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Abstract
Recurrent connections are instrumental in creating memories and performing
time-delayed computations. During their training, networks often explore distinct
topological regions across the parameter space, each with unique attractor struc-
tures that serve specific computational purposes. However, the mechanisms that
facilitate these topological transitions, so called bifurcations, toward an optimal pa-
rameter space configuration remain poorly understood. In this workshop paper, we
investigated the learning process of recurrent neural networks in memory-assisted
computation and developed a regularization strategy to encourage bifurcations that
enhance memory formation capacity. To begin, we examined a delayed addition
task that required the network to retain cue-associated memories for an extended
duration. We observed two distinct phases during the learning of recurrent neural
networks, separated by a bifurcation. In the initial search phase, both train and
test loss values remained stable as the network searched for beneficial bifurcations
leading to optimal parameter configurations. In the subsequent rapid comprehen-
sion phase, the loss values rapidly decreased, and the network quickly learned the
task while preserving its topology but updating its geometry. During our analysis,
we observed that the gradient direction, i.e., learning signal, was aligned with the
optimal descent direction in the second but not the first phase. To aid learning in the
search phase, we developed a temporal consistency regularization that incentivized
a subset of neurons to have slow time dynamics, which subsequently decreased
the duration of the search. Next, we tested the stability of the learned attractors
with and without the temporal consistency regularization, via noise injection ex-
periments, where we uncovered a more robust attractor subspace formation in
the former. Finally, we enforced temporal consistency in a randomly initialized
chaotic recurrent neural network to obtain several cue-associated fixed points in
an unsupervised, online, and biologically plausible manner. Our results provide a
deeper understanding of the role of bifurcations in enhancing associative memory
by driving networks toward the desired attractor formation.
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†These authors co-supervised this work.
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1 Introduction

Creating associations in recurrent architectures often requires finding an attractor subspace that can
support the desired computations and hold relevant memories [1]. From a dynamical systems per-
spective, the transitions between topologically distinct regions towards a memory-friendly parameter
space are driven by desired bifurcations [2]. Although undesired bifurcations have largely been
explored in the context of exploding gradients, where sudden qualitative changes in the loss landscape
can hurt learning [3, 4], driving the network into desired bifurcations remains largely unexplored in
both neuroscience and machine learning literature.

A hint may lie in the mammalian brain recordings, where ramping neural activities with slow-time
dynamics play a crucial role in the dynamic timing processes, supporting memory storage and
associative computations [5, 6]. Slow networks dynamics near attractors [2, 1] is well known to play
a central role in computation and memory [1, 7–10]. Thus, enforcing slow-time dynamics can be a
reasonable way to incentivize attractor formation.

To promote slow-time dynamics in piece-wise linear recurrent neural networks (PLRNNs), a recent
study [11] proposed manifold-attractor regularization (MAR). In this paradigm, a subset of neurons,
termed memory units, are enforced to have weights that form a line-attractor subspace, whereas the
rest, termed computation units, are not regularized. As expected, [11] observed increased memory
capacity in regularized PLRNNs. However, the mechanism underlying this newfound ability and
potential connections to incentivizing desired bifurcations were unexplored.

In this work, we start by reverse-engineering the dynamics of piece-wise recurrent neural networks
(PLRNNs) trained on delayed addition tasks, where the networks are required to hold cue-associated
memories for long time intervals. Our novel contributions include introducing our architecture-
agnostic temporal-consistency regularization (TCR) approach, providing evidence that i) it promotes
bifurcations towards the optimal state-space topology, ii) networks trained with TCR form robust
memory subspaces compared to their counterparts, and finally iii) devising an online, spatiotemporally
local learning rule to train cue-associated memories into randomly initialized chaotic recurrent
neural networks with non-trainable time-constants and tanh(.) non-linearity. While similar forms
of temporal-consistency loss have been utilized in computer vision research [12–16], our work
represents the first application of this regularization technique to incentivize attractor formation in
recurrent neural networks.

2 Results

2.1 Bifurcations separate two distinct learning phases when training recurrent networks

To understand the role of bifurcations in the learning of recurrent neural networks, we first trained an
unregularized PLRNN on the delayed addition task and reverse-engineered the state-space geometry
during learning by finding slow-points via energy minimization [1] (Fig. 1). The training curve
showed two distinct regions, separated by epoch 120 (Fig. 1A). We hypothesized that a bifurcation
divided the training into these phases. To test this hypothesis, we first confirmed that the alignment of
the instantaneous gradient direction with the optimal parameter update direction had a distinct jump
at this point (Methods, Figs. 1B, C), hinting at a change in the loss landscape.

Next, we performed energy minimization [1] and plotted low-dimensional neural trajectories along-
side the slow points (Fig. 1D). The visualization plots confirmed a qualitative change in the attractor
topology. During the early training phase (epochs 40 and 100), all data points were clustered together
with no noticeable structure. Remarkably, by epoch 120, the network states spanned in two distinct
directions, and neural activation trajectories transitioned between these lines in a zig-zag pattern. A
pivotal observation is the bifurcation, occurring at around epoch 120, where energy minima formed a
pronounced line in the principal component space. Later training epochs kept the same state-space
structure, while fine-tuning the location of the minima (See epoch 500, Fig. 1D).

Bringing it all together, we concluded that the training dynamics showed two distinct phases, where
the network searched for the optimal state-space topology in the first phase and fine-tuned the
geometry in the second, rapid comprehension, phase. Surprisingly, we also observed that the gradient
was weakly aligned, if at all, with the set of recurrent weights that supported the desired attractor
subspace right after bifurcation (Fig. S1).
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Figure 1: Learning dynamics during the delayed addition task show two distinct phases,
separated by a bifurcation. A Percentage of correct trials plotted against the number of training
epochs revealed two phases of training. B, C The instantaneous gradient direction was aligned to
the optimal learning direction during the second, but not the first, phase (B, Methods), which was
also echoed by the L2 distance (C). Solid line: mean. Shaded areas: standard errors of the mean
(s.e.m.) across 10 runs. D Next, to gain insight into the sudden change in Epoch 120, we visualized
the network states over multiple trials (blue), neural trajectories during a single trial (green), and
energy minima (red) within the top three principal component spaces. A bifurcation, signaled by a
qualitative change in the energy landscape (red markers), separates the two learning phases.

2.2 Temporal consistency in recurrent networks incentivizes attractor subspace formation

Next, we first reproduced the results of [11] with PLRNNs initialized and/or regularized with the
MAR (Fig. S2). We observed the emergence of memory neurons that had ramping, slow time
dynamics, in line with the biological insights [6].

To better understand the internal workings of the regularized networks, we tested which subsets of
neurons kept cue-associated numbers in memory, through cue decoding (Methods). Unsurprisingly,
we confirmed that regularized networks had enhanced memory capacity and that memory neurons
memorized the cue-associated numbers more faithfully than the computation neurons (Fig. S3).

Inspired by this observation, we devised a network-agnostic regularization procedure, termed temporal
consistency regularization (TCR, Methods). We observed that networks trained with TCR had a
higher chance of convergence compared to unregularized networks (Fig. S4A), with robust memory
subspaces to noise injections (Fig. S4B). While TCR strength modulated phase 1 length, MAR was
capable of overcoming phase 1 completely (Figs. S5, S6), likely because the specific line-attractor
enforced by MAR was already a suitable candidate to solve the delayed addition task.

2.3 Online and local learning of cue-associated distinct memory states

In essence, TCR forces the derivative of network activities towards zero for a subset of neurons.
Discretization of this term leads to an error signal that is simply the difference between current and
previous neural activities, which can be applied in a local and online learning rule (Methods). Next,
we applied this rule to learn cue-associated fixed-points, which arose rapidly through online training
starting with a randomly connected chaotic network (Fig. 2A). Since online learning freezes the
network in time, but only locally, we named this paradigm “freeze-in training".

Using the freeze-in training, we were able to train 25 distinct fixed-point attractors, each of which was
associated with a cue (Fig. 2B). Notably, training converged quickly, leading to a negative maximum
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Figure 2: Temporal consistency enables online learning of cue-associated fixed-points. A The
training procedure starts with a randomly initialized chaotic RNN. A fixed, rectangular pulse is
applied through a randomly initialized non-trainable input weight matrix to the network (Methods).
For a pre-defined duration after the pulse offset, the network is forced to become temporally consistent
via spatiotemporally local consistency signals. B We visualized the final output of a fully trained
network with 25 distinct, cue-associated fixed-point attractors. C As little as 12 instances of repeated
cue presentation were sufficient to train the attractive fixed-points, as measured by the maximum
eigenvalue of the Jacobian (Methods). Boxes contain data points from lower to upper quartiles, with
the middle line denoting the median. The upper and lower whiskers are 1.5 times the interquartile
distance. D We visualized 10 out of 25 cue-associated fixed-points. Pulses are shown during a very
short duration, and drive the transitions between fixed-points.

eigenvalue of the Jacobian (Methods, Fig. 2C), hinting at the formation of several attractor subspaces.
Though the attractive fixed-points were gated by cues, their existence was not dependent on them
since the network was trained to remain in the fixed-points long after the cue offset (Fig. 2D), using
the cue to build the association. Hence, we were able to train, in an unsupervised manner, several cue
associations into the network without making use of any global signal or loss function.

3 Discussion

The study of bifurcations during learning has been limited in the recent literature, with some toy
examples discussing the difficulty of learning during changes in the state-space topology [3] (Though
see [17, 18] for excellent recent examples). In this work, we showed that a systematical study of
learning in recurrent networks from the perspective of dynamical systems theory can lead to new
insights into how the memory capacity of networks can be enhanced by incentivizing beneficial
bifurcations.

To better understand the emergence of attractors subserving memory, we studied learning during a
delayed addition task, which requires the network to learn a substantial memory capacity. Our results
indicated that the training had two distinct phases: search and rapid comprehension. Notably, gradient
was well aligned with the optimal direction in the second, but not the first phase, whereas enforcing
time-consistency had the opposite behavior. Finally, we applied the idea of enforcing time-consistency
in an online manner and obtained multiple cue-associated fixed-points, which were trained rapidly in
few successive cue representations. Hence, our results provided a first confirmation that when the
optimal topology for the parameter space is not yet represented in the loss function, i.e. the network
has not gone through the right bifurcations yet, the gradient carries at most a weak learning signal,
and simple yet efficient learning rules can drive the network through desirable bifurcations.
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A Methods

A.1 Task description

We conducted all our task-based experiments on the delayed addition task. The task con-
sisted of 100,000 training and 10,000 testing data samples. Each data sample U =
{(u1

1, u
2
1), (u

1
2, u

2
2), ..., (u

1
T , u

2
T )} had a size of T × 2. Here, the entries u1

t ∈ [0, 1] were sam-
pled from a uniform random distribution, while the entries u2

t ∈ {0, 1} formed binary series. The
values of u2

t were sampled such that ∀t, u2
t = 0, except for t = t1 and t = t2. The values of t1 and

t2 were randomly sampled with the constraint t1 < 10 and t2 < T/2. The target output at the final
time step T should be oT = u1

t1 + u1
t2 . This approach of modeling the task requires the network

to maintain long-term memory of at least T/2 time steps and was used in [11] for benchmarking
manifold-attractor regularization.

A.2 Model description

We considered PLRNNs [19, 11] for all the experiments with delayed addition tasks. The dynamical
system equations were:

x[t] = Ax[t− 1] +Wϕ(x[t− 1]) + Cs[t] + h (S1)

Here, x[t] ∈ RN is the network currents with N number of neurons, ϕ(x[t]) is the network firing
rates with ReLU non-linearity ϕ(.) (i.e. ϕ(x[t])i = max(0, xi[t]), i ∈ 1, ..., N ), A ∈ RN×N is a
diagonal matrix which encodes decay time constants of neurons, W ∈ RN×N is the recurrent weight
matrix, s[t] ∈ RK is the external input with dimension K, C ∈ RN×K is the input mapping, and
h ∈ RN is a bias.

To obtain the output of the network, we linearly projected the final currents x[T ] at T th time-step,
where T is the temporal length of the input/ task:

ô[T ] = Woutx[T ] + bout (S2)

ô[T ] ∈ R is the output of the network, Wout ∈ R1×N is the output mapping, bout ∈ R is a output
bias.

Unless otherwise specified, the following were learned: A,W,C, h,Wout and bout. For all the
experiments with delayed addition tasks, we considered N = 40 neurons.

We trained all our networks to minimize the mean squared error between the target (oT ) and the
network output ô[T ]. Network performances were quantified by the percentage of predictions that
have < 0.04 error with the target output.

A.3 Regularization schemes

Throughout the paper, we considered two types of regularization, proposed temporal consistency
regularization (TCR) and manifold attractor regularization (MAR) [11]. Whenever applicable, we
regularized Nreg neurons with Nreg < N , unless otherwise specified.
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Temporal Consistency Regularization The proposed Temporal Consistency Regularization (TCR)
loss function is defined as:

LTCR =
τ

T

T∑
t=1

Nreg∑
i=1

(xi[t]− xi[t− 1])2 (S3)

Manifold Attractor Regularization Manifold attractor regularization (MAR) [11] is defined as:

LMAR = τ

Nreg∑
i=1

(Ai,i − 1)2 + τ

Nreg∑
i=1

N∑
j=1
j ̸=i

W 2
i,j + τ

Nreg∑
i=1

h2
i (S4)

For networks which trained with MAR, W was taken as an off-diagonal matrix to be consistent with
[11]. We used an off-diagonal W for other networks as well when we performed direct comparisons
with MAR.

Manifold Attractor Initialization Manifold Attractor Initialization (MAI) is an initialization method
[11]. In this initialization, the networks are initialized such that LMAR = 0 at the beginning.

A.4 Hyperparameter selection

We trained all the networks with Adam optimizer [20], with a train batch size of 500 and a test batch
size of 100.

For bifurcation analysis (Fig. 1), we considered an unregularized PLRNN with T = 40. We initialized
all the weights (i.e. A,W,C, h) using PyTorch’s default recurrent network initialization method, by
sampling from a uniform distribution of [− 1√

N
, 1√

N
] [21]. We kept the bout learnable and initialized

x[0] from a standard normal distribution. The network was trained for 500 epochs, with 10.0 gradient
clipping. To optimize the learning rate, we repeated the experiment 3 times with a learning rate from
{0.0015, 0.001}. A learning rate of 0.0015 was picked. We analyzed gradients during the learning
(Fig. 1B, C, Fig. S1) and visualized the attractor formations (Fig. 1D).

To find out the effect of TCR (Fig. S4), we conducted experiments with unregularized PLRNNs,
PLRNNs with MAR, and PLRNNs with TCR. We considered the same network implementations,
initialization method, and hyper-parameters used in the previous work [11], T = 40, 100 epochs of
training, and a learning rate of 0.001 for all the networks. A gradient clipping of 3.0 was applied for
all the networks. For MAR, we used τ = 5.0 as the regularization strength [11]. For TCR, we used
τ = 1.0 as the regularization strength. For all the networks with TCR/ MAR, we regularized 50%
of the network, i.e. Nreg = 40× 0.5 = 20. We repeated the experiments 10 times and reported the
mean and the standard error of the mean (Fig. S4A).

To reproduce MAR results (Fig. S2A), we considered three networks; unregularized PLRNN,
PLRNN with MAI and PLRNN with MAI and MAR. We followed hyper-parameters used in [11] for
T ∈ {20, 40, 60, 100, 200, 300, 400, 500}. Experiments were repeated 10 times. Mean and standard
errors were reported (Fig. S2A). We analyzed the frequency components of the networks (Fig. S2C),
and memory capabilities (Fig. S3).

For noise-injection experiments (Fig. S4B,C), we considered the same configurations used for Fig.
1 bifurcation analysis with a learning rate of 0.001 and a weight decay of 10−8. Experiments were
repeated 3 times. Mean and standard errors were reported.

To analyze the impact of TCR for the bifurcation point (Figs. S5, S6), we conducted experiments
with the same hyperparameters used for bifurcation analysis for unregularized PLRNNs (Fig. 1). In
addition to unregularized PLRNNs, here we considered PLRNNs with MAI, PLRNNs with MAR
(τ = 5.0), and PLRNNs with TCR (τ ∈ {0.001, 0.01, 0.1}). For all the networks with MAR/ TCR/
MAI, we regularized only the half of the network. We repeated all the experiments 5 times and
reported the results in Figs. S5 and S6.

A.5 Energy minimization

To extract the slow points of the network, we followed energy minimization described by [1]. We
first picked a data batch with 100 trials from the test set. We obtained currents for all the trials. This
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resulted in 100 × T total number of states. 500 states were randomly picked as the initialization
points for energy minimization (i.e. xe[0]). For time step t, we computed the energy E[t] as follows.

E[t] = ||xe[t+ 1]− xe[t]||22 (S5)

Starting from each xe[0], we minimized the energy using stochastic gradient descent:

xe[t+ 1] = xe[t]− α
∂E[t]

∂xe[t]

∣∣∣∣∣
xe[t]

(S6)

with α = 0.1 and performed 1000 iterations. This resulted in 500 trajectories. Final states xe[1000]
for each initialization were visualized as red crosses using PCA in Fig. 1.

A.6 Visualization analysis

To visualize attractor manifolds, we applied the dimensionality reduction method, Principle Compo-
nent Analysis (PCA), and reduced the dimensionality of x(t) into 3.

To fit the PCA, we first picked a data batch with 100 trials from the test set. Second, we obtained
corresponding currents x[t]s for trials from a fully-trained network. PCA is fitted for all the states
of x[t]s. The resultant fitted PCA model is then applied to reduce dimensions of xe[t]s and x[t]s
obtained from models that were not fully trained (Fig. 1D).

A.7 Gradient similarity analysis

We performed gradient similarity analysis over the training to measure how alignment between
instantaneous gradients and the ideal gradient changes with respect to the bifurcation point.

To compute this, we picked trained models after each 20 epochs. For W , ground truth and instanta-
neous gradients are generated as follows:

dWinst = Wepoch −W tuned
epoch , (S7a)

dWgt = Wepoch −Wfinal (S7b)

dWinst and dWgt are instantaneous and ideal gradients. We computed W tuned
epoch by optimizing weights

for 10 epochs starting from Wepoch, using the Adam optimizer with a learning rate of 0.0015. We
repeated the optimization 10 times with multiple starting seeds and averaged over to obtain W tuned

epoch .

Different distance measures between the ideal and the instantaneous gradient are plotted over the
epochs:

d = D(dWinst, dWgt) (S8)

Here, D(.) is the cosine similarity or L2 distance. For the comparison, we also obtained a shuffled
control:

dcontrol = D(Perm(dWinst), dWgt) (S9)

Perm(.) randomly shuffles the values of the array given.

A.8 Stimulus Decoding Experiments

To test the memory capabilities of attractor-incentivized networks compared to unregalarized
PLRNNs, we conducted cue/ stimulus decoding experiments. For this, we picked 10 unregular-
ized PLRNNs and 10 PLRNNs trained with MAR and MAI for the addition task with T = 60 from
Fig. S2A.

We first created an Addition dataset with predetermined cue positions (i.e. t1 = 5 and t2 =
T
2 − 1). The goal was to quantify networks ability to predict u1

t1 , u
1
t2 , and u1

t1 + u1
t2 from xS [t] =

xi[t]i={1,...,N}, xS1 [t] = xi[t]i={1,...,Nreg}, and xS2 [t] = xi[t]i={Nreg+1,...,N} separately. Analysis
was conducted for all the time steps, t ∈ 1, ..., T .

To predict cues/ targets from neuronal activity, we considered linear regression models. For a given
network and for a given t, 9 linear regression models were independently fitted to map 3 types of
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currents (i.e. xS [t], xS1 [t], xS2 [t]) into 3 types of targets (i.e. u1
t1 , u

1
t2 , and u1

t1+u1
t2 ). We repeated the

procedure for t ∈ {1, ..., T} and all 20 networks (i.e. 10 plane PLRNNs and 10 memory-incentivized
PLRNNs). All the fitting was done on the training dataset with 10000 trials and testing was done on
the testing dataset with 1000 trials. We plotted the mean performance curves on test datasets across
10 networks in Fig. S3.

A.9 Frequency Analysis

We analyzed frequency distributions of currents of PLRNN, PLRNN with MAI, and PLRNN with
MAR and MAI. To conduct this, we selected 3 networks from Fig. S2A, with T = 20.

We first concatenated 50 trials with T = 20 from the test set and obtained a long trial with a temporal
length of T = 1000. Currents x[t]s were obtained for this long input trial. We showed currents for 10
neurons in Fig. S2C (left).

To obtain frequency plots, we separately considered currents from computational and memory neurons.
Trajectories of the neuronal currents were first divided by the maximum current of the corresponding
trajectory. Fast Fourier transform followed by frequency shift was then applied. We obtained absolute
values from the resultant frequency sequence. The resultant frequency sequences are then divided
again by the maximum frequency component of the corresponding frequency sequence. Finally, we
took the mean frequency sequence over neurons. Resultant frequency plots are shown in Fig. S2C
(right).

A.10 Intervention experiments

We performed intervention experiments by injecting noise into the networks that were trained with
and without TCR. Networks had N = 40 neurons, and were performing an addition task with
T = 40.

In the first case, we injected Gaussian noise with ϵ standard deviation (∼ N (0, ϵ2)) during the first
half of the task duration t ∈ {1, ..., 20}, to 2 sets of neurons; S1 = 1, ..., Nreg and S2 = Nreg, ..., N
separately. In the second case, we injected a constant noise/ input with amplitude γ during the first
half of the task duration to neurons; S1 and S2. For networks trained with TCR, the set S1 and S2

corresponded to memory and computational neurons respectively. We considered a range of ϵ and γ
for the experiment. The procedure was repeated for 6 networks (3 plane PLRNNs and 3 PLRNNs
with TCR). We plotted the mean performance fluctuation under noise strength with standard error in
Fig. S4B, C.

A.11 Quantification of phase durations and learning speeds

We summarized the learning curves in Fig. S5 in terms of the epochs taken to achieve bifurcation,
convergence speed, and maximum training performance (Fig. S6).

Given a converged network, we obtained the convergence speed sconv by:

sconv =
P90% − P10%

eP90%
− eP10%

(S10)

Here, Pµ% = 0.01µPmax is the µ% of the maximum training performance Pmax. ePµ%
was the

lowest epoch that gives performance greater than Pµ%. Duration of the phase 1 was eP10%
. Fig. S6A,

B and C show eP10%
, sconv and Pmax respectively.

A.12 Online learning rules

The RNNs for our online experiments obeyed the "neural inspired" differential equations

τc
dri(t)

dt
= −ri(t) + f(zi(t)),

zi(t) =

Nrec∑
j=1

W rec
ij rj(t) +

Nin∑
j=1

W in
ij uj(t) + ϵi(t).

(S11)
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Here, ri is the activity or firing rate of neuron i and zi is the total input current to neuron i. Nrec = 400
and Nin = 1. The input vector is denoted by u⃗ (rectangular pulse) and ϵi(t) is i.i.d Gaussian noise.
Furthermore, the time constant τc = 10, and f(·) = tanh(·). Each element of Wrec was initially
drawn from a normal distribution with mean 0 and standard deviation 1.8/

√
Nrec while each element

of Win was drawn from a standard normal. We utilized multiple Wins to train multiple fixed points.
To prevent self-excitation, we also enforced W rec

ii = 0.

While the continuous time formulation provides a theoretically motivated window into the time
dynamics of the network, the simulations were performed via discretization with ∆t time steps. The
discretized network dynamics followed:

ri[t+∆t] = (1− α)ri[t] + αf(zi[t+∆t]), (S12)

where α = ∆t
τc

is the unitless normalized discretization time, commonly chosen a small value such as
α = 0.1.

The learning process began after u⃗ becomes nonzero, i.e., the arrival of the rectangular pulse. After
completion of this pulse, we enforced that the network aims to produce its previous activity r(t−∆t).
Namely, we performed a local step of gradient descent on

λ(ri[t]− ri[t− 1])2 (S13)

for all neurons and for all t in the training window, where λ determines the strength of this derivative
regularizer - we set λ = 1/1000. A step of this update rule corresponded to

W rec[t+∆t] = W rec[t]− λ(r⃗[t]− r⃗[t−∆t])r⃗[t−∆t]T . (S14)

We repeated this update several times, in a randomized manner across cues, as shown in Fig. 2. Each
pass across all cues was considered a single epoch.

A.13 Computation of the Jacobian

We computed the Jacobian at some given r⃗∗ by taking partial derivatives of equation (S11). The
resulting matrix was given by

J =
1

τc

(
W rec(1− tanh2(W recr⃗∗)⊗M − Inxn)

)
(S15)

where ⊗ is element-wise multiplication and M is a n x n matrix of 0’s on the diagonal and 1’s
everywhere else.

A.14 Details on figure reproduction

We plan to release the code to reproduce each figure in our GitHub.
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Figure S1: During the search phase, gradients contribute at most weakly, if at all, to the search.
We computed the cosine similarity of the gradient with the optimal direction for the recurrent weight
matrix W , column 1, and the output weight matrix Wout, column 2. Each row corresponds to a
different target weight for the similarity analysis. Before the bifurcation, the gradients lack a clear
direction towards the final weights. Surprisingly, they also fail to update the weights efficiently toward
the bifurcation point. After the bifurcation, gradients show an alignment with the ideal gradient
direction (row 4). Solid line: mean. Shaded area: s.d. over 10 runs.
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Figure S2: Manifold attractor regularization incentivizes slow-time dynamics. A, B We plotted
the mean-squared error (A) and the fraction of correct trials (B) for plain PLRNNs, as well as
manifold-attractor initialized (MAI, Methods, [11]) and regularized (MAR, Methods, [11]). Both
MAI and MAR significantly improve the convergence capabilities of PLRNNs by initializing (MAI)
network dynamics near a plane attractor and enforcing (MAR) it during training. Solid lines: mean.
Error bars: s.e.m over 10 runs. C Activity frequencies of networks performing the addition task
(T=20) show that MAI and MAR incentivize slow-time dynamics in a subset of neurons, termed
memory units.
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[t]), and currents from computation
neurons (xS2

[t]). Plane PLRNNs fail to keep cue 1 in the memory. Memory neurons of MAR-
PLRNNs keep cue 1 until the end of the trial while computational neurons of MAR-PLRNNs forget
cue 1 after the network receives cue 2. B. Decoding cue 2 from xS [t], xS1

[t] and xS2
[t]. Plane

PLRNNs and computational units of MAR-PLRNNs forget cue 2. Memory neurons of MAR-
PLRNNs remember cue 2. C. Decoding addition targets from xS [t], xS1
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[t]. Computational

neurons of MAR-PLRNNs generate targets immediately after the network receives cue 2. However,
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