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Abstract

Large language models frequently encounter
conflicts between their parametric knowledge
and contextual input, often resulting in factual
inconsistencies or hallucinations. We propose
Self-Reflective Debate for Contextual Reliabil-
ity (SR-DCR), a lightweight framework that
integrates token-level self-confidence with an
asymmetric multi-agent debate to adjudicate
such conflicts. A critic, deprived of context,
challenges a defender who argues from the
given passage; a judge model evaluates the de-
bate and determines the context’s reliability.
The final answer is selected by combining the
verdict with model confidence. Experiments on
the ClashEval benchmark show that SR-DCR
consistently improves robustness to misleading
context while recovering accuracy on trustwor-
thy inputs, outperforming both classical debate
and confidence-only baselines with minimal
computational overhead.

1 Introduction

Large language models (LLMs) (Wang et al., 2024;
Guo et al., 2024) reason using two distinct sources
of knowledge: parametric knowledge, stored in
model weights, and contextual input, provided at
inference time. This dual-source capability grants
LLMs remarkable flexibility, but also exposes a crit-
ical vulnerability: when internal priors and external
context conflict, models frequently generate hallu-
cinated or factually inconsistent outputs. These
failures range from parroting erroneous passages
(e.g., “people eat rocks”) to relying on outdated be-
liefs (e.g., mislocating the Eiffel Tower in Rome).
Such errors highlight the absence of a principled
mechanism for reconciling contradictions between
knowledge sources. Empirical studies show that
LLMs often defer to memorized facts even when
these subtly contradict the context (Brown et al.,
2020; Longpre et al., 2021). Retrieval-augmented
generation (RAG) systems compound the problem

by amplifying misleading context when it appears
superficially fluent or plausible (Niu et al., 2023).
Reliance on either source in isolation leads to brittle
and unpredictable behavior.

Recent work has explored token-level confi-
dence as a signal for epistemic reliability. For
example, Wu et al. (2024) compare token prob-
abilities with and without context to select the
more trustworthy response. More broadly, out-
put confidence—estimated from log-probabilities—
correlates with familiarity: confident predictions
tend to reflect well-known facts, while uncertain an-
swers often correspond to ambiguous or unfamiliar
queries (Wang et al., 2022).

In parallel, multi-agent debate (MAD) (Du et al.,
2023; Chan et al., 2023; Liang et al., 2023; Kenton
etal., 2024; Lang et al., 2025; Agarwal and Khanna,
2025) has emerged as a promising oversight mecha-
nism. By prompting agents to critique each other, it
enables deliberation, mitigates hallucinations, and
often allows even weak judges to identify correct
answers (Irving et al., 2018; Michael et al., 2023).
However, existing MAD frameworks typically as-
sume consistent inputs across agents, and rarely
examine how debates unfold when internal priors
and external context offer conflicting evidence.

Our Contributions. This work addresses the open
challenge of resolving internal-external knowledge
conflict in LLMs. We contribute:

1. A systematic analysis of model behavior under
graded contextual perturbations, revealing how
token-level confidence and factual familiarity
shape LLM preferences for internal versus ex-
ternal knowledge.

2. An evaluation of standard MAD setups under
adversarial conflict, showing that symmetric de-
bate alone often fails to arbitrate between in-
compatible sources.

3. A novel framework, Self-Reflective Debate for
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Figure 1: Overview of SR-DCR (Self-Reflective Debate for Contextual Reliability), a debate-driven framework for
resolving conflicts between parametric priors and contextual evidence. When the model’s prior belief conflicts with
the external passage (left), SR-DCR evaluates two key signals: (a) the self-confidence of the zero-context answer
aprior; and (b) the context’s reasonableness, determined via an asymmetric debate between two LLM agents. A
judge model monitors the debate over N rounds and issues a verdict on the trustworthiness of the context. The final
answer is selected by jointly considering both the model’s self-confidence and the judged context reliability (right).

Contextual Reliability (SR-DCR), illustrated
in Fig. 1. SR-DCR combines token-level self-
confidence with an Asymmetric Context Ver-
ification Debate (ACVD), in which one agent
defends the context and another, deprived of it,
argues from prior knowledge. A judge resolves
the debate over multiple rounds, and a final deci-
sion rule integrates both context reliability and
confidence to select the answer or abstain. This
framework improves robustness and factual ac-
curacy across multiple QA benchmarks.

2 Preliminaries

2.1 Background of Knowledge Conflict

Problem Statement. We investigate how LLMs

reconcile conflicting signals between their inter-

nal factual priors and externally provided context.

Specifically, each instance is defined as a triple

(g, a,c), where:

* ¢ is a question generated from a factual (subject,
relation, object) tuple.

* a is the correct answer derived from the object.

* cis an evidence passage intended to support or
contradict a.

The model is given the pair (g, ¢) and tasked with

answering the question g. Our goal is to evalu-

ate whether it can correctly predict a, even when

the passage c contains misleading or conflicting
information.

To probe the model’s robustness, we introduce
targeted perturbations to the answer-bearing entity
in ¢ while keeping both ¢ and a fixed. These per-
turbations are constructed at four increasing levels
of contradiction—subtle, mild, moderate, and bla-
tant—to test how the model balances contextual
evidence against its parametric knowledge.

Illustrative Example. In the WIKIPEDIA
YEARS domain, consider the question: “In which
year was the census conducted that reported
the population of Lukhi village in Iran as 35?”
The correct answer a is 2006, based on the
underlying knowledge tuple. We then modify the
corresponding passage c to simulate contradiction:

* A moderate perturbation replaces the year with
1966, creating a subtle conflict.

* A blatant perturbation changes it to 2106, in-
troducing an implausible inconsistency.

The remainder of the passage remains unchanged.
These graded interventions enable controlled anal-
ysis of how LLMs resolve factual conflicts under
varying degrees of contextual reliability. More ex-
amples are put in Appendix B.



2.2 Assessing Knowledge Recall

To estimate whether a model knows the correct an-
swer a to a question g independently of any support-
ing passage, we employ a sampling-based probing
method inspired by SLICK (Gekhman et al., 2024).
The core idea is to gauge how frequently a model
recalls the correct answer when presented with the
question alone, using no external context.

Sampling Procedure. For each QA pair (¢, a),
we generate N = 32 completions from the base
model at a fixed temperature 7' = 0.5, using a
4-shot prompt for few-shot conditioning. Then a
group of predictions is obtained as {a1,...,an},
and the sampled accuracy is defined as:

N
. 1 A
Acc (g,a,{a;},) = ¥ 31 [ = dl,
=1

where 1[-] is the indicator function. This provides
a robust estimate of the model’s prior knowledge of
a. This is distinct from self-confidence (discussed
later), which reflects belief in a single prediction.

Knowledge Categorization. Based on sampled
accuracy, we categorize each (g, a) pair into one of
four knowledge tiers (see Tab. 3):

« Highly Known: Acc (q,a,{a;}Y ) > 0.85 —
strong and consistent recall,

* Maybe Known: 0.30 < Acc (g,a,{a;}Y,) <
0.85 — partial or inconsistent recall,

« Weakly Known: 0 < Acc(q,a,{a;}Y,) <
0.30 — sporadic or weak recall,

* Unknown: Acc (g,a,{a;}Y,) = 0 — no evi-
dence of prior recall.

This taxonomy allows us to stratify the model’s
factual knowledge without relying on any auxiliary
retrieval or context conditioning.

2.3 Quantifying Self-Confidence

Definition. In addition to knowledge qualifica-
tion, which reflects whether a model can recall a
fact, we also measure how strongly the model be-
lieves in its answer when generating a response. We
define a model’s self-confidence for a prediction
a = (t1,...,tr) to question ¢ as the average log-
probability assigned to the answer tokens (Wang
et al., 2022):

L
R 1
po(a|q) = 7 > “logp(ti | ¢,t<i)-
=1

This score is derived from a single greedy predic-
tion conditioned on a fixed few-shot prompt with-
out temperature sampling. A higher confidence
value implies greater internal belief in the gener-
ated answer.

Distinction from Knowledge Recall. Unlike
sampled accuracy, which captures the empirical
frequency of correct recall across many comple-
tions, self-confidence reflects the strength of belief
in a single response. These two axes—knowability
and belief strength—may diverge: a model might
confidently predict an incorrect answer (high confi-
dence, low recall), or may inconsistently predict a
correct one (low confidence, high recall).

3 Method

We introduce Self-Reflective Debate for Contextual
Reliability (SR-DCR), a framework that combines
asymmetric MAD with self-confidence—aware rea-
soning to evaluate context trustworthiness and de-
termine final answers under conflicting information.
SR-DCR unfolds in three stages:

1. Asymmetric Context Verification Debate
(ACVD): Agents debate the reliability of the
context from asymmetric viewpoints.

2. Self-Confidence Estimation: The model pre-
dicts a zero-context answer apg;or and computes
its confidence score.

3. Final Answer Selection: A decision rule
chooses between acrx, Aprior, OF ABSTAIN,
based on the context verdict and confidence
level.

3.1 Asymmetric Context Verification Debate

To assess the reliability of external context
passages, we introduce ACVD—a structured
MAD framework that builds on prior MAD ap-
proaches (Du et al., 2023; Michael et al., 2023;
Lang et al., 2025), but introduces informational
asymmetry between agents. Unlike standard MAD
setups where both agents receive the same input,
ACVD withholds the context from one participant,
enabling an adversarial test of whether the passage
contributes trustworthy information.
We instantiate three roles:
* Defender (Agent A) sees (g, ¢) and defends the

context-based answer acrx 1= fo(q, ¢), arguing
that passage c is coherent and helpful.



* Critic (Agent B) sees only the question ¢ and
supports the prior answer dprjor, arguing that
context c is misleading or fabricated.

* Judge (Agent C) observes the full debate tran-
script up to round r, issuing a verdict V(") ¢
{REASONABLE, UNREASONABLE} based on
the evolving dialogue.

The debate proceeds over R = 6 rounds. In
round r = 0, both Defender and Critic submit open-
ing statements. In subsequent rounds r > 1, the
Critic speaks first and the Defender replies. Each
agent can access the full transcript 7 (") up to that
round and may quote or challenge prior arguments.
The final verdict is defined as the earliest stabilized
outcome:

V= V) where V) = ) — ... — P,

ACVD allows us to assess not only whether
models use context but whether they can recog-
nize when context is verifiably beneficial or harm-
ful—using a setup that foregrounds the asymmetry
of information and the epistemic role of debate.

3.2 Self-Confidence—Aware Belief Update

Given a question ¢, the model generates a prior pre-
diction apgjor under zero-context conditions. Let
po(a | q) denote the model’s predictive distribution.
The self-confidence score is defined as:

Conf(q, dPRIOR) = p@(&PRIOR | (]),

computed via normalized log-probability over to-
ken sequences. We threshold this score at 7 =
0.90:

HIGH,
Low,

if Conf(q, prior) > T,

otherwise.

CONF(q) = {

This binary confidence label is cached per instance
and used to inform final decisions without repeated
inference.

Finally, the model selects its answer using a gat-

ing decision that combines the verdict V* and con-
fidence level:

dcrx, if V* = REASONABLE,

R QPRIOR 5 if V* = UNREASONABLE
a L=
A ACONFIDENCE(q) = HIGH,
ABSTAIN, otherwise.

This decision rule ensures that the model trusts
external context only when it is explicitly judged
to be reliable, and otherwise relies on its internal
belief only if that belief is expressed with high
confidence.
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Figure 2: Context preference rates of the few-shot base-
line across perturbation levels and knowledge categories,
where perturbation levels are represented by offset mag-
nitudes: subtle (offset = 20), mild (40), moderate (60),
and blatant (100 & 200).

4 Experiments

Dataset and Implementations. We utilize Cla-
shEval (Wu et al., 2024), a benchmark specifically
constructed to study factual conflicts between an
LLM’s prior knowledge and contradictory external
context. We adopt the official development/test
splits and construct a controlled subset by sub-
sampling and stratifying perturbation levels. All
models are evaluated using the exact match (EM)
metric: a prediction & is correct only if it exactly
matches the ground truth a. More experimental
details are in Appendix A, and additional results
are available in Appendix C.

Baselines. Five strong baselines and the Golden
Baseline are selected: (1) Few-shot prompting pro-
vides the model with 4 randomly selected exem-
plars along with the context (Brown et al., 2020).
(2) Self-Ask (Press et al., 2022) prompts the model
to generate intermediate sub-questions before an-
swering the main query. (3) RCI (Kim et al., 2023)
requires the model to iteratively critique and im-
prove its output. (4) Judge Debate (Liang et al.,
2023) classical MAD framework involves two de-
baters and a judge: one debater receives and sup-
ports the context-derived answer as initial stand,
while the other supports prior-knowledge-derived
answer as initial stand. (5) Naive Debate (Du et al.,
2023) asks multiple LLMs to propose individual an-
swers and engage in multi-round debate, ultimately
converging on a final answer. (6) Golden Base-
line represents a theoretical upper bound in which
models only trust the unperturbed, ground-truth
context. When facing perturbed contexts, models
rely entirely on their prior knowledge. This setup
simulates an ideal scenario where LLMs perfectly



discern context correctness and serves as a refer-
ence for their best achievable performance under
our experimental setting.

4.1 Few-Shot Context Reliance under
Perturbation

We begin by investigating how a standard few-
shot prompting strategy behaves in the presence
of increasingly misleading context. We prompt the
model with several random in-domain exemplars
and present it with the input pair (g, c), where ¢
contains a perturbed version of the ground-truth
answer. No adversarial interaction is used at this
stage. For each example, we record whether the
model’s answer aligns with the (incorrect) contex-
tual claim—i.e., whether it “prefers” the context
over its prior knowledge. We then aggregate this
context preference rate across different offset levels
and stratify by knowledge category.

Fig. 2 shows that Highly-Known items rapidly
reject perturbed context with increasing offsets. In
contrast, Unknown and Weakly Known examples
exhibit persistent reliance on context, remaining
> 70% agreement even under extreme perturba-
tions. This overreliance on erroneous context in the
absence of prior certainty motivates our SR-DCR
design.

4.2 Linking Self-Confidence and Prior
Knowledge

Next, we analyze the relationship between two
measures of model familiarity: (i) sampling-based
knowledge categories and (ii) single-shot self-
confidence scores Conf(g,a). We conduct this
analysis across 5 LLMs: GPT-3.5-Turbo, GPT-
40 (OpenAl, 2023), Claude Sonnet 3.7, Claude
Haiku 3.5, and Llama 3.3-70B (Grattafiori et al.,

2024).
For each model, we first compute C(7) =
{(g,a) | Conf(q,a) > 7} and define:

- |Stignly N C(7)|
P(Highly-Known | Conf > 7) = ()]

where Shignhly is the set of QA pairs categorized as
Highly-Known.

Fig. 3 and 7 show that across all models, this
conditional probability exceeds 0.88 once 7 > 0.90
and surpasses 0.95 at 7 > 0.95, confirming that
high-confidence predictions are strong indicators
of prior knowledge. In contrast, confidence below
0.70 yields poor overlap with Highly-Known pairs.

These findings validate our key hypothesis:
when Conf(q, a) crosses a threshold (e.g., 0.90),

Count
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Figure 3: The distribution of self-confidence scores of
GPT-40, colored by sampling-based knowledge cate-
gories. Highly-Known instances cluster at the high end
of the distribution (> 0.95), while Unknown examples
dominate the low-confidence region, demonstrating self-
confidence’s efficacy as a proxy for factual recall.
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Figure 4: Prior Knowledge preference rate in judge
debate on Sonnet 3.7 across debate rounds, stratified
by perturbation levels (represented by offset). Judges
exhibit strong prior bias in early rounds, but shift toward
context over rounds.

the model is highly likely to “know” the answer.
We use this insight to guide dynamic routing in
SR-DCR.

4.3 Evaluating Multi-Agent Debate under
Knowledge Conflict

We compare the Classical MAD framework (Judge
Debate) against five baselines with standard and
perturbed contexts. Results of 1, 3, 5 rounds of
debate on five different models are shown in Tab. 1,
from which we draw several conclusions.

Insight 1 — Debate rounds shift judgment from
prior to context. We observe a consistent trend
in which early rounds of judge debate favor prior
knowledge answers, while longer debates increas-
ingly support context-derived responses. Atr = 1,
judges tend to reject the context. With GPT-4o,
judge debate (r = 1) achieves only 70% accu-
racy on standard (unperturbed) context questions,



Table 1: Accuracy of each method across standard and perturbed contexts. Best results per column within each

model block are bold, second-best are underlined.

Model Method Standard Context Perturbed Context Overall
Few-Shots 99.30% 9.00% 54.15%
Self-Ask 95.00% 14.66% 54.83%
RCI 96.70% 12.32% 54.51%
Judge Debate (Round 1) 36.67% 23.99% 30.33%
GPT 3.5 Turbo Judge Debate (Round 3) 83.30% 14.02% 48.66%
Judge Debate (Round 5) 90.33% 17.00% 53.66%
Naive Debate 98.33% 20.33% 59.33%
SR-DCR 95.70% 29.66 % 62.68%
Golden Baseline 98.67% 31.67% 65.17%
Few-Shots 99.33% 42.27% 70.80%
Self-Ask 97.00% 31.67% 64.33%
RCI 91.67% 22.33% 57.00%
Judge Debate (Round 1) 70.00% 57.33% 63.67%
GPT 40 Judge Debate (Round 3) 96.00% 45.67% 70.83%
Judge Debate (Round 5) 96.00% 45.33% 70.67%
Naive Debate 97.33% 44.33% 70.83%
SR-DCR 94.67% 54.51% 74.59 %
Golden Baseline 99.00% 50.00% 74.50%
Few-Shots 99.67 % 16.33% 58.00%
Self-Ask 98.00% 21.67% 59.83%
RCI 93.33% 22.00% 57.66%
Judge Debate (Round 1) 55.67% 26.33% 41.00%
Claude Haiku 3.5  Judge Debate (Round 3) 94.67% 21.67% 58.17%
Judge Debate (Round 5) 97.00% 21.00% 59.00%
Naive Debate 98.67% 29.67% 64.17%
SR-DCR 95.33% 49.89 % 72.61%
Golden Baseline 99.67% 48.00% 73.83%
Few-Shots 98.67% 43.04% 70.85%
Self-Ask 97.00% 45.33% 71.17%
RCI 95.00% 22.66% 58.83%
Judge Debate (Round 1) 61.67% 50.33% 56.00%
Claude Sonnet 3.7  Judge Debate (Round 3) 98.67% 30.00% 64.33%
Judge Debate (Round 5) 99.33% 24.67% 62.00%
Naive Debate 98.00% 47.34% 72.67 %
SR-DCR 91.04% 47.94% 69.76%
Golden Baseline 99.67% 47.67% 73.67%
Few-Shots 98.67 % 9.67% 54.17%
Self-Ask 98.33% 23.67% 61.00%
RCI 94.96% 25.00% 59.98%
Judge Debate (Round 1) 56.67% 35.66% 46.17%
Llama 3.3-70B Judge Debate (Round 3) 92.33% 28.33% 60.33%
Judge Debate (Round 5) 93.33% 25.67% 59.49%
Naive Debate 98.67 % 22.33% 60.50%
SR-DCR 94.97% 28.39% 61.67 %
Golden Baseline 99.00% 33.33% 66.17%

compared to > 90% with other baselines. This
skepticism toward context provides strong protec-
tion against misinformation: on perturbed inputs,
GPT-40’s judge debate (r = 1) achieves signifi-
cantly higher accuracy (57.33%) than others, with
Self-Ask and RCI trailing far behind at 31.7% and
22.3%, respectively.

As the number of debate rounds increases, this
behavior gradually reverses. Judges become more
willing to trust contextual evidence—especially
when it is accurate. On standard (unperturbed) ex-
amples, accuracy rises steadily with more rounds,
reaching nearly 100% by r = 3. This benefit is not
without tradeoffs. While longer debates improve
acceptance of correct context, they also reduce ro-

bustness to misleading information. accuracy on
perturbed inputs declines as the number of rounds
increases: for GPT-4o, accuracy on perturbations
drops from 57.3% at n = 1t0 45.3% atn = 5.

Insight 2 — Longer debates increase context
reliance, and reduce robustness to small incon-
sistencies. A more detailed analysis by perturba-
tion level reveals that this degradation is not uni-
form. From Fig. 4 and Fig. 9, we can see that for
GPT-40, sonnet 3.7, and LLaMA 70B, data points
with a lower perturbation level (e.g., subtle (offset
= 20)) show a steeper decrease in accuracy, sug-
gesting that minor inconsistencies are more easily
overlooked as debates grow longer. In contrast,
large perturbations (e.g., blatant (offset >= 100))



Table 2: Performance of different methods under a group of prevalent LLMs across varying offset levels. Best and
second-best results are shown in bold and underlined, respectively.

Model Method Offset 20 Offset 40 Offset 60 Offset 100 Offset 200 Overall
Few-Shots 1.70 8.30 11.70 8.30 1500 9.0

Self-Ask 1.00 1330 18.30 2330 1830  14.66

RCI 8.30 8.30 15.00 16.70 1330 1232

Judge Debate (Round 1) 25.00 21.67 28.30 18.33 26.67 23.99

GPT35Turbo 1 4oe Debate (Round 3) 5.00 11.70 20.00 11.70 2170 14.02
Judge Debate (Round 5) 10.00 13.33 16.67 20.00 2500 17.00

Naive Debate 8.33 13.33 15.00 25.00 4000 2033

SR-DCR 26.70 25.00 30.00 2830 3830 29.66

Golden Baseline 31.67 30.00 33.33 21.67 41.67 31.67

Few-Shots 2333 31.00 3833 57.00 61.67 4227

Self-Ask 28.33 25.00 21.67 40.00 4333 3167

RCI 15.00 16.67 21.67 2333 3500 2233

GPT 4 Judge Debate (Round 1) 56.67 53.33 58.33 58.33 60.00 57.33
© Judge Debate (Round 3) 35.00 45.00 4833 4833 51.67  45.67

Judge Debate (Round 5) 3333 41.67 48.33 4833 5500 4533

Naive Debate 26.67 3333 36.67 5333 7167 4433

SR-DCR 47.46 4137 5273 55.00 7000  54.51

Golden Baseline 50.00 50.00 53.33 46.67 50.00  50.00

Few-Shots 8.33 18.33 6.67 2333 2500 1633

Self-Ask 10.00 16.67 25.00 25.00 31.67 2167

RCI 8.33 13.33 15.00 30.00 4333 22.00

. Judge Debate (Round 1) 2833 26.67 25.00 18.33 3333 2633

Claude Haiku 3.5y 10¢ Debate (Round 3) 15.00 20.00 2333 20.00 3000 2167
Judge Debate (Round 5) 15.00 15.00 21.67 21.67 3167 21.00

Naive Debate 18.33 21.67 26.67 35.00 4667  29.67

SR-DCR 55.56 41.38 5345 4727 5179  49.89

Golden Baseline 50.00 41.67 55.00 4333 50.00  48.00

Few-Shots 26.67 31.67 3833 55.00 6352  43.04

Self-Ask 25.00 35.00 41.67 63.33 61.67 4533

RCI 13.33 18.33 20.00 2333 3833 22.66

Claude Somnet 3.7 2udge Debate (Round 1) 46.67 4333 56.67 4833 56.67  50.33
>"" Judge Debate (Round 3) 15.00 18.33 30.00 41.67 4500 30.00

Judge Debate (Round 5) 333 10.00 2333 40.00 46.67 2467

Naive Debate 21.67 31.67 45.00 66.67 767 4734

SR-DCR 3333 40.00 43.63 55.00 68.42  47.95

Golden Baseline 50.00 4333 53.33 41.67 5000  47.67

Few-Shots 5.00 333 13.33 11.67 1500  9.67

Self-Ask 15.00 18.33 21.67 28.33 3500 23.67

RCI 13.33 18.33 25.00 31.67 36.67  25.00

4 Judge Debate (Round 1) 35.00 40.00 3333 28.33 4167 3567
Llama3.3-70B  y jse Debate (Round 3) 16.67 1833 31.67 35.00 4000 2833
Judge Debate (Round 5) 15.00 15.00 3333 3167 3333 25.67

Naive Debate 11.67 13.33 20.00 31.67 3500 2233

SR-DCR 2034 25.00 30.51 32.76 3333 2839

Golden Baseline 50.00 41.67 55.00 4333 50.00  48.00

remain consistently detectable: Their accuracy re-
mains relatively stable across all debate rounds.
This indicates that judge debate is effective in re-
jecting an obviously flawed context but becomes
more vulnerable to subtle misinformation as it at-
tempts to reconcile competing claims.

These observations reveal a tension in Judge
Debate: short debates reinforce prior bias, while
longer debates risk accepting false context.

4.4 Evaluation of SR-DCR

Evaluation Setups. We assembled a composite
testbed of 600 question—answer instances: a half
use standard contexts, where the retrieved passage
is correct; the other half employ perturbed contexts,
simulating erroneous RAG outputs at 4 calibrated
disturbance levels (subtle to blatant perturbations).

This split measures the ability to leverage valid
context and the robustness to misleading excerpts.

Results. Tab. 1 reports EM across standard and
perturbed contexts. Across all model families,
we observe a consistent pattern: few-shot prompt-
ing and retrieval-based approaches (e.g., Self-Ask,
RCI) perform well on standard contexts but de-
grade sharply under adversarial perturbation. For
instance, GPT-3.5 Turbo’s accuracy drops from
99.3% to 9.0% with Few-Shot, and from 95.0% to
14.7% with Self-Ask. Classical MAD (e.g., Judge
Debate at Round 5) improves robustness but often
sacrifices standard-context accuracy. For example,
Judge Debate (R5) recovers perturbed accuracy to
17.0%, but standard accuracy falls to 90.3%.



SR-DCR consistently outperforms prior meth-
ods in handling conflicting information. On
GPT-3.5 Turbo, it achieves 29.7% on perturbed
inputs—nearly matching the golden baseline’s
31.7%—while maintaining 95.7% on standard con-
texts. This yields an overall accuracy of 62.7%,
a +3.4-point gain over Naive Debate, the best-
performing baseline. On stronger models like GPT-
40 and Haiku 3.5, SR-DCR matches or exceeds the
performance of Naive Debate and classical MAD,
with the largest gains observed in perturbed con-
texts: +10.2 points over Judge Debate (RS5) on GPT-
40 and +20.2 points over RCI on Haiku 3.5.

To better understand robustness under varying
degrees of contradiction, Tab. 2 reports accuracy
across perturbation offsets. On GPT-3.5 Turbo,
SR-DCR achieves state-of-the-art performance at
every offset level, including 26.7% at Offset 20
and 38.3% at Offset 200—far surpassing all base-
lines. Similarly, SR-DCR attains the best average
perturbed accuracy on Sonnet (47.9%) and Haiku
(49.9%), and ranks second only to Judge Debate
(R1) on GPT-40. This demonstrates SR-DCR’s ca-
pacity to retain valid contextual information while
resisting misleading perturbations.

We further analyze SR-DCR’s ability to selec-
tively trust valid contexts and reject corrupted ones.
On GPT-3.5 Turbo, SR-DCR yields a true positive
rate (standard context accuracy) of 95.7% and a
true negative rate (perturbed context accuracy) of
29.7%. In contrast, Naive Debate achieves a higher
standard-context rate (98.3%) but a lower rejection
rate (20.3%), while Judge Debate (R5) performs
worse on both fronts. SR-DCR thus achieves a
more balanced trade-off, leveraging external con-
text when warranted and falling back on internal
knowledge when necessary.

Summary and Analysis. Empirically, this self-
reflective control yields three key advantages: (i) a
+7.7-point improvement in robustness to corrupted
context, (i) a +5.6-point recovery in accuracy on
clean, context-consistent cases, and (iii) a 2x re-
duction in prior bias during extended debates. Cru-
cially, SR-DCR achieves this improved arbitration
between parametric and contextual knowledge with
minimal overhead, requiring only one additional
forward pass for confidence estimation and a debate
that is already necessary for context evaluation.
Together, these results confirm SR-DCR as
a principled and efficient solution for resolving
factual conflicts, outperforming both confidence-

based and debate-only strategies across models and
perturbation settings.

5 Related Work

Knowledge Conflict. In in-context learning, con-
flicts between an LL.M’s internal knowledge and
external context can cause interference (Jin et al.,
2024). Models often over-rely on coherent exter-
nal evidence even when it contradicts their mem-
ory (Xie et al., 2024), especially under low internal
confidence (Xu et al., 2024; Chatziveroglou et al.,
2025). To address this, prior work has proposed
Knowledge-Aware Fine-Tuning (Li et al., 2023),
opinion-based prompts and counterfactuals (Zhou
et al., 2023), and fact duration prediction (Zhang
and Choi, 2023). Some prioritize context (Li et al.,
2023; Zhou et al., 2023; Zhang and Choi, 2023),
while others favor memory (Hong et al., 2024).
However, rigid faithfulness to either source is sub-
optimal. We extend this line by jointly varying
perturbation strength and prior confidence to better
arbitrate between conflicting knowledge sources.

Multi-Agent Debate. MAD has been shown to
improve LLM reasoning and evaluation (Khan
et al., 2024). Adversarial critique can enhance
factuality, and aggregation strategies like REC-
ONCILE (Chen et al., 2024) use confidence-
weighted voting across agents. Prior work demon-
strates that adversarial dialogue can reveal false
assumptions (Du et al., 2023), improve robust-
ness (Michael et al., 2023), and enhance factual
accuracy even with weaker judges (Kenton et al.,
2024). However, most MAD frameworks de-
bate all queries uniformly, ignoring model confi-
dence—sometimes leading to unnecessary correc-
tion when the model is already correct. To address
this, we integrate self-confidence signals with con-
text reasonableness and introduce a judge agent to
yield more balanced and credible answers.

6 Conclusion

We presented SR-DCR, a self-reflective framework
that combines model confidence with asymmet-
ric debate to resolve conflicts between parametric
knowledge and contextual input. By selectively
trusting context when it is judged reliable—and
deferring to priors when confidence is high—SR-
DCR improves factual robustness and accuracy un-
der perturbation, outperforming classical debate
and confidence-only baselines. Limitations are in
Appendix D.
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A Experimental Details

A.1 Base Models and Dataset

Our experiments were conducted using a
variety of state-of-the-art language models
sourced from different platforms. From the
Anthropic API, we used two versions of Claude
models: claude-3-5-haiku-20241022 and
claude-3-7-sonnet-20250219. From OpenAl’s
API platform, we employed gpt-3.5-turbo-0125
and the more recent gpt-40-2024-08-06. For
the LLaMA models, we used the LLaMA 3.1 8B,
LLaMA 3.3 70B, and LLaMA 3.1 405B.

To support experiments with local LLaMA mod-
els, we used three NVIDIA H100 GPUs. Running
a full 5-round, 3-agent debate setup over our 600-
question dataset required approximately 7 hours
of wall-clock time on this setup. This runtime in-
cludes both the multi-agent dialogue stages and
final judge evaluations.

The benchmark dataset, ClashEval, spans
various knowledge domains—including bio-
graphical facts, geography, medical dosages,
Olympic records, historical data, and breaking
news—ensuring wide coverage in both content and
difficulty.

A.2 Baseline Implementation Details

We implemented six baseline methods alongside
SR-DCR to evaluate the effectiveness of different
prompting and reasoning strategies for answering
factual questions under a potentially perturbed con-
text. Each method was run under standardized
conditions across models and datasets to ensure
fair comparison. Unless otherwise stated, all exper-
iments used full-precision models with temperature
set to zero and default decoding parameters.

Few-shot Prompting: We provided the model
with four randomly selected in-domain exemplars,
along with the question and accompanying context
and short instruction.

Self-Ask (Press et al., 2022): It is designed to
encourage structured intermediate reasoning by
prompting the model to first generate a clarifying
sub-question, answer that sub-question, and then
commit to a final answer. We adopt a fixed template
to ensure consistency across examples. The model
is instructed to respond in exactly three lines—Sub-
question, Sub-answer, and Final answer—with no
additional output and make a best-guess answer
even when uncertain. To ensure that the model


https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6

fully completes all three required lines of output,
we set the maximum token limit to 400 during de-
coding.

RCI (Recursive Criticism and Improve-
ment) (Kim et al., 2023): It encourages iterative
self-reflection and refinement by prompting the
model to first generate an initial answer, then
critique that answer, and finally revise it based on
its critique. This process simulates a single-agent
self-debate loop. Our implementation follows a
three-step pipeline. First, the model is prompted
with the question and context and asked to produce
its best guess (initial answer). Next, it receives the
same input along with its previous response and is
asked to identify any factual or logical issues in
the form of a short, bulleted critique. Finally, the
model is prompted to revise its answer using the
critique, outputting only the updated final answer.
Each of these three stages can response with a
maximum of 300 tokens to ensure sufficient space
for generation.

Naive Debate: We use three independent agents
of the same language model, all operating with a
temperature of 0 and a maximum token limit of 250.
The agents engage in a maximum of five debate
rounds to iteratively refine their answers. Each
agent begins by independently reading the context
and question and giving its best answer.

In each subsequent round, agents are shown their
peers’ answers from previous rounds. They are
prompted to (1) evaluate the plausibility of those
answers, (2) reflect on their reasoning, and (3) de-
cide whether to revise their answer or stick with
their original. The agents are explicitly instructed
to avoid vague responses or uncertainty and to al-
ways produce a single answer. The debate termi-
nates early if all three agents converge on the same
answer. If no consensus is reached after five rounds,
we adopt a majority vote to determine the final out-
put.

Classical Debate & Judge Debate: We simulate
a debate between three agents instantiated from
the same language model, using a temperature of
0 and a maximum token limit of 300. Before the
debate starts, we first obtain two initial answers:
one is based on context, the other is purely based
on prior knowledge. Two agents serve as debaters
(Agent A and Agent B), and the third acts as a
neutral judge. The debaters are initialized with
the same instructions but different initial standings.
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Specifically, in our Judge Debate setting, Agent
A is instructed to support and defend an answer
grounded in the context. In contrast, Agent B is
instructed to support the answer based on prior
knowledge.

Following their initial responses, the two agents
engage in a multi-round debate where they alternate
presenting arguments, challenging each other’s po-
sitions, and defending their answers. After 1, 3, or
5 rounds of debate, the judge agent is presented
with the question, context, and complete debate
transcript and tasked with selecting a winning an-
swer. The judge’s final output must include a single
answer followed by a concise justification.

A.3 Knowledge Categories

We depict the details of knowledge categories in
Tab. 3, where four types are included based on the
sampled accuracy.

B More Illustrative Examples

Consider the ClashEval question “Which city
hosted the 1904 Summer Olympics?”’ with
ground-truth St. Louis. When prompted with
four random exemplars and sampled 32 times at
T = 0.5, the model answers “St. Louis” in 28 tri-
als, yielding a sampled accuracy of 0.875 and a
Highly-Known label (Wu et al., 2024). In contrast,
the question “Which team won the 1974 World Se-
ries?” might yield only 6 correct out of 32 (= 0.19),
classifying it as Weakly-Known.

As shown Fig. 5, this illustrates how sampling
with random four-shot prompts uncovers differing
degrees of model familiarity.

C Additionial Results

C.1 Verification of Self-consistency Scores

For closed-source models that do not expose token-
level log-probabilities (e.g., Anthropic’s Claude
models), we approximate model self-confidence
using a sampling-based self-consistency measure.
Specifically, we first query the model using few-
shot prompt without context to obtain a determin-
istic answer (1" = 0). Then, we sample the same
question 16 times using a higher temperature set-
ting (I' = 0.5). We compute the proportion of sam-
pled outputs that match the deterministic answer,
which we interpret as the model’s self-consistency
on that question. This score serves as a proxy
for the model’s confidence in its original answer:
higher consistency indicates higher certainty.



Table 3: Knowledge qualification categories based on the sampled recall rate from 32 completions at 7' = 0.5. This
categorization adapts the schema from SLICK (Gekhman et al., 2024).

Type Category Definition | Intuition
Highly Known Peorrect (¢, a; M, T > 0) > 0.85 Model almost always recalls the fact.
Known Maybe Known | 0.30 < Peoprect(q,a; M, T > 0) < 0.85 | Fact is recalled, but inconsistently.

Weakly Known

0< Pcorrect(q, a; M, T > 0) < 0.30

The model shows only sporadic recall.

Unknown ‘ Unknown ‘

Pcorrect(Q> a; M, T > 0) =0

‘ Model never recalls the fact.

Question-Answer
Dataset

Question 1: Which city
hosted the 1904 Summer
Olympics? e

Standard Answer: St.Louis LLM
Question 2: Which team
won the 1974 World
Series? EEEN @
Standard Answer: Oakland LLM

Athletics

Answer Sampling

Temperature = 0.5, N = 32

"St. Louis","St. Louis","St. Louis", "Chicago”,"St.
Louis", "Chicago”, "London”, "St. Louis","St.
Louis", "New York"....

"Cincinnati Reds", "Oakland Athletics",
"Pittsburgh Pirates”, "Boston Red Sox", "Oakland
Athletics”, "Cincinnati Reds", ...

Knowledge Class
Label

In 32 sampled answer, the
correct answer "St. Louis”
appears 28 times.

Ace(Question 1) = 0.875
(Highly Known)

In 32 sampled answer, the
correct answer "Oakland
Athletics” appears 6 times.

Acc(Question 2) = 0.185
(Weakly Known)

Figure 5: Two illustrative examples of how questions are classified based on the model’s familiarity

The distribution of self-consistency scores us-
ing a stacked histogram is shown in Fig. 6, which
shows a similar pattern to the self-confidence
scores derived from models with access to log-
probabilities. This alignment supports the effec-
tiveness of self-consistency as an approximation
for model confidence, proving that our framework
is also effective on closed-source models.

C.2 More Experiment Results

Fig. 6 presents the distribution of self-consistency
scores (our proxy for self-confidence) for GPT-3.5
Turbo, GPT-40, LLaMA 3.1 405B, and LLaMA
3.3 70B, extending the analysis shown in Fig. 6.
All four models exhibit similar self-confidence pat-
terns, supporting the generality and robustness of
our sampling-based approximation method.

Fig. 8 extends our earlier analysis of the rela-
tionship between context preference and knowl-
edge familiarity to six language models, including
both open and closed-source LLMs. Each curve
represents how often a model aligns its answer
with the perturbed (and incorrect) context across
varying offset magnitudes, stratified by knowl-
edge category. The consistent trends across mod-
els—higher context preference in "unknown" or
"unsure" cases, and lower preference in "highly
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known" cases—further validate the generality of
our framework.

Fig. 9 extends the analysis of context suscepti-
bility by visualizing prior knowledge preference
rates across five models, stratified by perturba-
tion strength. Complementing the trends shown
in Fig. 4, this figure further demonstrates that mod-
els are more likely to accept the perturbed context
as the debate rounds increase. Subtle inconsisten-
cies (e.g., offset = 20) often lead to higher context
preference after 3 rounds. For GPT 3.5 Turbo and
Sonnet 3.7, the Prior knowledge preference rate
is even below 20% at the end of the debate when
provided with context with minor error.

D Limitations and Future Work

Limitations. SR-DCR relies on fixed confidence
thresholds, which may not generalize optimally
across all domains or tasks. Additionally, the cur-
rent implementation assumes access to determinis-
tic judge behavior, which may not hold in real-time
deployment with stochastic models. The asymmet-
ric debate structure also presumes the availability
of prior-free inference, which can be challenging
in closed-source or limited-access APIs.
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Figure 6: Distribution of self-consistency scores (estimated self-confidence score based on sampling) on our dataset,
colored by sampling-based knowledge categories.

Future Work. Future directions include learn-
ing adaptive confidence thresholds, training a ded-
icated judge model with supervised debate data,
and extending SR-DCR to multi-hop reasoning and
document-level tasks. Incorporating human-in-the-
loop feedback or interactive oversight could further
enhance its applicability to high-stakes or ambigu-
ous domains.
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Figure 7: Distribution of self-confidence scores on more models
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Figure 8: Context preference rates of a 4-shot baseline across offset magnitudes and knowledge categories of six
different models on our dataset. Each curve indicates the proportion of examples where the model’s answer aligns
with the (incorrect) perturbed context.
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Figure 9: Prior Knowledge preference rate in judge debate of five models on perturbed context across debate rounds,
stratified by five levels of perturbation strengths—subtle (offset = 20), mild (40), moderate (60), and blatant (100 &
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