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Abstract
Symbolic Regression (SR) algorithms select ex-
pressions based on prediction performance while
also keeping the expression lengths short to pro-
duce explainable white box models. In this con-
text, SR algorithms can be evaluated by measur-
ing the extent to which the expressions discov-
ered are Pareto-optimal, in the sense of having
the best R-squared score for a given expression
length. This evaluation is most commonly done
based on relative performance, in the sense that
an SR algorithm is judged on whether it Pareto-
dominates other SR algorithms selected in the
analysis, without any indication on efficiency or
attainable limits. In this paper, we explore ab-
solute Pareto-optimal (APO) solutions instead,
which have the optimal tradeoff between the mul-
tiple SR objectives, for 34 datasets in the widely-
used SR benchmark, SRBench, by performing ex-
haustive search. Additionally, we include compar-
isons between eight numerical optimization meth-
ods. We extract, for every dataset, an APO front
of expressions that can serve as a universal base-
line for SR algorithms that informs researchers
of the best attainable performance for selected
sizes. The APO fronts provided serves as an
important benchmark and performance limit for
SR algorithms and is made publicly available at:
https://github.com/kentridgeai/SRParetoFronts

1. Introduction
Symbolic Regression (SR) is the task of finding closed-form
analytical expressions of practical interest that describe the
relationship between variables in a measurement dataset.

1Department of Electrical and Computer Engineering, National
University of Singapore, Singapore. 2N.1 Institute for Health,
Institute for Digital Medicine (WisDM), Institute of Data Sci-
ence, National University of Singapore, Singapore. Correspon-
dence to: Kei Sen Fong <fongkeisen@u.nus.edu>, Mehul Motani
<motani@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: Our APO front on a subset of 34 datasets from
SRBench (La Cava et al., 2021). The APO front informs
us that the benchmarked SR algorithms may not have suf-
ficiently explored the search space of short expressions in
these datasets. Note: Results here are aggregated over the
34 datasets and we perform per-dataset analysis later.

In contrast to black-box machine learning models, SR al-
gorithms produce expressions that are explainable and in-
terpretable. Thus, SR has become a first-class algorithm
in various fields including physics (Udrescu & Tegmark,
2020), material sciences (Wang et al., 2019), engineering
(Martinez-Gil & Chaves-Gonzalez, 2020) and healthcare
(Christensen et al., 2022; Fong & Motani, 2024).

In recent large-scale benchmarking work for SR algorithms,
the performance of SR algorithms on black-box regression
datasets is measured based on the relative performance of
the algorithm (La Cava et al., 2021; de Franca et al., 2024).
In particular, we refer to a relative Pareto-optimal SR al-
gorithm as one that produces expressions with the best R-
squared (R2) score for expressions up to a given size, when
compared to other SR algorithms selected in the analysis.

In this paper, we propose to move towards absolute Pareto-
optimality, where we exhaustively search through the en-
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tire space of expressions within a maximum expression
size to find absolute Pareto-optimal (APO) fronts for 34
datasets used in SRBench (La Cava et al., 2021), a widely
used SR benchmark. In contrast to synthetic datasets that
are generated from a known ground-truth equation, black-
box datasets do not possess a baseline equation to compare
against. Our APO fronts serve as a useful baseline for
benchmarking, and they inform SR researchers about the
efficiency and attainable limits of SR algorithms.

To illustrate, Figure 1 shows the performance of SR algo-
rithms from SRBench (in red) and our APO front (in green),
averaged across the subset of 34 datasets. The APO front
represents a fundamental limit on the performance of any
SR algorithm. Figure 1 shows that many algorithms are far
from the APO front, performing much worse on both axes
and so there is potential room for improvement.

To find these APO fronts, we use an SR algorithm that ex-
haustively searches expressions of a fixed size. To limit
the expression lengths, we adopt gene expression program-
ming (GEP) (Ferreira, 2002) technique of using a genome-
phenome system to manipulate and represent expressions.
In GEP, the expressions are encoded in their fixed-length
K-expression form (analogous to genome) and evaluated in
their corresponding decoded variable-length mathematical
expression form (analogous to phenome). Hence, GEP
allows expressions to be easily modified in their fixed-
length K-expression form, while simultaneously allowing
for varying functional complexity (Ferreira, 2002). Other
strengths of K-expressions include not requiring a valid-
ity check since all K-expressions are guaranteed to decode
into a valid expression. We should, however, note that the
entire search space of expressions is large and computa-
tionally expensive, in the order of O(dl), where d is the
number of variables in the dataset and l is the expression
length. Consequently, our data from exhaustive searches
on 34 datasets from SRBench establishes a valuable base-
line. Sharing this data will prevent redundant computa-
tions and enhance SRBench results with more meaning-
ful insights. These assets are made publicly available at
https://github.com/kentridgeai/SRParetoFronts.

The main contributions of this paper are as follows:

1. We extract an APO front of expressions from the exhaus-
tive search for a subset of 34 datasets in the widely-used
SR benchmark, SRBench. The APO fronts serve as
a useful baseline for benchmarking and inform SR re-
searchers about the efficiency and attainable limits of
state-of-the-art SR algorithms.

2. We propose conventions for analyzing SR benchmark
results (SRBench) with the APO front. These can help
avoid potentially contradictory conclusions in SRBench.

3. We empirically investigate 8 different widely-used nu-
merical optimization methods in obtaining the APO

fronts and compare their performance. This provides
SR researchers with large-scale evidence to justify their
selection of numerical optimization methods.

2. Related Work
2.1. SR Benchmarking

SR algorithms have been evaluated for their relative Pareto-
dominance in SRBench (La Cava et al., 2021), an important
benchmark an SR with extensive hyperparameter search.
However, unlike the APO front that we propose to find, the
relative Pareto front does not provide any indication of the
efficiency and attainable limits of SR. Furthermore, in the
relative analysis, the axes do not reflect the true R2 score
and true model size. Rather, the axes are the rankings of R2

score and model size, which means that depending on the
SR algorithms selected, the conclusion can vary drastically.
In this paper, we discover fixed APO fronts that remain as
an unchanging universal reference baseline even when new
SR algorithms are developed and propose conventions that
would enable SR benchmarking insights to be independent
of the selection of competing SR algorithms.

2.2. Exhaustive Search via K-expression

Gene expression programming combines the strengths from
genetic algorithms and genetic programming by utilizing
a genome-phenome system through the introduction of K-
expressions. K-expressions are strings of fixed-length which
are subjected to reproduction (genome). These strings are
decoded by forming a variable-length expression from a
subset of the string (phenome). The decoding process is
done by iterating through the K-expression and building an
expression tree from top to bottom then from left to right,
until no valid symbols can be added. For example, the string
‘∗+−abcde’ is decoded as (a+b)∗(c−d), with the symbol
e being in excess and not included in the already full expres-
sion. This system enables us to create fixed length strings
with expressions of variable size. K-expressions are guar-
anteed to decode to form a valid mathematical expression
because they have a tail component, in which only terminal
symbols are present (Ferreira, 2002). K-expressions have
been used to develop DistilSR (Fong & Motani, 2023), an
SR algorithm. However, in DistilSR, terminal symbols are
replaced with weighted linear combinations of variables,
which consequently exclude certain expression structures.
In contrast, our algorithm is better suited to exhaustively
cover a larger class of expression structures.

2.3. Other Exhaustive Search SR

There also exists other SR algorithms which perform ex-
haustive search (Kammerer et al., 2020; Bartlett et al., 2023).
However, these algorithms tend to make simplifications or
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assumptions that have a different search space. In our work,
our primary goal is not to develop a state-of-the-art SR al-
gorithm, but rather to extract an APO front of expressions
for black-box datasets and an exhaustive search is simply
a means to this end. Thus, our algorithm design choice is
targeted at using fewer assumptions to provide more robust
assets that encompass a larger class of functions.

2.4. Numerical Optimization in SR

Numerical optimization has been used in SR to obtain nu-
merical constants in expression (Kommenda et al., 2020;
Chen et al., 2015). Instead of using fixed predefined
constants in expression trees, the symbol, R, denoting
Ephemeral Random Constant (ERC), is introduced. To
optimize the values of the ERCs, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Fletcher, 2000) is fre-
quently used for SR algorithms (Biggio et al., 2021; Petersen
et al., 2019). In this paper, we empirically investigate vari-
ous numerical optimization methods in obtaining the APO
front for SR, beyond the commonly used ones, and compare
their performance. Specifically, we consider the following
additional 7 methods: (i) L-BFGS-B (Liu & Nocedal, 1989;
Zhu et al., 1997), (ii) conjugate gradient (CG) (Hestenes
et al., 1952), (iii) Nelder-Mead (Nelder & Mead, 1965), (iv)
Powell (Powell, 1977), (v) sequential least squares program-
ming (SLSQP) (Lawson & Hanson, 1995), (vi) truncated
Newton constrained (TNC) (Nash, 2000), (vii) trust-region
constrained (trust-constr) (Conn et al., 2000).

3. Data Collection and Analysis Conventions
In this section, we describe the procedure used to obtain 34
APO front1 for 34 datasets in SRBench. This procedure is
supplemented by code implementation, that produces the
exact same data if the same random seeds are used. In
our data collection, randomness is involved because the
numerical optimization methods require an initial guess,
which is randomly generated. Since this work uses datasets
from in SRBench (La Cava et al., 2021), the value of the
random seeds used are selected to match that of SRBench.
In the final part of the section, we propose conventions for
SR analysis that address some issues with current trends in
SR benchmarking analysis.

3.1. Exhaustive Search Algorithm

In our experiments, we use a primitive function set of
{Add,Sub,Mul,Div,Pow}, representing addition, subtrac-
tion, multiplication, division and power (the absolute value
of the base is taken) respectively, all of which have arity two.
The primitive operands comprise of the d features in the
dataset, X , and the ERC, R. The primitive function set and

1Available at https://github.com/kentridgeai/SRParetoFronts

the primitive operands set form the primitive symbols. We
select two values of head length. Ideally, this value should
be higher to evaluate more expressions. However, the num-
ber of expressions in the exhaustive search grows exponen-
tially with the head length, which sets practical constraints.
Within our high budget of 1,480,000 core-compute-hours,
we repeated the search for 10 random seed (11284, 11964,
15795, 21575, 22118, 23654, 29802, 5390, 6265, 860) for
head length = 3 and did the search for one random seed
(11284) for head length = 4. The random seeds are the
same values as the 10 used in SRBench and were used to
generate initial guesses for numerical optimization for the
range (-1,1). Eight numerical optimization methods (to
optimize the ERCs, R) were selected to be evaluated: (i)
L-BFGS-B (Liu & Nocedal, 1989; Zhu et al., 1997), (ii)
conjugate gradient (CG) (Hestenes et al., 1952), (iii) Nelder-
Mead (Nelder & Mead, 1965), (iv) Powell (Powell, 1977),
(v) sequential least squares programming (SLSQP) (Law-
son & Hanson, 1995), (vi) truncated Newton constrained
(TNC) (Nash, 2000), (vii) trust-region constrained (trust-
constr) (Conn et al., 2000), (viii) BFGS (Fletcher, 2000).
These methods formed the numerical optimization list. Un-
der these settings, we ensured that the exhaustive search
produced exact replicable and reproducible results.

At this point, with sufficient details already presented to the
reader, we would like to make a short interjection to add
an important caveat that the APO fronts are obtained with
respect to a fixed primitive function set and a specific local
numerical optimizer. Ideally, the fixed primitive function
should include all possible function symbols, and the numer-
ical optimizer should be a true global optimizer that is able
to find the best set of numerical constants. In practice, this is
not yet possible due to the exponential relationship between
the number of primitive functions selected and the lack of a
true global optimization algorithm. Starting from this point
in the text, it would be more accurate to add the subscript
indicating the primitive set used and/or the numerical opti-
mization method used (e.g., APO(Add, Sub, Mul, Div, Pow), BFGS).
For readability, we add the subscript sparingly, when we feel
it is important to remind the reader of this caveat. Finally,
it should be noted that despite this caveat, we are already
able to find fronts that have a large performance gap with
the equations found via existing SR algorithms.

Algorithm 1 outlines the steps for our exhaustive search
SR algorithm. At the start of the algorithm, all possible
K-expressions are constructed. The head component of
K-expressions is built in Step 3, taking all permutation of
primitive symbols (i.e., primitive functions and operands)
and each permutation is appended by a tail component (i.e.,
a chain of terminal symbols) in Step 4 that guarantees that all
K-expressions generated produce valid expressions (Ferreira,
2002). Here, the length of the tail is determined by h ×
(nmax − 1) + 1, where h is the head length and nmax is the
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Algorithm 1: Exhaustive Search Pseudo Code
Input: primitive symbols, head length, random seed, numerical optimization list, X , where X is an n× d matrix

representing n datapoints with d normalized features (mean 0, standard deviation 1)
Output: search data

1 max arity← MaxOperationArity(primitive symbols)
2 terminal symbol count← (head length× (max arity− 1) + 1)
3 population← Permutation(primitive symbols, head length)
/* Tail component of terminal symbols ensures decodablility */

4 population← AppendTerminalSymbols(population, terminal symbol count)
5 search data← null
6 for Method ∈ numerical optimization list do
7 for K-expression ∈ population do
8 expression← Decode(K-expression)

/* random seed is required to ensure reproducibility of initial guess
of numerical parameters used in numerical optimization */

9 expression← Method(expression, X, random seed)
10 expression score← RSquaredScore(expression, X)
11 search data← search data ∪ {(expression, expression score)}
12 end
13 end
14 return search data

maximum operand arity of the primitive function set. Then,
we iterate through all eight numerical optimization methods
(see Step 6) and K-expressions (see Step 7) and perform
numerical optimization. The optimized expression and its
R2 score on the dataset X are then stored. This forms the
raw data which we make available. For head length = 3,
we ran Algorithm 1 on 34 datasets from SRBench (see
Appendix A for dataset details), which had the condition
that there were less than 1000 datapoints and less than 10
features, and for head length = 4, we reduced this to 30
datasets by excluding datasets with more than 6 features.

3.2. Extracting APO Front

For each dataset, we extract the APO front for the dataset
by taking the expressions with the highest R2 score among
all the random seeds and all the numerical optimization
methods used. One expression for each unique expression
length is selected. We set a condition that expressions of
larger length must perform better than the expressions of
smaller length to qualify for inclusion into the APO front,
otherwise no expressions are selected for that length. In
Table 1, we show the exact expressions on the APO front
for 9 datasets. The table for all 34 datasets is included in
Appendix B. The expressions in these Tables are the most
important main asset of this paper.

3.3. Proposed Conventions for SR Benchmarking

Current practices in SR benchmarking have been useful
in summarizing the relative performances of various SR

algorithms. Common practices used, which we discuss
below, can help to create visually informative plots. In
an effort to further improve these practices, particularly in
Pareto analysis, we propose two conventions as potential
areas of improvement.

3.3.1. CONVENTION #1: FOR PARETO ANALYSIS IN SR
BENCHMARKING, CONSIDER USING THE ACTUAL
QUANTITY AS AXES.

In current and recent SR Pareto analysis, the axes do not
reflect the true R2 score and true model size but instead
reflect the rankings of R2 score and model size. Depending
on the set of SR algorithms selected, the conclusion can
vary drastically, such as gplearn’s performance shown in
Figure 2a & 2b. Additionally, ranking removes substantial
important information. For example, based on Figure 2a,
gplearn seem to be very close to DSR in terms of expression
length, but in terms of the actual values in Figure 2c, this
is not the case, with gplearn having more than three times
the length of DSR and is in fact very close in length to BSR,
which could not have been inferred from Figure 2a. Further-
more, Pareto analysis in other fields is more commonly in
terms of the actual quantity and not rankings of the quantity.

A phenomenon, which we term as Rank Inversion Paradox
(see Appendix M for worked examples and elaboration), can
also occur, causing contradictory conclusions when rankings
are involved in Pareto analysis.

It is understood that using ranked axes can provide bet-
ter spaced datapoints which can convey messages more
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Table 1: APO Front Expressions for 9 Datasets (Full table for all 34 datasets in Appendix B).

Dataset APO Front Expressions (in increasing length, separated by ‘→’)

1027 ESL x2→Mul(x2,0.823)→Mul(0.541,Add(x3,x1))→Mul(Add(Add(x3,x2),x1),0.366)
→Sub(Mul(Add(x2,x1),0.35),Mul(x3,-0.399)

1096 FacultySalaries x3→Mul(x3,0.926)→Sub(Mul(x1,1.89),x2)→Add(Mul(x2,-0.966),Mul(x1,1.85))
→Div(Sub(Mul(x1,1.84),x2),Pow(x2,-0.189)

192 vineyard x0→Mul(x0,0.747)→Sub(1.29,Pow(-0.475,x0))→Div(x0,Add(Pow(x0,x1),0.313))
→Mul(Add(x1,-2.24),Sub(Pow(-0.712,x0),1.16)

210 cloud x3→Mul(x3,0.858)→Mul(0.516,Add(x3,x2))→Sub(Mul(x3,0.55),Mul(x2,-0.483))
→Sub(Mul(Add(x3,x2),0.617),Mul(x4,0.214)

228 elusage -1.66e-09→Mul(x0,-0.883)→Add(Pow(-0.484,x0),-1.29)
→Add(-1.49,Div(Pow(-0.532,x0),0.817))→Sub(Add(Pow(0.48,x0),-1.32),Div(-0.00454,x0)

230 machine cpu x2→Mul(x2,0.863)→Div(x2,Pow(x3,-0.325))→Sub(Pow(1.48,x2),Pow(0.656,x3))
→Sub(Sub(Pow(x[0],x2),x[1]),Mul(x3,x[2])

485 analcatdata vehicle 1.55e-15→Mul(x0,-0.746)→Sub(Mul(x2,-0.287),x0)
→Add(Mul(x2,-0.287),Mul(x0,-0.746))→Add(Div(-0.746,x0),Mul(-0.245,Sub(x2,x1))

519 vinnie x1→Mul(x1,0.867)→Mul(-1.84,Mul(x1,-0.472))
→Div(-25.5,Sub(Div(-26.8,x1),x1))→Div(-25.5,Sub(Div(-26.8,x1),x1)

522 pm10 8.23e-10→Mul(x0,0.356)→Mul(0.308,Sub(x0,x2))
→Sub(Pow(-1.59,x0),Pow(x3,-0.169)

(a) Plot from ranking algorithms
used in the work by La Cava et al. (2021).

(b) Plot from ranking algorithms
used in the work by Petersen et al. (2019).

(c) Plot from actual values of algorithms
used in the work by La Cava et al. (2021).

Figure 2: Three graphs based on the same data (dataset 579 fri c0 250 5), but with very different visual conclusions. For
transferable results across papers, actual values are preferred over ranks. See Appendix M for inversion paradox with ranks.

efficiently, but the cost of potentially conveying mislead-
ing conclusions is high. We hope the trend of using only
rankings in SR Pareto analysis can be reconsidered and
supplemented with analysis using actual quantities.

Finally, presenting results in actual values also has the addi-
tional benefit of making the plots and conclusions transfer-
able to other SR works.

3.3.2. CONVENTION #2: FOR PARETO ANALYSIS IN SR
BENCHMARKING, CONSIDER SUPPLEMENTARY
ANALYSIS WITH PER-DATASET RESULTS TO
CONFIRM THE TREND.

In typical SR analysis, results are often aggregated across
datasets, while trends on individual datasets are omitted
in the work. By aggregating results, too much simplifica-
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(a) Aggregated on all datasets (b) Dataset: 594 fri c2 100 5 (c) Dataset: 656 fri c1 100 5

Figure 3: By aggregating results, information is lost. For example, Operon’s good performance on individual datasets is not
communicated to researchers via the aggregated plot.

tion may have occurred, and information is lost. In Figure
3, it appears that DSR, AFP, EPLEX and SBP-GP are on
the relative Pareto-optimal front from the aggregated results.
However, it turns out that for the methods DSR, gplearn, GP-
GOMEA, Operon, AFP FE, AFP, FEAT, EPLEX, SBP-GP,
FFX, AIFeynman, their respectively frequency of being on
the relative Pareto-optimal front across individual datasets
are 100%, 67%, 63%, 50%, 37%, 33%, 30%, 27%, 17%,
10%, 3%, respectively. Note that contrary to aggregate re-
sults, AFP, EPLEX and SBP-GP are not on the APO front
for most datasets. To better represent results, we recom-
mend providing supplementary Pareto analysis conducted
on individual datasets.

4. Results and Discussion
In this section, we analyze the results obtained from our col-
lected data and extracted APO fronts. We compare against
the 14 SR methods benchmarked in SRBench (La Cava
et al., 2021), under GPL-3.0 license: Age-Fitness Pareto
Optimization (AFP) (Schmidt & Lipson, 2010), Age-Fitness
Pareto Optimization with Co-evolved Fitness Predictors
(AFP FE) (Schmidt & Lipson, 2010), AIFeynman (Udrescu
et al., 2020), Bayesian Symbolic Regression (BSR) (Jin
et al., 2019), Deep Symbolic Regression (DSR) (Petersen
et al., 2019), Epsilon-Lexicase Selection (EPLEX) (La Cava
et al., 2016), Feature Engineering Automation Tool (FEAT)
(La Cava et al., 2018), Fast Function Extraction (FFX) (Mc-
Conaghy, 2011), Genetic Programming-based Gene-pool
Optimal Mixing Evolutionary Algorithm (GP-GOMEA)
(Virgolin et al., 2017), Interaction-Transformation Evolu-
tionary Algorithm (ITEA) (de Franca & Aldeia, 2021),
Multiple Regression Genetic Programming (MRGP) (Ar-
naldo et al., 2014), Operon (Burlacu et al., 2020), Semantic

Backpropagation Genetic Programming (SBP-GP) (Virgolin
et al., 2019), gplearn (Stephens, 2016).

4.1. Finding #1: Are current methods benchmarked in
SRBench close to the APO front?

Based on Figure 1, it seems as though none of the meth-
ods are close to the APO(Add, Sub, Mul, Div, Pow) front, and only
SBP-GP has an R2 score that exceeds that of the APO front,
but at the cost of a much higher expression length. Looking
at individual datasets, in Figure 4, we show examples of
individual APO fronts and classify each into one of 4 types
(the characteristic of each type is described in the captions).
Among the 34 APO fronts, 15 fall under Type I, 5 fall un-
der Type II, 5 fall under Type III and 9 fall under Type
IV (see Appendix C for exact details). The performance
varies largely across different datasets. Notably, for datasets
that fall under Type IV, all SR algorithms fail to sufficiently
search the space of small expressions, otherwise, they would
have performance close to the APO front. It is, however,
promising to see DSR consistently perform relatively close
to the APO front consistently, as shown in the examples in
Figures 4a, 4b, 4c.

4.2. Finding #2: How rare is it to obtain an expression
with performance close to the APO front?

In most datasets, it is rare to obtain an expression with
performance close to the APO(Add, Sub, Mul, Div, Pow) front. In
Figure 5, we show selected examples of the distribution
of R2 score in the search space. These three examples
(Figures 5a, 5b, 5c) were selected as their top-bin in the
histogram had the minimum, median and maximum value
among all other histograms. Additionally, among all the
histograms, 85.3% have less than 1% within the top-bin in

6



Pareto-Optimal Fronts for Benchmarking Symbolic Regression Algorithms

(a) Type I (Example Dataset: 611 fri c3 100 5) (b) Type II (Example Dataset: 522 pm10)

(c) Type III (Example Dataset: 678 visualizing) (d) Type IV (Example Dataset: 228 elusage)

Figure 4: Examples of APO fronts for the 34 datasets. Type I refers to cases where there are SR algorithms of larger length
that exceed the R2 score of the APO front. Type II is the same as Type I, but the SR algorithms do not exceed by more
than 0.1 R2 score difference. Type III refers to cases where there are no SR algorithms of larger length that exceed the R2

score of the APO front, but there is at least one SR algorithm that is less than 0.1 R2 score away. Type IV is the same as
Type III, but with all SR algorithms more than 0.1 R2 score away. The dotted lines are extensions of the longest APO front
expression we could attain due to realistic computation constraints in exhaustively searching larger expressions.

the histogram, 66.9% have less than 0.1% within the top-bin
in the histogram, 35.2% have less than 0.01% within the
top-bin in the histogram. This tells us that a simple random

sampling of expressions from the exhaustive search space of
short expressions is unlikely to provide performance close
to the APO front.
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(a) Dataset: 522 pm10 (b) Dataset: 230 machine cpu (c) Dataset: 712 chscase geyser1

Figure 5: Histograms of 3 examples of the distribution of R2 score among the exhaustive search space of expressions. The
left graph’s top-bin contains 0.0002% (the lowest among all experiments), the middle graph’s top bin contains 0.06% (the
median) and the right graph’s top-bin contains 6.61% (the most).

4.3. Finding #3: How is the loss landscape, in terms of
expression structure around expressions in the APO
front, like?

Unlike the loss landscape on numerical parameters, visu-
alizing the loss landscape in terms of expression structure
is challenging because there is no ‘nice’ continuous axis to
represent changes in structure. To this end, we describe the
loss landscape by considering if expressions that are two-
mutations away from the APO front are likely to mutate
back into the APO front.

To measure this, we take all expressions that are two-
mutations away from the APO front and apply two greedy
one-step mutations. To illustrate this, let us consider the
expression Sub(Mul(x3,0.55),Mul(x1,-0.531)) (on the APO
front for dataset 1027 ESL). We generate expressions two-
mutations away structurally from this expression. One
example is Div(Pow(xdata[3],8.74),Mul(xdata[1],63600)),
which then considers all one-step mutations and greed-
ily picks the best to mutate into Div(Mul(xdata[3],-
0.0326),Mul(xdata[1],1.16)), which in turn considers all
one-step mutations and greedily picks the best to mutate
into Sub(Mul(x3,0.55),Mul(x1,-0.531)). In this case, the
initial expression that is two-mutations away from the APO
front is able to greedily mutate back to the APO front.

Another example is Mul(Div(x3,-0.658),Mul(x1,0.0416)),
which then considers all one-step mutations and
greedily picks the best to mutate into Mul(Div(x3,-
240),Sub(x1,180)), which in turn considers all one-step
mutations and greedily picks the best to mutate into
Mul(Mul(x3,-3.37e-3),Sub(x1,223)). In this case, the initial
expression that is two-mutations away from the APO front
is unable to greedily mutate back to the APO front.

On average across the datasets, 23.7% of expressions
that are two-mutations away from the APO front are
able to greedily mutate back to the APO front. Dataset
659 sleuth ex1714 had the lowest rate of 0% and dataset
690 visualizing galaxy had the highest rate of 68.8%. Our
collected data provides us with a powerful database that
allows us to analyze the loss landscape in terms of expres-
sion structure, which has hardly been analyzed in SR. Fur-
ther metrics can be created and analyzed in depth (such as
changing two-mutations to k-mutations), but this requires a
thorough separate analysis and far extends beyond the scope
of this paper, so we leave extensions of this idea to future
works in SR.

4.4. Finding #4: How does the choice of numerical
optimization affect results?

To answer this, we compare the various APO
fronts (i.e., comparing APO(Add, Sub, Mul, Div, Pow), Powell,
APO(Add, Sub, Mul, Div, Pow), BFGS, APO(Add, Sub, Mul, Div, Pow), TNC
and 5 other APO fronts from the other numerical opti-
mization methods). Empirically, there is not a significant
difference in the results across different numerical optimiza-
tion methods as evidenced in Figure 6, where we display
the histograms with the largest difference. In terms of KL
divergence, Figures 6a & 6b showed the largest difference,
followed by Figures 6a & 6c. Yet, the distribution of R2

score in the search space appears largely similar despite
being the ones with the largest difference. We also consider
only the expressions on the APO front, and evaluate the
standard deviation of the R2 score of these expressions
across varying numerical optimization methods. The mean
standard deviation of R2 score ranged from a minimum
of 0.0 to a maximum of 0.043, with a mean and median
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(a) Optimization: Powell (b) Optimization: BFGS (c) Optimization: TNC

Figure 6: Histograms of the distribution of R2 score across different numerical optimization methods on the dataset
192 vineyard. We chose to display this dataset and these three optimization methods because the difference in probability
distributions (measured via KL divergence) is the greatest here (among all other numerical optimization and datasets).

of 0.00043 and 3.42e-19 respectively. Only 1.47% of
the standard deviation measured exceeded 0.01. These
observations indicate the expressions are stable with respect
to the numerical optimization method selected and in terms
of R2 score, there is no strong reason to favor one more
than another. Though the differences between the numerical
optimization methods are small, for completeness of results,
the percentage of times in which each method produces the
expression on the APO front are 32.1%, 25.0%, 20.0%,
10.9%, 9.41%, 2.06%, 0.588% and 0.00% for the methods
Powell, CG, trust-constr, L-BFGS-B, BFGS, TNC, SLSQP
and Nelder Mead respectively. The commonly used BFGS
does not have a clear advantage in obtaining expressions on
the APO front compared to the other methods.

4.5. Finding #5: Which datasets should SR focus on?

Based on the discussion earlier in Finding #1 and Figure 4,
for datasets with results under Type III and Type IV, current
SR algorithms are not sufficiently searching the space of
short expressions, which SR researchers should focus on.
Even for datasets with results under Type II, the performance
of short expressions on our APO(Add, Sub, Mul, Div, Pow) front
are comparable with SR algorithms performance, which
demands investigation.

4.6. Limitations and Societal Impact

In the most precise and definite sense of word ‘absolute’, the
numerical optimization method needs to provide the global
minimum. However, there are no numerical optimization
methods that have this property. To help mitigate this, we
ran experiments over different initial guesses (set by the
random seed) for numerical optimization. We found that

the prediction performance of APO fronts is similar across
different random seeds (the standard deviation for expres-
sions across the random seeds is less than 0.1 for 86.2% of
the expressions), which gives us some confidence that the
parameters are not often stuck at local optima, otherwise
the prediction performance would have been different. We
also could not include all possible operators. Finally, though
the computation resources spent on the project is high, we
hope that by making these data publicly available, it reduces
the computational burden on other researchers and allows
researchers to focus on new discoveries without the need
for redundant computational efforts.

5. Conclusion
In this work, we move towards absolute Pareto optimal
fronts, which enables SR researchers to determine the abso-
lute difference between SR algorithms and the best attain-
able expressions. This complements current SR benchmark-
ing efforts in which the relative performance with other SR
algorithms is made instead. We also propose conventions
to improve upon common practices in SR benchmarking
efforts to reduce the tendency for misleading conclusions
to be drawn. Then, we compare among different numeri-
cal optimization methods in obtaining the APO fronts to
investigate the choice of numerical optimization method to
use in SR. Finally, we report on several findings that can
potentially help SR algorithm design. A key finding is that
the search space of short, simple equations is sufficiently
expressive and should be explored more before expanding
the search space to longer equations, a mechanism that is
related to increasing explainability, which is a primary rea-
son for practitioners to pick SR over alternative machine
learning algorithms in the first place.
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A. More Details on the 34 Selected Datasets

Table 2: Details of the subset of the 34 selected datasets from SRBench.

Dataset Number of Datapoints Number of Features

1027 ESL 488 4
1096 FacultySalaries 50 4
192 vineyard 52 2
210 cloud 108 5
228 elusage 55 2
230 machine cpu 209 6
485 analcatdata vehicle 48 4
519 vinnie 380 2
522 pm10 500 7
523 analcatdata neavote 100 2
547 no2 500 7
556 analcatdata apnea2 475 3
557 analcatdata apnea1 475 3
561 cpu 209 7
579 fri c0 250 5 250 5
594 fri c2 100 5 100 5
596 fri c2 250 5 250 5
597 fri c2 500 5 500 5
601 fri c1 250 5 250 5
611 fri c3 100 5 100 5
613 fri c3 250 5 250 5
617 fri c3 500 5 500 5
624 fri c0 100 5 100 5
631 fri c1 500 5 500 5
649 fri c0 500 5 500 5
656 fri c1 100 5 100 5
659 sleuth ex1714 47 7
663 rabe 266 120 2
665 sleuth case2002 147 6
678 visualizing environmental 111 3
687 sleuth ex1605 62 5
690 visualizing galaxy 323 4
706 sleuth case1202 93 6
712 chscase geyser1 222 2

Note: The Friedman datasets (Friedman, 2001) are synthetically generated by summing a collection of smooth, bell-shaped
components, where each component is given a randomly chosen scale and depends only on a small, randomly selected
subset of the inputs. Each component is centered at a random point in the input space and its shape is determined by picking
a random orientation and applying random stretch factors along each direction. Inputs themselves are drawn from a standard
normal distribution. For finer details of the process, please refer to the original work by Friedman (2001).
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B. APO Front Expressions for All Datasets

Table 3: APO Front Expressions for all 34 Datasets.
Dataset APO Front Expressions (in increasing length, separated by ‘→’)

1027 ESL x2→Mul(x2,0.823)→Mul(0.541,Add(x3,x1))→Mul(Add(Add(x3,x2),x1),0.366)
→Sub(Mul(Add(x2,x1),0.35),Mul(x3,-0.399)

1096 FacultySalaries x3→Mul(x3,0.926)→Sub(Mul(x1,1.89),x2)→Add(Mul(x2,-0.966),Mul(x1,1.85))
→Div(Sub(Mul(x1,1.84),x2),Pow(x2,-0.189)

192 vineyard x0→Mul(x0,0.747)→Sub(1.29,Pow(-0.475,x0))→Div(x0,Add(Pow(x0,x1),0.313))
→Mul(Add(x1,-2.24),Sub(Pow(-0.712,x0),1.16)

210 cloud x3→Mul(x3,0.858)→Mul(0.516,Add(x3,x2))→Sub(Mul(x3,0.55),Mul(x2,-0.483))
→Sub(Mul(Add(x3,x2),0.617),Mul(x4,0.214)

228 elusage -1.66e-09→Mul(x0,-0.883)→Add(Pow(-0.484,x0),-1.29)
→Add(-1.49,Div(Pow(-0.532,x0),0.817))→Sub(Add(Pow(0.48,x0),-1.32),Div(-0.00454,x0)

230 machine cpu x2→Mul(x2,0.863)→Div(x2,Pow(x3,-0.325))→Sub(Pow(1.48,x2),Pow(0.656,x3))
→Sub(Sub(Pow(x[0],x2),x[1]),Mul(x3,x[2])

485 analcatdata vehicle 1.55e-15→Mul(x0,-0.746)→Sub(Mul(x2,-0.287),x0)
→Add(Mul(x2,-0.287),Mul(x0,-0.746))→Add(Div(-0.746,x0),Mul(-0.245,Sub(x2,x1))

519 vinnie x1→Mul(x1,0.867)→Mul(-1.84,Mul(x1,-0.472))
→Div(-25.5,Sub(Div(-26.8,x1),x1))→Div(-25.5,Sub(Div(-26.8,x1),x1)

522 pm10 8.23e-10→Mul(x0,0.356)→Mul(0.308,Sub(x0,x2))
→Sub(Pow(-1.59,x0),Pow(x3,-0.169)

523 analcatdata neavote -2.13e-09→Mul(x0,-0.969)→Add(-1.33,Pow(x0,9.23))
→Add(Pow(Sub(x0,0.251),2.75),-1.21)→Sub(Sub(Mul(x0,-1.08),0.00779),Div(-0.113,x0)

547 no2 x0→Mul(x0,0.512)→Mul(0.466,Sub(x0,x2))
→Sub(Mul(x2,-0.382),Mul(x0,-0.549)

556 analcatdata apnea2 -3.71e-09→Mul(x0,0.0917)→Div(0.0864,Sub(x0,0.599))
→Div(-0.0492,Sub(Pow(-0.597,x0),x1))→Div(-0.0492,Sub(Pow(-0.597,x0),x1)

557 analcatdata apnea1 1.17e-09→Mul(x1,0.106)→Div(0.0889,Sub(x1,0.596))
→Div(-0.0532,Sub(Pow(-0.596,x1),x0))→Div(-0.0532,Sub(Pow(-0.596,x1),x0)

561 cpu x3→Mul(x3,0.901)→Div(x3,Pow(x4,-0.355))
→Sub(Pow(-1.5,x3),Pow(-0.703,x4)

579 fri c0 250 5 x3→Mul(x3,0.546)→Mul(0.5,Add(x3,x0))→Mul(Add(Add(x1,x0),x3),0.466)
→Add(Mul(Add(x1,x0),0.397),Mul(x3,0.615)

594 fri c2 100 5 1.8e-16→Mul(x1,-0.403)→Div(x0,Sub(x4,2.79))
→Sub(1.14,Pow(Div(-2.03,x0),x0))→Mul(Div(x0,-0.704),Pow(Add(x0,-1.9),x1)

596 fri c2 250 5 -2.24e-09→Mul(x1,-0.404)→Mul(0.355,Sub(x3,x1))→Sub(1.17,Pow(Div(-1.78,x1),x1))
→Mul(Div(x1,x[0]),Pow(Sub(x1,x[1]),x0)

597 fri c2 500 5 -1.05e-09→Mul(x1,-0.387)→Mul(0.347,Sub(x3,x1))→Sub(1.13,Pow(Div(-1.84,x0),x0))
→Sub(Mul(Pow(x1,1.77),x0),Add(x1,x0)

601 fri c1 250 5 -2.99e-09→Mul(x3,0.383)→Mul(-0.359,Sub(x1,x3))→Mul(Add(Pow(x1,1.6),-1.93),x1)
→Sub(Pow(Div(x1,-1.64),x1),Pow(-0.719,x3)

611 fri c3 100 5 x3→Mul(x3,0.542)→Div(x3,Sub(2.41,x1))→Sub(Pow(x1,x1),Pow(-0.632,x3))
→Sub(Pow(Div(x1,-2.62),x1),Sub(1.33,x4)

613 fri c3 250 5 -2.62e-09→Div(x3,2)→Div(x3,Sub(2.59,x1))→Mul(Add(Mul(x1,x0),-1.82),x1)
→Sub(Pow(Mul(x0,-0.696),x0),Pow(-0.652,x3)

617 fri c3 500 5 1.55e-15→Mul(x3,0.406)→Div(x3,Sub(2.88,x1))→Add(-0.755,Pow(Sub(x0,0.554),x1))
→Sub(Pow(Mul(x1,0.69),x1),Pow(0.692,x3)

624 fri c0 100 5 x1→Mul(x1,0.53)→Mul(0.497,Add(x3,x1))→Mul(Add(Add(x3,x1),x0),0.467)
→Add(Mul(Add(x3,x1),0.497),Mul(x0,0.408)

631 fri c1 500 5 1.11e-16→Mul(x3,0.395)→Mul(-0.355,Sub(x1,x3))→Mul(Add(Pow(x1,1.41),-1.83),x1)
→Sub(Pow(Div(x1,-1.64),x1),Pow(-0.679,x3)

649 fri c0 500 5 x3→Mul(x3,0.61)→Mul(0.494,Add(x3,x0))→Mul(Add(Add(x3,x1),x0),0.464)
→Sub(Mul(Add(x1,x0),0.392),Mul(x3,-0.594)

656 fri c1 100 5 -4.72e-09→Mul(x3,0.387)→Div(x[0],Sub(x0,x[1]))→Add(-0.46,Pow(Pow(-0.0895,x0),x1))
→Sub(Pow(Add(x1,-0.755),x0),Pow(x1,0.737)

659 sleuth ex1714 x5→Mul(x5,0.891)→Mul(Pow(x0,0.293),x5)
→Div(Mul(x5,5.54),Sub(6.84,x2)

663 rabe 266 x0→Mul(x0,0.938)→Sub(x0,Mul(x1,0.304))→Add(Add(x0,-1.05),Pow(-0.731,x1))
→Add(Add(x0,-0.395),Div(Pow(-0.414,x1),3.64)

665 sleuth case2002 x5→Mul(x5,0.585)→Sub(1.14,Pow(0.613,x5))→Div(Add(Pow(-0.362,x5),-1.8),-3.56)
→Sub(Pow(Sub(x5,-0.998),-0.197),Pow(0.607,x5)

678 visualizing environmental 6.18e-09→Mul(x0,-0.613)→Mul(Div(x0,-1.51e+08),9.27e+07)
→Sub(0.92,Pow(Add(x0,1.03),0.652))→Sub(Pow(Sub(x0,x[0]),x[1]),Pow(x[2],x0)

687 sleuth ex1605 x4→Mul(x4,0.774)→Mul(x[0],Mul(x4,x[1]))→Mul(Pow(Add(x3,2.71),-0.368),x4)
→Mul(Mul(x4,0.736),Pow(Pow(x3,-0.203),x4)

690 visualizing galaxy x3→Mul(x1,-0.894)→Sub(Mul(x0,0.279),x1)→Mul(x1,Sub(Pow(0.586,x2),1.77))
→Div(Sub(Mul(x0,0.303),x1),Pow(x3,0.449)

706 sleuth case1202 x4→Mul(x4,0.798)→Sub(x4,Mul(x2,0.279))→Sub(Mul(x2,-0.242),Mul(x4,-0.861))
→Div(Sub(Div(x4,0.283),x2),Sub(x2,-4.13)

712 chscase geyser1 x1→Mul(x1,0.877)→Sub(1.24,Pow(0.529,x1))→Sub(Mul(x1,0.888),Div(0.0774,x0))
→Sub(Sub(Pow(x1,-0.151),1.06),Mul(x1,-0.84)
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C. Classification of Dataset Type

Table 4: Classification of dataset type based on performance of SR algorithms with respect to the APO front.

Type Datasets

Type I 547 no2, 556 analcatdata apnea2, 557 analcatdata apnea1,
579 fri c0 250 5, 594 fri c2 100 5, 596 fri c2 250 5,
597 fri c2 500 5, 601 fri c1 250 5, 611 fri c3 100 5,
613 fri c3 250 5, 617 fri c3 500 5, 624 fri c0 100 5,
631 fri c1 500 5, 649 fri c0 500 5, 656 fri c1 100 5

Type II 1027 ESL, 522 pm10, 561 cpu, 663 rabe 266, 690 visualizing galaxy

Type III 210 cloud, 519 vinnie, 523 analcatdata neavote,
678 visualizing environmental, 712 chscase geyser1

Type IV 1096 FacultySalaries, 192 vineyard, 228 elusage,
230 machine cpu, 485 analcatdata vehicle, 659 sleuth ex1714,
665 sleuth case2002, 687 sleuth ex1605, 706 sleuth case1202

D. Validity of K-expressions

All K-expressions can be decoded into valid mathematical expressions. In Algorithm 1, terminal symbol count is the
length of the tail given by a formula, head length is a hyperparameter that is the number of operators and operands in the
head of a K-expression. For example, the K-expression ‘∗+−abcdef ’ is decoded as (a+ b) ∗ (c− d), where the length of
the tail is 5 and the number of operators and operands in the head is 4.

In the main text, we claim the length of the tail is determined by h× (nmax − 1) + 1, where h is the head length and nmax

is the maximum operand arity of the primitive function set. The length of the tail is to ensure that there are no non-terminal
symbols with empty arguments. It is computed from assuming the worst-case scenario where each symbol in the head is
an operator, there will be at most nmax arguments. We have h symbols at the head, each with at most nmax arguments to
fill, but since each of the h symbols fill up an empty spot, each symbol only creates at most (nmax − 1) empty spots to fill.
This leads to h× (nmax − 1) potential spots for the tail symbols to fill. Including the initial empty spot to be filled, we get
h× (nmax − 1) + 1.

E. Extension to SRSD Metrics
SRSD (Matsubara et al., 2024) introduced a standard for metrics to use in SR analysis. For their accuracy metric, this is
simply R2 > 0.999 and can be obtained from the R2 column. Of greater interest are the solution rate and NED introduced
by SRSD. However, these are only computable on datasets with closed-form ground-truth, so they are not directly applicable
to this work. Nonetheless, a meaningful way to incorporate these metrics is by taking the APO equations we found (see
Appendix B) and treating them as ‘proxy ground-truth’, enabling a new metric to assess SR algorithms performance on
black-box datasets.

F. Verification on Physics Experiments
We also ran experiments on data from the Newtonian dynamics experiments by Cranmer et al. (2020) to demonstrate its
applicability to recovering already verified equations for verification. Specifically, we applied the APO front on the data to
recover the known force laws via the representations learned by the internal ‘message function’. We used the 1-D version of
orbital force equation and charged particle force equation in Cranmer et al. (2020). The ground truth equation structures
appear on the APO front we find using our approach, and these equations are the true underlying physical law.
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G. Expanded Function Set
To perform a similar analysis that is extended to a much larger function set (i.e., {Add, Sub, Mul, Div, Pow, Sin, Cos,
Arcsin, Arcos, Exp, Log, Max, Min}), our sampling of run-time estimates a 12.7× increase in compute resources required.
However, we recognize the interest in having some indication of expansion of the function set and have done so on a single
random seed 860, and using only BFGS optimization in the supplementary materials.

H. Regularization in SR
An alternative approach that we could have used is to add regularization and train on the test set, but it is not clear which
regularization scheme or regularization parameters should be used to obtain the best upper bound. Thus, we opted to exclude
regularization (e.g., length, complexity, parameter magnitudes) in obtaining the Pareto front.

From the supplementary materials given in the publicly available GitHub link, the relation between train and test R2 is
generally strong with little trade-off. However, the gap (e.g., train R2 − test R2) is more interesting and the supplementary
materials data show some trade-off between the gap and model length, which warrants a more detailed analysis in future
work.

I. More Details on Two-mutation Analysis
In finding #3, we are interested in studying properties of the loss landscape that tell us the tendency of getting stuck at local
optima and the difficulties in assessing the global optima. For typical machine learning, for loss landscapes similar to the
Rastrigin function, in regions close to the global optimum, the function has many small depressions or ‘basins of attraction’
(valleys) that can trap an optimization algorithm in local minima. Although the global minimum exists, the surrounding
parameter space is filled with numerous local minima that resemble shallow valleys. For SR, the loss landscape of greater
interest is on the function structure rather than on the numerical parameters and ‘considering if expressions that are two
mutations away from the APO front are likely to mutate back into the APO front’ is our way of assessing if the equations on
the APO front are surrounded by many ‘basins of attraction’ that makes it tougher for SR algorithms to discover them.

J. Operator Frequency Analysis
We can also analyze the frequency of operators appearing on the APO front to gain insights which can possibly inform
hyperparameter settings in SR. For example, in evolutionary SR, a operator that appears with higher frequency on the APO
front may benefit from having a higher chance of being selected with parts of an expression has to be filled at random (e.g.,
1-mutation). From our data in the supplementary materials, for equations of length 9, the average frequency of Add, Sub,
Mul, Div, Pow is 0.7000, 0.8625, 0.9500, 0.4833, 1.0042, respectively. Note that the frequency can exceed 1 because there
can be more than 1 of the same operators in each equation.

K. Suggestions for New APO Front-based Metrics
The APO plots allow users to come up with a large range of interesting new measures. A non-exhaustive list of suggested
measures include: i). R2 closeness, by measuring the percentage of datasets where the R2 value obtained by the SR
algorithm is within 0.1 (i.e., 0.1 vertical distance on the Pareto plot) of the extended APO front (plateau after max length
searched), ii). Euclidian distance from a single algorithm with the front, though the relative magnitudes of axes need to be
decided, iii). compare the entire field of SR with respect to the front with existing measures like hypervolume (HV). For the
algorithms AFP, AFP FE, AIFeynman, BSR, DSR, EPLEX, FEAT, FFX, GP-GOMEA, ITEA, MRGP, Operon, SBP-GP,
gplearn, the values for R2 closeness are 62%, 59%, 12%, 15%, 62%, 68%, 68%, 35%, 65%, 47%, 32%, 62%, 68%, 59%,
respectively.
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L. Extended Plots

(a) Aggregated on all datasets (b) Dataset: 594 fri c2 100 5 (c) Dataset: 656 fri c1 100 5

Figure 7: Plots from Figure 3 but with reduced truncation. Unlike rankings, using the actual metric values may be tricky to
use in visualizing the results since the range of values can be large with a largely varying distribution.

M. Worked Examples of Rank Inversion Paradox
Below are worked examples with exact values to illustrate, with a concrete example with real values, examples of when
using rankings in Pareto analysis can lead to potentially contradictory results. We show an example where the aggregating
method is to take the median of the ranks and another where the aggregating method is to take the average of the ranks.

M.1. Using Median of Ranks

Problem Setup:

Consider 4 SR algorithms: A, B, C & D and 3 datasets, Ds1, Ds2, Ds3.

On Ds1, the raw performances are:

R2 (higher is better) - C: 0.9, B: 0.8, A: 0.7, D: 0.6

Model size (lower is better) - B: 3, A: 5, C: 7, D: 9

On Ds2:

R2 - C: 0.9, D: 0.8, A: 0.7, B: 0.6

Model size - A: 3, B: 5, C: 7, D: 9

On Ds3:

R2 - B: 0.9, A: 0.8, C: 0.7, D: 0.6

Model size - D: 3, A: 5, B: 7, C: 9

Now, using the procedure in SRBench to determine which algorithms are relatively Pareto optimal (using SRBench github
and consistent with Fig. 2 of the NeurIPS paper): first take the rank per dataset, then take the median of ranks.

Case 1: Using only Algorithm A, B, C in Pareto analysis

Here, we use the notation (3, 2) to represent that on Ds1, Algorithm A is Rank 3 in R2, and Rank 2 in model size.

On Ds1:

A: (Rank 3 in R2, Rank 2 in model size), B: (2, 1), C: (1, 3)

On Ds2:
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A: (2, 1), B: (3, 2), C: (1, 3)

On Ds3:

A: (2, 1), B: (1, 2), C: (3, 3)

Median rank across Ds1, Ds2, Ds3:

A: (2, 1), B: (2, 2), C: (1, 3)

Thus, one would conclude Algorithm A & C are relatively Pareto optimal.

Case 2: Using Algorithm A, B, C & D in Pareto analysis

On Ds1:

A: (3, 2), B: (2, 1), C: (1, 3), D: (4, 4)

On Ds2:

A: (3, 1), B: (4, 2), C: (1, 3), D: (2, 4)

On Ds3:

A: (2, 2), B: (1, 3), C: (3, 4), D: (4, 1)

Median rank across Ds1, Ds2, Ds3:

A: (3, 2), B: (2, 2), C: (1, 3), D: (4, 4)

Thus, one would conclude Algorithm B & C are relatively Pareto optimal. Note that although only Algorithm D was added,
Algorithm B is now suddenly optimal, and Algorithm A is suddenly not optimal. We can call this the ‘Rank Inversion
Paradox’, inspired by (Chèze & Fieux, 2025; Zahir, 2009). Note that in taking actual quantities, any Algorithm that is not
Pareto optimal will never be Pareto optimal with the addition of new Algorithms(s).

M.2. Using Average of Ranks

Problem Setup:

Consider 4 SR algorithms: A, B, C & D and 3 datasets, Ds1, Ds2, Ds3.

On Ds1, the raw performances are:

R2 (higher is better) - A: 0.9, B: 0.8, C: 0.7, D: 0.6

Model size (lower is better) - C: 3, A: 5, D: 7, B: 9

On Ds2:

R2 - A: 0.9, B: 0.8, C: 0.7, D: 0.6

Model size - B: 3, C: 5, A: 7, D: 9

On Ds3:

R2 - C: 0.9, D: 0.8, B: 0.7, A: 0.6

Model size - B: 3, C: 5, A: 7, D: 9

Now, we first take the rank per dataset, then take the average of ranks.

Case 1: Using only Algorithm A, B, C in Pareto analysis

Here, we use the notation (1,2) to represent that on Ds1, Algorithm A is Rank 1 in R2, and Rank 2 in model size.

On Ds1:

A: (Rank 1 in R2, Rank 2 in model size), B: (2, 3), C: (3, 1)

On Ds2:
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A: (1, 3), B: (2, 1), C: (3, 2)

On Ds3:

A: (3, 3), B: (2, 1), C: (1, 2)

Average rank across Ds1, Ds2, Ds3:

A: (1.67, 2.67), B: (2, 1.67), C: (2.33, 1.67)

Thus, one would conclude Algorithm A & B are relatively Pareto optimal.

Case 2: Using Algorithm A, B, C & D in Pareto analysis

On Ds1:

A: (1, 2), B: (2, 4), C: (3, 1), D: (4, 3)

On Ds2:

A: (1, 3), B: (2, 1), C: (3, 2), D: (4, 4)

On Ds3:

A: (4, 3), B: (3, 1), C: (1, 2), D: (2, 4)

Average rank across Ds1, Ds2, Ds3:

A: (2, 2.67), B: (2.33, 2), C: (2.33, 1.67), D: (3.33, 3.67)

Thus, one would conclude Algorithm A & C are relatively Pareto optimal. Note that although only Algorithm D was added,
Algorithm C is now suddenly optimal, and Algorithm B is suddenly not optimal. We can call this the ‘Rank Inversion
Paradox’, inspired by (Chèze & Fieux, 2025; Zahir, 2009). Note that in taking actual quantities, any algorithm that is not
Pareto optimal will never be Pareto optimal with the addition of new algorithms(s).

N. Other Complexity Measures
In the supplementary materials, we also include other complexity measures such as the count of operators, the count of
numerical constants, Kommenda’s complexity (Kommenda et al., 2015), Virgolin’s trained linear elastic net interpretability
estimator (we use their trained rescaled coefficients) (Virgolin et al., 2020) and Vladislavleva’s order of non-linearity (using
=1e-6 as done in their work) (Vladislavleva et al., 2008). We have also added Peterson’s complexity that is used in DSR
(Petersen et al., 2019).
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