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Abstract

There is a large ongoing scientific effort in mechanistic interpretability to map
embeddings and internal representations of AI systems into human-understandable
concepts. A key element of this effort is the linear representation hypothesis,
which posits that neural representations are sparse linear combinations of ‘almost-
orthogonal’ direction vectors, reflecting the presence or absence of different fea-
tures. This model underpins the use of sparse autoencoders to recover features
from representations. Moving towards a fuller model of features, in which neural
representations could encode not just the presence but also a potentially continuous
and multidimensional value for a feature, has been a subject of intense recent
discourse. We describe why and how a feature might be represented as a mani-
fold, demonstrating in particular that cosine similarity in representation space may
encode the intrinsic geometry of a feature through shortest, on-manifold paths,
potentially answering the question of how distance in representation space and
relatedness in concept space could be connected. The critical assumptions and
predictions of the theory are validated on text embeddings and token activations of
large language models.

1 Introduction

There is a large, ongoing, scientific effort in mechanistic interpretability to map internal representa-
tions used by AI systems into human-understandable concepts (Lin, 2024; Templeton et al., 2024),
with broad implications for humanity including safety, alignment, and the future role of AI in science
(Bostrom, 2014; Soares and Fallenstein, 2017; Wang et al., 2023).

A key element of this effort is the linear representation hypothesis (LRH), which posits that language
models represent human-interpretable features as directions in representation space, and that model
representations are (literally) a sparse linear combination of these directions (Smolensky, 1990; Arora
et al., 2018; Elhage et al., 2022). The methodology of sparse autoencoders (SAEs) (Elhage et al.,
2022; Bricken et al., 2023) employs ideas from sparse coding (Elad, 2010) to estimate a dictionary of
these directions from representations.

This model and methodology reflect a radical goal of breaking representations down into basic,
irreducible, atomic concepts which are meaningfully only described as present or absent (Cunningham
et al., 2023; Bricken et al., 2023; Templeton et al., 2024). Commonly cited examples are features
such as floppy_ears, Eiffel_Tower, or is_Arabic, the presence of which it would presumably
be useful for an algorithm to infer (corresponding e.g. to cat/dog classification, the topic of a question,
the language of a query).

It is generally accepted that this breakdown of representation space into purely atomic features does
not tell the whole story (Smith, 2024; Mendel, 2024; Bussmann et al., 2024; Olah, 2024; Engels
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et al., 2025). There is overwhelming empirical evidence that neural networks represent complex
features in structures which unfold across multiple directions in potentially continuous, nonlinear
ways: examples of curves (Hanna et al., 2023; Chang et al., 2022), swiss-roll-like manifolds (Cai
et al., 2021), loops (Engels et al., 2025; Gorton, 2024), tori (Chang et al., 2022), hierarchical trees
(Park et al., 2024) in real language models; topologically circular representations of numbers in
toy models trained to perform modular arithmetic (Liu et al., 2022; Nanda et al., 2023a; Zhong
et al., 2023; He et al., 2024) or simulated angular data (Olah and Batson, 2024), fractal geometry
in simulated hidden Markov models (Shai et al., 2024); and broader phenomenology from local
finite-state-automata (Bricken et al., 2023), to spatial ‘brain-like’ modularity (Li et al., 2025), to
behaviour, such as deception (Templeton et al., 2024).

SAEs are not made defunct by these discoveries, and in fact have often facilitated them through
recombination of SAE directions (Bussmann et al., 2025; Engels et al., 2025). The LRH has been
extended to allow this more flexible interpretation of the output of SAEs:

Definition 1 (Multidimensional linear representation hypothesis). There exists a collection of features
labeled f ∈ F and associated subspaces Vf ∈ RD such that the functional relationship between an
input x ∈ X and its representation Ψ(x) is

Ψ(x) =
∑

f∈F(x)

ρf(x)vf(x), vf(x) ∈ Vf and ∥vf(x)∥2 = 1, (1)

where ρf(x) is a non-negative scaling denoting the presence of the feature f in x, and F(x) = {f :
ρf(x) > 0} is the set of features which are present in x.

The standard LRH corresponds to the case where vf(x) is constant in x (and Vf one-dimensional),
and the extension above is a slightly relaxed and reparametrised version of that which appears in
Engels et al. (2025).

Our paper concerns the representation of a feature f as a manifold in Vf, a phenomenon which is
widely observed and intensely deliberated in the mechanistic interpretability community (Olah and
Batson, 2024; Olah, 2024; Gorton, 2024; Engels et al., 2025). Despite numerous accounts (cited
above) of a manifold clearly corresponding to some underlying ground truth feature (which may even
be known exactly, e.g. in simulated data), there is no general description of this correspondence.

We provide what we believe is a minimum viable mathematical theory to do this. Our most substantial,
novel result establishes that under plausible hypotheses, cosine similarity in representation space
encodes the intrinsic geometry of a feature through shortest, on-manifold paths. We develop this
insight using concepts from metric geometry – the theory of length and shape in metric spaces
(Burago et al., 2001). The widespread use of cosine similarity across data science could suggest many
other applications for this result.

More generally, our work provides a (hopefully) accessible explanation of why manifold structure
might arise in representation space, how its topology and geometry might reflect a human conceptu-
alisation of the feature, and suggests some simple diagnostic plots and statistical checks to explore
critical assumptions and predictions of the theory.

Related to the problem of mechanistic interpretability, there is enormous interest in the use of text
embeddings (Li et al., 2020; Gao et al., 2021), which several entities now provide as a service, to
support, for example, receiver augmented generation, search, recommendation, visualisation and
classification. Again, these are representations which are usually unit vectors, and about which the
cosine similarity is said to provide an effective measure of semantic similarity. The bulk of our results
are also applicable to this area; in what follows, Ψ(x) can be viewed as a generic representation of
some input x, and vf(x) some unit-norm representation of a feature in x.

2 The continuous correspondence hypothesis

2.1 What is a feature anyway?

Before we begin our discussion on how features are geometrically represented in language models,
we really ought to pin down what exactly we mean by “a feature”.

Definition 2. A feature, labeled f, is a metric space (Zf, df).
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Figure 1: Representation manifolds in large language models: colours, years and dates. The first and
third example show text embeddings obtained from OpenAI’s text-embedding-large-3 model
from prompts relating to English names for colours and dates of the year, respectivly. The second
example shows token activations from layer 7 of GPT2-small, which were studied in Engels et al.
(2025). The token activations were processed via an SAE to extract a feature corresponding to years
of the twentieth century as in Engels et al. (2025), and normalized to have norm one. For each
example, we perform principal component analysis (PCA) to reduce the dimension to three and
display the resulting point clouds from two perspectives. The embeddings of English names for
colours are displayed in their respective colour value. Years are coloured from blue (1900) through
green to yellow (1999), and dates are coloured from white (1st Janurary) through blue to black (1st
July) through red and back to white.

A metric space is simply a set equipped with a distance, and we find that it provides a simple yet
highly expressive formal mathematical framework for discussing the abstract notion of a feature or
concept. In particular, it allows us to readily talk about:

1. Atomic features: Zf a singleton set.

2. Hierarchical features: Zf a discrete set, df a tree distance.

3. Continuous features: Zf an interval (equipped with e.g. df(x, y) = |x − y|), a cir-
cle (equipped with e.g. arc-length distance), multi-dimensional (equipped with e.g. the
Euclidean distance), etc.

We find that this formalism strikes a balance between the less expressive Euclidean and hyperspherical
models often assumed in the learning theory literature (e.g. Zimmermann et al., 2021; Hyvärinen
et al., 2024; Reizinger et al., 2025), and the more complicated and less accessible models which are
often assumed in the disentanglement literature, such as Riemannian manifolds equipped with group
structure (e.g. Higgins et al., 2018; Pfau et al., 2020).

For any input x on which the feature f is present (i.e. for which ρn(x) > 0), we assume the existence
of a value zf(x) which the input takes in Zf. For example, if the feature colour is present in an
input x, then ρcolour(x) > 0 and zf(x) might take a value describing the precise hue, saturation and
lightness of that colour.
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Figure 2: Representation manifolds in token activations from layer 8 of Mistral 7B, processed via
an SAE to extract representations of ‘months of the year’ and ‘days of the week’, as in Engels et al.
(2025). We normalise the representations to have norm one, and perform PCA into three dimensions.
The top-down view of the first two principal components, which was shown in Engels et al. (2025),
obscures manifold structure which weaves through the third principal component.

As a final note, we will assume throughout this paper that each Zf is a compact set or, loosely speaking,
“closed and bounded”: a standard assumption in manifold learning which avoids considerable and
possibly distracting theoretical complications.

2.2 The continuous correspondence hypothesis

Given the multidimensional linear representation hypothesis, and our definition of a feature, perhaps
the most basic hypothesis that one can make is that there is some way of matching the representation
directions vf(x) to the abstract features zf(x).

Hypothesis 1 (continuous correspondence). The features zf(x) and representation directions vf(x)
are in a continuous, one-to-one correspondence. Formally, there is a continuous invertible map
from the metric space into the hypersphere, ϕf : Zf → SD−1, with image Mf := ϕ(Z), such that
vf(x) = ϕf(zf(x)) for all x ∈ X .

Our correspondence hypothesis, combined with the prior assumption that Zf is compact, has an
immediate implication for the topological relationship between Zf and Mf.

Proposition 1. Under Hypothesis 1, the map ϕf : Zf → Mf is a homeomorphism.1

Proposition 1 tells us that under the continuous correspondence hypothesis, we should expect the
representations directions vf(x) to live on a manifold Mf that is topologically identical to Zf. So, if
Zf is an interval, Mf is a one-dimensional curve in RD. If Zf is a circle, then Mf is a loop. If Zf

is a discrete set comprising m values, Mf is a discrete set comprising m points. More generally, a
homeomorphism preserves connected components, holes, branching points, and more.

1This is simply a restatement of the well-established fact that a continuous invertible map over a compact
domain has a continuous inverse (Sutherland, 2009, Proposition 13.26).
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2.3 Representations reflect the topology of features in LLMs

Figure 1 gives an indiction of the plausibility of Hypothesis 1 in some examples. The first and
third subfigures show text embeddings obtained from OpenAI’s text-embedding-large-3 model,
with inputs corresponding to colours2, and dates of the year3 respectively. This model returns 3,072
dimensional unit-norm embeddings which we reduce to three dimensions using PCA. We show two
perspectives of each plot. In both cases, we see that the embeddings are roughly arranged around
a loop which, perhaps after some stretching and bending, could seem consistent with the abstract
circular model we might have for such concepts, such as the “colour wheel” or the “yearly cycle”. In
particular, observe that the colours are arranged in the same order as the standard colour wheel of
hue: red, purple, blue, green, yellow, orange, and back to red.

The second subfigure shows token activations of years of the twentieth century in layer 7 of
GPT2-small. This example is taken from Engels et al. (2025) who use a sparse autoencoder
to attempt to disentangle the feature representations from the full superposed representation (see Sec-
tion 5 of their paper for addition details of this procedure). We subselect only tokens corresponding
to the years in question, normalize each activation vector to have norm one and perform PCA into
three dimensions on the resulting vectors. One observes a clear one-dimensional curve which weaves
and bends through the dimensions of the space, again reminiscent up to some geometric distortion of
the standard human concept of a “time line”.

Given what we see, our innate understanding of these concepts, and Proposition 1, we might
conjecture that, allowing for error of different kinds, the shapes are homeomorphic to the following
metric spaces:

colour: Zcolour = [0, 2π), dcolour(x, y) = min(|x− y|, 2π − |x− y|), these angles corresponding
to hues 0: red, ..., π/3: blue, ..., 2π/3: yellow.

years: Zyears = [1900, 1999], dyear(x, y) = |x− y|
dates: Zdates = [0, 365), ddates(x, y) = min(|x− y|, 365− |x− y|)

In the case of years, a simple statistic to assess the conjecture of homeomorphism presents itself:
the rank correlation between the years and their corresponding position along the manifold. We
approximate position along the manifold using a K-nearest neighbour graph with K = 10 (picked as
small as possible subject to the graph being connected), and rank the points according to weighted
graph distance from the (mean) representation of 1900. The Kendall and Spearman rank correlations
are 0.97 and over 0.99, respectively, telling us that the representations occur in very close to true
temporal order along the manifold.

In these examples it would clearly not be reasonable to say the shapes resembled circles or straight
lines without any sort of geometric distortion, and in the coming section we provide a mechanistic
argument for the presence of this geometric distortion in neural networks.

This effect could be missed in some earlier papers due to 2D projection. The left and middle of
panels of Figure 1 of Engels et al. (2025) show circular arrangements of day-of-the-week and month
representations, but these seem subject to significant geometric distortion once we view the data in
3D, as in Figure 2.

2.4 Manifold geometry and computation

Our investigations (see Figure 1) and those of many others (see e.g. Ansuini et al., 2019; Cai et al.,
2021; Chang et al., 2022; Hanna et al., 2023), have found not only that representations tend to live on
low-dimensional manifolds, but that these manifolds curve and bend to occupy higher dimensional
spaces. Why might it be advantageous for a language model to embed a concept in a larger dimension
than its intrinsic topology seems to require?

2These inputs are of are of the form “The color of the object is <color>. What color is the object?”. Color
names and hex-codes were obtained from the XKCD color survey (Munroe, 2010), from which we removed
entries with low saturation (< 0.4), high brightness (> 0.8), and whose names did not obviously refer to a color,
such as fruits and gemstones. Some additional outliers were removed.

3These inputs are of the form “1st January”, ”2nd January”, . . . “31st December”.
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To answer this question, we shall briefly illustrate how the space of functions which can be computed
as a linear projection of ϕf(z) relates to its geometry. Since linear operations are crucial component
in how one layer of a neural network maps to the next, it seems a sensible working hypothesis that
they would arrange their representations as to maximize the expressivity of these linear computations.

For the purpose of this discussion, consider the case that Zf is a unit interval Zf = [0, 1]. If one
simply wanted to be able to read z from ϕf(z) using a linear projection, then it is sufficient to represent
Zf as an arc on SD−1. For example, to set ϕf(z) = b0(z)v0 + b1(z)v1 where v0, v1 ∈ SD−1 are
orthogonal unit-vectors, b1(z) ∝ z, and b0(z) is a function which ensures that ∥ϕf(z)∥2 = 1. In this
way, the identity operation id(z) := z can be computed via a linear projection id(z) ∝ v1 · ϕf(z).

If instead, one wanted to be able to represent a richer class of functions of z by linear pro-
jections of ϕf(z), say, polynomials of order p, then one could do this by setting ϕf(z) =
b0(z)v0 + · · · bp+1(z)vp+1 with b1(z) ∝ 1, b2(z) ∝ z, b3 ∝ z2, etc... Such a map represents
the interval [0, 1] as a continuous path which weaves through a p+ 2-dimensional subspace of SD−1.

Superposition. Under the Linear Representation Hypothesis (1), the language model cannot access
ϕf(zf(x)) directly, but must do so via Ψ(x). There is a generally agreed upon explanation, known as
the superposition hypothesis, for how an algorithm might nonetheless be granted approximate access
to ϕf(zf(x)), with only limited interference from other ϕf′(zf′(x)): features occur only sparsely (i.e.
ρf(x) = 0 for most f ∈ F), and are represented in almost-orthogonal subspaces (Elhage et al., 2021,
2022), a hypothesis which, in particular, would be consistent with the total number of features being
substantially greater than the available representation dimensions4.

If we assume (for a real-valued feature) that the identity id(z) is among the collection of functions
linearly readable from ϕf, the superposition hypothesis also explains the efficacy of linear probes
(Alain and Bengio, 2017; Gurnee and Tegmark, 2023; Nanda et al., 2023b; Leask et al., 2024): low
interference allows the feature of interest to be approximately recovered from the representation using
linear regression. A similar story holds for discrete features accessed via linear classifiers.

3 The interpretation of distance on representation manifolds

There is an open question in the mechanistic interpretability community about the meaning of distance
in representation space, perhaps well-summarised in the commentary of Olah and Batson (2024):

“We suspect this idea that feature manifolds many be embedded in more complex ways than their
topology suggests, in order to achieve a given distance metric, may actually be quite deep and

important.”

If we accept there is a correspondence between features and their representations (Hypothesis 1),
arguably the next most basic question we can ask is whether cosine similarity in representation space
somehow tells us about distance between the corresponding feature values.

Hypothesis 2 (cosine similarity reflects distance). Locally, the cosine similarity between feature
representations and the distance their corresponding feature values are inversely related. Formally,
there is some function gf with continuous second derivatives and with g′f(0) < 0, and some ϵ > 0,
such that

CosSim (ϕf(z), ϕf(z
′)) = gf(df(z, z

′)2),

for all z, z′ ∈ Zf such that df(z, z′) ≤ ϵ.

Strengthening just Hypothesis 1 to both Hypotheses 1 and 2 has formidable consequences: there is
an intrinsic sense in which a feature and its representation are geometrically indistinguishable. This
statement is made precise in Theorem 1.

Metric spaces allow for a natural definition of a path which, loosely speaking, captures the idea of a
continuous route from one point to another and there is an associated definition of the length of a path,
denoted L, which generalises the usual Euclidean notion of length (Burago et al., 2001). Formally, a

4see, for example, Theorem 1 in the appendix of Engels et al. (2025).
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Figure 3: Evidence for Hypothesis 2 and its implications in Theorem 1. For each pair of represen-
tations, we plot their cosine similarities (first row) and estimated manifold distances (second row)
against their (squared) distance in a putative metric space. We report the Chatterjee (ξ) and Pearson
(ρ) correlation coefficients, respectively. Colours correspond to the colourmaps described in Figure 1.

path in Zf is a continuous mapping η from some interval [a, b] to Zf, and the length of such a path is

L(η) := sup
T

n∑
i=1

df(ηti , ηti−1
),

where the supremum is over all n ≥ 1 and T = (t0, t1, . . . , tn) such that t0 = a ≤ t1 ≤ · · · ≤ tn =
b.

Given a path in Zf, we can think of the image of this path when mapped through ϕf, which we call
the corresponding path on Mf. Its length is defined similarly, with Euclidean distance in place of df.

Theorem 1. Let η be a path on Zf of finite length and, assuming Hypothesis 1, let γ be the
corresponding path on Mf. Then, under Hypothesis 2,

L(γ) =
√
−2g′f(0)L(η).

A proof of Theorem 1 is given in the appendix. Theorem 1 tells us that we can recover the intrinsic
geometry of Zf, even though we know (almost) nothing about gf: shortest paths on Mf correspond
to shortest paths on Zf, and their lengths are equal, up to a choice of unit (reflected by

√
−2g′f(0))

3.1 Geodesic distances on representation manifolds of LLMs are meaningful

We now explore the plausibility of Hypothesis 2 in the same colour, year, date examples considered in
Section 2.3 and Figure 1. In all cases, we find indications of isometry, with some important caveats.

Given a putative metric space, Hypothesis 2 suggests two diagnostic tests. The first (direct) approach
is to plot cosine similarity against squared distance, to check if the first appears to be a decreasing
function of the second, around zero, up to noise. We quantify the global strength of functional
dependence using Chatterjee’s correlation coefficient ξ (Chatterjee, 2021), which would be 1 if the
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Figure 4: Evidence against isometry with respect to the metric space Zyears = [1900, 1999],
dyear(x, y) = |x− y|. There is no clear regular linear relationship between distances in this metric
space and estimated distances on the representation manifold. The colours indicate that distances
between more recent years are expanded on the manifold.

cosine similarity was a deterministic function of distance. These experiments are shown in the first
row of Figure 3.

The second (indirect) approach is to test Theorem 1: geodesic distance on Mf (shortest path length)
should be linear in the geodesic distance on Zf, up to noise (the slope being

√
−2g′(0)). We estimate

geodesics on Mf by constructing the K-nearest-neighbours graph over the representations, and
reporting weighted graph distance, k chosen as small as possible subject to the graph being connected.
We quantify the strength of isometry using Pearson’s correlation ρ, which would be 1 if the distances
were in a perfect proportional relationship. These experiments are shown in the second row of
Figure 3.

Across our experiments, we have found that a low-dimensional projection tends to be necessary for
the representations to plausibly show isometry with a simple metric space. For our text embeddings,
we find that projecting onto the first few (uncentered) principal components works well. The routine
“low-rank” explanation that the remaining components are mostly noise seems disputable; these
components often show clear structure. Our best explanation is that semantic similarity is much
richer than the rudimentary metric spaces to which they are being compared. It is likely that we could
achieve a deeper understanding of semantic similarity through improved metric space design. In the
example of years, the process of extracting feature representation via an SAE automatically yields
low-dimensional representations, so no PCA is applied in this case.

Recall that we conjectured the following metric space for the years example: Zyears = [1900, 1999],
dyear(x, y) = |x− y|. Although we found a rank correlation near 1, indicating homeomorphism, the
evidence of the tests above is against isometry. The clearest indication in this direction is possibly
provided by the right panel of Figure 4, which does not show a regular linear relationship, the colours
suggesting that distances between more recent years are expanded on the manifold.

In light of this, we consider a modified representation Zyears = {log(2019 − year) : year ∈
[1900, 1999]}, dyear(x, y) = |x − y|, 2019 being the year GPT-2 was released (Radford et al.,
2019). Observe that the rank correlation as computed in Section 2.3 remains unchanged: the two
representations are homeomorphic, and cannot be distinguished on purely topological criteria. The
tests are now in much stronger support of isometry. The top-middle plot of Figure 3 shows a
trend which is clearly decreasing at zero, and a globally high functional dependence, 0.84. The
bottom-middle panel of Figure 3 shows a clear linear fit, achieving a Pearson correlation of 0.99.

Isometry is also found to be plausible for dates, and weakly plausible for colours, both with the
original circular metric spaces conjectured in Section 2.3. The bottom-right panel shows a clear linear
fit, achieving a Pearson correlation of 0.97. Observe in this case that the cosine similarity appears
to be inconsistent with the metric for large distances, illustrating the point that Hypothesis 2 only
requires an inverse functional relationship to hold locally.
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4 Discussion, limitations and future work

This work provides a formal mathematical framework to explain and interpret representation man-
ifolds in large language models. By modeling features as metric spaces, we are able to accurately
characterise the topological and geometric properties of their representations under some basic
hypotheses.

We perform some preliminary investigations on internal representations from GPT2-small and
text embeddings from OpenAI’s text-embedding-large-3 model, which validate our theory and
provide a nuanced, quantitative view of the correspondence between human concepts and their
representation at different levels of geometric fidelity, namely homeomorphism and isometry.

We find hints that these models encode distances in ways which are sometimes unexpected: years
of the twentieth century in GPT2-small appear to be encoded on a logarithmic scale, with larger
distances between more recent years, and colours in text-embedding-large-3 appear to be
encoded in a cycle of hues, rather than representations that other systems might have chosen, such as
RGB or wavelength.

4.1 Limitations

In the spirit of scientific investigation, we have opted for a hypothesis-driven approach to structure
discovery, in which we put down a possible metric space as a hypothesis and then assess evidence in
favour or against.

This “manual” approach is clearly not scalable, and moreover relies on there being some reasonable
starting hypothesis for the metric space, which could be difficult for many features (say, emotions), as
is evident from prior research (Li et al., 2023; Nanda et al., 2023b). There is an unexplored alternative
approach of learning the metric, but we do not know exactly how this would proceed given that an
interpretable solution would presumably remain a requirement.

In our experiments on text-embedding-large-3, we use PCA with some success to isolate simple
human-understandable distances. However, in reality, we expect that the true notions of distance
used by the language model are more complex: we find additional structure in further principal
components and think it is possible that a language model could encode distances in a way that is
mechanistically useful, but does not correspond to any existing human understanding of the feature.

Another limitation of our approach relates to the fundamental statistical difficulty of estimating
manifolds in the presence of noise (Genovese et al., 2012). Here, we have opted for a simple and
interpretable approach of using the K-nearest-neighbour graph to approximate the manifold, but this
is prone to short-circuits causing enormous errors in the estimated manifold distances. It is often
the case that one has to manually prune the graph in order to achieve reasonable manifold distance
estimates, and we believe that more robust methodology for manifold estimation would be required
to scale up our approach.

4.2 Implications for mechanistic interpretability research

In mechanistic interpretability, one of the underlying motivations for understanding representation
geometry is to be able to steer model outputs by making interventions on their internal representations.
For features represented on manifolds, our insights suggest a path forward for doing this: learn the
map ϕf which maps the feature Zf onto its representation manifold Mf.

Sparse autoencoders provide a potentially promising avenue for this. We conjecture that the sparsity
penalty of a sparse autoencoder, trained on representation manifold, will encourage it to learn a
collection of dictionary vectors which trace the manifold (see Section 4 of Engels et al. (2025)
for an argument for this phenomenon on representation subspaces). We also conjecture that much
observed feature splitting in SAEs is a result of this. We hope our work will encourage development
of “manifold-aware” SAEs.

Finally, mechanistic interpretability is a nascent field of research which is still developing a common
language, and we hope that researchers will find the formalism of a feature as a metric space to be a
useful possibility in future scientific discourse.
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Appendix

A Code to reproduce the experiments in this paper

Code to reproduce the experiments in this paper is made available at the GitHub repository https:
//github.com/alexandermodell/Representation-Manifolds.

B Supporting definitions and proof of Theorem 1

Hypotheses 1 and 2, and the statement of the Theorem 1 concern the metric space (Zf, df), and
functions ϕf and gf associated with some particular feature f. To de-clutter the proof we remove
dependence on f from the notation, and write simply (Z, d), ϕ and g.

We shall need the following definitions, informed by (Burago et al., 2001). A path in Z is a continuous
mapping η from some interval [a, b] to Z . The length of such a path is:

L(η) := sup
T

n∑
i=1

d(ηti , ηti−1
)

where the supremum is over all T = (t0, t1, . . . , tn) such that n ≥ 1 and t0 = a ≤ t1 ≤ · · · ≤ tn = b.
A path is said to be of finite length, or equivalently called rectifiable, if L(η) < ∞. For [a′, b′] ⊆ [a, b]
we write L(η, a′, b′) for the length of the restriction of η to [a′, b′].

Any rectifiable path η : [a, b] → Z admits a unit-speed parameterisation, meaning η has the
representation η = η̃ ◦ φ where η̃ : [0, L(η)] → Z is a path, φ is a continuous, nondecreasing map
from [a, b] to [0, L(η)], and L(η̃, s, t) = t − s (Burago et al., 2001, Prop. 2.5.9). Adopting this
parameterisation does not change overall length of the path, in the sense that the stated properties of
η̃ imply L(η̃) = L(η̃, 0, L(η)) = L(η).

We shall also consider paths on the unit hyper-sphere SD−1 := {x ∈ RD−1 : ∥x∥2 = 1}. The length
of such a path, i.e., a continuous mapping γ : [a, b] → SD−1 is:

L(γ) := sup
T

n∑
i=1

∥γti − γti−1
∥2,

where again the supremum is over all T = (t0, t1, . . . , tn) such that n ≥ 1 and t0 = a ≤ t1 ≤ · · · ≤
tn = b.

Proof of Theorem 1. Since the claim of the theorem depends on η only through its length, we can
assume w.l.o.g. that we are considering the unit-speed parameterisation of η. That is [a, b] = [0, L(η)]
and η : [0, L(η)] → Z with L(η, s, t) = t − s. Under Hypothesis 1, ϕ is continuous, hence
γ : [0, L(η)] → SD−1 defined by γt = ϕ(ηt) is a path on SD−1.

For any T = (t0, t1, , . . . , tn) such that n ≥ 1 and t0 = 0 ≤ t1 ≤ · · · ≤ tn = L(η), introduce the
notation:

S(η, T ) :=

n∑
i=1

d(ηti , ηti−1), S(γ, T ) :=

n∑
i=1

∥γti − γti−1∥2.

Fix any δ > 0. We shall prove that there exists Tδ such that :∣∣∣L(γ)−√
−2g′(0)L(η)

∣∣∣ ≤ |L(γ)− S(γ, Tδ)| (2)

+
∣∣∣S(γ, Tδ)−√

−2g′(0)S(η, Tδ)
∣∣∣ (3)

+
√

−2g′(0) |S(η, Tδ)− L(η)| (4)

≤ δ

3
+

δ

3
+

δ

3
, (5)
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which implies the claim of the theorem. We shall construct Tδ in the form Tδ := T (1)
δ ∪ T (2)

δ ∪ T (3)
δ ,

i.e., T (i)
δ ⊆ Tδ for i = 1, 2, 3, where T (i)

δ are defined in the remainder of the proof.

We first consider a difference of the form
∣∣∣S(γ, ·)−√

−2g′(0)S(η, ·)
∣∣∣ as appears in (3). Noting that

the mapping ϕ by definition satisfies ∥ϕ(z)∥2 = 1 for all z, under Hypothesis 2, there exists ϵ > 0
such that if d(z, z′) < ϵ, then ⟨ϕ(z), ϕ(z′)⟩2 = g(d(z, z′)2). Let C > 0 be any finite constant such
that supr≤ϵ |g′′(r)| ≤ C. Such a constant exists because g is C2 by assumption.

Let T (2)
δ = (t

(2)
0 = 0, t

(2)
1 , . . . , t

(2)

n(2) = L(η)) be defined by:

n(2) :=

⌈
3C|L(η)|2

δ
∨ L(η)

ϵ

⌉
, t

(2)
i :=

i

n(2)
L(η), i = 0, . . . , n(2).

Using the fact that η is unit-speed parameterised, it follows that, for 1 ≤ i ≤ n(2),

L(η, t
(2)
i , t

(2)
i−1) = t

(2)
i − t

(2)
i−1 =

L(η)

n(2)
≤ δ

3CL(η)
∧ ϵ. (6)

Now consider any T = (t0, t1, , . . . , tn) with n ≥ n(2), t0 = 0 , tn = L(η) such that T (2)
δ ⊆ T .

Unit-speed parameterisation of η combined with T (2)
δ ⊆ T implies:

max
1≤i≤n

L(η, ti, ti−1) = max
1≤i≤n

ti − ti−1 ≤ max
1≤i≤n(2)

t
(2)
i − t

(2)
i−1 = max

1≤i≤n(2)
L(η, t

(2)
i , t

(2)
i−1),

and it follows from the definition of length and the triangle inequality that d(ηti , ηti−1
) ≤

L(η, ti, ti−1) for all i = 1, . . . , n. Therefore using (6), we have:

max
1≤i≤n

d(ηti , ηti−1
) ≤ δ

3CL(η)
∧ ϵ. (7)

Using ∥ϕ(z)∥2 = 1 for all z, γt = ϕ(ηt), the upper bound by ϵ in (7) to enable the substitution〈
ϕ(ηti), ϕ(ηti−1

)
〉
2
= g

(
d(ηti , ηti−1

)2
)
, and taking a Taylor expansion of g about zero, we have:

1

2
∥γti − γti−1

∥22 = 1−
〈
γti , γti−1

〉
2

= 1−
〈
ϕ(ηti), ϕ(ηti−1)

〉
2

(8)

= g(0)− g
(
d(ηti , ηti−1)

2
)

= −g′(0)d(ηti , ηti−1
)2 − g′′(ci)

2
d(ηti , ηti−1

)4, (9)

where ci is some point in the interval [0, d(ηti , ηti−1)
2].

Under Hypothesis 2, we have g′(0) < 0. Then using (9) and lemma 1 with α = ∥γti − γti−1
∥2 and

β =
√
−2g′(0)d(ηti , ηti−1

),∣∣∣∥γti − γti−1
∥ −

√
−2g′(0)d(ηti , ηti−1

)
∣∣∣ ≤ |g′′(ci)|1/2d(ηti , ηti−1

)2,

so that ∣∣∣S(γ, T )−
√

−2g′(0)S(η, T )
∣∣∣ ≤ n∑

i=1

∣∣∣∥γti − γti−1
∥2 −

√
−2g′(0)d(ηti , ηti−1

)
∣∣∣

≤
n∑

i=1

|g′′(ci)|1/2d(ηti , ηti−1
)2

≤ C

(
max
1≤i≤n

d(ηti , ηti−1
)

) n∑
i=1

d(ηti , ηti−1
).

≤ CL(η) max
1≤i≤n

d(ηti , ηti−1) ≤
δ

3
,
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where the final inequality uses (7). In summary, we have shown that

T (2)
δ ⊆ T ⇒

∣∣∣S(γ, T )−
√
−2g′(0)S(η, T )

∣∣∣ ≤ δ

3
. (10)

Now consider |L(γ)− S(γ, ·)| as appears in (2). By the definition of L(γ), there exists T (1)
δ =

(t
(1)
0 = 0, t

(1)
1 , . . . , t

(1)

n(1) = L(η)) such that:

L(γ)− δ

3
≤ S(γ, T (1)

δ ) ≤ L(γ).

By applying the triangle inequality to the summands in S(γ, T (1)
δ ) we have for any T with T (1)

δ ⊆ T ,
S(γ, T (1)

δ ) ≤ S(γ, T ) ≤ L(γ), hence

T (1)
δ ⊆ T ⇒ |L(γ)− S(γ, T )| ≤ δ

3
. (11)

Now consider
√

−2g′(0) |S(η, ·)− L(η)| as appears in (4). By similar arguments to those used
above do establish (11), there exists T (3)

δ such that

T (3)
δ ⊆ T ⇒

√
−2g′(0) |L(η)− S(η, T )| ≤ δ

3
. (12)

With Tδ := T (1)
δ ∪ T (2)

δ ∪ T (3)
δ , the implications (10), (11), (12) together tell us that the inequality

(5) holds, and this completes the proof of the theorem.

Lemma 1. For any α, β ≥ 0, |α− β| ≤ |α2 − β2|1/2.

Proof. W.l.o.g., assume α ≥ β. Using the triangle inequality for the Euclidean norm in R2, α =
(β2 + α2 − β2)1/2 ≤ β + (α2 − β2)1/2, i.e., α− β ≤ (α2 − β2)1/2 .
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