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Abstract001

Large language models frequently encounter002
conflicts between their parametric knowledge003
and contextual input, often resulting in factual004
inconsistencies or hallucinations. We propose005
Self-Reflective Debate for Contextual Reliabil-006
ity (SR-DCR), a lightweight framework that007
integrates token-level self-confidence with an008
asymmetric multi-agent debate to adjudicate009
such conflicts. A critic, deprived of context,010
challenges a defender who argues from the011
given passage; a judge model evaluates the de-012
bate and determines the context’s reliability.013
The final answer is selected by combining the014
verdict with model confidence. Experiments on015
the ClashEval benchmark show that SR-DCR016
consistently improves robustness to misleading017
context while recovering accuracy on trustwor-018
thy inputs, outperforming both classical debate019
and confidence-only baselines with minimal020
computational overhead.021

1 Introduction022

Large language models (LLMs) (Wang et al., 2024;023

Guo et al., 2024) reason using two distinct sources024

of knowledge: parametric knowledge, stored in025

model weights, and contextual input, provided at026

inference time. This dual-source capability grants027

LLMs remarkable flexibility, but also exposes a crit-028

ical vulnerability: when internal priors and external029

context conflict, models frequently generate hallu-030

cinated or factually inconsistent outputs. These031

failures range from parroting erroneous passages032

(e.g., “people eat rocks”) to relying on outdated be-033

liefs (e.g., mislocating the Eiffel Tower in Rome).034

Such errors highlight the absence of a principled035

mechanism for reconciling contradictions between036

knowledge sources. Empirical studies show that037

LLMs often defer to memorized facts even when038

these subtly contradict the context (Brown et al.,039

2020; Longpre et al., 2021). Retrieval-augmented040

generation (RAG) systems compound the problem041

by amplifying misleading context when it appears 042

superficially fluent or plausible (Niu et al., 2023). 043

Reliance on either source in isolation leads to brittle 044

and unpredictable behavior. 045

Recent work has explored token-level confi- 046

dence as a signal for epistemic reliability. For 047

example, Wu et al. (2024) compare token prob- 048

abilities with and without context to select the 049

more trustworthy response. More broadly, out- 050

put confidence—estimated from log-probabilities— 051

correlates with familiarity: confident predictions 052

tend to reflect well-known facts, while uncertain an- 053

swers often correspond to ambiguous or unfamiliar 054

queries (Wang et al., 2022). 055

In parallel, multi-agent debate (MAD) (Du et al., 056

2023; Chan et al., 2023; Liang et al., 2023; Kenton 057

et al., 2024; Lang et al., 2025; Agarwal and Khanna, 058

2025) has emerged as a promising oversight mecha- 059

nism. By prompting agents to critique each other, it 060

enables deliberation, mitigates hallucinations, and 061

often allows even weak judges to identify correct 062

answers (Irving et al., 2018; Michael et al., 2023). 063

However, existing MAD frameworks typically as- 064

sume consistent inputs across agents, and rarely 065

examine how debates unfold when internal priors 066

and external context offer conflicting evidence. 067

Our Contributions. This work addresses the open 068

challenge of resolving internal–external knowledge 069

conflict in LLMs. We contribute: 070

1. A systematic analysis of model behavior under 071

graded contextual perturbations, revealing how 072

token-level confidence and factual familiarity 073

shape LLM preferences for internal versus ex- 074

ternal knowledge. 075

2. An evaluation of standard MAD setups under 076

adversarial conflict, showing that symmetric de- 077

bate alone often fails to arbitrate between in- 078

compatible sources. 079

3. A novel framework, Self-Reflective Debate for 080
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Figure 1: Overview of SR-DCR (Self-Reflective Debate for Contextual Reliability), a debate-driven framework for
resolving conflicts between parametric priors and contextual evidence. When the model’s prior belief conflicts with
the external passage (left), SR-DCR evaluates two key signals: (a) the self-confidence of the zero-context answer
âPRIOR; and (b) the context’s reasonableness, determined via an asymmetric debate between two LLM agents. A
judge model monitors the debate over N rounds and issues a verdict on the trustworthiness of the context. The final
answer is selected by jointly considering both the model’s self-confidence and the judged context reliability (right).

Contextual Reliability (SR-DCR), illustrated081

in Fig. 1. SR-DCR combines token-level self-082

confidence with an Asymmetric Context Ver-083

ification Debate (ACVD), in which one agent084

defends the context and another, deprived of it,085

argues from prior knowledge. A judge resolves086

the debate over multiple rounds, and a final deci-087

sion rule integrates both context reliability and088

confidence to select the answer or abstain. This089

framework improves robustness and factual ac-090

curacy across multiple QA benchmarks.091

2 Preliminaries092

2.1 Background of Knowledge Conflict093

Problem Statement. We investigate how LLMs094

reconcile conflicting signals between their inter-095

nal factual priors and externally provided context.096

Specifically, each instance is defined as a triple097

(q, a, c), where:098

• q is a question generated from a factual (subject,099

relation, object) tuple.100

• a is the correct answer derived from the object.101

• c is an evidence passage intended to support or102

contradict a.103

The model is given the pair (q, c) and tasked with104

answering the question q. Our goal is to evalu-105

ate whether it can correctly predict a, even when106

the passage c contains misleading or conflicting 107

information. 108

To probe the model’s robustness, we introduce 109

targeted perturbations to the answer-bearing entity 110

in c while keeping both q and a fixed. These per- 111

turbations are constructed at four increasing levels 112

of contradiction—subtle, mild, moderate, and bla- 113

tant—to test how the model balances contextual 114

evidence against its parametric knowledge. 115

Illustrative Example. In the WIKIPEDIA 116

YEARS domain, consider the question: “In which 117

year was the census conducted that reported 118

the population of Lukhi village in Iran as 35?” 119

The correct answer a is 2006, based on the 120

underlying knowledge tuple. We then modify the 121

corresponding passage c to simulate contradiction: 122

• A moderate perturbation replaces the year with 123

1966, creating a subtle conflict. 124

• A blatant perturbation changes it to 2106, in- 125

troducing an implausible inconsistency. 126

The remainder of the passage remains unchanged. 127

These graded interventions enable controlled anal- 128

ysis of how LLMs resolve factual conflicts under 129

varying degrees of contextual reliability. More ex- 130

amples are put in Appendix B. 131
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2.2 Assessing Knowledge Recall132

To estimate whether a model knows the correct an-133

swer a to a question q independently of any support-134

ing passage, we employ a sampling-based probing135

method inspired by SLICK (Gekhman et al., 2024).136

The core idea is to gauge how frequently a model137

recalls the correct answer when presented with the138

question alone, using no external context.139

Sampling Procedure. For each QA pair (q, a),140

we generate N = 32 completions from the base141

model at a fixed temperature T = 0.5, using a142

4-shot prompt for few-shot conditioning. Then a143

group of predictions is obtained as {â1, ..., âN},144

and the sampled accuracy is defined as:145

Acc
(
q, a, {âi}Ni=1

)
=

1

N

N∑
i=1

1 [âi = a],146

where 1[·] is the indicator function. This provides147

a robust estimate of the model’s prior knowledge of148

a. This is distinct from self-confidence (discussed149

later), which reflects belief in a single prediction.150

Knowledge Categorization. Based on sampled151

accuracy, we categorize each (q, a) pair into one of152

four knowledge tiers (see Tab. 3):153

• Highly Known: Acc
(
q, a, {âi}Ni=1

)
≥ 0.85 —154

strong and consistent recall,155

• Maybe Known: 0.30 ≤ Acc
(
q, a, {âi}Ni=1

)
<156

0.85 — partial or inconsistent recall,157

• Weakly Known: 0 < Acc
(
q, a, {âi}Ni=1

)
<158

0.30 — sporadic or weak recall,159

• Unknown: Acc
(
q, a, {âi}Ni=1

)
= 0 — no evi-160

dence of prior recall.161

This taxonomy allows us to stratify the model’s162

factual knowledge without relying on any auxiliary163

retrieval or context conditioning.164

2.3 Quantifying Self-Confidence165

Definition. In addition to knowledge qualifica-166

tion, which reflects whether a model can recall a167

fact, we also measure how strongly the model be-168

lieves in its answer when generating a response. We169

define a model’s self-confidence for a prediction170

â = ⟨t1, . . . , tL⟩ to question q as the average log-171

probability assigned to the answer tokens (Wang172

et al., 2022):173

pθ(â | q) = 1

L

L∑
i=1

log p(ti | q, t<i).174

This score is derived from a single greedy predic- 175

tion conditioned on a fixed few-shot prompt with- 176

out temperature sampling. A higher confidence 177

value implies greater internal belief in the gener- 178

ated answer. 179

Distinction from Knowledge Recall. Unlike 180

sampled accuracy, which captures the empirical 181

frequency of correct recall across many comple- 182

tions, self-confidence reflects the strength of belief 183

in a single response. These two axes—knowability 184

and belief strength—may diverge: a model might 185

confidently predict an incorrect answer (high confi- 186

dence, low recall), or may inconsistently predict a 187

correct one (low confidence, high recall). 188

3 Method 189

We introduce Self-Reflective Debate for Contextual 190

Reliability (SR-DCR), a framework that combines 191

asymmetric MAD with self-confidence–aware rea- 192

soning to evaluate context trustworthiness and de- 193

termine final answers under conflicting information. 194

SR-DCR unfolds in three stages: 195

1. Asymmetric Context Verification Debate 196

(ACVD): Agents debate the reliability of the 197

context from asymmetric viewpoints. 198

2. Self-Confidence Estimation: The model pre- 199

dicts a zero-context answer âPRIOR and computes 200

its confidence score. 201

3. Final Answer Selection: A decision rule 202

chooses between âCTX, âPRIOR, or ABSTAIN, 203

based on the context verdict and confidence 204

level. 205

3.1 Asymmetric Context Verification Debate 206

To assess the reliability of external context 207

passages, we introduce ACVD—a structured 208

MAD framework that builds on prior MAD ap- 209

proaches (Du et al., 2023; Michael et al., 2023; 210

Lang et al., 2025), but introduces informational 211

asymmetry between agents. Unlike standard MAD 212

setups where both agents receive the same input, 213

ACVD withholds the context from one participant, 214

enabling an adversarial test of whether the passage 215

contributes trustworthy information. 216

We instantiate three roles: 217

• Defender (Agent A) sees (q, c) and defends the 218

context-based answer âCTX := fθ(q, c), arguing 219

that passage c is coherent and helpful. 220
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• Critic (Agent B) sees only the question q and221

supports the prior answer âPRIOR, arguing that222

context c is misleading or fabricated.223

• Judge (Agent C) observes the full debate tran-224

script up to round r, issuing a verdict V(r) ∈225

{REASONABLE, UNREASONABLE} based on226

the evolving dialogue.227

The debate proceeds over R = 6 rounds. In228

round r = 0, both Defender and Critic submit open-229

ing statements. In subsequent rounds r ≥ 1, the230

Critic speaks first and the Defender replies. Each231

agent can access the full transcript T (r) up to that232

round and may quote or challenge prior arguments.233

The final verdict is defined as the earliest stabilized234

outcome:235

V∗ := V(r∗), where V(r) = V(r+1) = · · · = V(R).236

ACVD allows us to assess not only whether237

models use context but whether they can recog-238

nize when context is verifiably beneficial or harm-239

ful—using a setup that foregrounds the asymmetry240

of information and the epistemic role of debate.241

3.2 Self-Confidence–Aware Belief Update242

Given a question q, the model generates a prior pre-243

diction âPRIOR under zero-context conditions. Let244

pθ(a | q) denote the model’s predictive distribution.245

The self-confidence score is defined as:246

Conf(q, âPRIOR) := pθ(âPRIOR | q),247

computed via normalized log-probability over to-248

ken sequences. We threshold this score at τ =249

0.90:250

CONF(q) =

{
HIGH, if Conf(q, âPRIOR) ≥ τ,

LOW, otherwise.
251

This binary confidence label is cached per instance252

and used to inform final decisions without repeated253

inference.254
Finally, the model selects its answer using a gat-255

ing decision that combines the verdict V∗ and con-256
fidence level:257

âFINAL =


âCTX, if V∗ = REASONABLE,

âPRIOR, if V∗ = UNREASONABLE

∧CONFIDENCE(q) = HIGH,

ABSTAIN, otherwise.

258

This decision rule ensures that the model trusts259

external context only when it is explicitly judged260

to be reliable, and otherwise relies on its internal261

belief only if that belief is expressed with high262

confidence.263

Figure 2: Context preference rates of the few-shot base-
line across perturbation levels and knowledge categories,
where perturbation levels are represented by offset mag-
nitudes: subtle (offset = 20), mild (40), moderate (60),
and blatant (100 & 200).

4 Experiments 264

Dataset and Implementations. We utilize Cla- 265

shEval (Wu et al., 2024), a benchmark specifically 266

constructed to study factual conflicts between an 267

LLM’s prior knowledge and contradictory external 268

context. We adopt the official development/test 269

splits and construct a controlled subset by sub- 270

sampling and stratifying perturbation levels. All 271

models are evaluated using the exact match (EM) 272

metric: a prediction â is correct only if it exactly 273

matches the ground truth a. More experimental 274

details are in Appendix A, and additional results 275

are available in Appendix C. 276

Baselines. Five strong baselines and the Golden 277

Baseline are selected: (1) Few-shot prompting pro- 278

vides the model with 4 randomly selected exem- 279

plars along with the context (Brown et al., 2020). 280

(2) Self-Ask (Press et al., 2022) prompts the model 281

to generate intermediate sub-questions before an- 282

swering the main query. (3) RCI (Kim et al., 2023) 283

requires the model to iteratively critique and im- 284

prove its output. (4) Judge Debate (Liang et al., 285

2023) classical MAD framework involves two de- 286

baters and a judge: one debater receives and sup- 287

ports the context-derived answer as initial stand, 288

while the other supports prior-knowledge-derived 289

answer as initial stand. (5) Naive Debate (Du et al., 290

2023) asks multiple LLMs to propose individual an- 291

swers and engage in multi-round debate, ultimately 292

converging on a final answer. (6) Golden Base- 293

line represents a theoretical upper bound in which 294

models only trust the unperturbed, ground-truth 295

context. When facing perturbed contexts, models 296

rely entirely on their prior knowledge. This setup 297

simulates an ideal scenario where LLMs perfectly 298
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discern context correctness and serves as a refer-299

ence for their best achievable performance under300

our experimental setting.301

4.1 Few-Shot Context Reliance under302

Perturbation303

We begin by investigating how a standard few-304

shot prompting strategy behaves in the presence305

of increasingly misleading context. We prompt the306

model with several random in-domain exemplars307

and present it with the input pair (q, c), where c308

contains a perturbed version of the ground-truth309

answer. No adversarial interaction is used at this310

stage. For each example, we record whether the311

model’s answer aligns with the (incorrect) contex-312

tual claim—i.e., whether it “prefers” the context313

over its prior knowledge. We then aggregate this314

context preference rate across different offset levels315

and stratify by knowledge category.316

Fig. 2 shows that Highly-Known items rapidly317

reject perturbed context with increasing offsets. In318

contrast, Unknown and Weakly Known examples319

exhibit persistent reliance on context, remaining320

> 70% agreement even under extreme perturba-321

tions. This overreliance on erroneous context in the322

absence of prior certainty motivates our SR-DCR323

design.324

4.2 Linking Self-Confidence and Prior325

Knowledge326

Next, we analyze the relationship between two327

measures of model familiarity: (i) sampling-based328

knowledge categories and (ii) single-shot self-329

confidence scores Conf(q, â). We conduct this330

analysis across 5 LLMs: GPT-3.5-Turbo, GPT-331

4o (OpenAI, 2023), Claude Sonnet 3.7, Claude332

Haiku 3.5, and Llama 3.3-70B (Grattafiori et al.,333

2024).334
For each model, we first compute C(τ) =335

{(q, a) | Conf(q, â) ≥ τ} and define:336

P (Highly-Known | Conf ≥ τ) =
|SHighly ∩ C(τ)|

|C(τ)| .337

where SHighly is the set of QA pairs categorized as338

Highly-Known.339

Fig. 3 and 7 show that across all models, this340

conditional probability exceeds 0.88 once τ ≥ 0.90341

and surpasses 0.95 at τ ≥ 0.95, confirming that342

high-confidence predictions are strong indicators343

of prior knowledge. In contrast, confidence below344

0.70 yields poor overlap with Highly-Known pairs.345

These findings validate our key hypothesis:346

when Conf(q, â) crosses a threshold (e.g., 0.90),347

Figure 3: The distribution of self-confidence scores of
GPT-4o, colored by sampling-based knowledge cate-
gories. Highly-Known instances cluster at the high end
of the distribution (≥ 0.95), while Unknown examples
dominate the low-confidence region, demonstrating self-
confidence’s efficacy as a proxy for factual recall.

Figure 4: Prior Knowledge preference rate in judge
debate on Sonnet 3.7 across debate rounds, stratified
by perturbation levels (represented by offset). Judges
exhibit strong prior bias in early rounds, but shift toward
context over rounds.

the model is highly likely to “know” the answer. 348

We use this insight to guide dynamic routing in 349

SR-DCR. 350

4.3 Evaluating Multi-Agent Debate under 351

Knowledge Conflict 352

We compare the Classical MAD framework (Judge 353

Debate) against five baselines with standard and 354

perturbed contexts. Results of 1, 3, 5 rounds of 355

debate on five different models are shown in Tab. 1, 356

from which we draw several conclusions. 357

Insight 1 — Debate rounds shift judgment from 358

prior to context. We observe a consistent trend 359

in which early rounds of judge debate favor prior 360

knowledge answers, while longer debates increas- 361

ingly support context-derived responses. At r = 1, 362

judges tend to reject the context. With GPT-4o, 363

judge debate (r = 1) achieves only 70% accu- 364

racy on standard (unperturbed) context questions, 365
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Table 1: Accuracy of each method across standard and perturbed contexts. Best results per column within each
model block are bold, second-best are underlined.

Model Method Standard Context Perturbed Context Overall

GPT 3.5 Turbo

Few-Shots 99.30% 9.00% 54.15%
Self-Ask 95.00% 14.66% 54.83%
RCI 96.70% 12.32% 54.51%
Judge Debate (Round 1) 36.67% 23.99% 30.33%
Judge Debate (Round 3) 83.30% 14.02% 48.66%
Judge Debate (Round 5) 90.33% 17.00% 53.66%
Naive Debate 98.33% 20.33% 59.33%
SR-DCR 95.70% 29.66% 62.68%

Golden Baseline 98.67% 31.67% 65.17%

GPT 4o

Few-Shots 99.33% 42.27% 70.80%
Self-Ask 97.00% 31.67% 64.33%
RCI 91.67% 22.33% 57.00%
Judge Debate (Round 1) 70.00% 57.33% 63.67%
Judge Debate (Round 3) 96.00% 45.67% 70.83%
Judge Debate (Round 5) 96.00% 45.33% 70.67%
Naive Debate 97.33% 44.33% 70.83%
SR-DCR 94.67% 54.51% 74.59%

Golden Baseline 99.00% 50.00% 74.50%

Claude Haiku 3.5

Few-Shots 99.67% 16.33% 58.00%
Self-Ask 98.00% 21.67% 59.83%
RCI 93.33% 22.00% 57.66%
Judge Debate (Round 1) 55.67% 26.33% 41.00%
Judge Debate (Round 3) 94.67% 21.67% 58.17%
Judge Debate (Round 5) 97.00% 21.00% 59.00%
Naive Debate 98.67% 29.67% 64.17%
SR-DCR 95.33% 49.89% 72.61%

Golden Baseline 99.67% 48.00% 73.83%

Claude Sonnet 3.7

Few-Shots 98.67% 43.04% 70.85%
Self-Ask 97.00% 45.33% 71.17%
RCI 95.00% 22.66% 58.83%
Judge Debate (Round 1) 61.67% 50.33% 56.00%
Judge Debate (Round 3) 98.67% 30.00% 64.33%
Judge Debate (Round 5) 99.33% 24.67% 62.00%
Naive Debate 98.00% 47.34% 72.67%
SR-DCR 91.04% 47.94% 69.76%

Golden Baseline 99.67% 47.67% 73.67%

Llama 3.3-70B

Few-Shots 98.67% 9.67% 54.17%
Self-Ask 98.33% 23.67% 61.00%
RCI 94.96% 25.00% 59.98%
Judge Debate (Round 1) 56.67% 35.66% 46.17%
Judge Debate (Round 3) 92.33% 28.33% 60.33%
Judge Debate (Round 5) 93.33% 25.67% 59.49%
Naive Debate 98.67% 22.33% 60.50%
SR-DCR 94.97% 28.39% 61.67%

Golden Baseline 99.00% 33.33% 66.17%

compared to > 90% with other baselines. This366

skepticism toward context provides strong protec-367

tion against misinformation: on perturbed inputs,368

GPT-4o’s judge debate (r = 1) achieves signifi-369

cantly higher accuracy (57.33%) than others, with370

Self-Ask and RCI trailing far behind at 31.7% and371

22.3%, respectively.372

As the number of debate rounds increases, this373

behavior gradually reverses. Judges become more374

willing to trust contextual evidence—especially375

when it is accurate. On standard (unperturbed) ex-376

amples, accuracy rises steadily with more rounds,377

reaching nearly 100% by r = 3. This benefit is not378

without tradeoffs. While longer debates improve379

acceptance of correct context, they also reduce ro-380

bustness to misleading information. accuracy on 381

perturbed inputs declines as the number of rounds 382

increases: for GPT-4o, accuracy on perturbations 383

drops from 57.3% at n = 1 to 45.3% at n = 5. 384

Insight 2 — Longer debates increase context 385

reliance, and reduce robustness to small incon- 386

sistencies. A more detailed analysis by perturba- 387

tion level reveals that this degradation is not uni- 388

form. From Fig. 4 and Fig. 9, we can see that for 389

GPT-4o, sonnet 3.7, and LLaMA 70B, data points 390

with a lower perturbation level (e.g., subtle (offset 391

= 20)) show a steeper decrease in accuracy, sug- 392

gesting that minor inconsistencies are more easily 393

overlooked as debates grow longer. In contrast, 394

large perturbations (e.g., blatant (offset >= 100)) 395
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Table 2: Performance of different methods under a group of prevalent LLMs across varying offset levels. Best and
second-best results are shown in bold and underlined, respectively.

Model Method Offset 20 Offset 40 Offset 60 Offset 100 Offset 200 Overall

GPT 3.5 Turbo

Few-Shots 1.70 8.30 11.70 8.30 15.00 9.00
Self-Ask 1.00 13.30 18.30 23.30 18.30 14.66
RCI 8.30 8.30 15.00 16.70 13.30 12.32
Judge Debate (Round 1) 25.00 21.67 28.30 18.33 26.67 23.99
Judge Debate (Round 3) 5.00 11.70 20.00 11.70 21.70 14.02
Judge Debate (Round 5) 10.00 13.33 16.67 20.00 25.00 17.00
Naive Debate 8.33 13.33 15.00 25.00 40.00 20.33
SR-DCR 26.70 25.00 30.00 28.30 38.30 29.66

Golden Baseline 31.67 30.00 33.33 21.67 41.67 31.67

GPT 4o

Few-Shots 23.33 31.00 38.33 57.00 61.67 42.27
Self-Ask 28.33 25.00 21.67 40.00 43.33 31.67
RCI 15.00 16.67 21.67 23.33 35.00 22.33
Judge Debate (Round 1) 56.67 53.33 58.33 58.33 60.00 57.33
Judge Debate (Round 3) 35.00 45.00 48.33 48.33 51.67 45.67
Judge Debate (Round 5) 33.33 41.67 48.33 48.33 55.00 45.33
Naive Debate 26.67 33.33 36.67 53.33 71.67 44.33
SR-DCR 47.46 47.37 52.73 55.00 70.00 54.51

Golden Baseline 50.00 50.00 53.33 46.67 50.00 50.00

Claude Haiku 3.5

Few-Shots 8.33 18.33 6.67 23.33 25.00 16.33
Self-Ask 10.00 16.67 25.00 25.00 31.67 21.67
RCI 8.33 13.33 15.00 30.00 43.33 22.00
Judge Debate (Round 1) 28.33 26.67 25.00 18.33 33.33 26.33
Judge Debate (Round 3) 15.00 20.00 23.33 20.00 30.00 21.67
Judge Debate (Round 5) 15.00 15.00 21.67 21.67 31.67 21.00
Naive Debate 18.33 21.67 26.67 35.00 46.67 29.67
SR-DCR 55.56 41.38 53.45 47.27 51.79 49.89

Golden Baseline 50.00 41.67 55.00 43.33 50.00 48.00

Claude Sonnet 3.7

Few-Shots 26.67 31.67 38.33 55.00 63.52 43.04
Self-Ask 25.00 35.00 41.67 63.33 61.67 45.33
RCI 13.33 18.33 20.00 23.33 38.33 22.66
Judge Debate (Round 1) 46.67 43.33 56.67 48.33 56.67 50.33
Judge Debate (Round 3) 15.00 18.33 30.00 41.67 45.00 30.00
Judge Debate (Round 5) 3.33 10.00 23.33 40.00 46.67 24.67
Naive Debate 21.67 31.67 45.00 66.67 71.67 47.34
SR-DCR 33.33 40.00 43.63 55.00 68.42 47.95

Golden Baseline 50.00 43.33 53.33 41.67 50.00 47.67

Llama 3.3-70B

Few-Shots 5.00 3.33 13.33 11.67 15.00 9.67
Self-Ask 15.00 18.33 21.67 28.33 35.00 23.67
RCI 13.33 18.33 25.00 31.67 36.67 25.00
Judge Debate (Round 1) 35.00 40.00 33.33 28.33 41.67 35.67
Judge Debate (Round 3) 16.67 18.33 31.67 35.00 40.00 28.33
Judge Debate (Round 5) 15.00 15.00 33.33 31.67 33.33 25.67
Naive Debate 11.67 13.33 20.00 31.67 35.00 22.33
SR-DCR 20.34 25.00 30.51 32.76 33.33 28.39

Golden Baseline 50.00 41.67 55.00 43.33 50.00 48.00

remain consistently detectable: Their accuracy re-396

mains relatively stable across all debate rounds.397

This indicates that judge debate is effective in re-398

jecting an obviously flawed context but becomes399

more vulnerable to subtle misinformation as it at-400

tempts to reconcile competing claims.401

These observations reveal a tension in Judge402

Debate: short debates reinforce prior bias, while403

longer debates risk accepting false context.404

4.4 Evaluation of SR-DCR405

Evaluation Setups. We assembled a composite406

testbed of 600 question–answer instances: a half407

use standard contexts, where the retrieved passage408

is correct; the other half employ perturbed contexts,409

simulating erroneous RAG outputs at 4 calibrated410

disturbance levels (subtle to blatant perturbations).411

This split measures the ability to leverage valid 412

context and the robustness to misleading excerpts. 413

Results. Tab. 1 reports EM across standard and 414

perturbed contexts. Across all model families, 415

we observe a consistent pattern: few-shot prompt- 416

ing and retrieval-based approaches (e.g., Self-Ask, 417

RCI) perform well on standard contexts but de- 418

grade sharply under adversarial perturbation. For 419

instance, GPT-3.5 Turbo’s accuracy drops from 420

99.3% to 9.0% with Few-Shot, and from 95.0% to 421

14.7% with Self-Ask. Classical MAD (e.g., Judge 422

Debate at Round 5) improves robustness but often 423

sacrifices standard-context accuracy. For example, 424

Judge Debate (R5) recovers perturbed accuracy to 425

17.0%, but standard accuracy falls to 90.3%. 426
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SR-DCR consistently outperforms prior meth-427

ods in handling conflicting information. On428

GPT-3.5 Turbo, it achieves 29.7% on perturbed429

inputs—nearly matching the golden baseline’s430

31.7%—while maintaining 95.7% on standard con-431

texts. This yields an overall accuracy of 62.7%,432

a +3.4-point gain over Naive Debate, the best-433

performing baseline. On stronger models like GPT-434

4o and Haiku 3.5, SR-DCR matches or exceeds the435

performance of Naive Debate and classical MAD,436

with the largest gains observed in perturbed con-437

texts: +10.2 points over Judge Debate (R5) on GPT-438

4o and +20.2 points over RCI on Haiku 3.5.439

To better understand robustness under varying440

degrees of contradiction, Tab. 2 reports accuracy441

across perturbation offsets. On GPT-3.5 Turbo,442

SR-DCR achieves state-of-the-art performance at443

every offset level, including 26.7% at Offset 20444

and 38.3% at Offset 200—far surpassing all base-445

lines. Similarly, SR-DCR attains the best average446

perturbed accuracy on Sonnet (47.9%) and Haiku447

(49.9%), and ranks second only to Judge Debate448

(R1) on GPT-4o. This demonstrates SR-DCR’s ca-449

pacity to retain valid contextual information while450

resisting misleading perturbations.451

We further analyze SR-DCR’s ability to selec-452

tively trust valid contexts and reject corrupted ones.453

On GPT-3.5 Turbo, SR-DCR yields a true positive454

rate (standard context accuracy) of 95.7% and a455

true negative rate (perturbed context accuracy) of456

29.7%. In contrast, Naive Debate achieves a higher457

standard-context rate (98.3%) but a lower rejection458

rate (20.3%), while Judge Debate (R5) performs459

worse on both fronts. SR-DCR thus achieves a460

more balanced trade-off, leveraging external con-461

text when warranted and falling back on internal462

knowledge when necessary.463

Summary and Analysis. Empirically, this self-464

reflective control yields three key advantages: (i) a465

+7.7-point improvement in robustness to corrupted466

context, (ii) a +5.6-point recovery in accuracy on467

clean, context-consistent cases, and (iii) a 2× re-468

duction in prior bias during extended debates. Cru-469

cially, SR-DCR achieves this improved arbitration470

between parametric and contextual knowledge with471

minimal overhead, requiring only one additional472

forward pass for confidence estimation and a debate473

that is already necessary for context evaluation.474

Together, these results confirm SR-DCR as475

a principled and efficient solution for resolving476

factual conflicts, outperforming both confidence-477

based and debate-only strategies across models and 478

perturbation settings. 479

5 Related Work 480

Knowledge Conflict. In in-context learning, con- 481

flicts between an LLM’s internal knowledge and 482

external context can cause interference (Jin et al., 483

2024). Models often over-rely on coherent exter- 484

nal evidence even when it contradicts their mem- 485

ory (Xie et al., 2024), especially under low internal 486

confidence (Xu et al., 2024; Chatziveroglou et al., 487

2025). To address this, prior work has proposed 488

Knowledge-Aware Fine-Tuning (Li et al., 2023), 489

opinion-based prompts and counterfactuals (Zhou 490

et al., 2023), and fact duration prediction (Zhang 491

and Choi, 2023). Some prioritize context (Li et al., 492

2023; Zhou et al., 2023; Zhang and Choi, 2023), 493

while others favor memory (Hong et al., 2024). 494

However, rigid faithfulness to either source is sub- 495

optimal. We extend this line by jointly varying 496

perturbation strength and prior confidence to better 497

arbitrate between conflicting knowledge sources. 498

Multi-Agent Debate. MAD has been shown to 499

improve LLM reasoning and evaluation (Khan 500

et al., 2024). Adversarial critique can enhance 501

factuality, and aggregation strategies like REC- 502

ONCILE (Chen et al., 2024) use confidence- 503

weighted voting across agents. Prior work demon- 504

strates that adversarial dialogue can reveal false 505

assumptions (Du et al., 2023), improve robust- 506

ness (Michael et al., 2023), and enhance factual 507

accuracy even with weaker judges (Kenton et al., 508

2024). However, most MAD frameworks de- 509

bate all queries uniformly, ignoring model confi- 510

dence—sometimes leading to unnecessary correc- 511

tion when the model is already correct. To address 512

this, we integrate self-confidence signals with con- 513

text reasonableness and introduce a judge agent to 514

yield more balanced and credible answers. 515

6 Conclusion 516

We presented SR-DCR, a self-reflective framework 517

that combines model confidence with asymmet- 518

ric debate to resolve conflicts between parametric 519

knowledge and contextual input. By selectively 520

trusting context when it is judged reliable—and 521

deferring to priors when confidence is high—SR- 522

DCR improves factual robustness and accuracy un- 523

der perturbation, outperforming classical debate 524

and confidence-only baselines. Limitations are in 525

Appendix D. 526
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A Experimental Details 666

A.1 Base Models and Dataset 667

Our experiments were conducted using a 668

variety of state-of-the-art language models 669

sourced from different platforms. From the 670

Anthropic API, we used two versions of Claude 671

models: claude-3-5-haiku-20241022 and 672

claude-3-7-sonnet-20250219. From OpenAI’s 673

API platform, we employed gpt-3.5-turbo-0125 674

and the more recent gpt-4o-2024-08-06. For 675

the LLaMA models, we used the LLaMA 3.1 8B, 676

LLaMA 3.3 70B, and LLaMA 3.1 405B. 677

To support experiments with local LLaMA mod- 678

els, we used three NVIDIA H100 GPUs. Running 679

a full 5-round, 3-agent debate setup over our 600- 680

question dataset required approximately 7 hours 681

of wall-clock time on this setup. This runtime in- 682

cludes both the multi-agent dialogue stages and 683

final judge evaluations. 684

The benchmark dataset, ClashEval, spans 685

various knowledge domains—including bio- 686

graphical facts, geography, medical dosages, 687

Olympic records, historical data, and breaking 688

news—ensuring wide coverage in both content and 689

difficulty. 690

A.2 Baseline Implementation Details 691

We implemented six baseline methods alongside 692

SR-DCR to evaluate the effectiveness of different 693

prompting and reasoning strategies for answering 694

factual questions under a potentially perturbed con- 695

text. Each method was run under standardized 696

conditions across models and datasets to ensure 697

fair comparison. Unless otherwise stated, all exper- 698

iments used full-precision models with temperature 699

set to zero and default decoding parameters. 700

Few-shot Prompting: We provided the model 701

with four randomly selected in-domain exemplars, 702

along with the question and accompanying context 703

and short instruction. 704

Self-Ask (Press et al., 2022): It is designed to 705

encourage structured intermediate reasoning by 706

prompting the model to first generate a clarifying 707

sub-question, answer that sub-question, and then 708

commit to a final answer. We adopt a fixed template 709

to ensure consistency across examples. The model 710

is instructed to respond in exactly three lines—Sub- 711

question, Sub-answer, and Final answer—with no 712

additional output and make a best-guess answer 713

even when uncertain. To ensure that the model 714
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fully completes all three required lines of output,715

we set the maximum token limit to 400 during de-716

coding.717

RCI (Recursive Criticism and Improve-718

ment) (Kim et al., 2023): It encourages iterative719

self-reflection and refinement by prompting the720

model to first generate an initial answer, then721

critique that answer, and finally revise it based on722

its critique. This process simulates a single-agent723

self-debate loop. Our implementation follows a724

three-step pipeline. First, the model is prompted725

with the question and context and asked to produce726

its best guess (initial answer). Next, it receives the727

same input along with its previous response and is728

asked to identify any factual or logical issues in729

the form of a short, bulleted critique. Finally, the730

model is prompted to revise its answer using the731

critique, outputting only the updated final answer.732

Each of these three stages can response with a733

maximum of 300 tokens to ensure sufficient space734

for generation.735

Naive Debate: We use three independent agents736

of the same language model, all operating with a737

temperature of 0 and a maximum token limit of 250.738

The agents engage in a maximum of five debate739

rounds to iteratively refine their answers. Each740

agent begins by independently reading the context741

and question and giving its best answer.742

In each subsequent round, agents are shown their743

peers’ answers from previous rounds. They are744

prompted to (1) evaluate the plausibility of those745

answers, (2) reflect on their reasoning, and (3) de-746

cide whether to revise their answer or stick with747

their original. The agents are explicitly instructed748

to avoid vague responses or uncertainty and to al-749

ways produce a single answer. The debate termi-750

nates early if all three agents converge on the same751

answer. If no consensus is reached after five rounds,752

we adopt a majority vote to determine the final out-753

put.754

Classical Debate & Judge Debate: We simulate755

a debate between three agents instantiated from756

the same language model, using a temperature of757

0 and a maximum token limit of 300. Before the758

debate starts, we first obtain two initial answers:759

one is based on context, the other is purely based760

on prior knowledge. Two agents serve as debaters761

(Agent A and Agent B), and the third acts as a762

neutral judge. The debaters are initialized with763

the same instructions but different initial standings.764

Specifically, in our Judge Debate setting, Agent 765

A is instructed to support and defend an answer 766

grounded in the context. In contrast, Agent B is 767

instructed to support the answer based on prior 768

knowledge. 769

Following their initial responses, the two agents 770

engage in a multi-round debate where they alternate 771

presenting arguments, challenging each other’s po- 772

sitions, and defending their answers. After 1, 3, or 773

5 rounds of debate, the judge agent is presented 774

with the question, context, and complete debate 775

transcript and tasked with selecting a winning an- 776

swer. The judge’s final output must include a single 777

answer followed by a concise justification. 778

A.3 Knowledge Categories 779

We depict the details of knowledge categories in 780

Tab. 3, where four types are included based on the 781

sampled accuracy. 782

B More Illustrative Examples 783

Consider the ClashEval question “Which city 784

hosted the 1904 Summer Olympics?” with 785

ground-truth St. Louis. When prompted with 786

four random exemplars and sampled 32 times at 787

T = 0.5, the model answers “St. Louis” in 28 tri- 788

als, yielding a sampled accuracy of 0.875 and a 789

Highly-Known label (Wu et al., 2024). In contrast, 790

the question “Which team won the 1974 World Se- 791

ries?” might yield only 6 correct out of 32 (≈ 0.19), 792

classifying it as Weakly-Known. 793

As shown Fig. 5, this illustrates how sampling 794

with random four-shot prompts uncovers differing 795

degrees of model familiarity. 796

C Additionial Results 797

C.1 Verification of Self-consistency Scores 798

For closed-source models that do not expose token- 799

level log-probabilities (e.g., Anthropic’s Claude 800

models), we approximate model self-confidence 801

using a sampling-based self-consistency measure. 802

Specifically, we first query the model using few- 803

shot prompt without context to obtain a determin- 804

istic answer (T = 0). Then, we sample the same 805

question 16 times using a higher temperature set- 806

ting (T = 0.5). We compute the proportion of sam- 807

pled outputs that match the deterministic answer, 808

which we interpret as the model’s self-consistency 809

on that question. This score serves as a proxy 810

for the model’s confidence in its original answer: 811

higher consistency indicates higher certainty. 812
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Table 3: Knowledge qualification categories based on the sampled recall rate from 32 completions at T = 0.5. This
categorization adapts the schema from SLICK (Gekhman et al., 2024).

Type Category Definition Intuition

Known
Highly Known Pcorrect(q, a;M,T > 0) ≥ 0.85 Model almost always recalls the fact.
Maybe Known 0.30 ≤ Pcorrect(q, a;M,T > 0) < 0.85 Fact is recalled, but inconsistently.
Weakly Known 0 < Pcorrect(q, a;M,T > 0) < 0.30 The model shows only sporadic recall.

Unknown Unknown Pcorrect(q, a;M,T > 0) = 0 Model never recalls the fact.

Figure 5: Two illustrative examples of how questions are classified based on the model’s familiarity

The distribution of self-consistency scores us-813

ing a stacked histogram is shown in Fig. 6, which814

shows a similar pattern to the self-confidence815

scores derived from models with access to log-816

probabilities. This alignment supports the effec-817

tiveness of self-consistency as an approximation818

for model confidence, proving that our framework819

is also effective on closed-source models.820

C.2 More Experiment Results821

Fig. 6 presents the distribution of self-consistency822

scores (our proxy for self-confidence) for GPT-3.5823

Turbo, GPT-4o, LLaMA 3.1 405B, and LLaMA824

3.3 70B, extending the analysis shown in Fig. 6.825

All four models exhibit similar self-confidence pat-826

terns, supporting the generality and robustness of827

our sampling-based approximation method.828

Fig. 8 extends our earlier analysis of the rela-829

tionship between context preference and knowl-830

edge familiarity to six language models, including831

both open and closed-source LLMs. Each curve832

represents how often a model aligns its answer833

with the perturbed (and incorrect) context across834

varying offset magnitudes, stratified by knowl-835

edge category. The consistent trends across mod-836

els—higher context preference in "unknown" or837

"unsure" cases, and lower preference in "highly838

known" cases—further validate the generality of 839

our framework. 840

Fig. 9 extends the analysis of context suscepti- 841

bility by visualizing prior knowledge preference 842

rates across five models, stratified by perturba- 843

tion strength. Complementing the trends shown 844

in Fig. 4, this figure further demonstrates that mod- 845

els are more likely to accept the perturbed context 846

as the debate rounds increase. Subtle inconsisten- 847

cies (e.g., offset = 20) often lead to higher context 848

preference after 3 rounds. For GPT 3.5 Turbo and 849

Sonnet 3.7, the Prior knowledge preference rate 850

is even below 20% at the end of the debate when 851

provided with context with minor error. 852

D Limitations and Future Work 853

Limitations. SR-DCR relies on fixed confidence 854

thresholds, which may not generalize optimally 855

across all domains or tasks. Additionally, the cur- 856

rent implementation assumes access to determinis- 857

tic judge behavior, which may not hold in real-time 858

deployment with stochastic models. The asymmet- 859

ric debate structure also presumes the availability 860

of prior-free inference, which can be challenging 861

in closed-source or limited-access APIs. 862

12



Figure 6: Distribution of self-consistency scores (estimated self-confidence score based on sampling) on our dataset,
colored by sampling-based knowledge categories.

Future Work. Future directions include learn-863

ing adaptive confidence thresholds, training a ded-864

icated judge model with supervised debate data,865

and extending SR-DCR to multi-hop reasoning and866

document-level tasks. Incorporating human-in-the-867

loop feedback or interactive oversight could further868

enhance its applicability to high-stakes or ambigu-869

ous domains.870
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Figure 7: Distribution of self-confidence scores on more models

Figure 8: Context preference rates of a 4-shot baseline across offset magnitudes and knowledge categories of six
different models on our dataset. Each curve indicates the proportion of examples where the model’s answer aligns
with the (incorrect) perturbed context.
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Figure 9: Prior Knowledge preference rate in judge debate of five models on perturbed context across debate rounds,
stratified by five levels of perturbation strengths—subtle (offset = 20), mild (40), moderate (60), and blatant (100 &
200).
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