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Abstract

There is growing interest in improving our algorithmic understanding of fundamen-
tal statistical problems such as mean estimation, driven by the goal of understanding
the fundamental limits of what we can extract from limited and valuable data. The
state of the art results for mean estimation in R are 1) the optimal sub-Gaussian
mean estimator by [Lee and Valiant, 2022], attaining the optimal sub-Gaussian
error constant for all distributions with finite but unknown variance, and 2) the
analysis of the median-of-means algorithm by [Bubeck, Cesa-Bianchi and Lugosi,
2013] and a matching lower bound by [Devroye, Lerasle, Lugosi, and Oliveira,
2016], characterizing the big-O optimal errors for distributions that have tails
heavy enough that only a 1 + α moment exists for some α ∈ (0, 1). Both of
these results, however, are optimal only in the worst case. Motivated by the recent
effort in the community to go “beyond the worst-case analysis” of algorithms, we
initiate the fine-grained study of the mean estimation problem: Is it possible for
algorithms to leverage beneficial features/quirks of their input distribution to beat
the sub-Gaussian rate, without explicit knowledge of these features?

We resolve this question, finding an unexpectedly nuanced answer: “Yes in limited
regimes, but in general no”. Given a distribution p, assuming only that it has a
finite mean and absent any additional assumptions, we show how to construct a
distribution qn,δ such that the means of p and q are well-separated, yet p and q
are impossible to distinguish with n samples with probability 1− δ, and q further
preserves the finiteness of moments of p. Moreover, the variance of q is at most
twice the variance of p if it exists. The main consequence of our result is that,
no reasonable estimator can asymptotically achieve better than the sub-Gaussian
error rate for any distribution, up to constant factors, which matches the worst-case
result of [Lee and Valiant, 2022]. More generally, we introduce a new definitional
framework to analyze the fine-grained optimality of algorithms, which we call
“neighborhood optimality”, interpolating between the unattainably strong “instance
optimality” and the trivially weak admissibility/Pareto optimality definitions. As
an application of the new framework, we show that the median-of-means algorithm
is neighborhood optimal, up to constant factors. It is an open question to find a
neighborhood-optimal estimator without constant factor slackness.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



1 Introduction

Mean estimation over R is one of the most fundamental problems in statistics: given n i.i.d. samples
from some unknown distribution p, how do we most accurately estimate the mean of p, with
probability ≥ 1− δ, from the n samples? The conventional approach is to take the sample mean, the
empirical average of the samples, as the estimate; this is justified by the law of large numbers, which
says that that in the limit of having infinitely many samples, the sample mean will converge to the
true mean. However, it has been long known that while the sample mean is optimal for estimating
the mean of well-behaved distributions such as Gaussians, it is sensitive to the presence of outliers
in samples drawn from heavy-tailed distributions, for which the sample mean estimator can have
abysmal performance.

The classic median-of-means estimator [e.g., NY83; JVV86; AMS99], independently invented several
times in the literature, was proposed to mitigate the sensitivity of the sample mean. Its accuracy on
any distribution p with finite variance is—up to constant factors—as good as the accuracy of the
sample mean on a Gaussian with the same mean and variance as p. In other words, the error is of
sub-Gaussian rate. The past decade has seen renewed interest across computer science and statistics
in understanding the limits of the mean estimation problem. In one dimension, the current state of the
art is 1) for distributions p with finite variance σ2

p, the recent mean estimator proposed by Lee and

Valiant [LV22] has sub-Gaussian rate σp · (
√
2+ o(1))

√
log 1

δ /n, which is tight even in its constants,
up to a 1 + o(1) factor, and 2) the work of Bubeck, Cesa-Bianchi and Lugosi [BCL13] showing
upper bounds matching the lower bounds of Devroye, Lerasle, Lugosi and Oliveira [DLLO16], which
show that for heavy-tailed distributions having only a 1 + αth moment for some α ∈ (0, 1), the
median-of-means algorithm in fact still achieves the optimal accuracy up to a constant factor. Both
of these results, however, are optimal only in the worst case, meaning that [LV22; DLLO16] have
optimal performance with respect to the class of distributions with the same 2nd or 1 + αth moments
respectively; but estimators may do better than these bounds on particular input distributions.

The natural and immediate next question is, even though Gaussian distributions are the hardest
case in mean estimation, and thus sub-Gaussian performance is worst-case optimal: can one do
better, at least for some “easier” distributions? Can we develop “instance-dependent” algorithms and
analysis techniques? Is it possible for algorithms to leverage beneficial features/quirks of their input
distribution to beat the sub-Gaussian rate, without explicit knowledge of these features and without
losing robustness to heavy-tails?

We resolve this question and show an unexpectedly nuanced answer: “Yes in limited regimes, but in
general no”. For some distributions, even median-of-means can beat the sub-Gaussian bound, but only
for a limited parameter regime per distribution—namely, if the number of samples is not too large
(Proposition 14). In general however, we show a strong and comprehensive negative result. Our main
technical result (Theorem 2) is a fine-grained indistinguishability construction: given a distribution
p, assuming only that p has a finite mean and absent any further assumptions, we show how to
construct a distribution qn,δ—in terms of a sample complexity n and a failure probability δ—such
that p and q are impossible to distinguish with n samples, with probability ≥ 1 − δ, and yet the
means of p and q are well-separated by some function ϵn,δ(p) (stated formally in Definition 1). This
in particular implies that no n-sample estimator with failure rate δ can simultaneously have error less
than 1

2ϵn,δ(p) on both p and q. The function ϵn,δ(p) is such that, for p with a finite variance, if we take

log 1
δ /n → 0, we have ϵn,δ(p) → Ω(σp

√
log 1

δ /n), showing that no estimator can asymptotically
outperform the sub-Gaussian rate for both p and qn,δ simultaneously. Additionally, as shown in
Section 2.1, the construction of qn,δ is conservative, such that dq

dp ≤ 2 at all points, meaning that q
has a finite 1 + αth moment whenever p does, and furthermore, σ2

q ≤ 2σ2
p whenever σ2

p exists. Thus,
the same indistinguishability result still applies even if we further require the existence of higher
moments for both p and q.

The key message of our paper is that such lower bounds are to be circumvented, through identifying
additional favorable distribution structure for the mean estimation problem.1 This observation has
already led to further work in the area, guiding the design of a new algorithm that outperforms

1“Favorable distribution structure”, in particular, cannot mean just the existence of higher moments, since
our indistinguishability construction applies even in this case.

2



the sub-Gaussian rate via a symmetry assumption. Gupta et al. [GLP23] show that, assuming the
distribution is symmetric about its mean, one can achieve finite-sample and instance-dependent Fisher
information rates for mean estimation, which can be significantly better than sub-Gaussian rates.
We view our paper and the [GLP23] result together as a call to arms to explore other structural
assumptions that can sidestep our lower bound construction.

Beyond the asymptotic implications in the finite variance setting, our results fully characterize mean
estimation in the regimes of 1) finite variance and finite samples, and 2) infinite variance, and indeed,
even when no 1 + αth moment exists for any constant α > 0. In particular, we give a simple, yet very
general re-analysis of the median-of-means estimator on distributions only assumed to have a finite
mean. Its estimation error on distribution p, with probability 1 − δ over n samples, is O(ϵn,δ(p))
(Proposition 14), matching our main indistinguishability result up to constants (Theorem 2).

1.1 Our Results and Techniques

Our main result is an indistinguishability result, for every distribution p, which serves as a mean
estimation lower bound. Ideally, given the motivation earlier in the introduction, we want to show
that the sub-Gaussian rate is a lower bound, but such a bound cannot hold in finite samples. To see
this, consider a distribution which has ≪ 1/n mass that is extremely far away from the mean, and
which contributes the majority of the variance, yet only a minuscule portion of the mean. Given only
n samples, with high probability we will not see any samples from this mass, and so mean estimation
can in fact be “effectively” performed on the conditional distribution without this outlier mass. The
conditional distribution has essentially the same mean as the original, yet has far smaller variance,
thus allowing us to beat the (variance-dependent) sub-Gaussian rate. We thus start this section by
defining an error function ϵn,δ(p) for each distribution p (Definition 1), capturing the estimation error
we expect for p, taking into account that we intuitively expect both algorithms and lower bounds to
ignore outlier mass. Our main result will then construct, for every distribution p, a new distribution q
that is indistinguishable from p using n samples, yet has mean difference at least ϵn,δ(p) from p.

Definition 1 Given a (continuous) distribution p with mean µp and a real number t ∈ [0, 1], define
the t-trimming operation on p as follows: select a radius r such that the probability mass in
[µp − r, µp + r] equals 1− t; then, return the distribution p conditioned on lying in [µp − r, µp + r].

Given n and δ, we define a standard trimmed distribution p∗n,δ to be the 0.45
n log 1

δ -trimmed version
of p. When δ is implicit, we may denote this as p∗n. We also define the error function ϵn,δ(p) =

|µp − µp∗
n
|+ σp∗

n

√
4.5log 1

δ

n .

Theorem 2 shows that, given any distribution p with a finite mean, it is possible to construct a
distribution qn,δ such that 1) p and q are indistinguishable under n samples with probability 1− δ,
yet 2) the means of p and q are separated by Ω(ϵn,δ(p)). The construction of qn,δ is also such that
dq/dp ≤ 2, showing that, in many senses, “q does not have more extreme tails than p”.

Theorem 2 Let n be the sample complexity and δ be the failure probability, and recall the definition
of the error function ϵn,δ from Definition 1. Assume that there is a sufficiently small constant which

upper bounds both log 1
δ

n and δ. Then for any distribution p with a finite mean µp, there exists a
distribution q ̸= p with mean µq such that:

• |µq − µp| ≥ 1
32ϵn,δ(p)

• log(1− d2H(p, q)) ≥ 1
2n log 4δ

• dq
dp ≤ 2.

In particular, by a standard fact (Fact 1) on the squared Hellinger distance, this implies that p and q
are indistinguishable using n samples, with probability 1− δ. Furthermore, since dq

dp ≤ 2, we have
σ2
q ≤ Eq[(X − µq)

2] ≤ Eq[(X − µp)
2] ≤ 2Ep[(X − µp)

2] = 2σ2
p.

Using a standard testing-to-estimation reduction, it follows from the main theorem that there can be
no estimator that can achieve error at most 1

64ϵn,δ(p) simultaneously on p and qn,δ .
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Corollary 3 Let n be the sample complexity and δ be the failure probability, and recall the definition
of the error function ϵn,δ from Definition 1. Given a distribution p with finite mean, consider the
construction of q in Theorem 2. Then, there is no estimator that achieves error less than 1

64ϵn,δ(p)
over n samples with probability 1− δ, for both p and q.

We contrast this lower bound with more standard impossibility results that have the flavor: “one

cannot estimate the mean to within σ · (
√
2 + o(1))

√
log 1

δ /n, since there are a pair of Gaussian
distributions of variance σ, separated by twice this distance, that are indistinguishable in n samples
up to probability 1− δ”. As opposed to showing the indistinguishability of “nice” distributions like
Gaussians, we instead show that for any distribution p of interest (with finite mean), we exhibit a
generic construction of a hard-to-distinguish “partner” distribution q, of rather different mean, yet all
of whose tails are comparable to those of p.

For reference, the definition of Hellinger distance and the standard fact we reference above are:

Fact 1 Consider the squared Hellinger distance between two distributions p and q, defined as

d2H(p, q) =
1

2

∫
(
√
dp−

√
dq)2

If the two distributions p and q are such that log(1− d2H(p, q)) ≥ 1
2n log 4δ, then there is no test that

distinguishes p and q with probability 1− δ using n samples.

Complementing the specific construction of q and analysis of its properties, we also introduce a new
and general definition framework, speaking to the challenge of capturing “beyond worst case analysis”
in this nuanced setting. In Section 3 we motivate and introduce this notion. Broadly, we want to
capture the intuition of “instance-optimal” algorithms, namely, an algorithm that performs as well on
the given distribution p as any algorithm customized towards p; however, this definition is unattainably
strong in our setting. By contrast, weaker notions such as “admissibility” or Pareto-efficiency are
too weak to rule out trivial and effectively useless estimators. We introduce a new notion which
we call “neighborhood optimality” that subtly blends between these notions. See Section 3 for
details. Appendix A.3 also gives an in-depth discussion comparing neighborhood optimality with the
more commonly-used notion of local minimax [AD20b; AD20a; HLY21]. While the two definitions
look superficially similar, we show in the appendix—using a general proposition and a concrete
example—that our new notion is a stronger and also more robust definition in the context of mean
estimation.

As an application of this new framework, we show in Section 4 that the standard median-of-means esti-
mator is neighborhood optimal up to constant factors. It is an open question to design a neighborhood-
optimal estimator which does not have such constant factor slackness.

1.2 Open Questions

We briefly discuss a few open questions and future research directions raised by our results.

Optimal constants for neighborhood optimality estimators—in theory and in practice While
median-of-means enjoys neighborhood optimality as we show, the hidden multiplicative constants
constants in our analysis are not tight. The median-of-means estimator is also not recommended in
practice due to its large asymptotic variance [Min19]. The goal thus is to show that more modern
estimators, for example [LV22], also enjoy neighborhood optimality. Ideally, such analysis would
yield optimal constants.

Other distributional structures for avoiding asymptotic sub-Gaussian lower bound As men-
tioned in the introduction, we view our paper as a call to arms to investigate distributional structures
and assumptions that allow mean estimators to go beyond the sub-Gaussian error rate. The paper of
Gupta et al. [GLP23] is the first work aiming to circumvent our lower bounds—showing the benefit
of symmetric distributions for mean estimation. The hope, and challenge, is to find other realistic
settings that enable mean estimation algorithms beyond the sub-Gaussian benchmark.

High-Dimensional Neighborhood Optimality Generalizing the framework and results of this
paper to the high-dimensional setting is a compelling direction for future work. In high dimensions,
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for a distribution with covariance Σ, the corresponding sub-Gaussian rate for mean estimation under

the ℓ2 norm is Θ( 1√
n

√
tr(Σ) + ∥Σ∥ log 1

δ ). We conjecture that, like in the 1-dimensional case,
mean estimators cannot outperform the sub-Gaussian rate in the asymptotic regime as n → ∞.
More specifically, we conjecture that whenever a distribution p has a finite covariance, a version
of Theorem 2 holds for some ϵn,δ(p) that approaches the high-dimensional sub-Gaussian error as
n → ∞, up to constants. Further, for distributions without a finite covariance matrix, it is open to
fully characterize the instance-by-instance error rates in high dimensions, and finding an analog of
ϵn,δ(p) that characterizes both the upper and lower bounds.

1.3 Related Work

The mean estimation problem has been extensively studied, even in one dimension. In the classic
setting where the underlying distribution is assumed to have finite but unknown variance, the median-
of-means algorithm, independently discovered by different authors [e.g., JVV86; AMS99; NY83],
was the first to achieve sub-Gaussian rate to within a constant factor in the high probability regime.
The seminal work of Catoni [Cat12] reinvigorated the study of mean estimation, by proposing the
first estimator which attains sub-Gaussian rate tight to within a 1 + o(1) factor, but his estimator
requires a-priori knowledge of the variance, or a bounded 4th moment assumption that allows accurate
estimation of the variance. This work further showed that the sub-Gaussian rate is a lower bound
on the optimal estimation error. Subsequent work by Devroye et al. [DLLO16] proposed a different
estimator, also attaining 1 + o(1)-tight sub-Gaussian rate under the bounded 4th moment assumption,
which has additional structural properties. Recent work by Lee and Valiant [LV22] constructs an
estimator achieving sub-Gaussian rate to within a 1 + o(1) factor for any distribution with finite but
unknown variance, absent any knowledge assumption or bounded 4th moment assumption.

In the more extreme setting where the underlying distribution may have infinite variance, but is
guaranteed to have finite (but unknown) 1 + αth moment for some α ∈ (0, 1), Bubeck et al. [BCL13]
proved an upper bound on the error achieved the median-of-means estimator, and Devroye et
al. [DLLO16] showed a matching lower bound up to a constant factor.

See the in-depth survey by Lugosi and Mendelson [LM19] on sub-Gaussian mean estimation and
regression results prior to 2019.

“Beyond worst-case” analysis is a theme of much recent work and attention in the computer science
literature. See [Rou21] for examples of “beyond worst-case” analyses in various contexts in computer
science and statistics including, for example, combinatorial algorithmic problems, auction design,
and hypothesis testing. Both of the above tightness results in mean estimation are in the worst-case,
and in this work, we present (to our knowledge) the first “beyond worst-case analysis” results for the
mean estimation problem. We emphasize also that our results are applicable even to distributions
with a finite mean, but without any finite 1 + αth moment for any α > 0.

The notion of admissibility in statistics and the analogous concept of Pareto efficiency serve as a main
motivation for our definition of neighborhood optimality, introduced in Section 3. They are well-
studied notions in their respective fields, to the extent that they are standard topics in undergraduate
courses. See for example the textbooks by Keener [Kee10] and Starr [Sta97] for expositions.

The other main definitional motivation is the notion of instance optimality, which falls under the
umbrella of “beyond worst-case analysis” in the computer science literature. We highlight some
of the uses of instance optimality in statistical contexts. Valiant and Valiant [VV17] gave the first
instance optimal algorithm for the identity testing problem (in total variation distance) for discrete
distributions. In later work [see VV16], the same authors showed how to instance-optimally learn
discrete distributions (in total variation distance).

A different line of work studies “instance optimality” in the context of mean estimation with differen-
tial privacy (DP) [e.g., AD20b; AD20a; HLY21]. Specifically, these works address the problem of
differentially-privately estimating the mean of a data set, where the data set itself (or equivalently, the
uniform distribution over the data set) is the instance. In the DP setting, instance optimality is also not
satisfiable by any estimator for the same reason as the non-DP setting, since the hardcoded estimator
is always differentially private. They instead use a local minimax (or locally worst-case) notion of
optimality (although in these works this notion is sometimes also called “instance optimality”; we take
care to distinguish the two definition styles in this paper), where the particular locality/neighborhood
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structure they use is restricted to data sets that have Hamming distance 1 from the instance, since this
is a key component in the definition of DP. The local minimax notion of optimality is closely related
to our notion of neighborhood optimality. We compare and contrast the two notions in Appendix A.3,
and explain why our definition is stronger and more appropriate for our context.

2 Proof of main results

This section gives the construction and proof of our main result, Theorem 2.

Our construction of q from p will have 2 cases, depending on which of the 2 terms in the definition of
the error function ϵn,δ dominates. Recall that the error ϵn,δ(p) is the sum of two terms involving the

“trimmed” distribution p∗n: (ignoring constants) |µp − µp∗
n
| and σp∗

n

√
log 1

δ /n; intuitively, the first
term measures to what degree p has an “asymmetric tail”, and the second term measures the variance
of p in its central region.

First, consider the case when the first term is larger, namely, |µp − µp∗
n
| > σp∗

n

√
4.5log 1

δ /n. Our
goal in constructing q is to maximize |µp − µq| subject to q being indistinguishable from p. Given
that 1) the mean of p∗n is already far from the mean of p by assumption in the case analysis, and 2) p
and p∗n are by construction hard to distinguish since only a small amount of probability mass was
trimmed from p to make p∗n, we simply need to construct q as a carefully chosen convex combination
of p and p∗n, and show that this q indeed satisfies all the properties in the definition of Nn,δ(p).

Next, for the remaining case when the variance term σp∗
n

√
4.5log 1

δ /n is larger than the remaining
term |µp − µp∗

n
| in ϵn,δ(p), we now want to construct q such that the mean shift |µp − µq| is large

compared to the variance term σp∗
n

√
4.5log 1

δ /n, while ensuring that q is indistinguishable from p.
To achieve this, we create q that is a “skewed” version of p, scaling the probability density by a
linear function 1 + ax, where larger a means more mean shift between q and p, but also means that
it is easier to distinguish q from p. Technically, we truncate the linear scaling factor 1 + ax to lie
between 0 and 2, so that q will satisfy Condition 3 of the requirements for q presented in our main
theorem, Theorem 2; the probability mass might not be 1 after this skewing, so we might need to
normalize; also, we point out that for the purposes of Theorem 2 we do not care whether the mean of
q is shifted to the left or right of p (corresponding to choosing a positive or negative parameter a),
and the construction makes use of this choice.

Definition 4 (Construction of indistinguishable pair) Given a distribution p, we construct a dis-
tribution q in a shift-and-scale invariant manner as follows.

Case 1: |µp − µp∗
n
| > σp∗

n

√
4.5

log 1
δ

n . Define λ = 3
4 and construct q to be the weighted average

q = λp+ (1− λ)p∗n.

Case 2: |µp − µp∗
n
| ≤ σp∗

n

√
4.5

log 1
δ

n . Without loss of generality, assume that µp = 0. Let parameter

a be the solution in the interval
(
0, 1

σp∗n

√
log 1

δ

n

]
to the below equation characterizing the

mean shift, as guaranteed by Lemma 23 in Appendix B:∫ − 1
a

−∞
(−x) dp+ a ·

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

x dp =
1

8
σp∗

n

√
log 1

δ

n

We construct two non-unit measures q+, q−, defined as scaled versions of p, as dq±

dp (x) =

1 +min(1,max(−1,±ax)). By symmetry the masses of q+ and q− sum to 2; thus one of
q+, q− has mass at least 1. Construct q by choosing that one of q+, q−, and downscaling it
by a factor b ∈ [ 12 , 1] such that the total probability mass is indeed 1. ◁

In the rest of the subsections, we will prove all the properties of the construction needed by Theorem 2.
We observe that the non-unit measure q− is “symmetric” to q+, in the sense that its first moment shift
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from p is identical but of the opposite sign. Therefore, most of the analysis below will assume the q+

case without loss of generality.

2.1 Checking that dq
dp ≤ 2

It is straightforward to check that dq
dp ≤ 2 by construction, for both cases of Definition 4.

Lemma 5 Suppose there is a sufficiently small absolute constant that upper bounds log 1
δ

n . Given a
distribution p, if we construct q as in Case 1 (the large |µp∗

n
− µp| case) in Definition 4, then dq

dp ≤ 2.

Proof. Let the support of p∗n be [xleft, xright]. At x /∈ [xleft, xright], we have dq
dp = λ dp

dp = 3/4 dp
dp ≤ 2.

Otherwise, at x ∈ [xleft, xright], we have

dq

dp
=

λ dp+ (1− λ) dp∗n
dp

=
d

dp

(
λ p+

1− λ

1− 0.45log 1
δ

n

p

)
(by the definition of p∗n) ≤ 2

where the last line follows from the fact that λ is a constant in (0, 1) and log 1
δ

n is assumed to be
bounded by some sufficiently small absolute constant. □

Lemma 6 Suppose there is a sufficiently small absolute constant that upper bounds log 1
δ

n . Given a
distribution p, if we construct q as in Case 2 (the small |µp∗

n
− µp| case) in Definition 4, then dq

dp ≤ 2.

Proof. For q+, we have dq+

dp (x) = 1 +min(1,max(−1, a+x)) for some value of a+, and the right

hand side is always between 0 and 2; proven similarly, we have 0 ≤ dq−

dp ≤ 2. Noting that q is

constructed by scaling down one of q− and q+, we also have dq
dp ≤ 2. □

2.2 Bounding the squared Hellinger distance

We consider each case of the construction in Definition 4 separately. We first bound the Hellinger
distance between p and the q constructed in Case 1 of Definition 4 (when |µp − µp∗

n
| is large).

Lemma 7 Suppose there is a sufficiently small constant that upper bounds both log 1
δ

n and δ. Given
a distribution p, if we construct q as in Case 1 (the large |µp∗

n
− µp| case) in Definition 4, then

log(1− d2H(p, q)) ≥ 1
2n log 4δ.

Since Case 1 of the construction of q in Definition 4 linearly interpolates between p and—a very
slightly trimmed version of p, namely—p∗n, the resulting distribution q remains close to p; the
calculation is in Appendix B.1. The next lemma bounds the squared Hellinger distance of p and q in
Case 2 of Definition 4 (when |µp − µp∗

n
| is small).

Lemma 8 Suppose there is a sufficiently small constant that upper bounds both log 1
δ

n and δ. Given
a distribution p, if we construct q as in Case 2 (the small |µp∗

n
− µp| case) in Definition 4, then

log(1− d2H(p, q)) ≥ 1
2n log 4δ.

The proof (see Appendix B.1) uses a technical lemma to relate dH(p, q) to dH(p, q+) or dH(p, q−),
and then uses a linearization of the definition of Hellinger distance to relate it to the mean shift
between p and q+ or q−, which is bounded by Definition 4.

2.3 Lower bounding |µq − µp|

We show the lower bound separately for the two cases in the construction of q in Definition 4. The
small |µp∗

n
− µp| case is a direct corollary of Lemma 23, which bounds the mean shift in this case.
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Lemma 9 Suppose there is a sufficiently small constant that upper bounds both log 1
δ

n and δ. Given
a distribution p, if we construct q as in Case 1 (the large |µp∗

n
− µp| case) in Definition 4, then

|µq − µp| ≥ 1
8ϵn,δ(p).

Proof. Without loss of generality, assume that µp = 0. Recall that q = λp + (1 − λ)p∗n and
λ = 3

4 from Case 1 of Definition 4. Thus, |µq − µp| = 1
4 |µp∗

n
− µp|. Furthermore, we have

ϵn,δ(p) = |µp∗
n
−µp|+σp∗

n

√
4.5

log 1
δ

n from the definition of ϵn,δ(p) and |µp∗
n
−µp| > σp∗

n

√
4.5

log 1
δ

n

from the lemma assumption and Case 1 of Definition 4, which then imply that ϵn,δ(p) ≤ 2|µp∗
n
−µp|.

Combining the two inequalities yields |µq − µp| ≥ 1
8ϵn,δ(p) as desired. □

Lemma 10 Suppose there is a sufficiently small constant that upper bounds both log 1
δ

n and δ. Given
a distribution p, if we construct q as in Case 2 (the small |µp∗

n
− µp| case) in Definition 4, then

|µq − µp| ≥ 1
32ϵn,δ(p).

Proof. Without loss of generality, let q+ be the non-unit measure used to construct q, that is q = bq+

for some b ∈ [ 12 , 1]. By the bound on b as well as the construction of q+ in Definition 4, we

have |µq − µp| = b|
∫
xdq+ −

∫
x dp| ≥ 1

16σp∗
n

√
log 1

δ

n . Additionally, we both have ϵn,δ(p) =

|µp∗
n
− µp| + σp∗

n

√
4.5

log 1
δ

n from the definition of ϵn,δ(p) and |µp∗
n
− µp| ≤ σp∗

n

√
4.5

log 1
δ

n from

the lemma assumption and Case 2 of Definition 4, both of which imply ϵn,δ(p) ≤ 2σp∗
n

√
4.5

log 1
δ

n .
Combining the two inequalities above, we have that |µq − µp| ≥ 1

32ϵn,δ(p). □

3 Neighborhood Optimality: A New Definition Framework

Our main result is a specific and technical indistinguishability result. This section aims to clarify,
through a new definition framework, the optimality notion that our technical result implies.

3.1 Neighborhood Optimality

Usual notions of “beyond worst-case optimality” include “instance optimality” which is unattainably
strong, and “admissibility”/“Pareto efficiency” from the statistics and economics literature, which is
too weak. In particular, the latter notion is too weak in the sense that a trivial estimator that always
outputs the same hardcoded mean estimate is actually admissible, despite being algorithmically
“vacuous”. We define and explain these notions formally in Appendix D.

Given that neither of the usual definitions are suitable for mean estimation, in this work we give
a new optimality definition, which we call neighborhood optimality. We state its definition in this
section, and explore its basic properties and intuition in Appendix A, including how the definition
smoothly interpolates between instance optimality and admissibility. Our definition is also related to
the notion of local minimax optimality, which we compare with in Appendix A.3. The differences are
subtle, yet, as we show in Appendix A.3, local minimax is too weak a notion and, when instantiated
inappropriately, allows for absurd bounds to be proven. We thus advocate for this new optimality
definition, which correctly rejects such absurd bounds. As an application of our new framework, we
prove in Section 4 that the median-of-means estimator is neighborhood optimal up to constant factors.
It is an open question to find a neighborhood optimal estimator without the constant factor slackness.

Let P1 be the entire set of all distributions with a finite first moment over R. We say that N is a
neighborhood function (defined over P1) if N maps a distribution p ∈ P1 to a set of distributions
N(p) ⊆ P1. For the purposes of the rest of the definitions, it will not matter whether p ∈ N(p).
Similarly, an error function ϵ maps distributions to non-negative numbers, like ϵn,δ in our main result,
Theorem 2. In the later definitions, we use the notations Nn,δ and ϵn,δ to denote their dependence on
the sample complexity n and failure probability δ.

Given these two notions, we can now define neighborhood Pareto bounds with respect to Nn,δ , which
imposes admissibility structure within the local neighborhood Nn,δ(p) of every distribution p ∈ P1.
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Definition 11 (Neighborhood Pareto bounds with respect to Nn,δ) Let n be the number of sam-
ples and δ be the failure probability. Given a neighborhood function Nn,δ : P1 → 2P1 , we say that
the error function ϵn,δ(p) : P1 → R+

0 is a neighborhood Pareto bound for P1 with respect to Nn,δ if
for all distributions p ∈ P1, no estimator µ̂ taking n i.i.d. samples can simultaneously achieve the
following two conditions:

• For all q ∈ Nn,δ(p), with probability 1− δ over the n i.i.d. samples from q, |µ̂− µq| ≤ ϵn,δ(q).

• With probability 1− δ over the n i.i.d. samples from p, |µ̂− µp| < ϵn,δ(p).

Note the strict inequality in the second bullet: namely, it is impossible to “beat” the error function
over an entire neighborhood, where “beating” is defined as attaining the error function over the
neighborhood, and performing strictly better than the error function for p. The above two bullet
points essentially capture admissibility within the local neighborhood Nn,δ(p) ∪ {p}—compare with
Definition 28—and the definition requires admissibility within every such local neighborhood, over
every possible p.

The neighborhood Nn,δ(p) in a neighborhood Pareto bound can be interpreted as the set of distri-
butions “near p” which, if an estimator performs well on distribution p, then we should reasonably
expect or want it to perform well also on all the distributions in the local neighborhood Nn,δ(p).

Using the notion of neighborhood Pareto bounds, we can now define κ-neighborhood optimal
estimators, which are estimators whose performances are matched by neighborhood Pareto bounds.

Definition 12 ((κ, τ)-Neighborhood optimal estimators) Let κ > 1 be a multiplicative loss factor
in estimation error, and τ > 1 be a multiplicative loss factor in sample complexity. Given the
parameters κ, τ > 1, sample complexity n, failure probability δ and neighborhood function Nn,δ,
a mean estimator µ̂ is (κ, τ)-neighborhood optimal with respect to Nn,δ if there exists an error
function ϵn,δ(p) such that min(ϵn/τ,δ(p), ϵn,δ(p)) is a neighborhood Pareto bound2, and µ̂ gives
estimation error at most κ · ϵn,δ(p) with probability at least 1− δ when taking n i.i.d. samples from
any distribution p ∈ P1.

As a basic example and sanity check, in Appendix E, we show that any trivial estimator that outputs a
hardcoded mean estimate cannot be κ-neighborhood optimal with respect to our chosen neighborhood
function (Definition 15 in Section 4) for any κ.

3.2 Indistinguishability implies a neighborhood Pareto bound

Even though it might not look obvious how we can prove a neighborhood Pareto bound from its
definition, we show that our main indistinguishability result essentially implies such a bound. The
proof essentially follows the straightforward estimation-to-testing reduction intuition, and we give it
formally in Appendix A.2.

Proposition 13 (“Local” indistinguishability bounds imply neighborhood Pareto bounds) The
error function ϵn,δ is a neighborhood Pareto bound with respect to the neighborhood function Nn,δ

if for every distribution p ∈ P1, there exists a distribution q ∈ Nn,δ(p), with q ̸= p, such that
|µp − µq| ≥ ϵn,δ(p) + ϵn,δ(q) and it is information-theoretically impossible to distinguish p and q
with probability 1− δ using n samples.

4 Median-of-Means is Neighborhood Optimal

To apply our new definitional framework, we choose a reasonable neighborhood function Nn,δ and
show that the median-of-means algorithm is neighborhood optimal with respect to this choice.

In Appendix C, we give the following (straightforward) re-analysis of median-of-means, which will
form the upper bound part for neighborhood optimality.

2While it is intuitive to expect that an error function decreases in n, it might not be true in general. Indeed,
the definition of ϵn,δ(p) we use in the main result is not necessarily monotonic. This is why we use a min in the
neighborhood Pareto bound requirement.
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Proposition 14 Consider a distribution p with mean µp, a sample size n, and a median-of-means
group count 4.5log 1

δ . Let p∗n be the 0.45
n log 1

δ -trimmed distribution from Definition 1, and µp∗
n

and
σp∗

n
be the mean and standard deviation of p∗n respectively. Then, the median-of-means estimator has

error |µp − µp∗
n
|+ 3σp∗

n

√
4.5log 1

δ

n except with probability at most δ.

We can now discuss the neighborhood choice for the corresponding neighborhood Pareto bound.
Recall that, intuitively, neighborhood optimality is asking “how well can our algorithm do on p given
that we also want our algorithm to do similarly well on a neighborhood of p”; and thus, the smaller
we choose the neighborhood, the stronger the resulting theorem. We thus define the neighborhood of
p to consist of distributions that are similar or similarly nice to p in 4 different ways:

Definition 15 (Choice of neighborhood function Nn,δ in Theorem 16) Define Nn,δ(p) to be the
set of distributions q ∈ P1 such that

1. ϵn/3,δ(q) ≤ 100ϵn,δ(p)

2. log(1− d2H(p, q)) ≥ 1
2n log 4δ

3. |µq − µp| ≤ ϵn,δ(p)

4. For all x ∈ R, dq
dp (x) ≤ 2.

As a basic sanity check, we show in Appendix E that a trivial, hardcoded estimator cannot be
neighborhood optimal—this is mostly a consequence of Property 3 above. See Appendix E for a
formal statement and proof. We then show:

Theorem 16 Let n be the number of samples and δ be the failure probability. Assume that there is a
sufficiently small constant which upper bounds both log 1

δ

n and δ.

Consider the neighborhood function Nn,δ of Definition 15. Recall the error function defined in

Definition 1 as ϵn,δ(p) = |µp − µp∗
n
|+ σp∗

n

√
4.5log 1

δ

n . Then, for some sufficiently large constant κ,
the error function 1

κ min(ϵn/3,δ, ϵn,δ) is a neighborhood Pareto bound with respect to Nn,δ .

Combined with Proposition 14 stating that the median-of-means estimator has error function O(ϵn,δ),
this implies the median-of-means estimator is (κ, 3)-neighborhood optimal with respect to Nn,δ .

The main component of the proof is our construction of q, and the accompanying analysis of
Theorem 2 showing that q is well behaved in several senses. We specifically show Lemma 17, a slight
extension of Theorem 2:

Lemma 17 Let n be the sample complexity and δ be the failure probability, and recall the definition
of ϵn,δ from Definition 1. Assume that there is a sufficiently small constant which upper bounds both
log 1

δ

n and δ. Then for any distribution p, there exists a distribution q ̸= p such that the mean of q is
1
32ϵn,δ(p) different from the mean of p, and log(1− d2H(p, q)) ≥ 1

2n log 4δ, and q ∈ Nn,δ(p).

See Appendix F for the proof of Lemma 17. We will now use Lemma 17 to prove Theorem 16.

Proof of Theorem 16. By Proposition 13, it suffices to show that, for every distribution p ∈ P1,
there exists a distribution q ∈ Nn,δ(p) with q ̸= p such that |µp − µq| ≥ 1

κ (min(ϵn/3,δ, ϵn,δ)(p) +
min(ϵn/3,δ, ϵn,δ)(q)) for some large constant κ, and no tester can distinguish p and q with probability
1− δ using n samples.

Given a distribution p ∈ P1, consider the distribution q ∈ Nn,δ(p) guaranteed by Lemma 17. Since q
satisfies log(1− d2H(p, q)) ≥ 1

2n log 4δ, by Fact 1 we know that p and q are indistinguishable with
probability 1− δ using n samples.

It remains to check that |µp − µq| ≥ 1
κ (min(ϵn/3,δ, ϵn,δ)(p) + min(ϵn/3,δ, ϵn,δ)(q)) for some

sufficiently large constant κ. By Lemma 17, we have
|µp − µq| ≥ Ω(ϵn,δ(p)) ≥ Ω(ϵn,δ(p) + ϵn,δ(p)) ≥ Ω(ϵn/3,δ(q) + ϵn,δ(p)) by Lemma 17

≥ Ω(min(ϵn/3,δ, ϵn,δ)(p) + min(ϵn/3,δ, ϵn,δ)(q))

which completes the proof of Theorem 16. □
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A Interpreting Neighborhood Optimality

In this section, we derive basic properties and intuitions about the definitions of neighborhood Pareto
bounds and neighborhood optimality.

In particular, we show that neighborhood optimality is a notion that smoothly interpolates between
instance optimality and admissibility, depending on what neighborhood function is used to instantiate
the definition. We also show a sufficient condition for proving that an error function ϵ is a neighbor-
hood Pareto bound (Proposition 13). Lastly, we discuss and compare neighborhood optimality and
the notion of local minimax optimality that has appeared in the literature.

A.1 As an interpolation between instance optimality and admissibility

Recall that Definitions 11 and 12 both require specifying the neighborhood function. Our first
observation is the monotonicity in the definition of neighborhood Pareto bounds, in the sense of the
following straightforward proposition which we state without proof.

Proposition 18 Suppose the neighborhood functions Nn,δ and N ′n,δ are such that Nn,δ(p) ⊆
N ′n,δ(p) for all p. Then, if a given error function ϵn,δ is a neighborhood Pareto bound with re-
spect to Nn,δ , then ϵn,δ is also a neighborhood Pareto bound with respect to N ′n,δ .

We can extend this monotonicity observation from neighborhood Pareto bounds to neighborhood
optimal estimators.

Proposition 19 Suppose the neighborhood functions Nn,δ and N ′n,δ are such that Nn,δ(p) ⊆
N ′n,δ(p) for all p. Then, if µ̂ is a κ-neighborhood optimal estimator with respect to Nn,δ, then
µ̂ is also κ-neighborhood optimal with respect to N ′n,δ .

To understand how the set of neighborhood optimal estimators vary as we change the neighborhood
function, we examine the two extreme examples as special cases, where Nn,δ ≡ ∅ and Nn,δ ≡ P1.

Let us first consider the case when the neighborhoods are all empty. In this case, Definition 11
simplifies to requiring a neighborhood Pareto bound ϵn,δ to be such that, for every distribution
p ∈ P1, no estimator µ̂ (specialized to p) can have error strictly less than ϵn,δ(p) with probability
1− δ over n samples from p. It is straightforward to check that any estimator that is κ-neighborhood
optimal with respect to empty neighborhoods is equivalent to being instance optimal (Definition 27 in
Appendix D) up to a κ factor, which as explained before, is impossible to achieve. The only possible
neighborhood Pareto bound with respect to empty neighborhoods is ϵn,δ ≡ 0, since every distribution
has a trivial estimator that outputs its mean hardcoded.

At the other extreme, consider the case where all the neighborhoods contain all the distributions
in P1. Here, Definition 11 simplifies (after taking a contrapositive) to requiring a neighborhood
Pareto bound ϵ to be such that, for every distribution p ∈ P1, if an estimator has error at most ϵn,δ(q)
with probability 1− δ for all distributions q ̸= p ∈ P1, then it must have error at least ϵn,δ(p) with
probability 1−δ for distribution p. It is again straightforward to check that, by definition, an estimator
is 1-neighborhood optimal with respect to the constant-P1 neighborhood function if and only if the
estimator is admissible in P1 (Definition 28 in Appendix D). As explained before, admissibility is a
somewhat weak notion on estimators, and includes trivial hardcoded estimators.

Combining these two extreme cases and the monotonicity propositions, we have shown that neighbor-
hood optimality is a notion which interpolates between instance optimality and admissibility. More
technically, neighborhood optimality can be viewed as a homomorphism mapping the partial ordering
of neighborhood functions (the ordering induced by set inclusion) to the partial ordering of sets of
estimators (also ordered by set inclusion).

We remark that, while it may be tempting to view neighborhood Pareto bounds as lower bounds,
and neighborhood optimality as exhibiting an estimator whose error function matches a lower bound
up to a constant factor, such an interpretation is actually not valid. The reason is that, depending
on the choice of the neighborhood function, given an estimator with error function ϵuppern,δ and a
neighborhood Pareto bound ϵpareton,δ , it can be the case that on some distributions p ∈ P1, we have
ϵpareton,δ (p) > ϵuppern,δ (p); namely, these Pareto bounds should not be viewed as lower bounds. A simple
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example is the previous case where the neighborhood function is P1, in which case it is straightforward
to check that for any (hardcoded) constant µ̂ ∈ R, the error function ϵpareton,δ (p) = |µ̂ − µp| is a
neighborhood Pareto bound. For any distribution p whose mean is extremely far from the constant µ̂,
the median-of-means algorithm will have accuracy better than |µ̂− µp|. Because of such examples,
we take care not to refer to our bounds as lower bounds, but instead call them Pareto bounds in this
paper.

A.2 Indistinguishability implies a neighborhood Pareto bound

We restate Proposition 13 from Section 3.2 here for clarity, and give the proof of it below.

Proposition 13 (“Local” indistinguishability bounds imply neighborhood Pareto bounds) The
error function ϵn,δ is a neighborhood Pareto bound with respect to the neighborhood function Nn,δ

if for every distribution p ∈ P1, there exists a distribution q ∈ Nn,δ(p), with q ̸= p, such that
|µp − µq| ≥ ϵn,δ(p) + ϵn,δ(q) and it is information-theoretically impossible to distinguish p and q
with probability 1− δ using n samples.

Proof. Suppose the “if” condition in the proposition is true, yet, for the sake of contradiction, that
ϵn,δ is not a neighborhood Pareto bound. Then, there exists a distribution p ∈ P1 and an estimator µ̂
taking n i.i.d. samples such that

• For all distributions q ∈ Nn,δ(p), with probability 1 − δ over the n i.i.d. samples from q,
|µ̂− µq| ≤ ϵn,δ(q).

• With probability 1− δ over the n i.i.d. samples from p, |µ̂− µp| < ϵn,δ(p).

By the proposition condition, there must exist some distribution q ∈ Nn,δ(p) such that |µp − µq| ≥
ϵn,δ(p)+ ϵn,δ(q) and it is information-theoretically impossible to distinguish p and q with probability
1 − δ using n samples. However, we can construct the following distinguisher: compute a mean
estimate µ̂, return p if µ̂ is within ϵn,δ(p) of µp and return q otherwise. By our assumption on µ̂, this
distinguisher will succeed with probability at least 1− δ, thus contradicting the proposition statement.
□

We remark that the proof of Proposition 13 actually establishes a stronger result, that the error function
ϵn,δ is a neighborhood Pareto bound for the singleton neighborhood N∗n,δ(p) = {q(p)} where q(p)
is the q constructed from p according to Proposition 13. Recall that the monotonicity property of
Proposition 18 says that neighborhood Pareto bounds are stronger for smaller neighborhoods; thus this
bound for singleton neighborhoods implies the corresponding bound for any larger neighboorhoods
Nn,δ ⊃ N∗n,δ .

A.3 Comparing with local minimax optimality

Here, we compare our definition of neighborhood optimality with the notion of local minimax
optimality from prior literature. At a high level, neighborhood optimality imposes admissibility
within each local neighborhood, whereas local minimax optimality imposes minimax optimality
within each local neighborhood. We argue that local minimax is too sensitive to the choice of
neighborhood structure, although the two definitions are different in a rather subtle way and perhaps
difficult to see at first glance. We concretely illustrate their differences via 1) a proposition showing
that for practical purposes, local minimax bounds are a weaker notion than neighborhood Pareto
bounds and 2) a simple example choice of an “inappropriate” neighborhood structure, such that an
intuitively absurd local minimax bound holds for this neighborhood structure, but the same bound
fails to satisfy the definition of a neighborhood Pareto bound. Together, these results show that
neighborhood optimality is a stronger and more robust notion than local minimax optimality.

For ease of comparison, we first phrase the local minimax definition in the same form as our definition
of neighborhood optimality.

Definition 20 (Local minimax bounds with respect to Nn,δ) Let n be the number of samples and
δ be the failure probability. Given a neighborhood function Nn,δ : P1 → 2P1 , we say that the
error function ϵn,δ(p) : P1 → R+

0 is a local minimax bound for P1 with respect to Nn,δ if for all
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distributions p ∈ P1, there is no estimator µ̂ such that for all distributions q ∈ Nn,δ(p) ∪ {p}, when
given n i.i.d. samples from q, the estimator µ̂ achieves |µ̂− µq| < ϵn,δ(p) with probability 1− δ.

Definition 21 (κ-locally minimax estimators) For a parameter κ > 1, sample complexity n, failure
probability δ and neighborhood function Nn,δ , a mean estimator µ̂ is κ-locally minimax with respect
to Nn,δ if there exists an error function ϵn,δ(p) such that ϵn,δ(p) is a local minimax bound, and µ̂
gives estimation error at most κ · ϵn,δ(p) with probability at least 1− δ when taking n i.i.d. samples
from any distribution p ∈ P .

The notions of local minimax bounds and locally minimax estimators also have the same monotonicity
properties as neighborhood Pareto bounds and neighborhood optimal estimators, analogous to Propo-
sitions 18 and 19. When the neighborhood function Nn,δ is constantly equal to the empty set, local
minimax optimality again coincides with instance optimality. Furthermore, local minimax bounds
can be proved using indistinguishability arguments, via a reduction analogous to Proposition 13 up to
minor changes in parameters.

However, one key difference between the two styles of definition arises when we consider proving
neighborhood Pareto bounds or local minimax bounds using such indistinguishability arguments.
Recall from Section 3.2 that, by relying on Proposition 13, the main technical result of this paper is to
show that for every distribution p, there exists a “neighbor” q(p) whose mean is far from p, with q(p)
satisfying suitable structural properties (so that q(p) ∈ Nn,δ(p) in our eventual choice of Nn,δ in
Definition 15), such that p and q cannot be distinguished with probability 1− δ using n samples. As
explained in Section 3.2, this proof strategy effectively proves a neighborhood Pareto bound over the
singleton neighborhood function N∗n,δ(p) = {q(p)}. Thus, it is meaningful to compare neighborhood
Pareto bounds and local minimax bounds when the neighborhoods are singletons. The following
proposition shows that, up to a constant factor of 2 in the error, a neighborhood Pareto bound on
singleton neighborhoods implies a potentially much larger local minimax bound.

Proposition 22 (For singleton neighborhoods, local minimax bounds are weaker than neigh-
borhood Pareto bounds) Let n be the number of samples and δ be the failure probability. Consider
a neighborhood function N∗n,δ such that for all p ∈ P1, N∗n,δ(p) is a singleton set containing a
distribution q(p) ̸= p. Suppose ϵn,δ is a neighborhood Pareto bound with respect to N∗n,δ, and that
ϵn,δ(p) > 0 for all p ∈ P1. Then, the function 1

2 (ϵn,δ(p) + ϵn,δ(q(p)) is a local minimax bound with
respect to N∗n,δ. Note that the above function is lower bounded by Ω(max(ϵn,δ(p), ϵn,δ(q(p))) and
can be much larger than ϵn,δ(p).

Proof. Suppose for the sake of contradiction that 1
2 (ϵn,δ(p)+ϵn,δ(q(p)) is not a local minimax bound

with respect to N∗n,δ but ϵn,δ is a neighborhood Pareto bound.

We observe that, since ϵn,δ is a neighborhood Pareto bound, it must be the case that for every
distribution p ∈ P1, we have |µp − µq| ≥ ϵn,δ(p) + ϵn,δ(q(p)). Otherwise, for any distribution p
not satisfying the above, there is a trivial hardcoded estimator that outputs a number µ̂ such that
|µ̂− µq| < ϵn,δ(q(p)) and |µ̂− µp| < ϵn,δ(p).

Since 1
2 (ϵn,δ(p)+ ϵn,δ(q(p)) is not a local minimax bound, there exists some distribution p and some

estimator µ̂ such that 1) with probability at least 1− δ over n samples from p, |µ̂−µp| < 1
2 (ϵn,δ(p)+

ϵn,δ(q(p))) and 2) the same for q. However, we already know that |µp − µq| ≥ ϵn,δ(p) + ϵn,δ(q(p)),
which implies that we can use the mean estimator µ̂ to distinguish p and q with probability 1 − δ
over n samples. Using this distinguisher, we construct a new estimator µ̂′ which outputs µp if the
distinguisher thinks the distribution is p, and µq otherwise. This new estimator µ̂′ has 0 error with
probability 1− δ over n samples, which contradicts the assumption that ϵn,δ is a neighborhood Pareto
bound and that ϵn,δ(p) > 0. □

The notion of local minimax bounds is therefore (potentially much) weaker than the notion of a
neighborhood Pareto bound we introduce in this work. We now show that this can actually happen, if
we do not choose the neighborhood structure carefully. We give a concrete example of a neighborhood
structure in which an absurdly large local minimax bounds holds, but this bad bound is (rightfully)
rejected by the definition of neighborhood Pareto bounds.

As a representative simple example, consider p = N (0, 1) and define its neighborhood as a singleton
set N(p) = {q = N (η, 1)} where η ≪ 1 is small enough that p and q are indistinguishable with
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n samples. Now define the neighborhood of q to also be a singleton set N(q) = {q′}, where
q′ is constructed by moving a tiny bit of mass of q such that µq′ = η + 106, but q and q′ are
indistinguishable. Consider an absurd error function ϵ(p) = η/2, ϵ(q) = 106/2, which is far too large

for q since we expect O(
√
log 1

δ /n) ≪ 1 estimation error for q (e.g. by using a standard sub-Gaussian
mean estimator). Yet, ϵ is a local minimax bound (c.f. Definition 21) under the neighborhood function
N , since, given two indistinguishable distributions p and q, no estimator can get error less |µp−µq|/2.
On the other hand, we can also check that Definition 12 rejects this absurd ϵ error function from
being a neighborhood Pareto bound. To see this, consider the neighborhood of p, consisting only of q.
Consider the hardcoded estimator µ̂ always outputting 0: µ̂ violates the condition of neighborhood
Pareto bounds since its error for p is |µ̂− µp| = 0 < η/2 and for q is |µ̂− µq| = η ≪ 106/2.

This example, together with Proposition 22, show that neighborhood optimality is a more robust
notion than local minimax optimality when being applied to inappropriately chosen neighborhood
structures. While we believe our paper uses an “appropriate” neighborhood structure, we still
emphasize the importance of introducing definitions that are properly resilient to absurd instantiations.
For this reason, we have chosen to present our results in this paper as a neighborhood Pareto bound
and optimality.

B Remaining proofs for Theorem 2

In Definition 4, we claimed that there exists a parameter a satisfying certain conditions in Case 2 of
the construction. We formally show that this parameter exists in the following lemma.

Lemma 23 Let n be the number of samples and and δ be the failure probability, and assume that
log 1

δ

n is bounded by some sufficiently small absolute constant. Let p be any distribution such that

|µp−µp∗
n
| ≤ σp∗

n

√
c
log 1

δ

n , and we assume that µp = 0 without loss of generality. Then, the equation

∫ − 1
a

−∞
(−x) dp+ a ·

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

xdp =
1

8
σp∗

n

√
log 1

δ

n

always has solution a ∈
(
0, 1

σp∗n

√
log 1

δ

n

]
.

Proof. We first point out that, for the (potentially) non-unit measure q+ defined by dq+

dp (x) =

1 +min(1,max(−1, ax)), the left hand side of the equation equals the difference between the first
moments of q+ and p. Namely,

∫ ∞
−∞

x(dq+ − dp) =

∫ ∞
−∞

xmin(1,max(−1, ax)) dp =

∫ − 1
a

−∞
(−x) dp+ a ·

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

x dp

Our goal is to find a ∈
(
0, 1

σp∗n

√
log 1

δ

n

]
such that this first moment shift equals 1

8σp∗
n

√
log 1

δ

n .

Because min(1,max(−1, ax)) is increasing in a and continuous in a, the first moment shift is also
increasing and continuous in a. When a = 0 then q+ = p, and the shift clearly equals 0. Thus it

suffices for us to show that the first moment shift is at least 1
8σp∗

n

√
log 1

δ

n when a = 1
σp∗n

√
log 1

δ

n . The
lemma then follows from the intermediate value theorem.

Consider the construction of p∗n in Definition 1, and let r be the trimming radius of p. We do a case

analysis, either 1
σp∗n

√
log 1

δ

n ≤ 1/r or 1
σp∗n

√
log 1

δ

n ≥ 1/r.
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Case 1
σp∗n

√
log 1

δ

n ≤ 1/r: At a = 1
σp∗n

√
log 1

δ

n , we have

a ·
∫ 1

a

− 1
a

x2 dp ≥ a ·
∫ r

−r
x2 dp since a ≤ 1/r

≥ a ·
∫ r

−r
(x− µp∗

n
)2 dp since the mean squared error is minimized at the mean

≥ 1

2
a · σ2

p∗
n

since over [−r, r] we have
dp∗n
dp

=
1

1− 0.45
n log 1

δ

≤ 2 for suff. small
log 1

δ

n

=
1

2

1

σp∗
n

√
log 1

δ

n
· σ2

p∗
n

by definition of a

=
1

2
σp∗

n

√
log 1

δ

n

Case 1
σp∗n

√
log 1

δ

n ≥ 1/r: At a = 1
σp∗n

√
log 1

δ

n , we have

∫ − 1
a

−∞
(−x) dp+

∫ ∞
1
a

xdp ≥
∫ −r
−∞

(−x) dp+

∫ ∞
r

x dp since a ≥ 1

r

≥ r ·
∫
R\[−r,r]

1 dp

= r ·
0.45log 1

δ

n
by the definition of p∗n and r

= 0.45r · a · σp∗
n

√
log 1

δ

n

≥ 0.45σp∗
n

√
log 1

δ

n
since a ≥ 1

r

Summarizing, in either case, at a = 1
σp∗n

√
log 1

δ

n , we have that the first moment shift between q+ and
p is∫ − 1

a

−∞
(−x) dp+ a ·

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

xdp ≥ min

(
1

2
, 0.45

)
σp∗

n

√
log 1

δ

n
≥ 1

8
σp∗

n

√
log 1

δ

n

yielding the lemma. □

B.1 Bounding the squared Hellinger distance

We restate Lemmas 7 and 8 from Section 2.2 for clarity, then give the proofs of them below.

Lemma 7 Suppose there is a sufficiently small constant that upper bounds both log 1
δ

n and δ. Given
a distribution p, if we construct q as in Case 1 (the large |µp∗

n
− µp| case) in Definition 4, then

log(1− d2H(p, q)) ≥ 1
2n log 4δ.

Proof of Lemma 7. Since Case 1 in the construction of q in Definition 4 linearly interpolates
between p and p∗n, with interpolation constant λ = 3

4 , thus the Hellinger distance between p and q

can be exactly computed as a function of 1) 0.45log 1
δ

n , which determines the masses of p, q inside and
outside of p’s trimming interval, along with 2) the ratio dq

dp inside and outside of p’s trimming interval,
which also depends only on 0.45

n and λ. We then bound this (essentially) univariate expression.
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Without loss of generality, assume that µp = 0, and let the support of p∗n be [−r, r]. Recall the
construction of q in Case 1 of Definition 4: q = λp+ (1− λ)p∗n. At x /∈ [−r, r], we have dq

dp (x) = λ.

Otherwise, at x ∈ [−r, r], we have dq
dp (x) =

d
dp

(
λ p+ 1−λ

1−
0.45log 1

δ
n

p

)
(x) by the definition of p∗n,

which is in turn equal to (1− λ · 0.45log 1
δ

n )/(1− 0.45log 1
δ

n ).

Given the above equalities, we can explicitly calculate 1− d2H(p, q) as follows.

1− d2H(p, q) =

∫ √
dp dq

=

∫
R\[−r,r]

√
dp dq +

∫
[−r,r]

√
dp dq

=

∫
R\[−r,r]

√
λ dp+

∫
[−r,r]

√√√√1− λ · 0.45log 1
δ

n

1− 0.45log 1
δ

n

dp

=
√
λ ·

0.45log 1
δ

n
+

√√√√1− λ · 0.45log 1
δ

n

1− 0.45log 1
δ

n

·
(
1−

0.45log 1
δ

n

)
by the definition of p∗n

=
√
λ ·

0.45log 1
δ

n
+

√(
1− λ ·

0.45log 1
δ

n

)(
1−

0.45log 1
δ

n

)
We now show a technical lemma to lower bound the quantity in the last line.

Lemma 24 For any λ ∈ [ 34 , 1] and β ∈ [0, 1], we have
√
λβ +

√
(1− λβ)(1− β) ≥ e(λ−1)β

Proof. Take the second derivative of the left hand side with respect to β, giving − (λ−1)2
4(1−β)3/2(1−λβ)3/2 ,

which is negative. On the other hand, the right hand side e(λ−1)β is an exponential in β and hence
convex in β. Therefore, left hand side minus right hand side is concave, meaning that the difference is
minimized at either β = 0 or β = 1. At β = 0, both sides are equal to 1. At β = 1, the left hand side
is
√
λ whereas the right hand side is eλ−1. The inequality

√
λ ≥ eλ−1 is true for any λ ∈ [ 34 , 1]. □

Using this lemma, we have shown that

log(1− d2H(p, q)) = log

√
λ ·

0.45log 1
δ

n
+

√(
1− λ ·

0.45log 1
δ

n

)(
1−

0.45log 1
δ

n

)
≥ (λ− 1)

0.45log 1
δ

n
= (1− λ)

4.5 log δ

10n

≥ (1− λ)
0.9 log 4δ

n
since δ is sufficiently small

≥ 1

2n
log 4δ by the definition of λ = 3/4 and that log 4δ < 0

□

Lemma 8 Suppose there is a sufficiently small constant that upper bounds both log 1
δ

n and δ. Given
a distribution p, if we construct q as in Case 2 (the small |µp∗

n
− µp| case) in Definition 4, then

log(1− d2H(p, q)) ≥ 1
2n log 4δ.

Proof of Lemma 8. Recall that given a distribution p, in Case 2 of Definition 4, we construct q
by picking one of the two non-unit measures q+ and q− which has mass 1

b ≥ 1. Without loss of
generality (via an appropriate reflection of p with respect to µp), let q+ be this non-unit measure,
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then use q = bq+. We use a to denote the corresponding solution to the equation in Definition 4 (note
that a > 0).

To relate d2H(p, q) to d2H(p, q
+), we will need to use the following lemma concerning the general-

ization of squared Hellinger distance between a distribution and a non-negative measure with mass
bigger than 1.

Lemma 25 Given a distribution p, and a non-negative measure q with 1
b ≥ 1 probability mass,

define the (extended) squared Hellinger distance as d2H(p, q) =
1
2

∫
(
√
dp−

√
dq)2. Then, we have

d2H(p, q) ≥ d2H(p, bq)

Proof. For any b′ ≥ 0, we have

1

2
d2H(p, b

′q) =
1

2

∫
(
√
dp−

√
b′dq)2 =

1

2

(∫
1 dp− 2

√
b′
∫ √

dp dq + b′
∫

1 dq

)
=

1

2

(
1− 2

√
b′
∫ √

dp dq +
b′

b

)
The derivative in b′ is therefore

1

2

(
1

b
−
∫ √

dp dq√
b′

)
The derivative is greater than 0 if and only if√

b′

b
≥
∫ √

dp d(bq)

The right hand side is the Bhattacharya coefficient between two distributions, p and bq, and hence
is upper bounded by 1 as a standard fact. The left hand side on the other hand is at least 1 for all
b′ ∈ [b, 1]. Therefore, d2H(p, b

′q) is an increasing function in b′ for the range b′ ∈ [b, 1], meaning that
d2H(p, q) ≥ d2H(p, bq), as desired. □

We can now upper bound the squared Hellinger distance as follows.

d2H(p, q) = d2H(p, bq
+)

≤ d2H(p, q
+) by Lemma 25, since

1

b
≥ 1

=
1

2

∫ ∞
−∞

(
√

dp−
√
dq+)2

=
1

2

∫ ∞
−∞

(
1−

√
1 + min(1,max(−1, ax))

)2
dp by definition of q+

≤ 1

2

∫ ∞
−∞

min(1, (ax)2) dp since the inequality holds pointwise

=
1

2

(∫ − 1
a

−∞
1 dp+ a2

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

1 dp

)

=
a

2
·

(∫ − 1
a

−∞

1

a
dp+ a

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

1

a
dp

)

≤ a

2
·

(∫ − 1
a

−∞
(−x) dp+ a

∫ 1
a

− 1
a

x2 dp+

∫ ∞
1
a

x dp

)

=
a

2
· 1
8
· σp∗

n

√
log 1

δ

n
since a satisfies the equation of Definition 4

≤

√
log 1

δ

n
· 1

σp∗
n

· 1

16
· σp∗

n

√
log 1

δ

n
since a is upper bounded by Definition 4
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=
log 1

δ

16n
≤

log 1
4δ

4n
since δ is sufficiently small

Observe that for sufficiently small z > 0, we have log(1− z) ≥ −2z. Since δ and log 1
δ

n are assumed
to be sufficiently small, we have

log(1− d2H(p, q)) ≥ −
log 1

4δ

2n
=

1

2n
log 4δ

□

C Error analysis for median-of-means

In this section, we present the matching upper bound result of the performance of the median-of-means
estimator. We restate the estimator and the proposition for the sake of clarity.

Algorithm 1 Standard Median-of-Means Estimator

Inputs: n independent samples {xi} from an unknown distribution p; and confidence parameter δ
1. Divide the samples into 4.5log 1

δ groups with equal size.
2. Compute the mean of each group.
3. Return the median of these 4.5log 1

δ means.

Proposition 14 Consider a distribution p with mean µp, a sample size n, and a median-of-means
group count 4.5log 1

δ . Let p∗n be the 0.45
n log 1

δ -trimmed distribution from Definition 1, and µp∗
n

and
σp∗

n
be the mean and standard deviation of p∗n respectively. Then, the median-of-means estimator has

error |µp − µp∗
n
|+ 3σp∗

n

√
4.5log 1

δ

n except with probability at most δ.

To prove this proposition, we use the following lemma:

Lemma 26 Defining p∗n to be the 0.45
n log 1

δ -trimmed version of p, then the empirical mean of
n′ = n

4.5log 1
δ

samples from p is within 3
σp∗n√
n′ of µp∗

n
, except with probability at most 1

5 .

Proof. Recall p∗n is p but with 0.45
n log 1

δ probability mass trimmed (and then scaled up to have total
mass 1). Thus the probability that any of the n′ = n

4.5log 1
δ

samples from p are not in the support of

p∗n is at most 1
10 by the union bound.

Conditioned on the event stated above not happening, we can view the sampling process as drawing
n′ samples from p∗n, with mean µp∗

n
and standard deviation σp∗

n
. The standard deviation of the mean

of these n′ samples is thus
σp∗n√
n′ . By the Chebyshev inequality, the probability of the sample mean

being more than 3 times its standard deviation from the true mean is at most 1
9 . Thus the empirical

mean is within 3
σp∗n√
n′ of µp∗

n
, except with probability at most 1

9 .

Combining these two case, where the event happens and where it does not, the overall probability
of the empirical mean of n′ samples being more than 3

σp∗n√
n

away from the true mean µp∗
n

is at most
1
10 + 9

10 · 1
9 = 1

5 . □

Proof of Proposition 14. Substituting in n′ = n
4.5log 1

δ

to Lemma 26 for each group of the estimator,
and with the fact that the mean of p is µp, we arrive at the conclusion that median-of-means will

have error |µp − µp∗
n
|+ 3σp∗

n

√
4.5log 1

δ

n except when at least half of the 4.5log 1
δ groups have error

> 3σp∗
n

√
4.5log 1

δ

n . Since the probability of each mean having a big error is at most 1
5 by Lemma 26,

the overall failure probability is thus at most the probability that 4.5log 1
δ coins each of bias 1

5 will
yield majority heads. Letting k = 4.5log 1

δ , we bound this probability with a Chernoff bound, which
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for our choice of t ≥ 0, yields ( 45e
0 + 1

5e
t)ke−

tk
2 . The upper bound is minimized at t = log 4,

attaining its minimum of ( 45 )
k. Since k = 4.5log 1

δ , this probability is less than δ. □

D Definition of instance optimality and admissibility

This paper needs a suitable notion of optimality beyond the worst case. One natural definition to
consider is the notion of instance optimality (see Definition 27 in Appendix D) from the computer
science literature [FLN01], which intuitively states that “our algorithm performs at least as well on
any instance p as any algorithm customized to p”. However, it is immediate that no algorithm A can
satisfy such a definition in our setting—for every distribution p, there is a trivial estimator that is
hardcoded to output the mean µp without looking at any data; and this hardcoded estimator beats
any other estimator A. On the other hand, the statistics literature commonly uses a different natural
notion called admissibility (see Definition 28 in Appendix D, also analogous to the economics notion
of Pareto efficiency), which states that “no algorithm can perform at least as well as our algorithm,
and strictly outperforms our algorithm on some instance.” While instance optimality is impossible to
satisfy, admissibility has the dual problem of being somewhat too weak and too easy to satisfy: a
trivial estimator which outputs a hardcoded mean estimate—ignoring any samples—is admissible.

In this short appendix, we give the formal definitions of instance optimality and admissibility for
mean estimation over R.

Recall the notation P1 for the set of distributions over R with a finite mean.

Definition 27 (κ-Instance Optimality in Mean Estimation) For a parameter κ > 1, sample com-
plexity n and failure probability δ, a mean estimator µ̂ whose error function is ϵn,δ is κ-instance
optimal if, for any distribution p ∈ P1, every estimator µ̂′ has error at least 1

κϵn,δ(p) with probability
1− δ over n i.i.d. samples from p.

As we remarked in the introduction, there is no instance optimal mean estimator for any κ > 0, since
for any estimator µ̂, we can find a distribution p on which it has some nonzero error, and thus µ̂
cannot be instance optimal, because it performs infinitely worse on p in comparison with the trivial
“hardcoded” estimator that always outputs µp without looking at any samples.

Definition 28 (Admissibility in Mean Estimation) For sample complexity n and failure probability
δ, a mean estimator µ̂ whose error as a function of the distribution p is ϵn,δ(p), is called “admissible”
if there is no estimator µ̂′ with error function ϵ′n,δ such that

• For every distribution p ∈ P1, ϵ′n,δ(p) ≤ ϵn,δ(p)

• There exists a distribution p∗ ∈ P1 such that ϵ′n,δ(p
∗) < ϵn,δ(p

∗)

E Hardcoded estimators are not neighborhood optimal

We perform the basic “sanity check” for the neighborhood structure of Definition 15, and formally
show that under this neighborhood definition, no trivial hardcoded estimator is κ-neighborhood
optimal for any κ > 1.

Proposition 29 Consider a mean estimator µ̂β which ignores any of its inputs and always outputs
the value β for some β ∈ R. For any parameter κ > 1, µ̂β cannot be κ-neighborhood optimal with
respect to Nn,δ defined in Definition 15.

Proof. For the sake of contradiction, suppose µ̂β is κ-neighborhood optimal. The error function ϵβ
for µ̂β is simply ϵβ(p) = |µp − β|. Since µ̂β is κ-neighborhood optimal, there must exist some error
function ϵpareto ≥ 1

κϵβ such that ϵpareto is a neighborhood Pareto bound with respect to Nn,δ. We
will reach a contradiction by showing that ϵpareto cannot be a neighborhood Pareto bound.

Pick an arbitrary distribution p whose mean µp is β + (1 + κ2) · ϵn,δ(p). This is always possible
since ϵn,δ(p) is translation-invariant in p. By Property 3 of Definition 15 and the reverse triangle
inequality, any q ∈ Nn,δ(p) has mean µq such that ϵβ(q) = |µq − β| ≥ κ2ϵn,δ(p). Since ϵpareto
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is a neighborhood Pareto bound, there must be no estimator µ̃ such that for every distribution
q ∈ Nn,δ(p) ∪ {p}, |µ̃− µq| < κϵn,δ(p) with probability 1− δ over n samples from q; otherwise,
we would have |µ̃− µq| < κϵn,δ(p) ≤ 1

κ |µq − β| = 1
κϵβ(q) ≤ ϵpareto(q), which contradicts ϵpareto

being a neighborhood Pareto bound. However, we can simply pick µ̃ = µ̂µp
, the trivial estimator

that outputs µp always. Again by Property 3 of Definition 15, we have for every q ∈ Nn,δ(p) ∪ {p}
that |µq − µ̃| = |µq − µp| ≤ ϵn,δ(p) < κϵn,δ(p) for κ > 1. We have thus reached the desired
contradiction. □

F Remaining proofs for Lemma 17

In Section 2, we have already shown that the construction of q as in Definition 4 satisfies properties 2
and 4 of Definition 15. To complete the proof of Lemma 17, we show that q satisfies property 1 in
Appendix F.1, and property 3 in Appendix F.2.

F.1 Upper bounding |µq − µp|

We show in this section that, for both cases in Definition 4, the construction of q is such that |µq −µp|
is appropriately upper bounded. We will show that |µq − µp| ≤ ϵn,δ(p), as part of the proof
showing that q ∈ Nn,δ(p). We furthermore show other upper bounds of |µq − µp|, for example, that
|µq − µp| ≤ r

4 if r is the trimming radius for the construction of p∗n from p, which will be useful for
the later sections.

Lemma 30 Assuming p has mean 0, and is trimmed to the interval [−r, r] when constructing p∗n (as
in Definition 1), then Case 1 (the large |µp∗

n
− µp| case) of Definition 4 outputs a distribution q such

that |µq − µp| ≤ r
4 and |µq − µp| ≤ 1

4ϵn,δ(p).

Proof. The distribution q is constructed to be a convex combination of p and p∗n, with interpolation
parameter 1− λ equal to 1

4 by definition. Thus |µq − µp| ≤ 1
4 |µp∗

n
− µp|, where this last quantity is

at most r
4 since p∗n is supported on [−r, r] and thus can have mean at most distance r away from the

origin. Furthermore, by the definition of ϵn,δ(p), we have |µq − µp| ≤ 1
4 |µp∗

n
− µp| ≤ 1

4ϵn,δ(p). □

Lemma 31 Assuming p has mean 0, and is trimmed to the interval [−r, r] when constructing p∗n (as
in Definition 1), then Case 2 (the small |µp∗

n
− µp| case) of Definition 4 outputs a distribution q such

that |µq − µp| ≤ 1
8σp∗

n

√
log 1

δ

n . As a corollary, this is further upper bounded by ϵn,δ(p).

Additionally, if log 1
δ

n is upper bounded by some sufficiently small absolute constant, then 1
8σp∗

n

√
log 1

δ

n

can also be bounded by r
4 .

Proof. Without loss of generality, suppose q+ is the non-unit measure constructed by Case 2 of
Definition 4 which will be downscaled to create q. We know from Lemma 23 that

∣∣∣∫∞−∞ xdq+
∣∣∣ =∣∣∣∫∞−∞ x(dq+ − dp)

∣∣∣ = 1
8σp∗

n

√
log 1

δ

n . Since q is a downscale of q+, we then arrive at |µq| ≤∣∣∣∫∞−∞ xdq+
∣∣∣ = 1

8σp∗
n

√
log 1

δ

n . By the definition of ϵn,δ(p), we have |µq − µp| ≤ 1
8σp∗

n

√
log 1

δ

n ≤
ϵn,δ(p).

For the other corollary, observe that since p∗n’s support is in [−r, r], σp∗
n

is then upper bounded by

2r. Therefore, under the assumption that log 1
δ

n is bounded by a sufficiently small constant, we have
1
8σp∗

n

√
log 1

δ

n ≤ r
4 . □

F.2 Showing that ϵn/3,δ(q) ≤ O(ϵn,δ(p))

Since ϵn/3,δ(q) = O

(
|µq − µq∗

n/3
|+ σq∗

n/3

√
log 1

δ

n

)
, we will separately show that |µq − µq∗

n/3
| =

O(ϵn,δ(p)) (Lemma 35) and σq∗
n/3

√
log 1

δ

n = O(ϵn,δ(p)) (Lemma 36).
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For the second item, the proof of Lemma 36 is relatively self-contained, though requiring some
minute calculations. On the other hand, the analysis of |µq − µq∗

n/3
| is non-trivial. To upper bound

this term, we consider an intermediate (non-unit) measure q̃ resulting from trimming q to the same
interval as p∗n. We then show Lemma 32 which bounds the difference between first moments of q∗n/3
and q̃, and Lemmas 33 and 34 which bound the difference between the first moments of q and q̃ in the
two cases of the construction of q. The combination of these three lemmas gives Lemma 35, which
bounds |µq − µq∗

n/3
| as desired.

In much of the analysis in this section, we will assume without loss of generality that p has mean 0,
is trimmed to the unit interval [−1, 1] when constructing p∗n.

Lemma 32 Let n be the number of samples and δ be the failure probability, and suppose there is a
sufficiently small absolute constant which upper bounds log 1

δ

n . Given a distribution p with µp = 0
and whose trimming radius for constructing p∗n is equal to 1, suppose the distribution q is such that
dq
dp ≤ 2 and |µq| ≤ 1

4 . Letting q∗n/3 be the ( 1.35n log 1
δ )-trimmed version of distribution q, trimming to

some interval [µq − rq, µq + rq], then:

• When [µq − rq, µq + rq] is a subset of [−1, 1] then∣∣∣∣∣
∫ 1

−1
(x− µq) dq −

∫ µq+rq

µq−rq
(x− µq) dq

∣∣∣∣∣ ≤ |µp − µq|+
√

3

5
σp∗

n

√
4.5log 1

δ

n

• When [µq − rq, µq + rq] extends outside [−1, 1] then∣∣∣∣∣
∫ 1

−1
(x− µq) dq −

∫ µq+rq

µq−rq
(x− µq) dq

∣∣∣∣∣ ≤ 2.8125log 1
δ

n
≤ 2ϵn,δ(p)

Proof of the first bullet. Define S = [−1, 1] \ [µq − rq, µq + rq]. Firstly, due to triangle inequality,
we have∣∣∣∣∫

S

(x− µq) dq

∣∣∣∣ ≤ ∣∣∣∣∫
S

(µp − µq) dq

∣∣∣∣+ ∣∣∣∣∫
S

(x− µp) dq

∣∣∣∣ ≤ |µp − µq|+
∣∣∣∣∫

S

(x− µp) dq

∣∣∣∣
The Cauchy-Schwarz inequality then says that∣∣∣∣∫

S

(x− µp) dq

∣∣∣∣ ≤
√∫

S

(x− µp)2 dq

√∫
S

dq

Note that the second integral in the right hand side is bounded by the amount of trimmed probability
mass, which is at most 1.35log 1

δ

n . The first integral, since dq
dp ≤ 2, is bounded by twice the variance

of p in [−1, 1], namely 2σp∗
n

2. Thus the product of the square roots of the two integrals on the right

hand side is bounded by σp∗
n

√
2
1.35log 1

δ

n , yielding the desired bound. □

Proof of the second bullet. Without loss of generality, we assume µq ≥ µp = 0. Thus by the
assumption of this case, that [µq − rq, µq + rq] extends outside [−1, 1], we have that µq + rq > 1,
because of the asymmetry that µq ≥ 0. Since µq ≤ 1

4 by the lemma assumption, we also have
rq ≥ 3

4 .

Recall that p has a total of 0.45log 1
δ

n mass outside [−1, 1] by the lemma assumption, and that dq
dp ≤ 2.

This implies that q has at most 0.9log 1
δ

n mass outside [−1, 1]. As 1.35log 1
δ

n mass is trimmed from

q to construct q∗n/3, there is thus at least 0.45log 1
δ

n mass trimmed from q inside the interval [−1, 1].

Furthermore, since dq
dp ≤ 2, we conclude that there is thus at least 0.225log 1

δ

n mass trimmed from
p inside the interval [−1, 1]. Now denote the set on which q is trimmed, restricted to [−1, 1] by
S = [−1, 1] \ [µq − rq, µq + rq]. Since p has at least 0.225log 1

δ

n mass in S, meaning that S ̸= ∅, and
µq + rq > 1 from earlier, it must thus be the case that µq − rq > −1 and therefore rq < 5

4 .
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Since minxi∈S |xi| > 1
2 , we conclude that (σp∗

n
)2 + (µp∗

n
)2 =

∫ 1

−1 x
2 dp∗n ≥

∫ 1

−1 x
2 dp ≥∫

S
x2 dp ≥ c

22·20
log 1

δ

n . Using the standard inequality that the ℓ1 norm is at least the ℓ2 norm,

we have that σp∗
n
+ µp∗

n
≥
√
(σp∗

n
)2 + (µp∗

n
)2 ≥

√
c

22·20
log 1

δ

n . Thus, since
√

4.5log 1
δ

n ≤ 1
3 by the

lemma assumption, we have that ϵn,δ(p) = σp∗
n

√
4.5log 1

δ

n + µp∗
n
≥
√

9
80

4.5log 1
δ

n . This yields the
second inequality in the second bullet point.

We now prove the first inequality in the second bullet, which bounds the difference between two
integrals; we bound this by bounding the probability mass in each integral and multiplying this
by a bound on the integrand of each integral. Explicitly, the amount of probability mass of q

that is in [−1, 1] but outside of [µq − rq, µq + rq] is at most 1.35log 1
δ

n , and furthermore, for every
x ∈ [−1, 1] \ [µq − rq, µq + rq], we have |x− µq| ≤ 5

4 due to |µq| ≤ 1
4 . In parallel, the amount of

probability mass of p that is outside of [−1, 1] but in [µq − rq, µq + rq] is at most 0.45log 1
δ

n , and since
dq
dp ≤ 2, we conclude that q has at most 0.9log 1

δ

n mass outside of [−1, 1] but in [µq − rq, µq + rq].
Also, for every x ∈ [µq − rq, µq + rq] \ [−1, 1], we have |x− µq| ≤ 5

4 because rq ≤ 5
4 . Thus, the

left hand side of the second bullet is at most (2 + 3) 540.45
log 1

δ

n = 2.8125
log 1

δ

n , as claimed. □

Lemma 33 Given a distribution p with µp = 0 and whose trimming radius for constructing p∗n is
equal to 1, let q be the distribution constructed from p as in Case 2 (the small |µp∗

n
− µp| case) of

Definition 4. Then
∣∣∣∫R\[−1,1](x− µq) dq

∣∣∣ ≤ 5σp∗
n

√
log 1

δ

n .

Proof. Notice that∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dq

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
R\[−1,1]

xdq

∣∣∣∣∣+
∣∣∣∣∣
∫
R\[−1,1]

−µq dq

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
R\[−1,1]

xdq

∣∣∣∣∣+ |µq|

and since |µq| ≤ 1
8σp∗

n

√
log 1

δ

n by Lemma 31, we only have to bound the first term by some constant

multiple of σp∗
n

√
log 1

δ

n .

Recall the construction of q in Definition 4, as a downscaled version of either q+ or q−. Without loss of
generality (by reflecting p and q as appropriate), we assume we use q+. Specifically, q+ is the non-unit
measure such that dq+

dp (x) = 1 + min(1,max(−1, ax)) for some value a specified in Definition 4.

Since q is a downscaled version of q+, we will bound
∣∣∣∫R\[−1,1] x dq∣∣∣ ≤ ∣∣∣∫R\[−1,1] xdq+∣∣∣ by a

constant multiple of σp∗
n

√
log 1

δ

n .

Observe that for any a > 0, we have that x and min(1,max(−1, ax)) have the same sign everywhere,
which means

∣∣∣∣∣
∫
R\[−1,1]

xmin(1,max(−1, ax))) dp

∣∣∣∣∣ ≤
∣∣∣∣∫

R
xmin(1,max(−1, ax))) dp

∣∣∣∣
Additionally, because log 1

δ

n is upper bounded by a sufficiently small absolute constant and

|µp∗
n
| ≤ σp∗

n

√
4.5
n log 1

δ from the lemma assumption, we get | µp∗n
1− 0.45

n log 1
δ

| ≤ 2σp∗
n

√
0.45
n log 1

δ ≤

4.5σp∗
n

√
log 1

δ

n .

We can now upper bound
∣∣∣∫R\[−1,1] xdq+∣∣∣ as follows.

23



∣∣∣∣∣
∫
R\[−1,1]

x dq+

∣∣∣∣∣ =
∣∣∣∣∣
∫
R\[−1,1]

x(1 + min(1,max(−1, ax))) dp

∣∣∣∣∣
≤

∣∣∣∣∣
∫
R\[−1,1]

xdp

∣∣∣∣∣+
∣∣∣∣∣
∫
R\[−1,1]

xmin(1,max(−1, ax))) dp

∣∣∣∣∣
≤

∣∣∣∣∣
∫
R\[−1,1]

xdp

∣∣∣∣∣+
∣∣∣∣∫

R
xmin(1,max(−1, ax))) dp

∣∣∣∣
=

∣∣∣∣∣
∫
R\[−1,1]

xdp

∣∣∣∣∣+
∣∣∣∣∫

R
x(dq+ − dp)

∣∣∣∣
=

∣∣∣∣ µp∗
n

1− 0.45
n log 1

δ

∣∣∣∣+ ∣∣∣∣∫
R
xdq+

∣∣∣∣ since µp = 0

≤
∣∣∣∣ µp∗

n

1− 0.45
n log 1

δ

∣∣∣∣+ 2 |µq| since q is a downscale of q+ by factor at most 2

≤ 5σp∗
n

√
log 1

δ

n
using the prior bounds on the two terms and that 4.5 +

2

8
≤ 5

□

Lemma 34 Given a distribution p with µp = 0 and whose trimming radius for constructing p∗n is
equal to 1, let q be the distribution constructed from p as in Case 1 (the large |µp∗

n
− µp| case) of

Definition 4. Then
∣∣∣∫R\[−1,1](x− µq) dq

∣∣∣ ≤ 5|µp∗
n
− µp|

Proof. From the construction, q outside [−1, 1] just consists of the corresponding portion of p
multiplied by λ ∈ (0, 1). Thus

∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dq

∣∣∣∣∣ = λ

∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dp

∣∣∣∣∣
= λ

∣∣∣∣∣(µq − µp) ·
0.45log 1

δ

n
+

∫
R\[−1,1]

(x− µp) dp

∣∣∣∣∣
≤ |µp − µq|+

|µp∗
n
− µp|

1− 0.45log 1
δ

n

Since q is an interpolation between p and p∗n, the mean of q is in between the mean of p and the
mean of p∗n, and thus |µp − µq| ≤ |µp∗

n
− µp|. Furthermore, since 1

n log
1
δ is upper bounded by some

sufficiently small absolute constant, the entire bound above can be finally bounded by 5|µp∗
n
− µp|,

as desired. □

Lemma 35 Given a distribution p with µp = 0 and whose trimming radius for constructing p∗n
is equal to 1, consider constructing q according to Definition 4. Recall also the notation for the
distribution q∗n/3 which is the ( 1.35n log 1

δ )-trimmed version of q as in Definition 1, and suppose q∗n/3

is formed by trimming q to some interval [µq − rq, µq + rq]. Assuming that log 1
δ

n is upper bounded
by some sufficiently small absolute constant, then |µq − µq∗

n/3
| ≤ 50ϵn,δ(p).

Proof. By the definition of q∗n/3,(
1−

1.35log 1
δ

n

)
µq +

1.35log 1
δ

n
µq = µq =

(
1−

1.35log 1
δ

n

)
µq∗

n/3
+

∫
R\[µq−rq,µq+rq ]

xdq
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Further noting that
∫
R\[µq−rq,µq+rq ]

µq dq =
1.35log 1

δ

n µq , since we trim exactly 1.35log 1
δ

n probability
mass outside of [µq − rq, µq + rq], we can rearrange the above to get(

1−
1.35log 1

δ

n

)
(µq − µq∗

n/3
) =

∫
R\[µq−rq,µq+rq ]

(x− µq) dq

As a result, to bound |µq − µq∗
n/3

|, it suffices to bound
∣∣∣∫R\[µq−rq,µq+rq ]

(x− µq) dq
∣∣∣.

By the triangle inequality, we have that∣∣∣∣∣
∫
R\[µq−rq,µq+rq ]

(x− µq) dq

∣∣∣∣∣ =
∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dq +

∫ 1

−1
(x− µq) dq −

∫ µq+rq

µq−rq
(x− µq) dq

∣∣∣∣∣
≤

∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dq

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

−1
(x− µq) dq −

∫ µq+rq

µq−rq
(x− µq) dq

∣∣∣∣∣
and we bound the two terms separately.

By Lemmas 33 and 34, we have
∣∣∣∫R\[−1,1](x− µq) dq

∣∣∣ ≤ 5|µp − µp∗
n
|+ 5σp∗

n

√
log 1

δ

n in either case
of the construction of q.

To apply Lemma 32, we need to verify that the construction of q is such that |µq − µp| ≤ 1/4
when the trimming radius for constructing p∗n from p is 1. This was shown in Lemmas 30 and 31.
Therefore, by the two cases of Lemma 32, we have

∣∣∣∫ 1

−1(x− µq) dq −
∫ µq+rq
µq−rq (x− µq) dq

∣∣∣ ≤

max

(
|µp − µq|+

√
3
5σp∗

n

√
4.5log 1

δ

n , 2ϵn,δ(p)

)
. From Lemmas 30 and 31 again, we have that

|µp − µq| ≤ ϵn,δ(p).

Combining all these bounds, we have

|µq − µq∗
n/3

| ≤ 1

1− 1.35log 1
δ

n

(∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dq

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

−1
(x− µq) dq −

∫ µq+rq

µq−rq
(x− µq) dq

∣∣∣∣∣
)

≤ 2

(∣∣∣∣∣
∫
R\[−1,1]

(x− µq) dq

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

−1
(x− µq) dq −

∫ µq+rq

µq−rq
(x− µq) dq

∣∣∣∣∣
)

≤ 10|µp − µp∗
n
|+ 10σp∗

n

√
log 1

δ

n
+ 2max

ϵn,δ(p) +

√
3

5
σp∗

n

√
4.5log 1

δ

n
, 2ϵn,δ(p)


≤ 50ϵn,δ(p)

where the last inequality uses the definition of ϵn,δ(p) = |µp − µp∗
n
|+ σp∗

n

√
4.5log 1

δ

n . □

Lemma 36 Given a distribution p with µp = 0 and whose trimming radius for constructing p∗n is
equal to 1, consider any distribution q such that dq

dp ≤ 2 and |µq| ≤ 1
4 . Recall the notation for the

distribution q∗n/3 which is the ( 1.35n log 1
δ )-trimmed version of q as in Definition 1, and suppose q∗n/3

is formed by trimming q to some interval [µq − rq, µq + rq]. Assuming that log 1
δ

n is upper bounded
by some sufficiently small absolute constant, then σq∗

n/3
≤ 50(σp∗

n
+ |µp − µp∗

n
|).

Proof. Without loss of generality, assume that µq ≥ 0. In the following proof, we will aim
to upper bound EX←q∗ [X

2] by 57((σp∗
n
)2 + (µp∗

n
)2), which implies σq∗

n/3
≤
√
EX←q∗ [X2] ≤

√
57
√
(σp∗

n
)2 + (µp∗

n
)2 ≤ 8(σp∗

n
+ |µp∗

n
|), yielding the lemma statement.

Before we bound EX←q∗ [X
2], we first show that by the assumption of µq ≥ 0, it must be the case

that µq − rq ≥ −1.
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Recall that p has a total of 0.45log 1
δ

n mass outside [−1, 1] by the lemma assumption, and that dq
dp ≤ 2.

This implies that q has at most 0.9log 1
δ

n outside [−1, 1]. Since 1.35log 1
δ

n mass is trimmed from q to

construct q∗n/3, there is thus at least 0.45log 1
δ

n mass trimmed from q inside the interval [−1, 1].

Since µq ≥ µp = 0, it must be the case that µq − rq ≥ −1; otherwise rq ≥ 1 and hence µq + rq ≥ 1,
which would mean that [µq − rq, µq + rq] completely contains [−1, 1], contradicting the fact that q
trims non-zero mass from the interval [−1, 1].

We will now start bounding EX←q∗ [X
2].

E
X←q∗

n/3

[X2] =

∫ µq+rq

µq−rq
x2 dq∗n/3

=
1

1− 1.35log 1
δ

n

∫ µq+rq

µq−rq
x2 dq

≤ 2

1− 1.35log 1
δ

n

∫ µq+rq

µq−rq
x2 dp since

dq

dp
≤ 2

≤ 2

1− 1.35log 1
δ

n

∫ 1

−1
x2 dp+

2

1− 1.35log 1
δ

n

∫ max(1,µq+rq)

1

x2 dp

We can bound the two integrals separately. First:

∫ 1

−1
x2 dp ≤

∫ 1

−1
x2 dp∗n since p∗n is scaled up after trimming p to renormalize

= (σp∗
n
)2 + (µp∗

n
)2

Second, we will bound
∫max(1,µq+rq)

1
x2 dp. If µq + rq ≤ 1 then the integral is 0. Otherwise, we

have µq + rq > 1, and we have to bound the above integral, using the following bounds on rq, µq

and the second moment of p∗n.

Consider the mass of q that was trimmed from within [−1, 1]. Since µq + rq > 1, the (at least
0.45log 1

δ

n ) mass that was trimmed from q must be within [−1, µq − rq]. Further recall that dq
dp ≤ 2,

which implies that p has at least 0.225log 1
δ

n mass within [−1, µq − rq]. Since the trimming interval for
constructing p∗n from p is [−1, 1], and p∗n is constructed from scaling up the trimmed version of p, we
conclude that p∗n also has at least 0.225log 1

δ

n mass within [−1, µq − rq].

As we assumed that µq ≤ 1
4 in the lemma statement, we have from µq + rq > 1 that rq ≥ 3

4 . This

furthermore implies that |µq−rq| ≥ 1
2 . Thus the ≥ 0.225log 1

δ

n probability mass of p∗n in [−1, µq−rq]

contributes at least 1
22

0.225log 1
δ

n to the second moment of p∗n; namely EX←p∗
n
[X2] ≥ 0.225

4

log 1
δ

n .

We can also bound rq ≤ 5
4 , since µq − rq > −1 and µq ≤ 1

4 ; thus µq + rq ≤ 3
2 .
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Therefore,∫ µq+rq

1

x2 dp ≤ (µq + rq)
2

∫ µq+rq

1

dp

≤ 9

4

∫ µq+rq

1

dp

≤ 9

4
·
0.45log 1

δ

n
since

∫ 1

−1
dp = 1−

0.45log 1
δ

n

≤ 18 E
X←p∗

n

[X2] using the prior bound on the second moment

= 18((σp∗
n
)2 + (µp∗

n
)2)

Summarizing, when log 1
δ

n is bounded by some sufficiently small absolute constant, we have

E
X←q∗

n/3

[X2] ≤ 2

1− 1.35log 1
δ

n

∫ 1

−1
x2 dp+

2

1− 1.35log 1
δ

n

∫ max(1,µq+rq)

1

x2 dp

≤ 3 · (1 + 18) · ((σp∗
n
)2 + (µp∗

n
)2)

= 57((σp∗
n
)2 + (µp∗

n
)2)

which yields the lemma, by the argument at the very beginning of the proof.

□

Lemma 37 Consider constructing distribution q from p according to Definition 4. Assuming that
log 1

δ

n is upper bounded by some sufficiently small absolute constant, then ϵn/3,δ(q) ≤ 100ϵn,δ(p).

Proof. Since the construction of q in Definition 4 satisfies the assumptions of Lemma 36, this lemma
follows directly from summing up the bounds of Lemmas 35 and 36, that

ϵn/3,δ(q) = |µq−µq∗
n/3

|+σq∗
n/3

√
4.5log 1

δ

n
≤ 50ϵn,δ(p)+50(σp∗

n
+|µp−µp∗

n
|)

√
4.5log 1

δ

n
≤ 100ϵn,δ(p)

where the last inequality uses the definition of ϵn,δ(p) = |µp − µp∗
n
|+ σp∗

n

√
4.5log 1

δ

n and that log 1
δ

n

is bounded by a sufficiently small constant. □
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