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Abstract

Gradient-based dimension reduction decreases the cost of Bayesian inference and probabilis-
tic modeling by identifying maximally informative (and informed) low-dimensional projec-
tions of the data and parameters, allowing high-dimensional problems to be reformulated
as cheaper low-dimensional problems. A broad family of such techniques identify these
projections and provide error bounds on the resulting posterior approximations, via eigen-
decompositions of certain diagnostic matrices. Yet these matrices require gradients or even
Hessians of the log-likelihood, excluding the purely data-driven setting and many problems
of simulation-based inference. We propose a framework, derived from score-matching, to
extend gradient-based dimension reduction to problems where gradients are unavailable.
Specifically, we formulate an objective function to directly learn the score ratio function
needed to compute the diagnostic matrices, propose a tailored parameterization for the
score ratio network, and introduce regularization methods that capitalize on the hypothe-
sized low-dimensional structure. We also introduce a novel algorithm to iteratively identify
the low-dimensional reduced basis vectors more accurately with limited data based on eigen-
value deflation methods. We show that our approach outperforms standard score-matching
for problems with low-dimensional structure, and demonstrate its effectiveness for PDE-
constrained Bayesian inverse problems and conditional generative modeling.

1 Introduction

A central aim of Bayesian computation is to develop efficient algorithms for characterizing conditional dis-
tributions, e.g., the posterior πX|Y =y∗ of a parameter X ∈ Rn, given an observation y∗ ∈ Rm and their
joint distribution πX,Y . The cost of such procedures can become prohibitive with growing n and m, making
inference difficult for high (or possibly infinite)-dimensional problems. One approach for mitigating this
computational burden is dimension reduction.

In this paper, we are interested in two types of low-dimensional structure that appear in many Bayesian
inference problems, and more generally in probabilistic modeling. First is the notion that the target dis-
tribution can be well approximated as a low-dimensional update of a dominating reference distribution.
Second is the notion that the conditioning variables can be replaced with low-dimensional projections or
summaries. A recent line of work (Brennan et al., 2020; Zahm et al., 2022; Cui & Zahm, 2021; Baptista
et al., 2022; Cui & Tong, 2022) has developed gradient-based methods for identifying and exploiting both

∗Authors contributed equally to this work.

1

https://openreview.net/forum?id=mvbZBaqSXo


Published in Transactions on Machine Learning Research (04/2025)

types of low-dimensional structure in non-Gaussian settings. These approaches construct specific diagnostic
matrices containing averaged gradient or Hessian information of the posterior or joint log-density. Eigen-
decompositions of these diagnostic matrices reveal informative projections of the conditioning variables and
informed projections of the parameters, and also yield bounds on the error of the resulting approximations
to the posterior in terms of the rank of these projections. Specifically, the spectra of these matrices indicate
to what extent a given problem has the posited low-dimensional structure.

Here we propose a framework derived from score-matching to extend these ideas to problems where gradients
are unavailable. In particular, we introduce a learning problem to approximate the gradient of the log-ratio
of two densities, which we term a score ratio function. We show that score ratios are central objects within
the diagnostic matrices described above, and that learning the score ratio can itself take advantage of low-
dimensional structure in the problems at hand. Doing so yields novel architectures and algorithms that
outperform standard score-matching approaches, and ultimately enables more efficient approximations of
the targeted conditional distributions. Our main contributions are as follows:

1. We propose algorithms for uncovering two types of low-dimensional structure in probabilistic models
(low-dimensional updates of a reference measure and low-dimensional conditioning) based on score
ratio matching (§3).

2. We introduce a novel training objective, network parameterizations, and regularization methods
tailored to our dimension reduction goals (§4).

3. We develop a new algorithm that iteratively identifies a basis for the desired reduced subspaces more
accurately with limited data (§5).

4. We demonstrate that our score ratio matching method better reveals low-dimensional structure com-
pared to standard score matching, and that it enables more accurate and efficient high-dimensional
approximate inference (§6).

Related work: Many previous papers have highlighted the benefits of gradient-based dimension reduction
in Bayesian computation, for methods ranging from MCMC (Cui & Tong, 2022; Cui et al., 2014; Constantine
et al., 2016) to SVGD (Chen & Ghattas, 2020) to normalizing flows (Brennan et al., 2020; Cui et al., 2023;
Radev et al., 2020) to ensemble filtering (Le Provost et al., 2022). The present work is concerned with
realizing these benefits in gradient-free settings, which include Bayesian inverse problems with complex
forward models (Kaipio & Somersalo, 2006; Biegler et al., 2010), goal-oriented inference (Lieberman &
Willcox, 2013; Berger et al., 1999), simulation-based inference (SBI) more broadly (Cranmer et al., 2020),
and the purely data-driven setting where only a fixed set of samples from πX,Y are given.

The second form of dimension reduction we seek (low-dimensional conditioning) is related to SBI-focused
efforts of creating summary (ideally sufficient) statistics of the observations to improve the quality and
efficiency of inference algorithms (Fearnhead & Prangle, 2012; Joyce & Marjoram, 2008; Nunes & Balding,
2010). So far, most of these methods have not been gradient-based, and do not explicitly take advantage of
low-dimensional structure when learning statistics. For instance, Radev et al. (2020) learns an (arbitrary)
summary neural network to compress the observation variable before it enters an inference network. Brehmer
et al. (2020); Alsing et al. (2018) define data summaries based on locally sufficient statistics, but only around
one reference parameter value. More generally, hand-crafted summary statistics are often the norm in
SBI (Sisson et al., 2018). These statistics often require expert knowledge to form or use specific selection
criteria that are not tied to posterior quality, and hence may lead to issues with “poor quality features,”
as seen in Lueckmann et al. (2017). In contrast, the approach proposed here seeks optimal summaries that
provide error guarantees on the resulting posterior approximation.
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2 Background

2.1 Gradient-based dimension reduction

We provide a brief description of two gradient-based dimension reduction methods for which we will develop
gradient-free versions. These methods are data-free certified dimension reduction (CDR)1 (Cui & Zahm,
2021) and conditional-mutual information based dimension reduction (CMIDR) (Baptista et al., 2022). Both
methods decompose the parameter and observation into two subspaces,

X = UrXr + U⊥X⊥ where Xr = U⊤
r X, X⊥ = U⊤

⊥X (1)
Y = VsYs + V⊥Y⊥ where Ys = V ⊤

s Y, Y⊥ = V ⊤
⊥ Y (2)

where U = [Ur U⊥] ∈ Rn×n and V = [Vs V⊥] ∈ Rm×m are unitary matrices, and Ur ∈ Rn×r, r ≤ n, and
Vs ∈ Rm×s, s ≤ m.

Intuitively each method seeks transformations U and V such that the projected variables Xr and Ys capture
where the parameter is most informed and where the observation is most informative, respectively. Given a
decomposition in (1)–(2), Definition 2.1 below introduces a low-dimensional approximation of the posterior
that departs from a known reference distribution using low-dimensional subspaces for the parameter and for
the observation.
Definition 2.1. Let ρ be a chosen reference density on Rn. Given unitary matrices U ∈ Rn×n and V ∈
Rm×m, and integers r ≤ n, s ≤ m, let Dr,s(U, V ) denote a set of distributions with densities of the form

π̃X|Y (x|y) ∝ f(U⊤
r x, V

⊤
s y)ρ(x),

for some f : Rr+s → R>0, where Ur ∈ Rn×r contains the first r columns of U and Vs ∈ Rm×s contains the
first s columns of V . The class of distributions where only parameter dimension reduction is considered is
denoted Dr,m(U), and the class where only observation reduction is considered is denoted Dn,s(V ).

Propositions 2.2 and 2.3 below are key results for selecting the optimal transformations U and V , respectively.
The transformations arise from minimizing an error bound for the resulting posterior approximation of the
form in Definition 2.1. To derive the error bound, Proposition 2.3 assumes that the joint distribution
πX,Y satisfies a subspace log-Sobolev inequality; we provide a definition in Appendix A.1. We note that
multivariate Gaussian distributions, Gaussian mixtures, and uniform distributions on compact and convex
domains all satisfy a subspace log-Sobolev inequality; see Zahm et al. (2022, Assumption 2.5) for more
discussion. Conditions on the forward model of an inverse problem that are sufficient for πX,Y to satisfy a
subspace log-Sobolev inequality can be found in Baptista et al. (2022, Example 2).
Proposition 2.2 (Modified from Section 3.3 of Cui & Zahm (2021)). Let ρ be the standard Gaussian density,
and define the parameter diagnostic matrix

HX
CDR = EπX,Y

[
∇x log

(
πX|Y (x|y)
ρ(x)

)
∇x log

(
πX|Y (x|y)
ρ(x)

)⊤]
∈ Rn×n. (3)

Let (λX
k , uk) ∈ R≥0 × Rn be the k-th eigenpair of HX

CDR, with λX
1 ≥ · · · ≥ λX

n , and take U = [u1, . . . , un].
Then there exists π̃X|Y ∈ Dr,m(U) such that

EπY

[
DKL(πX|Y ||π̃X|Y )

]
≤ 1

2 Tr
(
(I − UrU

⊤
r )HX

CDR
)

= 1
2
∑
k>r

λX
k . (4)

Proposition 2.3 (Modified from Theorem 1 of Baptista et al. (2022)2). Define the observation diagnostic
matrix

HY
CMI = EπX,Y

[
∇x∇y log

(
πX,Y (x, y)

ρ(x)

)⊤

∇x∇y log
(
πX,Y (x, y)

ρ(x)

)]
∈ Rm×m (5)

1We drop ‘data-free’ in the acronym as we will not consider the dimension reduction problem initially presented in Zahm
et al. (2022) for the posterior corresponding to a single realization of the observation.

2While Baptista et al. (2022) present joint parameter and observation reduction results, we focus here on observation
dimension reduction for ease of presentation.
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Assume that πX,Y satisfies the subspace logarithmic Sobolev inequality with constant C(πX,Y ). Let (λY
k , vk) ∈

R≥0 × Rm be the k-th eigenpair of HY
CMI with λY

1 ≥ · · · ≥ λY
m and take V = [v1, . . . , vm]. Then, there exists

π̃X|Y ∈ Dn,s(V ) such that

EπY

[
DKL(πX|Y ||π̃X|Y )

]
≤ C(πX,Y )2 Tr

(
(I − VsV

⊤
s )HY

CMI
)

= C(πX,Y )2
∑
k>s

λY
k . (6)

Note that there is no explicit assumption of a subspace log-Sobolev inequality in Proposition 2.2 because,
in the setting of parameter dimension reduction, we need this assumption only on the reference measure ρ,
and since ρ here is chosen to be standard Gaussian, the inequality is satisfied with a log-Sobolev constant of
one.

Propositions 2.2 and 2.3 have several practical implications. Given the diagnostic matrices HX
CDR and HY

CMI,
we should choose Ur and Vs as the leading eigendirections of these matrices. (As shown in Zahm et al.
(2022), solving these eigenvalue problems minimizes a more general upper bound.) With this choice, we also
have upper bounds on the approximation error (in KL divergence) incurred by parameter and observation
reduction, which can be used to select the reduced dimensions r and s.

2.2 Approximating score functions

Score matching has recently appeared as a powerful unsupervised learning framework with applications to
generative modeling (Song & Ermon, 2019; Song et al., 2021; Ho et al., 2020; De Bortoli et al., 2021) and
Bayesian inference (Zhang et al., 2018; Pacchiardi & Dutta, 2022). The core task is to approximate the score
function, the gradient of a log-density function, for various downstream tasks. We direct readers to Song &
Ermon (2019); Song et al. (2021) for an overview of score matching, especially the derivation of the objective
function for learning the score, network training strategies, and its application to generative modeling using
Langevin sampling. In this section, we focus on conditional score-matching, where one approximates the
score function of the conditional distribution ∇x log πX|Y (x|y).

Let wθ : Rn+m → Rn be the neural network approximation of ∇x log πX|Y (x|y), were θ denotes the learnable
parameters of the neural network. Score matching seeks to minimize a weighted L2 error between the true
and approximate scores

J∗(wθ) = 1
2EπX,Y

∥∇x log πX|Y (x|y)− wθ(x, y)∥2.

While minimizing this objective is intractable as it requires access to the score function, approaches known as
implicit score matching (Hyvärinen & Dayan, 2005) and denoising score matching (Vincent, 2011) introduce
reformulated objective functions for J∗(θ) to learn the score based only on samples from a given distribution,
such as πX,Y . We will focus on implicit score matching in this work, although this is not a limitation. Under
mild regularity assumptions on the true and approximate score functions (see Assumption 3.1), Hyvärinen
& Dayan (2005) showed that the objective J∗ can be written as

J∗(wθ) = EπX,Y

[
1
2∥wθ(x, y)∥2 + Tr(∇xwθ(x, y))

]
+ C,

where C is a constant with respect to the score network. This objective only depends on π via the expectation,
and so in practice one can learn wθ(x, y) by minimizing an objective that estimates the expectation using
joint parameter-observation samples {x(j), y(j)}N

j=1 ∼ πX,Y . That is,

J(wθ) =
N∑

j=1

1
2∥wθ(x(j), y(j))∥2 + Tr(∇xwθ(x(j), y(j))).

As discussed in Song et al. (2020), directly evaluating the term Tr(∇xwθ(x(j), y(j))) in the objective function is
prohibitively expensive for even moderate dimensions n. In practice, this is alleviated using the Hutchinson’s
trace estimator (Hutchinson, 1989).
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3 Score ratio matching

Here we propose a tailored score matching approach to construct the diagnostic matrices in Section 2.1. To
do so, we consider approximations of the score ratio function

w(x, y) := ∇x log
(
πX|Y (x|y)/ρ(x)

)
,

where ρ is chosen to be a tractable reference density (e.g., a standard normal) and present several results
related to the dimension reduction approaches of Section 2.1. First we note that both diagnostic matrices
HX

CDR and HY
CMI can be expressed in terms of the score ratio function. Indeed, HX

CDR is defined explicitly
in terms of w(x, y), while HY

CMI depends on the mixed gradient function

∇x∇y log (πX,Y (x, y)/ρ(x)) = ∇yw(x, y).

Therefore, approximating the score ratio allows us to construct the two diagnostic matrices and perform
dimension reduction of both parameters and observations.

A naïve strategy would be to approximate ∇x log πX|Y (x|y) and use it to compute the score ratio as the
difference,

∇x log(πX|Y (x|y)/ρ(x)) = ∇x log πX|Y (x|y)−∇x log ρ(x).
Instead, we take a different approach that leverages the (possible) low-dimensional structure of πX|Y . Under
the hypothesis that πX|Y is well approximated within Dr,s(U, V ) for some choices of U and V , we expect
the score ratio, rather than the score itself, to be well approximated by a ridge function (Pinkus, 2015), i.e.,
a function that is constant for x, y ∈ Im(U⊥) × Im(V⊥). In Section 4, we describe a parameterization of
wθ(x, y) and a regularization method that are tailored to learning this low-dimensional structure.

Theorem 3.2 provides an objective function that allows for direct approximation of the score ratio using a
score ratio network wθ : Rn+m → Rn. This and subsequent results rely on the following mild assumptions
on the posterior and the score ratio approximation.
Assumption 3.1. Let wθ denote the score (or score ratio) approximation. We assume (i) wθ is differentiable
with respect to x; (ii) πX|Y (x|y) is differentiable with respect to x; (iii) EπX,Y

∥wθ∥2 < ∞ for all θ; (iv)
EπX,Y

∥∇x log(πX|Y (x|y)/ρ(x))∥2 <∞; and (v) πX|Y (x|y)wθ → 0 as ∥x∥ → ∞ for all θ and y.

Theorem 3.2. Let wθ : Rn+m → Rn be the score ratio approximation. Under the conditions of Assump-
tion 3.1, we have the following equivalence of objectives:

1
2EπX,Y

∥∥∥∥wθ(x, y)−∇x log
(
πX|Y (x|y)
ρ(x)

)∥∥∥∥2

2

=EπX,Y

[
1
2wθ(x, y)⊤wθ(x, y) + Tr(∇xwθ(x, y)) +∇x log ρ(x)⊤wθ(x, y)

]
+ C, (7)

where C is a constant that only depends on the densities πX|Y and ρ.

We give a proof of the theorem in Appendix A.2. As in implicit score-matching, Theorem 3.2 shows that
the approximation can be learned with an objective that does not explicitly depend on the true score ratio.

In practice, we replace the expectation on the right-hand side of (7) with a Monte Carlo estimate using joint
samples {x(j), y(j)}N

j=1, and thus define the optimization objective,

J(wθ) := 1
N

 N∑
j=1

1
2wθ(x(j), y(j))⊤wθ(x(j), y(j)) + Tr(∇xwθ(x(j), y(j))) +∇x log ρ(x(j))⊤wθ(x(j), y(j))

 .
(8)

Once we identify the score ratio approximation wθ that minimizes this objective, the diagnostic matrices can
be approximated as

HX
CDR ≈ ĤX

CDR := EπX,Y

[
wθ(x, y)wθ(x, y)⊤]

HY
CMI ≈ ĤY

CMI := EπX,Y

[
∇ywθ(x, y)⊤∇ywθ(x, y)

]
.
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Estimators for the parameter and observation transformations U and V are then given by the leading
eigenvectors of ĤX

CDR and ĤY
CMI, respectively. Given a reduced posterior that is constructed using the

estimated transformations, a question that naturally arises is how the accuracy of the reduced posterior is
affected by error in our approximation of the score ratio. The follow theorem provides an answer specifically
for CDR.
Theorem 3.3. Let wθ(x, y) be an approximation to the score ratio satisfying

EπX,Y

∥∥∥∥wθ(x, y)−∇x log
(
πX|Y (x|y)
ρ(x)

)∥∥∥∥2

≤ ϵ.

Define the approximate parameter diagnostic matrix ĤX
CDR = EπX,Y

[
wθ(x, y)wθ(x, y)⊤]. Let (λi, ui) ∈

R≥0 ×Rn be the i-th eigenpair of ĤX
CDR, with λ1 ≥ · · · ≥ λn, and take U = [u1, . . . , ur]. Then there exists a

π̃X|Y ∈ Dr,m(U) such that
EπY

[
DKL(πX|Y ||π̃X|Y )

]
≤ ϵ+

∑
k>r

λk.

See Appendix A.3 for the proof. We note that the approximation error of the score ratio network ϵ is
generally unknown in practice. Theorem 3.3, however, establishes stability of the error in the approximate
posterior distribution π̃X|Y , which depends on the subspace U , with respect to error in the score ratio used
to identify that subspace.

Choice of the KL divergence as the error metric We note that our methods specifically seek projec-
tions of the parameter and observation that minimize bounds on the posterior approximation error measured
by the data-averaged KL divergence EπY

[
DKL(πX|Y ||π̃X|Y )

]
, directly following the results of Propositions

2.2 and 2.3. While the data-averaged KL divergence is a natural and widely used choice, alternative error
metrics such as a worst-case KL divergence (over Y ), Wasserstein distances, or total variation distances
may provide additional insights or be better suited for specific inference tasks. Developing methods that
minimize these alternative metrics and studying the differences in the posterior approximations could be an
interesting direction for future work, particularly in cases where robustness to tail behavior or accuracy of
specific posterior expectations are important.

Comparison with other common dimension reduction methods Here we comment on the differ-
ences between the present work and several common dimension reduction methods. The classical method
of principal component analysis (PCA) seeks directions that maximize the variance of the data. Nonlinear
methods such as t-SNE (Van der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018) can effec-
tively preserve local neighborhood structures, making them powerful tools for visualization and marginal
dimension reduction. However, these methods do not explicitly consider the joint structure between param-
eters and observations—which is crucial for inference problems, where preserving conditional relationships
is essential. We reiterate that our framework seeks projections of the parameter and observation that are
informed and informative, respectively, making it particularly suited to inference. In comparison, methods
that act marginally (e.g., performing PCA, t-SNE, UMAP etc. on X and Y individually) do not capture
the dependence structure between the parameter and observation and thus do not explicitly consider the
underlying inference problem.

We note that in the case of linear-Gaussian likelihood models, the projections proposed by Propositions
2.2 and 2.3 are equivalent to those found by canonical correlation analysis (CCA) based on covariance
information between X and Y ; see Proposition 5 in Baptista et al. (2022). Insofar as the gradient-based
methods proposed in Baptista et al. (2022) can be viewed as a generalization of CCA to non-Gaussian
likelihood models (e.g., by using gradient information of a possibly nonlinear forward model), our methods
further generalize to problems where gradients of these likelihood functions are not available.

Choice of reference distribution We emphasize that the choice of the reference distribution in our
method is a degree of freedom, provided that its score function is easily evaluated. Our method identifies
directions in parameter space where the posterior differs from the reference distribution on average, and is
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most effective when these directions are contained within a low-dimensional subspace. The marginal distri-
bution of the parameter (i.e., the prior in Bayesian settings) is thus the natural first choice, when tractable.
In cases where the prior can be easily mapped to a standard Gaussian, we recommend reparameterizing the
problem accordingly for computational convenience (as done in Sections 6.1 and 6.2). However, when such
a “whitening” is not easily performed, as in Sections 6.3 and 6.4, we suggest using a standard Gaussian
reference distribution after centering and scaling the parameter. Future work will explore other methods for
picking the reference distribution when the parameter marginal is not available.

4 Structure-exploiting networks and regularization

We now describe a parameterization for wθ(x, y) and a regularization method that uncover possible low-
dimensional structure in the target distribution. Recall that for π̃X|Y ∈ Dr,s(U, V ), we have

π̃X|Y (x|y) ∝ f(U⊤
r x, V

⊤
s y)ρ(x),

for some function f : Rr+s → R>0, where Ur ∈ Rn×r contains the first r columns of U , and Vs ∈ Rm×r

contains the first s columns of V . Then we note that the score ratio and its observation gradient take the
specific form

∇x log
(
π̃X|Y (x|y)
ρ(x)

)
= Urg(U⊤

r x, V
⊤

s y), ∇y∇x log
(
π̃X|Y (x|y)
ρ(x)

)
= Urh(U⊤

r x, V
⊤

s y)V ⊤
s ,

where g(xr, ys) := ∇xr
log f(xr, ys), and h(xr, ys) := ∇ys

∇xr
log f(xr, ys). Observe that the range of the

score ratio lies within the subspace spanned by Ur, and the range of ∇x∇y log(π̃X|Y (x|y)/ρ(x))⊤ lies within
the subspace spanned by Vs. We encode these structural ansatzes into the parameterization of the score
ratio network

wΘ(x, y) = Wxψθ(W⊤
x x,W

⊤
y y),

where Wx ∈ Rn×r′ , Wy ∈ Rm×s′ , ψθ : Rr′+s′ → Rr′ is a typical conditional score network for some r′ ≤ n
and s′ ≤ m, and Θ = (θ,Wx,Wy) denotes all trainable model parameters. If Wx and Wy converge toward
matrices that have low (effective) ranks (much smaller than n and m) during optimization, the ranges of
wΘ(x, y) and ∇ywΘ(x, y) are restricted accordingly. We note that this parameterization also allows us to
constrain the highest possible ranks of the estimated diagnostic matrices. That is, the rank of the parameter
diagnostic matrices is bounded by r′ and the rank of the observation diagnostic matrix is bounded by s′.

To promote Wx and Wy be low-rank when πX|Y is expected to have low-dimensional structure, we pe-
nalize the nuclear norms of Wx and Wy during optimization, as is in commonly used for low-rank matrix
estimation (Fazel, 2002). This leads to our final objective function

J (Θ) := J(wΘ) + λ1∥Wx∥∗ + λ2∥Wy∥∗

where ∥·∥∗ is the nuclear norm, λ1, λ2 ≥ 0 are regularization parameters, and J(wΘ) is the objective function
defined in (8). Algorithm 1 presents the complete score ratio matching procedure to estimate the parameter
and observation transformations as well as the dimensions of the reduced variables based on a specified
tolerance for the posterior approximation error.

5 Deflating score-ratio matching

Given that dimension reduction acts as a pre-processing step before performing inference, we wish to reduce
the cost of constructing the diagnostic matrices as much as possible. To this end, we would like to use
relatively small sets of training samples and small networks that can be optimized easily. For problems
with large parameter and observation dimensions, we find that a given score ratio network often estimates
diagnostic matrices that accurately capture the leading eigenvectors of the true diagnostic matrix, but that
higher-indexed eigenvectors are inaccurate.

7
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Algorithm 1 Single network score ratio dimension reduction
1: Input: Target data {x(j), y(j)}N

j=1 ∼ πX,Y , and user tolerances εX , εY > 0
2: Solve

min
θ,Wx,Wy

J (θ,Wx,Wy)

to obtain the score-ratio approximation wθ(x, y).
3: Estimate the diagnostic matrices

ĤX
CDR = 1

N

N∑
j=1

wθ(x(j), y(j))wθ(x(j), y(j))⊤

ĤY
CMI = 1

N

N∑
j=1
∇ywθ(x(j), y(j))⊤∇ywθ(x(j), y(j))

4: Compute the eigenpairs: (λX
i , ũi) ∈ R≥0 × Rn of ĤX

CDR and (λY
i , ṽi) ∈ R≥0 × Rm of ĤY

CMI.
5: Pick r and s so that

1
2
∑
k>r

λX
k < εX ,

∑
k>s

λY
k < εY

and set Ũr = [ũ1 . . . ũr], Ṽs = [ṽ1 . . . ṽs].
6: output: Ũr, Ṽs

To improve the estimation of more eigenvectors of the two diagnostic matrices, we propose an iterative
method inspired by eigenvalue deflation methods (see Saad (2011, Chapter 4) for a comprehensive review).
Rather than finding all of the columns of Ur and Vs using a single score ratio network, we construct a sequence
of score ratio networks designed to capture progressively more vectors that form the transformations.

The following lemma defines a deflated matrix that can be used to reveal higher-index eigenvectors. Then,
Proposition 5.2 shows how to construct a modified score ratio to compute deflated diagnostic matrices.
Lemma 5.1. Let (λi, ϕi), for i = 1, . . . , d, be the eigenpairs of a symmetric matrix A ∈ Rd×d, with λ1 >
λ2 ≥ . . . λd and ∥ϕi∥2 = 1. Define the subunitary matrix Φr = [ϕ1 . . . ϕr] and projector P = I − ΦrΦ⊤

r .
Then the deflated matrix Ã := PAP has eigenpairs (0, ϕi) for i = 1, . . . , r and (λi, ϕi) for i = r + 1, . . . , d.

See Appendix A.4 for the proof.
Proposition 5.2. Let PX ∈ Rn×n and PY ∈ Rm×m be orthogonal projectors. Define the deflated score
ratio

wP (x, y) = PX∇x log
(
πX|Y (x|PY y)

ρ(x)

)
. (9)

Then the diagnostic matrices computed using wP take the form

H̃CDR := EπX,Y

[
wP (x, y)wP (x, y)⊤] = PXHPX

H̃Y
CMI := EπX,Y

[
∇ywP (x, y)⊤∇ywP (x, y)

]
= PXH ′PX ,

where H ∈ Rn×n and H ′ ∈ Rm×m are symmetric matrices. Notably, this implies ker(PX) ⊂ ker(H̃CDR) and
ker(PY ) ⊂ ker(H̃Y

CMI).

See Appendix A.5 for the proof. Let PX and PY be orthogonal projectors onto the span of a few previously
computed eigenvectors, e.g., those computed from the diagnostic matrices estimated in Algorithm 1. Then,
Proposition 5.2 allows us to learn a new score network that produces deflated diagnostic matrices whose
leading eigenvectors are orthogonal to previously computed eigenvectors. This process can be then repeated
by defining new projectors onto the span of a larger collection of eigenvectors. Algorithm 2 describes the
complete numerical procedure using multiple deflation steps.
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Discussion on computational costs Here, we discuss the computational costs and scalability of the
methods described in Algorithms 1 and 2. First, we emphasize that our framework functions as a pre-
inference step: we only require joint prior samples, {x(j), y(j)}N

j=1 ∼ πX,Y . Also, rather than needing
sufficient sample size and network expressivity to precisely recover the score (as one might want for posterior
sampling), empirically we find that much less is needed to capture the low-dimensional structure underlying
the problem, i.e., the dominant eigenspaces of the diagnostic matrices. This allows us to leverage that
structure during inference, reducing the overall computational burden of the problem.

In general, approximating the score ratio encounters challenges similar to those of traditional score matching
techniques. Assuming the score of the reference distribution can be evaluated efficiently, the computational
cost of evaluating the traditional score matching loss and the loss function derived in Theorem 3.2 are the
same up to a constant. That said, our network parameterization and regularization scheme are specifically
designed to exploit low-dimensional structure in the target problem. As demonstrated in Section 6.1, our
approach exhibits better sample efficiency than traditional score matching. The iterative deflating method
(Algorithm 2) can further improve sample efficiency, as each score ratio function is restricted to learning a
very low dimensional subspace.

Algorithm 2 Iterative-deflated score ratio dimension reduction
1: Input: Target data {x(j), y(j)}N

j=1 ∼ πX,Y , number of deflation steps T , number of eigenvectors to keep
at each step ℓ ≤ r′, s′.

2: Initialize deflating orthogonal projectors

PX = In, P
Y = Im

3: for t = 1, . . . , T do
4: Parameterize the projected score ratio network in the form of eq. (9)
5: Obtain the leading ℓ reduction vectors Ũℓ and Ṽℓ via Algorithm 1
6: Update the reduction basis vectors Ũ ← [Ũ Ũℓ], Ṽ ← [Ṽ Ṽℓ]
7: Update the orthogonal projectors

PX ← PX − ŨℓŨ
⊤
ℓ , P

Y ← PY − ṼℓṼ
⊤

ℓ

8: end for
9: output: Ũ , Ṽ

6 Numerical examples

We now present several numerical experiments to show the utility of our methods. Table 1 in the Supple-
mentary Material summarizes all network and training hyperparameter choices for each numerical example.
For the problems presented in Sections 6.1 and 6.2, the score ratio is tractable and thus we can construct
the true diagnostic matrices HX

CDR and HY
CMI. We thus evaluate the accuracy of our method by comparing

the posterior approximation errors for the optimal basis transformations in (4) and (6) with the following
error bounds achieved using the learned bases Ũ and Ṽ 3:

ECDR
r (Ũ) := 1

2 Tr((I − ŨrŨ
⊤
r )HX

CDR), ECMI
s (Ṽ ) := Tr((I − ṼsṼ

⊤
s )HY

CMI).

We emphasize that this analysis is meant to validate our method and is only possible when the true diagnostic
matrices are computable. For the problems of Sections 6.3 and 6.4, the true diagnostic matrix is not
computable. In these cases we validate our method by showing we achieve better inference fidelity for the
reduced problems as compared to the non-reduced problems.

3We use a tilde to distinguish learned bases, i.e., eigenvectors of the diagnostic matrices computed using a score (ratio)
network, from the eigenvectors of the exact diagnostic matrices.
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6.1 Distribution with planted low-dimensional structure

First, we consider the “embedded banana” distribution where the data-generating process is given by

X ′
1 ∼ N (0, 1), X ′

2|x′
1 ∼ N (x′2

1 , 1), X ′
3:10 ∼ N (0, I), (10)

and X = RX ′, where R ∈ R10×10 is a random rotation matrix that is sampled by computing the QR
factorization of a random matrix with standard Gaussian entries. In this case, the distribution πX is not
a function of any observation, and so we only consider parameter dimension reduction. Given that πX

only departs from a standard Gaussian along the coordinates (x′
1, x

′
2), we expect our algorithm to find the

subspace spanned by the two leading columns of R. In this example, we are able to compute the score ratio
analytically and directly estimate the true diagnostic matrix HX

CDR.

In Figure 1a we plot the error bound ECDR
r for three different bases: (1) the eigenbasis of the true diagnostic

matrix; (2) the eigenbasis of the diagnostic matrix computed with our score ratio approximation; and (3)
the eigenbasis of the diagnostic matrix computed with a standard score approximation (i.e., a score network
approximating ∇x log πX(x)). Both the score ratio and standard score networks were trained with N = 1000
samples. For our method, we see that the error bound sharply drops at r = 2 to less than 10−2. We also
see that our method yields considerably lower errors at each r compared to standard score matching. For
a visual representation of the results, Figures 1b and 1c show a scatter plot of additional held-out samples
from πX (which were not used during training) and these samples rotated into our discovered basis Ũ when
taking d = 3. In the learned basis, non-Gaussianity in the problem has been concentrated to the first two
directions, and the third direction is now essentially independent of the first two.
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SR network (our method)
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(a) (b) Before rotation (c) After rotation

Figure 1: Embedded banana problem: (a) ideal parameter reduction error bound, score matching error
bound (standard network), and score ratio matching error bound (our method). Our method better captures
the subspace where the target distribution πX deviates from the reference distribution. Middle and right:
scatter plots of held-out samples from the embedded banana distribution with d = 3 (b) before (in the
original random basis) and (c) after rotation by the learned basis U for X. We observe that non-Gaussianity
has been concentrated in the first two directions, and the third direction is now essentially independent of
the first two.

6.2 PDE-constrained inverse problem

Next, we consider an inverse problem where the forward model involves an elliptic partial differential equation
(PDE). The inference parameter describes the permeability field on a two-dimensional domain D and the
observations are pointwise measures of the corresponding pressure field. This so-called “Darcy flow” problem
is a widely-used test case in the literature on nonlinear Bayesian inverse problems (Stuart, 2010; Iglesias et al.,
2014; Cui et al., 2014). The permeability field eϱ and the pressure field u are related by the following Poisson
equation (Neuman & Yakowitz, 1979; McLaughlin & Townley, 1996; Carrera et al., 2005; Sun, 2013):
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∇ · (eϱ∇u) = 0, in D := [0, 1]2 ,
u(ξ1, 0) = 0 u(ξ1, 1) = 1
∂u
∂n = 0 for ξ2 ∈ {0, 1} .

(11)

Neumann boundary conditions on the left and right boundaries impose a zero-flux condition modeling im-
permeable layers on either side of an aquifer, and Dirichlet boundary conditions on the top and bottom
boundaries correspond to fixed pressures.

We endow the log-permeability ϱ with a Gaussian prior N (0,Σ) where Σ is the Matérn covariance defined
by the differential operator

C = (δI− γ∆)−2

where ∆ is the Laplacian operator, and δ and γ control the variance and correlation of the prior realizations
(Lindgren et al., 2011).

The inference parameters X are the leading n = 100 coefficients of the log-permeability in the Karhunen-
Loève expansion of the Gaussian prior. Given that the solution operator mapping the permeability field
to the pressure field, eϱ 7→ u, is nonlinear, the inverse problem is nonlinear even without accounting for
the exponential in the parameterization of the permeability. Let F denote the forward model mapping the
parameter x to m = 100 values of u collected on a uniform 10 × 10 grid on [0.1, 0.9]2. Observations for
the parameter x follow the model Y = F(x) + ϵ, where ϵ ∼ N (0, 10−3In) and define the likelihood function
πY |X(·|x). The resulting distribution of interest in this problem is the posterior πX|Y . We take the prior
covariance parameters to be δ = 0.5 and γ = 0.1. Figure 2 shows three realizations of the log-permeability
field drawn from the prior, the corresponding pressure fields, and observations.
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(a) Log-permeability fields drawn from the prior
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(b) Corresponding pressure fields and observations

Figure 2: Darcy flow problem: example prior realizations of the log-permeability fields and corresponding
pressure fields and observations

Here we fix the sample size to N = 90000 and apply both the single network (Algorithm 1) and iterative-
deflated (Algorithm 2) versions of score ratio dimension reduction, taking the number of eigenvectors ex-
tracted at each deflation step to be ℓ = 1, 2, or 3. Figures 3a and 3b compare the error bounds achieved
by the optimal parameter and observation bases identified by our methods. We see that parameter reduc-
tion error achieved by the single score-ratio network separates from the optimal error earlier than the error
achieved by the iterative deflated methods, and that overall ℓ = 1 performs the best by a small margin. Each
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of the networks performs similarly well for observation reduction. Figure 4 compares the four leading true
and approximated parameter and observation basis vectors for the ℓ = 1 iterative-deflated method, which
visually match well (up to an immaterial change in sign).
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Figure 3: Darcy flow problem: error bounds for parameter (a) and observation (b) subspaces identified by
various methods. ℓ is the number of basis vectors extracted at each deflation step.

6.3 Flux, a quantity-of-interest inference example

In this example, we consider a simulation-based inference problem related to the Darcy flow problem of Sec-
tion 6.2. The observation model is the same, and though the permeability remains uncertain, the parameter
of interest is now the log of the flux across the lower boundary of the domain—a scalar-valued function of
the permeability and the corresponding pressure. The log-flux is defined as

q = log
∫

ΓB

eϱ∇u · n ds ∈ R, (12)

where ΓB = [0, 1] × {0} denotes the bottom boundary. For this problem, we introduce a source term f on
the right hand side of the Darcy flow PDE,

∇ · (eϱ∇u) = f, in D := [0, 1]2 ,
u(ξ1, 0) = 0 u(ξ1, 1) = 1
∂u
∂n = 0 for ξ2 ∈ {0, 1} ,

(13)

where the selected source term f(ξ) = 5 exp
(
−20∥ξ − c∥2), with c = (0.2, 0.2), models groundwater

recharge.

The posterior distribution of interest in this problem is πQ|Y , which follows from the joint distribution πQ,Y .
We note in this case that evaluating the unnormalized posterior density (and thus evaluating the score
function) is not tractable; more details are given in Appendix B.3. We seek to reduce the dimension of the
observations Y via Algorithm 1 using N = 10000 samples. Figure 5a shows bounds on posterior approxima-
tion error that are estimated using our learned score-ratio network. The fast decay in this bound suggests
that the posterior should be well approximated using relatively low-dimensional observation projections, e.g.,
s = 4. To validate the utility of the corresponding learned basis Ṽs, we perform inference using a conditional
normalizing flow (specifically an unconstrained monotonic neural network (UMNN) as described in Wehenkel
& Louppe (2019)) trained from samples of πQ,Y ; see Appendix B.2 for the implementation details. We build
two such flows: one depending on the full-dimensional observations and the other depending on the reduced
observations of dimension s = 4 defined by the basis Ṽs. We compare the performance of the UMNN flows
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(a) True and estimated parameter reduction vectors

0.0 0.5 1.00.0

0.5

1.0 True 1

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 True 2

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 True 3

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 True 4

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 Estimated 1

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 Estimated 2

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 Estimated 3

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.00.0

0.5

1.0 Estimated 4

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(b) True and estimated observation reduction vectors

Figure 4: Darcy flow problem: the four leading parameter and observation reduction vectors from the true
diagnostic matrix and our score ratio estimates of them. We note that reduction vectors are equivalent up
to a change in sign.

learned with an increasing number of map training samples (independent from the samples used to learn the
score ratio approximation) to true posterior predictive samples computed via MCMC.4

Figure 6 shows posterior samples generated using MCMC and approximate posterior samples generated
by the conditional normalizing flows with and without dimension reduction. Samples from the reduced-
dimensional inference procedure more closely match the true posterior samples, across the full range of
training set sizes. For quantitative comparisons, we let Q and Q̂ denote sets of MCMC samples and flow-
generated samples, respectively, and let F and F̂ denote their respective empirical cumulative distribution
functions. The Kolmogorov–Smirnov (KS) statistic is defined as K(Q, Q̂) = supq |F (q) − F̂ (q)|. Figure 5b
shows the decay of the KS statistics as a function of the number of flow training samples, averaged across
10 different realizations of the observation variable Y . We see that reducing the observation dimension prior
to performing inference yields lower KS statistics on average for any number of training samples.

4We perform MCMC on the high-dimensional latent parameters X described in Section 6.2, and then compute log-flux
samples Q via (12).
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Figure 5: Flux problem: (a) decay of the estimated error bounds that may used to select the dimension of
the reduction observation; (b) average KS statistic versus the number of training samples. Reducing the
dimension of the observation enables higher-fidelity inference.
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Figure 6: Flux problem: comparison of samples from the full dimensional maps (without dimension re-
duction) and reduced maps (with dimension reduction) to a reference solution computed using MCMC for
different amounts of map training data (left to right).

14



Published in Transactions on Machine Learning Research (04/2025)

6.4 Energy price modeling

We now consider a conditional generative modeling problem related to energy market modeling. In the
United States, there are seven independent system operators (ISOs) that operate competitive wholesale
electricity markets where generators and resellers can buy and sell power. For renewable generators and
microgrid operators, these markets provide important revenue opportunities that can improve the economic
viability of new and existing projects. A generator’s ability to capture these financial opportunities, however,
is dependent on their ability to forecast wholesale electricity prices days ahead of time. Wholesale electricity
prices vary by location and market and can be decomposed into the sum of three components: the energy
price, the congestion price, and the cost of transmission losses. Energy prices are related to the cost of
generation across an entire ISO and are constant over the entire region. Congestion costs vary by location and
are nonzero when the physical constraints of electrical components, like transmission lines or transformers,
are reached. As a step toward probabilistic forecasting, we investigate the conditional relationship between
energy prices of the PJM ISO, which services much of the north-mid Atlantic United States, and temporal
and weather-related covariates.

Our training dataset contains N = 20000 energy price and observation realizations from January 2020
through February 2023. Energy prices regularly take values across several orders of magnitude. As a
pre-processing step, we take the natural log of the energy prices, then shift and scale the samples by its
mean and standard deviation. Each observation realization comprises temperature and cloud coverage
data from 43 weather stations around the serviced region (see Figure 8a), as well as a temporal encoding
τ = (sin(2πDoY/365), cos(2πDoY/365), sin(2πHoD/24), cos(2πHoD/24)), where DoY and HoD denote the
day of the year and hour of the day of the prediction. This time encoding allows us to model the seasonal
and daily patterns of the energy market. The parameter X and observation Y (i.e., temperature, cloud
coverage and τ) dimensions are n = 1 and m = 90, respectively.

We use this dataset to estimate the score ratio for πX|Y and thus the diagnostic matrix HY
CMI via Algorithm 1.

In Figure 7a, we observe a sharp drop in the estimated posterior error from observation dimension reduction,
suggesting that the leading s = 4 modes should capture most of the information carried by the full observation
about the parameter. Figures 8b and 8c plot the two leading basis vectors for the observation, and labels
the observation components with the highest magnitudes. We see that the first vector primarily captures
the temperature predictions at a few key cities. The second vector gives the most weight to the temporal
encoding. Figure 9 plots the temperature and cloud coverage contribution of the leading four basis vectors
on a map of the United States. We see that many vectors have interpretable structures. For example, the
temperature component of v3 seems to be a weighted average of the temperature predictions across the
weather stations.

As before, we validate the learned reduction vectors by comparing the performance of approximate inference
using full- and reduced-dimensional conditional normalizing flows as a function of the number of training
samples from πX,Y . While the ground-truth posterior distributions are not available in this problem, we
do have the “true” realized value of the energy price. Thus we report the continuous ranked probability
score (CRPS)5, (Gneiting & Raftery, 2007) for the approximate posterior samples, a predictive metric used
to evaluate the performance of probabilistic forecasts, on average over 100 held-out energy-price samples.
Figure 7b shows that the reduced-dimensional flows are more predictive on average than the full-dimensional
flow. We also note that the CRPS is stable with as few as 100 training samples for the reduced-dimensional
map. Figure 10 shows six histograms of posterior samples generated from full- and reduced-dimensional flows
trained with 10000 samples for different realizations of the observation variable. In two of the examples, we
see that the reduced flows may capture underlying multi-modality in the posterior that the full-dimensional
flow (i.e., without observation reduction) does not.

5The CRPS is defined as CRPS(x∗, F ) =
∫

(F (x) −1x≥x∗ )dx where x∗ is the true parameter value and F is the cumulative
distribution function of the approximate one-dimensional posterior distribution.
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Figure 7: Energy price problems: (a) decay of the estimated error bounds that may used to select the
dimension of the reduction observation; (b) average CRPS versus the number of training samples. Reducing
the dimension of the observation enables higher-fidelity inference.
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Figure 8: Energy price problem: (a) the location of weather stations, (b/c) the two leading reduced vectors
plotted as line graphs with the five highest magnitude components labeled in red.
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(a) Temperature contribution, ṽ1
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(b) Temperature contribution, ṽ2

100 95 90 85 80 75 70 6525

30

35

40

45

50

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Temperature contribution, ṽ3
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(d) Temperature contribution, ṽ4
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(e) Cloud coverage contribution, ṽ1
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(f) Cloud coverage contribution, ṽ2
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(g) Cloud coverage contribution, ṽ3
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(h) Cloud coverage contribution, ṽ4

Figure 9: Energy price problem: the temperature and cloud coverage contributions of the leading four basis
vectors for the observation space
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Figure 10: Energy price problem: six estimated posteriors (corresponding to different realizations of the
observation) using both the full and reduced dimensional flows, trained with 10000 samples. The reduced
flow samples seem more predictive of the true realization for each realized energy price. In (c,d), we observe
that the reduced flow possibly captures bi-modality in the posterior.

7 Conclusions and future work

We introduce a framework for gradient-based dimension reduction of conditional distributions based on score
ratio matching. In the Bayesian setting, for example, our methodology identifies low-dimensional subspaces
of the parameter and observation spaces that best capture how the posterior departs from a chosen reference
distribution and how the observations can be reduced. These subspaces are accurately identified from a score
ratio network using a parameterization that exploits the score ratio’s gradient structure, together with low-
rank matrix regularizers and an eigenvector deflation technique. The discovered low-dimensional structure
is shown to improve the accuracy of amortized inference and prediction in gradient-free settings for diverse
applications, including PDE-constrained inverse problems and simulation-based inference of energy prices.

We outline several promising directions for future work. While the posterior approximation error guarantees
in this work are currently limited to reduced subspaces of the parameters and observations, future work will
investigate extensions to nonlinear dimension reduction; see Bigoni et al. (2022) for related work in a function
approximation setting where gradients are available. In addition, it will be valuable to understand how the
intrinsic dimension of the inference problem, along with the smoothness of the underlying densities, affect
the number of samples N needed to estimate the score ratio and to uncover this low-dimensional structure.
For example, if one can characterize how the error in an estimated score ratio ŵN

θ

EπX,Y

∥∥∥∥ŵN
θ (x, y)−∇x log

(
πX|Y (x|y)
ρ(x)

)∥∥∥∥2

,

in expectation over the sample, scales with an appropriate intrinsic dimension and sample size, then The-
orem 3.3 could be reformulated using user-specified parameters. We also note that Theorem 3.3 currently
addresses parameter dimension reduction but not observation dimension reduction. Future work will aim to
establish an analogous result for observation reduction, thereby mirroring the duality between Theorem 2.2
and Theorem 2.3.
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