIFY: Testing, checking correctness, or performing sanity checks.
e FINAL_ANSWER: Final conclusion or solution.
* OTHER: Anything not fitting the categories above.

Finally, we quantitatively analyzed the divergence of the reasoning templates in the tagged traces
within and across domains. We used the Jeffreys divergence (Jetfreys,|1961)) to measure the symmetric
divergence between step-type distributions.

We present the detailed distribution of each domain in Figure[6] We observe that the annotations
are of high quality: almost no steps are labeled as OTHER, indicating that our tagset provides
comprehensive coverage of the reasoning process. Building on this, we find that EXECUTE_STEP
is the most dominant category across all three domains. PLAN is particularly important in math
and code tasks, reflecting their structured, multi-step problem-solving nature, while SETUP plays
a comparatively larger role in knowledge-intensive tasks, where establishing context or recalling
background information is crucial.

We now use the distribution vectors to quantify our hypothesis in Section ]

B.1 MATH AND CODE DOMAINS SHARE SIMILAR REASONING TEMPLATES (§4.2)

We computed the Jeffreys divergence (Jeffreys| |1961) between two domain-level reasoning—step
distributions, which is obtained by aggregating the tagged traces of each domain and normalizing
single-domain traces into probability distributions. Using these aggregated distributions, the Jeffreys
divergences are 0.18 (between math and code), 0.29 (between math and knowledge-intensive), and
0.69 (between code and knowledge-intensive). This indicates that math and code share more similar
reasoning templates, while knowledge-intensive tasks require substantially different reasoning.

B.2 KNOWLEDGE-INTENSIVE DOMAIN HAS LARGER INTRA-DOMAIN VARIANCE (§@

We compute the Jeffreys divergence between every pair of datasets within each domain, using the
normalized reasoning—step distributions for each dataset. Averaging over all pairwise comparisons,
the Jeffreys divergences 0.15 (within the math domain), 0.14 (within the code domain), and 0.19
(within the knowledge-intensive domain). This indicates that knowledge-intensive tasks exhibit a
more diverse set of reasoning templates compared to math and code tasks.
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Figure 6: Distribution of reasoning-step tags across domains.

Table 4: Larger model size does not improve generalizability, as shown by accuracy gains A (%) and
odds ratios 6 on in-domain (ID) tasks compared to out-of-domain (OOD) tasks across different size
variants. For difference-based metrics, the model size effect is computed as the average difference
between the larger and smaller variant (Large — Small); for ratio-based metrics, the model size effect
is computed as the average ratio (Large / Small).

Model AUD) 4 A(00D) 4 AUD) _ A(0OD) | §(ID) 4 §(OOD) 4 é(ID)/é(OOD)
DeepCoder-1.5B 4.61 4.01 0.60 1.4496* 1.1840* 1.2243
DeepCoder-14B -1.87 -5.68 3.81 0.8715* 0.7122* 1.2238
OREAL-7B -0.41 8.44 -8.85 0.9714 1.4724* 0.6597
OREAL-32B 0.61 -0.04 0.65 1.0571 0.9982 1.0590
Fino1-8B -3.84 -27.89 24.05 0.8319* 0.3034* 2.7420
Fin-01-14B -3.60 -5.43 1.83 0.8481* 0.7047* 1.2034
AZR-Coder-3B -6.27 2.55 -8.82 0.5235* 1.1517* 2.7420
AZR-Coder-7B 30.12 -38.80 68.92 22.4671*  0.2452* 91.6456
AZR-Coder-14B 25.01 24.34 0.67 15.5878*  8.5023* 8.5023
Model Size Effects | 9.56 7.98 1.58 | 12.683 7.645 6.610

C RPT GENERALIZABILITY ON MODELS ACROSS DIFFERENT SIZES

By examining the performance differences across model-size variants in Table 4] we observe no
clear trend indicating improved generalizability with larger models. Several models exhibit reduced
generalizability as size increases. We believe this is because larger models more effectively overfit
to the domains on which they were RPT-trained. The primary exception is the Fino family, whose
improved generalizability is explained by a change in base model rather than model size itself
(Fino1-8B is based on Llama, whereas Fin-o1-14B uses Qwen3-14B).

D REWARD SIGNALS DURING INTERVENTIONAL STUDY

D.1 REWARD DEFINITIONS

Following prior work that has demonstrated promising performance (Luo et al., [2025ab; [Yu et al.]
20235)), we use domain-specific binary reward functions:

* Math: 1 if model’s answer is mathematically equivalent to the ground truth; otherwise 0.
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Figure 7: Training rewards of our RPT training runs for math, code, and knowledge-intensive domains.

Over the 625-step training process, the 50-step moving average training rewards of math, code, and
knowledge-intensive domains increase by 9.7%, 21.7%, and 71.0%, respectively.

Table 5: Mixed-domain RPT performance compared to the best single-domain RPT model. The
effects column reports differences for ADP) (Mixed — Min) and ratios for 6(D) (Mixed / Min).

Mixed-RPT Min(RPT) Effects
A\ (Knowledge) 4 217 -3.98 1.81
A(Code) 4 1.91 -0.02 1.93
A Math) 4 -3.62 -0.15 -3.47
§(Knowledge) 4 0.91* 0.88* 1.03
§(Code) 4 1.18* 1.00 1.18
f(Math) 4 0.83 0.98 0.85

* Code: 1 if model’s answer passes all unit tests; otherwise 0.

* Knowledge: 1 if model’s answer matches the ground truth string; otherwise 0.

For extraction, we use symbolic and string-based equivalence checking for math via the
math-verify package (Kydlicek & Gandenberger, [2025), unit tests for code, and string-based
checking for general knowledge. To quantitatively assess reward quality, we sampled 100 training
examples and manually verified the correctness of their reward signals. The correctness rates for
math, code, and general knowledge are 94%, 99%, and 97%, respectively, indicating consistently
high reward quality across domains.

D.2 OPTIMIZATION DYNAMICS

In this section, we show the optimization dynamics of our RPT training runs. We present the training
rewards for each domain in Figure[/| For each domain, we show the raw training rewards and the
moving average rewards over 50-step windows.

As shown in the figures, we find that the training rewards of all domains exhibit noticeable increase
over the course of RPT training. Quantitative, the 50-step average training rewards of math, code,
and knowledge-intensive domains increase by 9.7%, 21.7%, and 71.0%. This shows that the model
learned domain-specific reasoning techniques in single-domain RPTs, which in turn improves the
task-specific performance.

E MIXED DOMAIN TRAINING

We train an additional model using a mixed-domain dataset, created by randomly sampling 13,333
data points from each of the single-domain datasets. As shown in Table [5] the mixed-domain
RPT model achieves an overall 2.7 percentage-point accuracy improvement compared to individual
single-domain RPT models.Importantly, this mixed-domain result should be interpreted as a lower
bound: because we simply drew a small, uniformly sampled subset from each domain without any
optimization, a more principled mixed-domain curation strategy could potentially yield even stronger
performance.
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F PER MODEL PER TASK RESULTS

F.1 OBSERVATIONAL STUDY RESULTS

Table 6: Observational study results. The model IDs corresponds to Table

Model pubmedqa medqa aime2024 gsm8k math500 amc23 tab_fact legalbench finben livecodebench codeforces polyglot humaneval bigcodebench mbpp usaco

1-RPT 0.640 0.242 0.331 0.823 0.892 0.697 0.694  0.597 0.547 0.230 0.033 0.009 0.713 0.126 0.511 0.065
1-Base  0.616 0261 0279 0.747 0.842 0.683 0.668 0.586  0.520 0.175 0.024 0.000 0.652 0.112 0.474 0.052
2-RPT 0.632 0242 0375 0.848 0906 0.711 0.714  0.617 0.580 0.235 0.043 0.013 0.701 0.130 0.584 0.055
2-Base  0.616 0261 0279 0.747 0.842 0.683 0.668 0.586  0.520 0.175 0.024 0.000 0.652 0.112 0.474 0.052
3-RPT 0214 0.025 0.09 0888 0.798 0.497 0.071 0.339  0.176 0.150 0.027 0.049 0.780 0.425 0.647 0.029
3-Base  0.326 0266 0.029 0.766 0.464 0323 0.642 0611 0316 0.110 0.009 0.009 0.640 0.397 0.675 0.016
4-RPT 0.710  0.355 0.177 0917 0.774 0.648 0.688 0.527 0524 0.188 0.021 0.009 0.543 0.172 0.621 0.033
4-Base  0.714 0401 0.062 0.812 0.080 0405 0.650  0.550 0.620 0.110 0.004 0.000 0.543 0.079 0.589 0.013
5-RPT 0.508 0.250 0.010 0424 0370 0.125 0.539 0.200  0.360 0.052 0.003 0.009 0.030 0.073 0.560 0.000
5-Base  0.474 0211 0.006 0434 0412 0.110 0460  0.159 0.388 0.043 0.003 0.013 0.268 0.179 0.673 0.003
6-RPT 0592 0395 0.046 0.801 0.662 0.369 0.761 0.175  0.504 0.128 0.014 0.013 0.378 0.382 0.768 0.029
6-Base  0.622 0.233 0.008 0.114 0496 0.141 0.228 0.617  0.580 0.013 0.001 0.004 0.104 0.068 0.005 0.007
7-RPT 0.668 0.265 0.317 0.804 0.864 0.683 0.709 0.600  0.266 0.200 0.036 0.004 0.640 0.102 0.552 0.055
7-Base  0.616 0261 0279 0.747 0.842 0.683 0.668 0.586  0.520 0.175 0.024 0.000 0.652 0.112 0.474 0.052
8-RPT 0320 0316 0562 0.718 0952 0.745 0460  0.628  0.603 0.385 0.170 0.000 0.848 0.357 0.597 0.388
8-Base  0.326 0.266 0.029 0.766 0.464 0323 0.642  0.611 0316 0.110 0.009 0.009 0.640 0.397 0.675 0.016
9-RPT 0.724 0501 0.015 0.636 0.448 0.151 0.615 0.220  0.587 0.050 0.004 0.004 0.189 0.109 0.129 0.007
9-Base  0.732 0496 0.008 0.695 0224 0.120 0.616  0.603  0.662 0.060 0.008 0.000 0.573 0.261 0.271 0.000
10-RPT  0.620 0245 0294 0.809 0.862 0.727 0.650  0.558  0.541 0.175 0.021 0.000 0.622 0.082 0.518 0.039
10-Base  0.616 0261 0279 0.747 0.842 0.683 0.668 0.586  0.520 0.175 0.024 0.000 0.652 0.112 0.474 0.052
11-RPT  0.740 0304 0367 0911 0924 0825 0.791 0.690  0.603 0.311 0.063 0.004 0.817 0.251 0.810 0.143
11-Base  0.740 0324 0.581 0914 0.940 0.908 0.808 0.748  0.738 0.328 0.094 0.027 0.817 0.320 0.826 0.186
12-RPT  0.128 0304 0.029 0.753 0.414 0227 0484 0287 0277 0.018 0.002 0.049 0.543 0.360 0.630 0.010
12-Base  0.326 0266 0.029 0.766 0.464 0.323 0.642 0.611 0316 0.110 0.009 0.009 0.640 0.397 0.675 0.016
13-RPT  0.368  0.110 0263 0.898 0.802 0.728 0.276  0.566  0.361 0.068 0.010 0.018 0.494 0.164 0.809 0.016
13-Base  0.144  0.098 0.273 0911 0.816 0.700 0.086  0.561  0.138 0.050 0.006 0.018 0.354 0.138 0.204 0.013
14-RPT  0.614 0.231 0263 0.754 0.846 0.650 0.626  0.584  0.529 0.147 0.025 0.009 0.622 0.099 0.468 0.036
14-Base  0.616  0.261 0.279 0.747 0.842 0.683 0.668 0.586  0.520 0.175 0.024 0.000 0.652 0.112 0.474 0.052
15-RPT  0.779 0.791 0.606 0.947 0.794 0.927 0.887 0.821  0.500 0.357 0.110 0.000 0.896 0.259 0.889 0.238
15-Base  0.775 0.781 0.652 0.951 0.784 0.952 0.893 0.819  0.720 0.400 0.137 0.000 0.872 0.259 0.896 0.345
16-RPT  0.552  0.183 0.444 0941 0.898 0.839 0.224  0.690 0.337 0.165 0.039 0.000 0.104 0.000 0.724 0.085
16-Base  0.585 0.156 0.421 0948 0.886 0.823 0.230  0.689  0.332 0.177 0.039 0.000 0.652 0.154 0.718 0.094
17-RPT 0720  0.683 0.221 0.923 0.750 0.664 0.813 0.776  0.659 0.282 0.065 0.004 0.598 0.246 0.807 0.147
17-Base  0.763  0.825 0.675 0951 0.504 0945 0.904  0.820 0.695 0.465 0.156 0.000 0.945 0.230 0.893 0.423
18-RPT  0.632 0401 0.023 0.083 0.180 0.228 0.647 0.107  0.606 0.113 0.007 0.009 0.207 0.184 0.817 0.036
18-Base  0.076  0.052 0.002 0245 0.056 0.078 0.043 0.040  0.060 0.000 0.000 0.018 0.152 0.050 0.050 0.003

F.2 INTERVENTIONAL STUDY RESULTS

Table 7: Full interventional evaluation results across models and benchmarks.

Model pubmedga medqa aime2024 gsm8k math500 amc23 tab_fact legalbench finben livecodebench codeforces polyglot humaneval bigcodebench mbpp usaco
Math-RPT 0.636 0233 0319 0789 0871 0.688 0.678  0.585 0.447 0.203 0.034 0.013 0.689 0.109 0.514 0.055
Code-RPT 0.662 0222 0296 0.700 0.847 0.666 0.664  0.591 0.472 0.158 0.024 0.009 0.530 0.253 0.540 0.000
Knowledge-RPT 0.636 0221 0323 0.757 0.852 0.688 0.658  0.584 0414 0.183 0.023 0.009 0.591 0.100 0.493 0.036
Math-RPT-DAPO 0.647 0282 0333 0.818 0.724 0.770 0.664  0.585 0.475 0.172 0.030 0.004 0.585 0.070 0.496 0.042
Math-RPT-Llama 0518 0.535 0.087 0.824 0518 0372 0.662  0.585 0.300 0.085 0.008 0.000 0.530 0.143 0.395 0.003
Math-RPT-0.5-epoch ~ 0.660  0.306 0.333  0.804 0.730 0.759 0.661 0.585  0.500 0.200 0.028 0.000 0.585 0.066 0.485 0.039
Math-RPT-1-epoch 0.632 0308 0321 0.832 0726 0.775 0.662  0.584  0.491 0.190 0.026 0.004 0.610 0.063 0.496 0.042
Math-RPT-1.5-epochs ~ 0.655  0.315 0340 0.847 0.726 0.747 0.662  0.586  0.477 0.188 0.024 0.004 0.659 0.073 0.516 0.046
Math-RPT-2-epochs 0.646 0.284 0331 0838 0.728 0.762 0.658 0.585  0.469 0.200 0.028 0.000 0.604 0.069 0.487 0.052
Mixed-RPT 0.666 0285 0227 0727 0.660 0.739 0.679  0.580 0.448 0.207 0.040 0.004 0.634 0.064 0.564 0.052
Base: Qwen 0.616 0261 0279 0.747 0.842 0.683 0.668  0.586  0.520 0.175 0.024 0.000 0.652 0.112 0.474 0.052
Base: Llama 0467 0201 0.044 0.788 0.444 0239 0.553  0.587 0.285 0.080 0.005 0.000 0.494 0.153 0.561 0.007
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G RELATIVE IMPROVEMENT

To address the importance of relative performance gains, we complement our absolute aggregated
improvement measure with a secondary metric that captures proportional improvements while
remaining well-defined even when the base model attains zero accuracy.

Formally, we report the relative aggregated improvement:

<) 2tep NeBe - piji

AP = : )
7 >rep Vil
where the per-benchmark relative gain is defined as
A — A
S0 A, >0,
Pigt = Aj 2

Aip—Ajr, Aje=0.

We now include all the results we reported with relative improvements. We can see that our conclusion
is further strengthened with this secondary metric. We illustrate our findings as follows.

The gap between in-domain and out-of-domain tasks is more evident under relative improve-
ments. Table [0 compares the in-domain and out-of-domain Pass@1 relative improvements of model
pairs in the observational study. The relative gap is 256.71%, indicating that accuracy on in-domain
tasks increases more than 3.5 on out-of-domain tasks. This contrast is substantially sharper than
what is shown by the primary metrics in Table 2} where the absolute accuracy improvement is 6.07%.

The same pattern appears consistently across all settings. Relative improvements highlight larger
separations between domains in the observational study (Figure[8) compared to the accuracy-based
results (Figure[3). The effect also holds for the interventional study when comparing Figures[9]and
with their absolute counterparts in Figures [2]and 4]

Overall, relative improvement serves as a complementary metric that amplifies domain-wise gaps of
RPT model performance, and these clearer separations further strengthen our conclusion that RPT
lacks generalizability across domains.

Table 8: Relative Pass@ 1 improvements (%) for in-domain and out-of-domain tasks across model
pairs in the observational study.

Metric () ) (3) (4) (5) (6) (7) (8) (9)  (10) (11)  (12)  (13) (14) (15) (16) (17) (18 | Avg.
AUD) 9.04 3478 6834 66549 -27.39 503048 6.08 2351 -42.86 637 -842 -3891 -072 -150 -834 121 -586 54042 | 347.32
Al0OD) 342 706 -4457 67206 1604 1746 -992 52615 -16.14 -249 -10.32 -11.83 6636 -0.65 -7.90 -0.55 -1977 481.47 | 90.61

AUD) _AOOD) | 562 2772 11291  -658  -4343 5047.94 1600 -502.63 -26.72 886 190 2708 -67.07 -0.85 044 177 1391 5894 | 256.71

. 6.92 -49.05 16.15 -26.10 -10.88 23.51 -42.86 -2.23 -9.96  -38.91 @ 64.96 -0.48 -8.03 0.39 -5.86 [EEFNZY
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Figure 8: Relative Pass@ 1 improvements (%) across domains for model pairs in the observational
study.

The major RPT configuration for interventional analysis achieves the strongest generalizability.
As shown in Table[9] our main configuration (Qwen + GRPO) exhibits a substantially smaller relative
accuracy gap than the other two variants. This contrast becomes especially clear under the relative-
improvement metric: the Llama-based configuration yields a gap of 28.38%, whereas the Qwen-based
configuration yields only 8.75%. By comparison, the absolute accuracy gaps reported in Table [3]
differ only slightly (4.94% vs. 5.23%). These results demonstrate that adjusting RPT implementation
variants does not improve generalizability. They also validate the design and experimental setup of
our interventional study.
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Figure 9: Relative Pass@1 improvements (%)
for in-domain and out-of-domain tasks across
model pairs in the interventional study.

Table 9: RPT configuration variants consistently fail to im-
prove generalizability, as shown by relative Pass@ 1 improve-
ments A (%) on in-domain (ID) tasks versus out-of-domain
(OOD) tasks across different base models and RPT algo-

Knowledge - -3.79 -2.15 -5.97 20

Math 7

Math-RPT

10

-2.31
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Figure 10: Relative Pass@ 1 improvements (%)
across domains for model pairs in the interven-
tional study.
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DeepSeek-R1-Distill-Qwen-1.5B + GRPO 5.58 -3.16 8.75
Llama-3.2-3B-Instruct + GRPO 3296 458 28.38 Fioure 11: Relative Pass@ 1 improve-
DeepSeek-R1-Distill-Qwen-1.5B + DAPO | 7.81 -2.43 10.24 g : p

ments (%) across checkpoints.

The effect of training epochs becomes more evident, and the convergence trend is clearer with

relative improvements. As shown in Figure[T1]

the relative performance first increases and then

stabilizes as the number of RPT epochs grows. Compared to the two primary metrics reported in
Figure[3} the relative-improvement view makes both the growth phase and the convergence pattern
more pronounced. This further highlights how the model increasingly overfits to the training domain

and lacks generalizability.

H CHECKPOINT EVALUATIONS AT 100-STEP INTERVALS

AUD)
A(OOD)
AUD) _ pA(OOD)

500 750 1000 1250
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(a) Pass@1 improvement AP (%).
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(b) Odds ratio §™P) across domains.

Figure 12: In-domain and out-of-domain improvements at 100-step intervals during RPT training on
the math domain. A full epoch corresponds to 600 training steps. The gap between in-domain and
out-of-domain improvements grows as training progresses. We report the specific values in Table @
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We perform a finer-grained analysis of model behavior by evaluating intermediate checkpoints at
100-step intervals throughout RPT training. We display the results in Figure [I2]and Table[T0} These
results further strengthen our conclusion in Section[d.4]that as training progresses, the generalizability
of RPT decreases. Specifically, we observe that:

1. in-domain gains remain consistently positive, and out-of-domain gains remain consistently
negative;

2. in-domain gains increase, whereas out-of-domain gains decrease;

3. the gap between in-domain and out-of-domain gains widens as training advances; and

4. the trends eventually stabilize, particularly after the end of the first epoch, when the model
has been exposed to the full training dataset.

Table 10: Math-RPT checkpoint performance at 100-step intervals, reporting accuracy gains A (%)

and odds ratios @ for in-domain (ID) and out-of-domain (OOD) tasks. A full epoch corresponds to
600 training steps.

Model AUD) 4+ A(0OD) 4 A(ID) _ A(0OD) | §UID) 4 §(OOD) 4 é(m)/é(oop)
Math-RPT-100-steps 1.74 -0.31 2.06 1.0968 0.9869 1.1113
Math-RPT-200-steps 2.07 -0.47 2.54 1.1164  0.9806* 1.1386
Math-RPT-300-steps 3.19 -0.63 3.82 1.1870*  0.9738* 1.2189
Math-RPT-400-steps 4.14 -0.86 5.00 1.2517*  0.9645* 1.2977
Math-RPT-500-steps 3.41 -0.85 4.26 1.2027*  0.9649* 1.2464
Math-RPT-600-steps 4.53 -0.92 5.45 1.2833*  0.9623* 1.3336
Math-RPT-700-steps 3.93 -0.95 4.88 1.2373*  0.9609* 1.2876
Math-RPT-800-steps 4.15 -1.33 5.48 1.2556*  0.9459* 1.3275
Math-RPT-900-steps 491 -1.11 6.02 1.3100*  0.9544* 1.3725
Math-RPT-1000-steps 5.26 -1.43 6.68 1.3353*  0.9419* 1.4177
Math-RPT-1100-steps 443 -1.40 5.82 1.2756*  0.9430* 1.3527
Math-RPT-1200-steps 4.72 -1.47 6.19 1.2962*  0.9401* 1.3789
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