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Abstract

We introduce Semantic Parsing in Contextual001
Environments (SPICE), a task designed to en-002
hance artificial agents’ contextual awareness003
by integrating multimodal inputs with prior004
contexts. SPICE goes beyond traditional se-005
mantic parsing by offering a structured, inter-006
pretable framework for dynamically updating007
an agent’s knowledge with new information,008
mirroring the complexity of human commu-009
nication. We develop the VG-SPICE dataset,010
crafted to challenge agents with visual scene011
graph construction from spoken conversational012
exchanges, highlighting speech and visual data013
integration. We also present the Audio-Vision014
Dialogue Scene Parser (AViD-SP) developed015
for use on VG-SPICE and a novel multimodal016
fusion method, the Grouped Multimodal At-017
tention Down Sampler (GMADS), within the018
AViD-SP model. These innovations aim to im-019
prove multimodal information processing and020
integration. Both the VG-SPICE dataset and021
the AViD-SP model are publicly available1.022

1 Introduction023

Imagine you are taking a guided tour of an art024

museum. During the tour as you visit each piece025

of art, your guide describes not only the artworks026

themselves but also the history and unique features027

of the galleries and building itself. Through this028

dialog, you are able to construct a mental map of029

the museum, whose entities and their relationships030

with one another are grounded to their real-world031

counterparts in the museum. We engage in this type032

of iterative construction of grounded knowledge033

through dialog every day, such as when teaching a034

friend how to change the oil in their car or going035

over a set of X-rays with our dentist. As intelligent036

agents continue to become more ubiquitous and037

integrated into our lives, it is increasingly important038

to develop these same sorts of capabilities in them.039

1https://github.com/

Toward this goal, this work introduces Seman- 040

tic Parsing in Contextual Environments (SPICE), 041

a task designed to capture the process of itera- 042

tive knowledge construction through grounded lan- 043

guage. It emphasizes the continuous need to update 044

contextual states based on prior knowledge and 045

new information. SPICE requires agents to main- 046

tain their contextual state within a structured, dense 047

information framework that is scalable and inter- 048

pretable, facilitating inspection by users or integra- 049

tion with downstream system components. SPICE 050

accomplishes this by formulating updates as For- 051

mal Semantic Parsing, with the formal language 052

defining the allowable solution space of the con- 053

structed context. 054

Because the SPICE task is designed to model 055

real-world and embodied applications, such as 056

teaching a mobile robot about an environment 057

or assisting a doctor with medical image an- 058

notations, there are crucial differences between 059

SPICE and traditional text-based semantic parsing. 060

First, SPICE considers parsing language within a 061

grounded, multimodal context. The language in 062

cases like these may have ambiguities that can only 063

be resolved by taking into account multimodal con- 064

textual information, such as from vision. 065

Furthermore, SPICE supports linguistic input 066

that comes in the form of both speech and text. 067

In real-world embodied interactions, language is 068

predominantly spoken, not written. While modern 069

speech recognition technology is highly accurate, 070

it is still sensitive to environmental noise and re- 071

verberation, and representing the input language as 072

both a waveform as well as a noisy ASR transcript 073

can improve robustness. While we do not consider 074

it here, the SPICE framework also supports paralin- 075

guistic input such as facial expressions, eye gaze, 076

and hand gestures. 077

We present a novel dataset, VG-SPICE, derived 078

from the Visual Genome (Krishna et al., 2016), 079

an existing dataset comprised of annotated visual 080
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Figure 1: Example of VG-SPICE inputs as well as a plausible output to produce the correct next state context. New
information that the agent is expected to add to the context is shown in green while already known information is
noted in red. Grounding entities that have new information being added to them are noted in blue and orange. The
current context is shown as a textually prompted representation of the actual knowledge graph (discussed in Section
D).

scene graphs representing constituent entities and081

relational prepositions, enhanced with additional082

processing and synthetic augmentation to form a083

foundational representation for SPICE tasks. VG-084

SPICE simulates the conversational construction085

of visual scene graphs, wherein a knowledge graph086

representation of the entities and relationships con-087

tained within an image must be collected from088

the visual inputs and audio dialogue. This dataset,089

along with an initial model trained for VG-SPICE,090

sets the baseline for future efforts. Figure 1 shows091

an example of a typical VG-SPICE sample. The092

figure shows how potential semantic parses can be093

extracted from the visual scene and spoken utter-094

ance conditioned on what information is already095

known about the scene.096

The remainder of this paper is structured as fol-097

lows: It begins with a detailed analysis of the098

SPICE task, introduces the VG-SPICE dataset, and099

presents our AViD-SP model. It then delves into100

experimental results, showcasing the model’s abil-101

ity to process and interpret context consistent with102

the SPICE framework. Finally we outline the im-103

plications and directions for future research. The104

main contributions include:105

• A definition of the Semantic Parsing in Con-106

textual Environments (SPICE) task, highlight-107

ing its challenges, scope, and significance in108

enhancing human-AI communication.109

• The creation of a large, machine-generated110

SPICE dataset, VG-SPICE, leveraging exist-111

ing machine learning models and the Visual112

Genome dataset, to motivate SPICE research.113

• An initial baseline model, Audio-Vision Dia- 114

logue Scene Parser (AViD-SP), for VG-SPICE 115

that integrates Language Models with Au- 116

dio/Visual feature extractors, establishing a 117

research benchmark for SPICE. As a compo- 118

nent of AViD-SP, we also introduce a novel 119

pretrained encoder adaption and multimodal 120

fusion method, the Grouped Multimodal At- 121

tention Down Sampler (GMADS). 122

2 Related Work 123

The SPICE task intersects with research in dialogue 124

systems and semantic parsing. While previous ef- 125

forts in these areas have addressed some elements 126

of SPICE, none have fully encapsulated the com- 127

prehensive requirements of the SPICE task. 128

2.1 Dialogue Systems and Multimodality 129

Dialogue systems share similarities with SPICE 130

tasks, particularly in their aim to emulate human 131

conversational skills, including referencing prior 132

conversational context. However, SPICE differ- 133

entiates itself by necessitating multimodal interac- 134

tions, the utilization of structured and interpretable 135

knowledge representations, and the capability for 136

dynamic knowledge updates during conversations, 137

setting it apart from conventional dialogue models. 138

Recent advancements in dialogue systems, par- 139

ticularly through large language models (LLMs) 140

(Wei et al., 2022; Chowdhery et al., 2022; Ouyang 141

et al., 2022; Jiang et al., 2023; Touvron et al., 142

2023a,b), have enhanced the ability to manage 143

complex, multi-turn conversations. This is largely 144

thanks to the employment of extensive context win- 145
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dows (Dao, 2023), improving language comprehen-146

sion and generation for more coherent and contex-147

tually appropriate exchanges. Nevertheless, LLMs’148

reliance on broad textual contexts can compromise149

efficiency and interpretability in many applications.150

Advances in multimodal dialogue systems, in-151

corporating text, image, and audio inputs (Liu et al.,152

2023; Zhu et al., 2023; Dai et al., 2023; Zhang et al.,153

2023a; Maaz et al., 2023), edge closer to SPICE’s154

vision of multimodal communication. Yet, these155

systems cannot often distill historical knowledge156

into concise, understandable formats, instead still157

relying on raw dialogue histories or opaque embed-158

dings for prior context.159

While some systems are beginning to interact160

with and update external knowledge bases, these161

interactions tend to be unidirectional (Cheng et al.,162

2022; Wu et al., 2021) or involve knowledge stor-163

age as extensive, barely processed texts (Zhong164

et al., 2023; Wang et al., 2023). Dialogue State165

Tracking (DST) (Balaraman et al., 2021) shares166

similarities with SPICE in that agents use and up-167

date their knowledge bases during dialogues. How-168

ever, most DST efforts are unimodal, with lim-169

ited exploration of multimodal inputs (Kottur et al.,170

2021). Moreover, existing datasets and models for171

DST do not align with the SPICE framework, as172

they often rely on regenerating the knowledge base173

with each dialogue step from all historical dialogue174

inputs without offering a structured representation175

of the prior context. SPICE, conversely, envisions176

sequential updates based on and directly applied177

to prior context, a feature not yet explored in DST.178

Further, we are unaware of any DST work that has179

attempted to utilize spoken audio.180

2.2 Semantic Parsing181

Semantic Parsing involves translating natural lan-182

guage into a structured, symbolic-meaning repre-183

sentation. Traditional semantic parsing research184

focuses on processing individual, short-span inputs185

to produce their semantic representations (Kamath186

and Das, 2019). Some studies have explored se-187

mantic parsing in dialogues or with contextual in-188

puts, known as Semantic Parsing in Context (SPiC)189

or Context Dependent Semantic Parsing (CDSP)190

(Li et al., 2020). However, most CDSP research191

has been aimed at database applications, where the192

context is a static schema (Yu et al., 2019). While193

these tasks leverage context for query execution,194

they do not involve dynamic schema updates, in-195

stead maintaining a static context between interac-196

tions. Outside these applications, CDSP is mainly 197

applied in DST (Ye et al., 2021; Cheng et al., 2020; 198

Moradshahi et al., 2023; Heck et al., 2020), which 199

we have previously differentiated from SPICE. 200

Furthermore, semantic parsing has traditionally 201

been limited to textual inputs and unimodal ap- 202

plications. It has been extended to visual modal- 203

ities, notably in automated Scene Graph Genera- 204

tion (SGG) tasks (Zhang et al., 2023b; Abdelsalam 205

et al., 2022; Zareian et al., 2020). Although there 206

has been exploration into using spoken audio for 207

semantic parsing (Tomasello et al., 2022; Coucke 208

et al., 2018; Lugosch et al., 2019; Sen and Groves, 209

2021), these efforts have been constrained by fo- 210

cusing on simple intent and slot prediction tasks, 211

and have not incorporated contextual updates or 212

complex semantic outputs. 213

As such, we believe SPICE to be considerably 214

distinct from any works that have come previously. 215

While individual components of SPICE’s frame- 216

work have been studied, such as semantic pars- 217

ing from audio, context, or multimodal inputs, no 218

work has utilized all of these at once. Additionally, 219

SPICE goes beyond most semantic parsing and dia- 220

logue works, even those operating on some form of 221

knowledge representation, by tasking the agent to 222

produce continual updates to said knowledge graph 223

and to maintain them in an interpretable format. 224

3 Task Definition 225

Semantic Parsing in Contextual Environments 226

(SPICE) is defined as follows. Consider a model 227

agent, denoted as a, designed to maintain and up- 228

date a world state across interaction timesteps. Let 229

Ci represent this world state during the ith turn. 230

For interpretability and downstream use Ci is rep- 231

resented as a formal knowledge graph (Chen et al., 232

2020). This state represents the accumulated con- 233

text from prior interactions. Initially, Ci can be set 234

to a default or empty state. 235

During each interaction turn, the agent encoun- 236

ters a set of new inputs, referred to as informa- 237

tion inputs Fm
i , with m indicating the diversity of 238

modalities the agent is processing. The agent’s 239

goal is to construct a formal semantic parse, Pi = 240

a(Fm
i , Ci). This parse is formulated by integrating 241

the prior context Ci with the new information in- 242

puts Fm
i . With the aid of an execution function e, 243

this results in an updated context Ci+1 = e(Pi, Ci). 244

This newly formed context Ci+1 should repre- 245

sent all task essential information, both from pre- 246
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Dataset #Scenes #Nodes #Predicates Avg. Size
Visual Genome (Krishna et al., 2016) 108077 76,340 - -
VG80K (Zhang et al., 2019) 104832 53304 29086 19.02
VG150 (Xu et al., 2017) 105414 150 50 6.98
Ours 22346 2032 282 19.64

Table 1: Comparison of our Visual Genome curation statistics to other works. Further details are in Section B.

vious context Ci and the most recent interaction247

round, for future rounds. Ci+1 is expected to align248

with a reference context, denoted as Ĉi+1, which249

represents the ideal post-interaction state.250

4 Dataset251

This section introduces VG-SPICE, a novel dataset252

for SPICE tasks, providing a structured benchmark253

for model training and evaluation. To our knowl-254

edge, VG-SPICE is the first of its kind and is de-255

rived from the Visual Genome dataset (Krishna256

et al., 2016) to simulate a “tour guide” providing257

sequential descriptions of aspects of the environ-258

ment. In these scenarios, the tour guide describes a259

visual scene with sequential utterances, each intro-260

ducing new elements to the scene. These descrip-261

tions, combined with a pre-established world state262

of the scene, mimic the accumulation of world state263

information through successive interactions.264

VG-SPICE utilizes the Visual Genome’s 108k265

images with human-annotated scene graphs for en-266

tity identification via bounding boxes, originally267

detected using an object identification model. The268

graphs include named nodes, optional attributes,269

and directed edges for relational predicates.270

The dataset is constructed by extracting sub-271

graphs from scene graphs as the initial context, Ci,272

sampled from empty to nearly complete. These are273

then augmented by reintegrating a portion of the274

omitted graph to form the updated context, Ci+1.275

Before extracting our samples, the Visual Genome276

data underwent preprocessing to enhance dataset277

quality (Section B and summary results shown in278

Table 1). The dataset allows flexible model imple-279

mentation with semantic parses (Pi) and parsing280

functions (e) not predefined, allowing flexibility in281

modeling implementation. Our model’s semantic282

parse format is discussed in Section E.283

For each context pair (Ci, Ci+1), features from284

Ci and modified features for Ci+1 are structured285

into natural language prompts. These prompts286

are processed by the Llama 2 70B LLM (Touvron287

et al., 2023a) to generate plausible sentences that288

Statistic Value
# Samples 131362
# Unique Scenes 22346
Hours of Audio 10.56
Avg. Words per Utterance 71.83
Avg. Nodes Added 1.27
Avg. Attributes Added 0.93
Avg. Edges Added 0.60

Table 2: Summary statistics for our VG-SPICE dataset.

describe the difference between Ci and Ci+1. We 289

then synthesize spoken versions of these sentences 290

via the Tortoise-TTS-V2 (Betker, 2022) text-to- 291

speech (TTS) synthesis system. We configure the 292

TTS model to randomly sample speaker charac- 293

teristics from its pretrained latent space, and use 294

the built-in “high_quality” setup for other gener- 295

ation settings. Before TTS conversion filtering is 296

performed on the textual utterances to remove com- 297

mon recurrent terms indicative of new information 298

(eg., "there now is a" versus "there is a"). The audio 299

recordings and visual images are the multimodal 300

inputs Fm
i of VG-SPICE, emphasizing spoken au- 301

dio for practicality in real-world applications and 302

necessitating addressing the challenges of semantic 303

parsing from audio such as speaker diversity and 304

noise robustness. The presence of both textual and 305

spoken audio representations for the update utter- 306

ances allows VG-SPICE to be utilized for semantic 307

parsing evaluations in either modality. 308

VG-SPICE includes over 131k SPICE update 309

samples from 20k unique scenes, with 2.5% allo- 310

cated to each of the validation and test sets, en- 311

suring distinct scenes across splits. We perform 312

noise augmentation on the input speech using the 313

CHiME5 dataset (Barker et al., 2018) to simu- 314

late realistic noise conditions, with performance 315

evaluated at various Signal to Noise Ratios (SNR). 316

VG-SPICE samples and summary statistics are pre- 317

sented in Figure 1 and Table 2, respectively. 318
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5 AViD-SP Model319

To provide a foundational solution for VG-SPICE,320

our approach utilizes a range of pretrained models,321

specifically fine-tuned to boost SPICE-focused se-322

mantic parsing capabilities. Figure 2 provides an323

overview of our model architecture, named Audio-324

Vision Dialogue Scene Parser (AViD-SP). Central325

to our framework is the pretrained Llama 2 7B326

model (Touvron et al., 2023b). Despite using the327

smallest variant, the comprehensive pretraining of328

Llama 2 equips our model with solid functional ca-329

pabilities, which are particularly advantageous for330

processing VG-SPICE’s diverse semantic parses.331

However, Llama 2, being a model trained exclu-332

sively on textual data, does not inherently support333

the multimodal inputs typical of VG-SPICE.334

To expand the allowed inputs we emulate previ-335

ous research (Rubenstein et al., 2023; Gong et al.,336

2023; Lin et al., 2023) by projecting embeddings337

from pretrained modality specific feature extractors.338

This method has been shown to enable text-based339

LLMs to process information from various modali-340

ties. Nonetheless, directly incorporating these pro-341

jected embeddings into the LLM’s context window342

leads to significant computational overhead due to343

their typically long context lengths. While prior344

studies have often used pooling methods (Gong345

et al., 2023) to downsample embeddings by modal-346

ity, this approach does not fully overcome the chal-347

lenge of integrating diverse modalities embeddings348

for use by the LLM. For example, audio embed-349

dings convey information at a finer temporal gran-350

ularity compared to textual embeddings while the351

opposite may be true for vision embeddings, mak-352

ing the tuning of downsampling factors a difficult353

task. Moreover, even with optimized downsam-354

pling, pooled embeddings must maintain their orig-355

inal relative order and are limited to information356

from only the pooled region. Many applications357

might benefit from being able to establish down-358

sampled features from both local and global fea-359

tures and to reorder these features to some extent.360

To tackle these challenges, we introduce a361

novel Grouped Modality Attention Down Sampler362

(GMADS) module. This module projects embed-363

dings from non-textual modalities into a unified,364

fixed-dimensional space and appends them with365

modality-specific positional embeddings. For our366

two-modality inputs, audio and visual, we collect367

all individual modality embeddings and a single368

cross-modality embedding formed from the con-369

catenation of all modalities. This creates a group 370

set of embeddings, with most corresponding to 371

individual inputs and one representing all inputs 372

combined. We apply learned sampling tokens to 373

each of these embedding sequences, adding a sam- 374

pling signifier token to every S embedding and 375

a non-sampling signifier token to the subsequent 376

S − 1 indices. A series of self-attention layers then 377

processes each embedding sequence, retaining only 378

the output indices marked with a sampling signifier. 379

A linear projection adjusts the outputs to the dimen- 380

sionality of the Llama 2 7B decoder, and all em- 381

bedding sequences are concatenated. This process 382

results in an embedding output that is downsam- 383

pled by a factor of S/2. All weights in the GMADS 384

module are shared across the groups, significantly 385

reducing the parameter size. 386

The GMADS module offers several advantages 387

over providing all raw modality embeddings di- 388

rectly to the LLM decoder or using traditional pool- 389

ing. First, GMADS operates at lower dimensional 390

scales than the pretrained LLM, which, despite 391

needing to attend to the concatenation of all modal- 392

ity inputs, greatly reduces memory costs. Fur- 393

thermore, the modality inputs do not require au- 394

toregressive generation to be done alongside those 395

inputs, thereby saving additional memory. The 396

output contexts will be only 2/S the size when 397

reaching the more resource-intensive LLM decoder. 398

Second, GMADS enables the model to selectively 399

learn its downsampling process, including decid- 400

ing whether to focus near each sampling index or 401

incorporate longer-range features, allowing some 402

level of information restructuring. The inclusion of 403

cross-modality encoding allows parts of the down- 404

sampled embeddings to capture valuable informa- 405

tion across modalities. However, having individual 406

modality components in the outputs ensures that 407

a portion of the output embeddings will be con- 408

ditioned on each modality, requiring the attention 409

mechanisms to be sensitive to all modalities. 410

For feature extraction, we employ the following: 411

For visual inputs, we adopt the strategy from (Lin 412

et al., 2023) and utilize a mix of visual encoders 413

for distinct task-specific embeddings, but utilizing 414

more recent variants then (Lin et al., 2023). These 415

include the encoder portion of DINOv2 (Oquab 416

et al., 2024), the visual components of CLIP-ViT 417

(Radford et al., 2021) and ConvNeXt V2 (Woo 418

et al., 2023), and the visual encoder of BLIP-2 419

(Li et al., 2023). For audio, we use the encoder 420

part of Whisper-Large V3 (Radford et al., 2022). 421
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Figure 2: a) The architecture of the AViD-SP model for
VG-SPICE, integrating pretrained encoders and large
language models (LLMs) with LoRa adapters and fea-
ture fusion modules. Trained and frozen segments of the
model are denoted by fire and snowflake icons, respec-
tively. b) Our novel Grouped Modality Attention Down
Sampler module, enabling integrated cross-modality fu-
sion and downsampling.

All irrelevant portions of the pretrained models422

are discarded, retaining only the utilized encoder423

portions. In line with successful semantic parsing424

efforts from speech (Arora et al., 2023), we per-425

form ASR transcription on the audio, appending426

these textual embeddings to the prior context em-427

beddings. ASR transcriptions are generated using428

the Whiser-Medium.en model.429

To enable scalable fine-tuning, we incorporate430

LoRa adaptation layers to Llama 2 7B and freeze431

all pretrained feature extractors. As a result, our432

model encompasses over 11.5 billion parameters433

but maintains a manageable trainable parameter434

count of 146 million.435

5.1 AViD-SP Training and Evaluations436

We train AViD-SP using the cross entropy loss be-437

tween the predicted and reference Formal Semantic438

Parses. However, we observed that in cases where439

the ASR transcriptions were moderately reliable,440

the model learned to rely on them too much, lead-441

ing to the GMADS outputs severely collapsing. To442

avoid this we apply an additional orthogonality loss443

to the outputs of the GMADS module. This loss444

attempts to minimize the inverse cosine similarity 445

between distinct samples in an input batch, there- 446

fore preventing embedding collapse and promoting 447

discriminative ability between the various samples. 448

We began with the orthogonality loss weighted high 449

until the model was capable of reaching a per batch 450

average cosine similarity of 0.6, after which we 451

reduced the weighting significantly to allow the 452

training to focus on semantic parsing performance. 453

Our full loss function is shown below, where p is 454

the softmax predictions for Pi, t is the ground truth 455

labels, Eo is the GMADS output embedding for 456

index o of a tensor with a batch size of B. 457

ℓCE = −
n∑

k=1

tklog(pk) 458

459

ℓOrtho = 1− 2

B(B − 1)

B−1∑
i=1

B∑
j=i+1

Ei ∗ Ej

∥Ei∥ ∗ ∥Ej∥
460

461
L = α ∗ ℓCE + β ∗ ℓOrtho 462

AViD-SP utilizes a six-layer self-attention trans- 463

former as part of its GMADS module, each with 464

an embedding dimensionality of 1024 and eight at- 465

tention heads. The GMADS module is constructed 466

to utilize a downsampling factor, S, of 32. Addi- 467

tionally, we enhance the Llama 2 7B model’s key, 468

query, and value layers with a rank 64 Low-Rank 469

Adaptation (LoRa). No hyperparameter search was 470

done to optimize these settings. 471

We train AViD-SP by integrating randomly sam- 472

pled CHiME5 noise to induce audio corruption, 473

adding this noise at various Signal-to-Noise Ra- 474

tios (SNR) of 0, 5, 10, or 20dB. Additional details 475

on training and inference hyperparameters are dis- 476

cussed in Section C. Due to computational con- 477

straints, AViD-SP was trained for only a single 478

epoch on VG-SPICE and did not exhibit signs of 479

having fully converged. Further details on AViD- 480

SP checkpoints and evaluations will be made avail- 481

able in the code repository. 482

We evaluate the AViD-SP model across multiple 483

ablation evaluations to assess the impact of differ- 484

ent features. These studies include scenarios with 485

and without visual modality inputs, with CHiME5 486

noise additions at -2, 0, and 20dB, when gold tran- 487

scription labels are provided to the model, with 488

mismatched images, without access to previous 489

scene graph context, and finally, when the model 490

operates without explicit ASR integration. 491
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5.2 Evaluation Metrics492

We use several metrics to measure how closely the493

generated semantic parse aligns with the ground494

truth and how accurately the scene graph context495

updates match the reference. Unlike conventional496

semantic parsing assessments (Tomasello et al.,497

2022), we omit exact-match metrics due to their498

unsuitability for our problem, which allows for per-499

mutation invariance in the formal-language output500

(see Section E). This permits the parser to generate501

scene-graph updates in any order and assign node502

IDs freely, as long as the resulting scene graph is503

isomorphic to the reference.504

For each below metric we examine hard ("H")505

and soft ("S") variants. The hard variant penal-506

izes missing and unnecessary information, while507

the soft variant only penalizes omissions. This ap-508

proach accounts for the Visual Genome dataset’s509

sparsity and the possibility of LLMs generating510

extraneous yet potentially valid content. For ex-511

ample, an LLM might enhance a "blue table" to a512

"vibrant blue table," making "vibrant" an accept-513

able attribute. Our analysis shows such inclusions514

are common in the VG-SPICE dataset, leading us515

to focus on the weak metric and qualitatively show516

in Section 6 how updated utterances accommodate517

these extraneous additions.518

Graph Edit Distance (GED): GED calculates519

the normalized cost to transform the predicted con-520

text to the reference one, considering only per-521

fectly semantically equivalent Nodes, Attributes,522

and Edges. Missing or extra Nodes or Edges in-523

crease the error by one, while incorrect Attributes524

have a smaller penalty of 0.25. GED is normal-525

ized by the edit distance needed to transform the526

prior context into the reference, so the result can be527

viewed as the percentage information error. GED528

is particularly sensitive to exact matches, so minor529

discrepancies (like "snow board" vs. "snowboard")530

can incur significant penalties, with misalignments531

doubly penalized in the hard variant.532

Representation Edit Distance (RED): RED ad-533

dresses the limitations of GED by employing a534

“softer” semantic similarity to evaluate entity pair-535

ings. Using a sentence transformer model2 for536

semantic similarity, RED groups Nodes and their537

Attributes into descriptive phrases (for example, a538

"table" Node with "vibrant" and "blue" Attributes539

2The “en_stsb_roberta_base” model from
https://github.com/MartinoMensio/spacy-sentence-bert

becomes "vibrant blue table") and assesses the dis- 540

similarity between potential pairings, using an ex- 541

haustic search for optimal pairings of Nodes and 542

Edges. Unmatched Nodes and Edges are consid- 543

ered entirely dissimilar. Since unmodified graph 544

portions from the prior context are pre-matched 545

and excluded from the exhaustive search, the com- 546

putation of the pairings remains manageable. RED 547

is normalized in the same manner as GED and so 548

numerically can be interpreted as the percentage of 549

missing and/or extra information. 550

6 Results 551

The results for AViD-SP on the VG-SPICE test 552

set, as depicted in Table 3, illustrate that the base- 553

line AViD-SP model achieves Soft metrics around 554

0.4. This indicates a 60% effectiveness in identify- 555

ing and incorporating desired information into the 556

scene graph. However, the Hard metrics highlight 557

the introduction of significant irrelevant informa- 558

tion. A deeper analysis and qualitative example 559

examines the reasons behind this, including why 560

high Hard edit distances may be desirable for VG- 561

SPICE to a degree, are discussed in Section A. 562

The performance of the AViD-SP model under 563

various SNR conditions exhibits slight performance 564

degradation at low SNR levels. This suggests that, 565

although background noise adversely affects the 566

model’s performance, it remains generally resilient 567

to moderate levels of noise. Moreover, the pro- 568

vision of gold transcripts significantly enhances 569

parsing accuracy, underlining the advantages of ac- 570

curate ASR (Automatic Speech Recognition) tran- 571

scriptions for our model. 572

Experiments conducted without visual inputs un- 573

derscore their indispensable role. The omission 574

of images leads to increased GED and RED, af- 575

firming that visual context is critical for precise 576

semantic parsing. Additionally, the utilization of in- 577

correct images still showcases similar performance 578

decreases, attributing gains not only to maintaining 579

AViD-SP’s visual pathways but also to accessing 580

relevant visual features. 581

The lack of prior context notably raises error 582

rates, highlighting the critical role of historical con- 583

text in enabling the model to update the scene graph 584

accurately. Similarly, the complete removal of ASR 585

transcriptions emphasizes the importance of textual 586

information from audio inputs for semantic parsing. 587

Even if this information is processed through a sec- 588

ondary pathway in the model, its absence markedly 589
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Model Type Hard-GED Soft-GED Hard-RED Soft-RED
AViD-SP

-2dB SNR Noise 3.626 0.458 3.537 0.441
0dB SNR Noise 3.530 0.448 3.453 0.419

20dB SNR Noise 3.382 0.427 3.343 0.384
Gold Transcripts* 3.326 0.410 3.186 0.308

AViD-SP w/o Image
-2dB SNR Noise 1.496 0.605 1.484 0.628
0dB SNR Noise 1.564 0.590 1.474 0.615

20dB SNR Noise 1.510 0.575 1.539 0.589
Gold Transcripts* 1.503 0.563 1.454 0.545

AViD-SP w Incorrect Image** 1.510 0.575 1.540 0.589
AViD-SP w/o Prior Context*** 3.313 0.583 4.110 0.509
AViD-SP w/o ASR Transcription 3.719 0.626 3.962 0.861

Table 3: Full results on the VG-SPICE test set for our AViD-SP model. All results in utilize the same pretrained
model trained with vision, ASR, context, and audio components. AViD-SP was trained with CHiME5 noise
augmentation sampled at 0, 5, 10, and 20dB SNR (-2dB is OOD from training, and all CHiME5 noise followed
the provided train/eval/test splits). *Given the ground truth utterance transcripts in place of the ASR transcriptions.
**Evaluated by offsetting visual features withing batch so incorrect image features are paired with the other input
components. ***Evaluated with "Empty Context" prior state scene graphs summaries instead of the correct ones.

detracts from performance, likely due to the high590

cost of training robust audio processing models.591

7 Limitations and Future Work592

VG-SPICE and AViD-SP have limitations. The593

main limitation stems from the extensive use of594

synthetic data augmentation in VG-SPICE’s cre-595

ation. The process involved several steps, includ-596

ing dataset preprocessing with BERT-like POS tag-597

gers, crafting update utterances using the Llama598

2 70B LLM, and generating synthetic TTS audio.599

These stages may introduce errors, hallucinations,600

or overly simple data distributions, potentially mis-601

aligning with real-world applications. For example,602

our models’ resilience to background noise may603

reflect the specific TTS audio distribution, possi-604

bly simplifying ASR model’s speech discernment.605

Additionally, the Visual Genome, our work’s foun-606

dation, suffers from notable quality issues, such607

as poor annotations and unreliable synthetic object608

segmentation, which, despite efforts to mitigate,609

remain challenges in VG-SPICE.610

Moreover, VG-SPICE, while pioneering in611

SPICE tasks, is only a start, limited to audio and612

images, with a basic language for knowledge graph613

updates. Future research should address these limi-614

tations by incorporating more realistic inputs, like615

video, 3D environments, and paralinguistic cues,616

and by exploring dynamic tasks beyond simple617

scene graph updates. Environments like Matter-618

port3D (Chang et al., 2017) or Habitat 3.0 (Puig619

et al., 2023) offer promising avenues for embodied620

SPICE research. Expanding SPICE to include sec-621

ondary tasks that rely on an agent’s contextual un- 622

derstanding can also enhance its utility, such as aid- 623

ing in medical image annotation with co-dialogue. 624

8 Conclusion 625

In this paper, we introduced Semantic Parsing in 626

Contextual Environments (SPICE), an innovative 627

task designed to enhance artificial agents’ contex- 628

tual understanding by integrating multimodal in- 629

puts with prior contexts. Through the development 630

of the VG-SPICE dataset and the Audio-Vision 631

Dialogue Scene Parser (AViD-SP) model, we es- 632

tablished a framework for agents to dynamically 633

update their knowledge in response to new infor- 634

mation, closely mirroring human communication 635

processes. The VG-SPICE dataset, crafted to chal- 636

lenge agents with the task of visual scene graph con- 637

struction from spoken conversational exchanges, 638

represents a significant step forward in the field of 639

semantic parsing by incorporating both speech and 640

visual data integration. Meanwhile, the AViD-SP 641

model, equipped with our novel Grouped Multi- 642

modal Attention Down Sampler (GMADS), demon- 643

strates the potential for improving multimodal in- 644

formation processing and integration. 645

Our work highlights the importance of develop- 646

ing systems capable of understanding and interact- 647

ing within complex, multimodal environments. By 648

focusing on the continuous update of contextual 649

states based on new, and multimodal, information, 650

SPICE represents a shift towards more natural and 651

effective human-AI communication. 652
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at the average obtained across the full testing set. In993

this example it is evident that all of the ground truth994

reference information was successfully added to995

the updated scene graph, leading to the Soft-RED996

score of 0.0. However, considerable extraneous997

information is also observed to have been added.998

In Figure 3 three additional Nodes are added, with999

two of them being duplicates of ones that already1000

exist in the scene graph, along with one Edge.1001

However, considering the Transcription and Vi-1002

sual Scene for the illustrated sample reveals that1003

these features, while not included in the reference,1004

likely are logically reasonable for the agent to in-1005

clude. For the additional Node of “runway” the1006

motivation is obvious. Not only is the runway and1007

its corresponding edge relationship mentioned by1008

the LLM, but a runway is even present in the scene1009

visual. Similar conditions apply to the two dupli-1010

cate nodes added. While those nodes already exist,1011

they are mentioned in the Audio Transcription at1012

two distinct times. Inspection of the highlighted1013

and blown-up parts of the image also reveals that1014

there are in fact duplicates of these entities in the1015

scene, making their addition to the updated context1016

reasonable.1017

This is not to say all extraneous additions should1018

be treated as correct since many should not. How-1019

ever, it does illustrate a key area to seek further1020

improvement in the VG-SPICE dataset and why,1021

for this work, we focus more on the “soft” capa-1022

bility to add all known good information tot he1023

graph.1024

B Visual Genome Preprocessing1025

The Visual Genome serves as a strong basis for VG-1026

SPICE but has quality issues such as inconsistent1027

naming for Nodes, Attributes, and Predicates, du-1028

plicate Nodes, and unnecessary Nodes (e.g., <man,1029

has, head>). Prior solutions for Scene Graph Gen-1030

eration (SGG) tasks (Liang et al., 2019; Zhang1031

et al., 2019; Xu et al., 2017; Maëlic et al., 2023)1032

curated versions by limiting predicates and node1033

names, reducing predicates from 27k to 50 and1034

node names from 53k to 150. While the Visual1035

Genome contains a substantial portion of single-1036

sample terms, typically of lower quality, such re-1037

strictions can oversimplify and yield smaller, less1038

representative scene graphs.1039

Our approach refines the Visual Genome by:1040

Standardization and Correction: We applied1041

rule-based systems with Sentence Transformer Part1042

of Speech taggers 3 to fix inconsistencies and im- 1043

prove scene graph density by retaining rare Node 1044

names (e.g., "red table", identifying "red" as an at- 1045

tribute). We removed low-quality attributes and 1046

predicates by limiting them to specific parts of 1047

speech conditions, such as removing proper and 1048

common nouns from attributes/edges. Furthermore, 1049

we imposed several straightforward constraints to 1050

refine the scene graph structure. These included set- 1051

ting limits on the word counts for individual scene 1052

graph elements and consolidating attributes when 1053

redundancy was detected within a specific node, for 1054

instance, merging "reddish" and "red" when both 1055

attributes described the same entity. 1056

Duplicate Node Elimination: We added a post- 1057

standardization phase to remove duplicate nodes. 1058

Unlike earlier methods (Maëlic et al., 2023) rely- 1059

ing solely on a high Intersection over Union (IoU) 1060

threshold for exact node matches, we included 1061

a semantic similarity check from the contextual- 1062

ized embeddings from the same Sentence Trans- 1063

former utilized in the Standardization and Correc- 1064

tion phase. This allows for the detection of dupli- 1065

cate Nodes with significant name similarities and 1066

IoUs. With a preference for visually supported 1067

scene graphs over the potential exclusion of some 1068

valid Nodes, we set a lower IoU threshold (0.5, 1069

compared to prior works’ 0.9) and a semantic simi- 1070

larity threshold of 0.7. 1071

Term Frequency Analysis: Next, we manually 1072

curated terms in the filtered dataset to establish a 1073

relevant set for the SPICE task, excluding single- 1074

occurrence terms for their low quality, and filtered 1075

scene graphs based on this list. 1076

Scene Graph Size Restriction: Finally, we fil- 1077

tered out small graphs to ensure a diverse set 1078

for VG-SPICE, excluding graphs with fewer than 1079

four Nodes or Edges and applying dynamically in- 1080

creased threshold for graphs with duplicate nodes. 1081

These methods enhanced the Visual Genome’s 1082

graphs, yielding a dataset with improved quality 1083

and annotation density, as illustrated in Table 1. 1084

C Training and Inference 1085

Hyperparameters 1086

The training regimen for AViD-SP spans two 1087

epochs across the dataset, using a combined batch 1088

3Using "all-mpnet-base-v2" from Python Sentence Trans-
formers
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Figure 3: Sample generation output with corresponding inputs from AViD-SP. Scored a Soft-RED of 0.0 and
Hard-RED of 6.727. Significant features highlighted in colors. Qualitative evaluation reveals that the majority of
extraneous additions were either supported by the Audio Transcription, the scene image, or both.

size of 72 on six Nvidia L40 GPUs. An initial learn-1089

ing rate of 5× 10−4 is applied, followed by expo-1090

nential decay. We employ cross-entropy loss for the1091

prediction of target semantic parses, introducing1092

loss masking for padding and for the prompt that1093

combines prior context with multimodal inputs.1094

Inference leverages a group beam-search strat-1095

egy, employing two beams across two beam groups.1096

We impose a group diversity penalty of 5.0 and a1097

repetition penalty of 1.2 to enhance the variety and1098

uniqueness of the generated semantic parse tokens,1099

with a cap set at 160 tokens. Note that the se-1100

lection of max tokens is significant for AViD-SP,1101

since more allowed tokens were generally observed1102

to lower the Soft metrics (as more features were1103

allowed to be added) while lower maximum gen-1104

eration tokens raised the Soft metrics but lowered1105

the Hard ones.1106

D Contextual State Representation1107

SPICE formulates the prior context to be utilized1108

by the agent as a structured knowledge graph. How-1109

ever, top-performing semantic parsing generation1110

models, such as those best on the Llama architec-1111

ture as used in this work, are decoder-only models1112

that can accept inputs from linear text sequences1113

only. This requires utilizing either a compatible1114

knowledge graph encoder which can embed and1115

project the knowledge graph representation for use1116

by the semantic parse generation model, or rep-1117

resenting the knowledge graph in the form of a1118

textually formatted prompt. For AViD-SP devel-1119

oped in this work, we utilized the second, with the 1120

format of the textually prompted representation of 1121

the prior context shown in Figure 1. 1122

When generating the context representations all 1123

existing Nodes are assigned Node IDs, and seman- 1124

tic parses are expected to operate in reference to 1125

these Node IDs (Section E). We provide Nodes 1126

and Attributes first, followed by any Edges. The 1127

ordering of all information is sorted by Node ID 1128

in ascending order. In practice, all Node IDs are 1129

randomly assigned for each training iteration to 1130

diversity training inputs. 1131

E Formal Language Definition 1132

The formal language we used in the semantic 1133

parses Pi and the corresponding execution func- 1134

tion e contained the following executable func- 1135

tion, which together could deterministically up- 1136

date the scene graph prior context Ci to the next 1137

context state Ci+1. Since VG-SPICE only rep- 1138

resents the conversational construction of scene 1139

graphs, and not deletion or alterations, our formal 1140

language is comprised of three distinct operations: 1141

1) #ADD_NODE accepting a new Node ID, name, 1142

and optionally a set of attributes to add along with 1143

it, 2) #ADD_ATTRIBUTE accepting an existing 1144

Node ID as well as a set of attributes to be added to 1145

the specified node, and 3) #ADD_EDGE accepting 1146

a source and target pair of existing node IDs along 1147

with the predicate to be assigned between them. 1148

Our formal language always generates reference 1149

semantic parses with new attributes added first, fol- 1150
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lowed by new Nodes (and assigned attributes), and1151

lastly new edges. However, when evaluating our1152

model outputs the execution function e can accept1153

these commands in any order, so long as the refer-1154

enced node IDs already have been added.1155

F Licensing1156

Our paper utilized the Visual Genome dataset1157

which is listed under a Creative Commons license.1158

All other tools utilized are available from either1159

Pythons Spacy or Huggingface and are available1160

for academic use. To the best of our knowledge, all1161

artifacts utilized are aligned with their intended use1162

cases.1163
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