
Infinite Time Horizon Safety of
Bayesian Neural Networks

Mathias Lechner∗∗
IST Austria

Klosterneuburg, Austria
mlechner@ist.ac.at

Ðord̄e Žikelić∗
IST Austria

Klosterneuburg, Austria
dzikelic@ist.ac.at

Krishnendu Chatterjee
IST Austria

Klosterneuburg, Austria
kchatterjee@ist.ac.at

Thomas A. Henzinger
IST Austria

Klosterneuburg, Austria
tah@ist.ac.at

Abstract

Bayesian neural networks (BNNs) place distributions over the weights of a neural
network to model uncertainty in the data and the network’s prediction. We consider
the problem of verifying safety when running a Bayesian neural network policy
in a feedback loop with infinite time horizon systems. Compared to the existing
sampling-based approaches, which are inapplicable to the infinite time horizon
setting, we train a separate deterministic neural network that serves as an infinite
time horizon safety certificate. In particular, we show that the certificate network
guarantees the safety of the system over a subset of the BNN weight posterior’s
support. Our method first computes a safe weight set and then alters the BNN’s
weight posterior to reject samples outside this set. Moreover, we show how to
extend our approach to a safe-exploration reinforcement learning setting, in order to
avoid unsafe trajectories during the training of the policy. We evaluate our approach
on a series of reinforcement learning benchmarks, including non-Lyapunovian
safety specifications.

1 Introduction

The success of deep neural networks (DNNs) across different domains has created the desire to apply
them in safety-critical applications such as autonomous vehicles [28, 30] and healthcare systems [41].
The fundamental challenge for the deployment of DNNs in these domains is certifying their safety [3].
Thus, formal safety verification of DNNs in isolation and closed control loops [26, 23, 17, 43, 13]
has become an active research topic.

Bayesian neural networks (BNNs) are a family of neural networks that place distributions over
their weights [36]. This allows learning uncertainty in the data and the network’s prediction, while
preserving the strong modelling capabilities of DNNs [32]. In particular, BNNs can learn arbitrary
data distributions from much simpler (e.g. Gaussian) weight distributions. This makes BNNs very
appealing for robotic and medical applications [33] where uncertainty is a central component of data.

Despite the large body of literature on verifying safety of DNNs, the formal safety verification of
BNNs has received less attention. Notably, [8, 45, 34] have proposed sampling-based techniques for
obtaining probabilistic guarantees about BNNs. Although these approaches provide some insight

∗Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

into BNN safety, they suffer from two key limitations. First, sampling provides only bounds on the
probability of the BNN’s safety which is insufficient for systems with critical safety implications.
For instance, having an autonomous vehicle with a 99.9% safety guarantee is still insufficient for
deployment if millions of vehicles are deployed. Second, samples can only simulate the system for a
finite time, making it impossible to reason about the system’s safety over an unbounded time horizon.

UnsafeSafe

Posterior

UnsafeSafe

Posterior
(+ rejection sampling)

Figure 1: BNNs are typically unsafe by default.
Top figure: The posterior of a typical BNN has
unbounded support, resulting in a non-zero proba-
bility of producing an unsafe action. Bottom figure:
Restricting the support of the weight distributions
via rejection sampling ensures BNN safety.

In this work, we study the safety verification
problem for BNN policies in safety-critical sys-
tems over the infinite time horizon. Formally,
we consider discrete-time closed-loop systems
defined by a dynamical system and a BNN pol-
icy. Given a set of initial states and a set of
unsafe (or bad) states, the goal of the safety
verification problem is to verify that no system
execution starting in an initial state can reach
an unsafe state. Unlike existing literature which
considers probability of safety, we verify sure
safety, i.e. safety of every system execution of
the system. In particular, we present a method
for computing safe weight sets for which every
system execution is safe as long as the BNN
samples its weights from this set.

Our approach to restrict the support of the
weight distribution is necessary as BNNs with
Gaussian weight priors typically produce out-
put posteriors with unbounded support. Conse-
quently, there is a low but non-zero probability for the output variable to lie in an unsafe region,
see Figure 1. This implies that BNNs are usually unsafe by default. We therefore consider the
more general problem of computing safe weight sets. Verifying that a weight set is safe allows
re-calibrating the BNN policy by rejecting unsafe weight samples in order to guarantee safety.

As most BNNs employ uni-modal weight priors, e.g. Gaussians, we naturally adopt weight sets
in the form of products of intervals centered at the means of the BNN’s weight distributions. To
verify safety of a weight set, we search for a safety certificate in the form of a safe positive invariant
(also known as safe inductive invariant). A safe positive invariant is a set of system states that
contains all initial states, is closed under the system dynamics and does not contain any unsafe state.
The key advantage of using safe positive invariants is that their existence implies the infinite time
horizon safety. We parametrize safe positive invariant candidates by (deterministic) neural networks
that classify system states for determining set inclusion. Moreover, we phrase the search for an
invariant as a learning problem. A separated verifier module then checks if a candidate is indeed a
safe positive invariant by checking the required properties via constraint solving. In case the verifier
finds a counterexample demonstrating that the candidate violates the safe positive invariant condition,
we re-train the candidate on the found counterexample. We repeat this procedure until the verifier
concludes that the candidate is a safe positive invariant ensuring that the system is safe.

The safe weight set obtained by our method can be used for safe exploration reinforcement learning.
In particular, generating rollouts during learning by sampling from the safe weight set allows an
exploration of the environment while ensuring safety. Moreover, projecting the (mean) weights onto
the safe weight set after each gradient update further ensures that the improved policy stays safe.

Contributions Our contributions can be summarized as follows:

1. We define a safety verification problem for BNN policies which overcomes the unbounded
posterior issue by computing and verifying safe weight sets. The problem generalizes
the sure safety verification of BNNs and solving it allows re-calibrating BNN policies via
rejection sampling to guarantee safety.

2. We introduce a method for computing safe weight sets in BNN policies in the form of
products of intervals around the BNN weights’ means. To verify safety of a weight set, our
novel algorithm learns a safe positive invariant in the form of a deterministic neural network.

3. We evaluate our methodology on a series of benchmark applications, including non-linear
systems and non-Lyapunovian safety specifications.

2

2 Related work

Verification of feed-forward NN Verification of robustness and safety properties in feed-forward
DNNs has received much attention but remains an active research topic [26, 23, 17, 40, 7, 43]. As
the majority of verification techniques were designed for deterministic NNs, they cannot be readily
applied to BNNs. The safety verification of feed-forward BNNs has been considered in [8] by using
samples to obtain statistical guarantees on the safety probability. The work of [45] also presents a
sampling-based approach, however it provides certified lower bounds on the safety probability.

The literature discussed above considers NNs in isolation, which can provide input-output guarantees
on a NN but are unable to reason holistically about the safety of the system that the NN is applied
in. Verification methods that concern the safety of NNs interlinked with a system require different
approaches than standalone NN verification, which we will discuss in the rest of this section.

Finite time horizon safety of BNN policies The work in [34] extends the method of [8] to verifying
safety in closed-loop systems with BNN policies. However, similar to the standalone setting of
[8], their method obtains only statistical guarantees on the safety probability and for the system’s
execution over a finite time horizon.

Safe RL Safe reinforcement learning has been primarily studied in the form of constrained Markov
decision processes (CMDPs) [2, 18]. Compared to standard MDPs, an agent acting in a CMDP
must satisfy an expected auxiliary cost term aggregated over an episode. The CMDP framework has
been the base of several RL algorithms [44], notably the Constrained Policy Optimization (CPO) [1].
Despite these algorithms providing a decent performance, the key limitation of CMDPs is that
the constraint is satisfied in expectation, which makes violations unlikely but nonetheless possible.
Consequently, the CMDP framework is unsuited for systems where constraint violations are critical.

Lyapunov-based stability Safety in the context of ”stability”, i.e. always returning to a ground state,
can be proved by Lyapunov functions [4]. Lyapunov functions have originally been considered to
study stability of dynamical systems [29]. Intuitively, a Lyapunov function assigns a non-negative
value to each state, and is required to decrease with respect to the system’s dynamics at any state
outside of the stable set. A Lyapunov-based method is proposed in [11] to ensure safety in CMDPs
during training. Recently, the work of [9] presented a method for learning a policy as well as a neural
network Lyapunov function which guarantees the stability of the policy. Similarly to our work, their
learning procedure is counterexample-based. However, unlike [9], our work considers BNN policies
and safety definitions that do not require returning to a set of ground states.

Barrier functions for dynamical systems Barrier functions can be used to prove infinite time
horizon safety in dynamical systems [38, 39]. Recent works have considered learning neural network
barrier functions [47], and a counterexample-based learning procedure is presented in [37].

Finite time horizon safety of NN policies Safety verification of continuous-time closed-loop systems
with deterministic NN policies has been considered in [24, 19], which reduces safety verification to
the reachability analysis in hybrid systems [10]. The work of [13] presents a method which computes
a polynomial approximation of the NN policy to allow an efficient approximation of the reachable
state set. Both works consider finite time horizon systems.

Our safety certificate most closely resembles inductive invariants for safety analysis in programs [14]
and positive invariants for dynamical systems [5].

3 Preliminaries and problem statement

We consider a discrete-time dynamical system

xt+1 = f(xt,ut), x0 ∈ X0.

The dynamics are defined by the function f : X × U → X where X ⊆ Rm is the state space and
U ⊆ Rn is the control action space, X0 ⊆ X is the set of initial states and t ∈ N≥0 denotes a
discretized time. At each time step t, the action is defined by the (possibly probabilistic) positional
policy π : X → D(U), which maps the current state xt to a distribution π(xt) ∈ D(U) over the set
of actions. We use D(U) to denote the set of all probability distributions over U . The next action is
then sampled according to ut ∼ π(xt), and together with the current state xt of the system gives
rise to the next state xt+1 of the system according to the dynamics f . Thus, the dynamics f together

3

with the policy π form a closed-loop system (or a feedback loop system). The aim of the policy is
to maximize the expected cumulative reward (possibly discounted) from each starting state. Given
a set of initial states X0 of the system, we say that a sequence of state-action pairs (xt,ut)

∞
t=0 is a

trajectory if x0 ∈ X0 and we have ut ∈ supp(π(xt)) and xt+1 = f(xt,ut) for each t ∈ N≥0.

A neural network (NN) is a function π : Rm → Rn that consists of several sequentially composed
layers π = l1 ◦ · · · ◦ lk. Formally, a NN policy maps each system state to a Dirac-delta distribution
which picks a single action with probability 1. Each layer li is parametrized by learned weight values
of the appropriate dimensions and an activation function a,

li(x) = a(Wix + bi),Wi ∈ Rni×mi ,bi ∈ Rni .

In this work, we consider ReLU activation functions a(x) = ReLU(x) = max{x,0}, although other
piecewise linear activation such as the leaky-ReLU [25] and PReLU [21] are applicable as well.

In Bayesian neural networks (BNNs), weights are random variables and their values are sampled, each
according to some distribution. Then each vector of sampled weights gives rise to a (deterministic)
neural network. Given a training set D, in order to train the BNN we assume a prior distribution
p(w,b) over the weights. The learning then amounts to computing the posterior distribution p(w,b |
D) via the application of the Bayes rule. As analytical inference of the posterior is in general infeasible
due to non-linearity introduced by the BNN architecture [32], practical training algorithms rely on
approximate inference, e.g. Hamiltonian Monte Carlo [36], variational inference [6] or dropout [15].

When the policy in a dynamical system is a BNN, the policy maps each system state xt to a probability
distribution π(xt) over the action space. Informally, this distribution is defined as follows. First,
BNN weights w, b are sampled according to the posterior BNN weight distribution, and the sampled
weights give rise to a deterministic NN policy πw,b. The action of the system is then defined as
ut = πw,b(xt). Formal definition of the distribution π(xt) is straightforward and proceeds by
considering the product measure of distributions of all weights.

Problem statement We now define the two safety problems that we consider in this work. The first
problem considers feed-forward BNNs, and the second problem considers closed-loop systems with
BNN policies. While our solution to the first problem will be a subprocedure in our solution to the
second problem, the reason why we state it as a separate problem is that we believe that our solution
to the first problem is also of independent interest for the safety analysis of feed-forward BNNs.

Let π be a BNN. Suppose that the vector (w,b) of BNN weights in π has dimension p+ q, where p
is the dimension of w and q is the dimension of b. For each 1 ≤ i ≤ p, let µi denote the mean of the
random variable wi. Similarly, for each 1 ≤ i ≤ q, let µp+i denote the mean of the random variable
bi. Then, for each ε ∈ [0,∞], we define the set Wπ

ε of weight vectors via

Wπ
ε =

p+q∏
i=1

[µi − ε, µi + ε] ⊆ Rp+q.

We now proceed to defining our safety problem for feed-forward BNNs. Suppose that we are given a
feed-forward BNN π, a set X0 ⊆ Rm of input points and a set Xu ⊆ Rn of unsafe (or bad) output
points. For a concrete vector (w,b) of weight values, let πw,b to be the (deterministic) NN defined
by these weight values. We say that πw,b is safe if for each x ∈ X0 we have πw,b(x) 6∈ Xu, i.e. if
evaluating πw,b on all input points does not lead to an unsafe output.

Problem 1 (Feed-forward BNNs). Let π be a feed-forward BNN, X0 ⊆ Rm a set of input
points and Xu ⊆ Rn a set of unsafe output points. Let ε ∈ [0,∞]. Determine whether each
deterministic NN in {πw,b | (w,b) ∈Wπ

ε } is safe.

Next, we define our safety problem for closed-loop systems with BNN policies. Consider a closed-
loop system defined by a dynamics function f , a BNN policy π and an initial set of states X0. Let
Xu ⊆ X be a set of unsafe (or bad) states. We say that a trajectory (xt,ut)

∞
t=0 is safe if xt 6∈ Xu for

all t ∈ N0, hence if it does not reach any unsafe states. Note that this definition implies infinite time
horizon safety of the trajectory. Given ε ∈ [0,∞], define the set Trajf,πε to be the set of all system
trajectories in which each sampled weight vector belongs to Wπ

ε .

4

Problem 2 (Closed-loop systems with BNN policies). Consider a closed-loop system defined
by a dynamics function f , a BNN policy π and a set of initial states X0. Let Xu be a set of
unsafe states. Let ε ∈ [0,∞]. Determine whether each trajectory in Trajf,πε is safe.

Note that the question of whether the BNN policy π is safe (i.e. whether each trajectory of the system
is safe) is a special case of the above problem which corresponds to ε =∞.

4 Main results

In this section we present our method for solving the safety problems defined in the previous section,
with Section 4.1 considering Problem 1 and Section 4.2 considering Problem 2. Both problems
consider safety verification with respect to a given value of ε ∈ [0,∞], so in Section 4.3 we present
our method for computing the value of ε for which our solutions to Problem 1 and Problem 2 may be
used to verify safety. We then show in Section 4.4 how our new methodology can be adapted to the
safe exploration RL setting.

4.1 Safe weight sets for feed-forward BNNs

Consider a feed-forward BNN π, a set X0 ⊆ Rm of inputs and a set Xu ⊆ Rn of unsafe output of
the BNN. Fix ε ∈ [0,∞]. To solve Problem 1, we show that the decision problem of whether each
deterministic NN in {πw,b | (w,b) ∈ Wπ

ε } is safe can be encoded as a system of constraints and
reduced to constraint solving.

Suppose that π = l1 ◦ · · · ◦ lk consists of k layers, with each li(x) = ReLU(Wix + bi). Denote by
Mi the matrix of the same dimension as Wi, with each entry equal to the mean of the corresponding
random variable weight in Wi. Similarly, define the vector mi of means of random variables in bi.
The real variables of our system of constraints are as follows, each of appropriate dimension:

• x0 encodes the BNN inputs, xl encodes the BNN outputs;
• xin

1 , . . . , xin
l−1 encode vectors of input values of each neuron in the hidden layers;

• xout
1 , . . . , xout

l−1 encode vectors of output values of each neuron in the hidden layers;
• x0,pos and x0,neg are dummy variable vectors of the same dimension as x0 and which will

be used to distinguish between positive and negative NN inputs in x0, respectively.

We use 1 to denote the vector/matrix whose all entries are equal to 1, of appropriate dimensions
defined by the formula in which it appears. Our system of constraints is as follows:

x0 ∈ X0, xl ∈ Xu (Input-output conditions)

xout
i = ReLU(xin

i), for each 1 ≤ i ≤ l − 1 (ReLU encoding)

(Mi − ε · 1)xout
i + (mi − ε · 1) ≤ xin

i+1, for each 1 ≤ i ≤ l − 1

xin
i+1 ≤ (Mi + ε · 1)xout

i + (mi + ε · 1), for each 1 ≤ i ≤ l − 1
(BNN hidden layers)

x0,pos = ReLU(x0), x0,neg = −ReLU(−x0)

(M0 − ε · 1)x0,pos + (M0 + ε · 1)x0,neg + (m0 − ε · 1) ≤ xin
1

xin
1 ≤ (M0 + ε · 1)xout

0 + (M0 − ε · 1)x0,neg + (m0 + ε · 1)

(BNN input layer)

Denote by Φ(π,X0,Xu, ε) the system of constraints defined above. The proof of Theorem 1 shows
that it encodes that x0 ∈ X0 is an input point for which the corresponding output point of π is
unsafe, i.e. xl = π(x0) ∈ Xu. The first equation encodes the input and output conditions. The
second equation encodes the ReLU input-output relation for each hidden layer neuron. The remaining
equations encode the relation between neuron values in successive layers of the BNN as well as that
the sampled BNN weight vector is in Wπ

ε . For hidden layers, we know that the output value of each
neuron is nonnegative, i.e. xout

i ≥ 0 for the i-th hidden layer where 1 ≤ i ≤ l − 1, and so

(Mi − ε · 1)xout
i ≤ (Mi + ε · 1)xout

i .

5

Hence, the BNN weight relation with neurons in the successive layer as well as the fact that the
sampled weights are in Wπ

ε is encoded as in equations 3-4 above. For the input layer, however,
we do not know the signs of the input neuron values x0 and so we introduce dummy variables
x0,pos = ReLU(x0) and x0,neg = −ReLU(−x0) in equation 5. This allows encoding the BNN
weight relations between the input layer and the first hidden layer as well as the fact that the sampled
weight vector is in Wπ

ε , as in equations 6-7. Theorem 1 shows that Problem 1 is equivalent to solving
the system of constraints Φ(π,X0,Xu, ε). Its proof can be found in the Supplementary Material.

Theorem 1. Let ε ∈ [0,∞]. Then each deterministic NN in {πw,b | (w,b) ∈ Wπ
ε } is safe if and

only if the system of constraints Φ(π,X0,Xu, ε) is not satisfiable.

Solving the constraints Observe that ε, Mi and mi, 1 ≤ i ≤ l − 1, are constant values that are
known at the time of constraint encoding. Thus, in Φ(π,X0,Xu, ε), only the ReLU constraints and
possibly the input-output conditions are not linear. Depending on the form of X0 and Xu and on how
we encode the ReLU constraints, we may solve the system Φ(π,X0,Xu, ε) in several ways:

1. MILP. It is shown in [31, 12, 43] that the ReLU relation between two real variables can be
encoded via mixed-integer linear constraints (MILP) by introducing 0/1-integer variables to
encode whether a given neuron is active or inactive. Hence, if X0 and Xu are given by linear
constraints, we may solve Φ(π,X0,Xu, ε) by a MILP solver. The ReLU encoding requires
that each neuron value is bounded, which is ensured if X0 is a bounded set and if ε <∞.

2. Reluplex. In order to allow unbounded X0 and ε = ∞, we may use algorithms based on
the Reluplex calculus [26, 27] to solve Φ(π,X0,Xu, ε). Reluplex is an extension of the
standard simplex algorithm for solving systems of linear constraints, designed to allow
ReLU constraints as well. While Reluplex does not impose the boundedness condition, it is
in general less scalable than MILP-solving.

3. NRA-SMT. Alternatively, if X0 or Xu are given by non-linear constraints we may solve
them by using an NRA-SMT-solver (non-linear real arithmetic satisfiability modulo theory),
e.g. dReal [16]. To use an NRA-SMT-solver, we can replace the integer 0/1-variables of the
ReLU neuron relations encoding with real variables that satisfy the constraint x(x− 1) = 0.
While NRA-SMT is less scalable compared to MILP, we note that it has been used in
previous works on RL stability verification [9].

Safety via rejection sampling As discussed in Section 1, once the safety of NNs in {πw,b | (w,b) ∈
Wπ
ε } has been verified, we can “re-calibrate” the BNN to reject sampled weights which are not in

Wπ
ε . Hence, rejection sampling gives rise to a safe BNN.

4.2 Safe weight sets for closed-loop systems with BNN Policies

Now consider a closed-loop system with a dynamics function f : X × U → X with X ⊆ Rm and
U ⊆ Rn, a BNN policy π, an initial state set X0 ⊆ X and an unsafe state set Xu ⊆ X . Fix ε ∈ [0,∞].
In order to solve Problem 2 and verify safety of each trajectory contained in Trajf,πε , our method
searches for a positive invariant-like safety certificate that we define below.

Positive invariants for safety A positive invariant in a dynamical system is a set of states which
contains all initial states and which is closed under the system dynamics. These conditions ensure
that states of all system trajectories are contained in the positive invariant. Hence, a positive invariant
which does not contain any unsafe states can be used to certify safety of every trajectory over infinite
time horizon. In this work, however, we are not trying to prove safety of every trajectory, but only of
those trajectories contained in Trajf,πε . To that end, we define Wπ

ε -safe positive invariants. Intuitively,
a Wπ

ε -safe positive invariant is required to contain all initial states, to be closed under the dynamics f
and the BNN policy π when the sampled weight vector is in Wπ

ε , and not to contain any unsafe state.

Definition 1 (Wπ
ε -safe positive invariants). A set Inv ⊆ X is said to be a Wπ

ε -positive invariant if
X0 ⊆ Inv, for each x ∈ Inv and (w,b) ∈Wπ

ε we have that f(x, πw,b(x)) ∈ Inv, and Inv ∩Xu = ∅.

Theorem 2 shows that Wπ
ε -safe positive invariants can be used to verify safety of all trajectories in

Trajf,πε in Problem 2. The proof is straightforward and is deferred to the Supplementary Material.

Theorem 2. If there exists a Wπ
ε -safe positive invariant, then each trajectory in Trajf,πε is safe.

6

Algorithm 1 Learning algorithm for Wπ
ε -safe positive invariants

Input Dynamics function f , BNN policy π, Initial state set X0, Unsafe state set Xu, ε ∈ [0,∞]

X̃0, X̃u ← random samples of X0,Xu
Dspec ← X̃u × {0} ∪ X̃0 × {1}, Dce ← {}
Optional (bootstrapping): Sbootstrap ← sample finite trajectories with initial state sampled from X

Dspec ← Dspec ∪ {(x, 0)| ∃s ∈ Sbootstrap that starts in x ∈ X and reaches Xu}
∪ {(x, 1)| ∃s ∈ Sbootstrap that starts in x ∈ X and does not reach Xu}

Pre-train neural network gInv on datasets Dspec and Dce with loss function L
while timeout not reached do

if ∃(x,x′,u,w,b) s.t. gInv(x) ≥ 0, gInv(x′) < 0, (w,b) ∈ Wπ
ε , u = πw,b(x), x′ = f(x,u)

then
Dce ← Dce ∪ {(x,x′)}

else if ∃(x) s.t. x ∈ X0, gInv(x) < 0 then
Dspec ← Dspec ∪ {(x, 1)}

else if ∃(x) s.t. x ∈ Xu, gInv(x) ≥ 0 then
Dspec ← Dspec ∪ {(x, 0)}

else
Return Safe

end if
Train neural network gInv on datasets Dspec and Dce with loss function L

end while
Return Unsafe

Learning positive invariants We now present a learning algorithm for a Wπ
ε -safe positive invariant.

It learns a neural network gInv : Rm → R, where the positive invariant is then defined as the set
Inv = {x ∈ X | gInv(x) ≥ 0}. The pseudocode is given in Algorithm 1.

The algorithm first samples X̃0 from X0 and X̃u from Xu and initializes the specification set Dspec to
X̃u×{0} ∪ X̃0×{1} and the counterexample set Dce to an empty set. Optionally, the algorithm also
bootstraps the positive invariant network by initializing Dspec with random samples from the state
space X labeled with Monte-Carlo estimates of reaching the unsafe states. The rest of the algorithm
consists of two modules which are composed into a loop: the learner and the verifier. In each loop
iteration, the learner first learns a Wπ

ε -safe positive invariant candidate which takes the form of a
neural network gInv. This is done by minimizing the loss function L that depends on Dspec and Dce:

L(gInv) =
1

|Dspec|
∑

(x,y)∈Dspec

Lcls
(
gInv(x), y

)
+ λ

1

|Dce|
∑

(x,x′)∈Dce

Lce
(
gInv(x), gInv(x′)

)
, (1)

where λ is a tuning parameter and Lcls a binary classification loss function, e.g. the 0/1-loss
L0/1(z, y) = 1[1[z ≥ 0] 6= y] or the logistic loss Llog(z, y) = z − z · y + log(1 + exp(−z))
as its differentiable alternative. The term Lce is the counterexample loss which we define via

Lce(z, z
′) = 1

[
z > 0

]
1
[
z′ < 0

]
Lcls
(
z, 0
)
Lcls
(
z′, 1

)
. (2)

Intuitively, the first sum in eq. (1) forces gInv to be nonnegative at initial states and negative at unsafe
states contained in Dspec, and the second term forces each counterexample in Dce not to destroy the
closedness of Inv under the system dynamics.

Once gInv is learned, the verifier checks whether Inv is indeed a Wπ
ε -safe positive invariant. To do

this, the verifier needs to check the three defining properties of Wπ
ε -safe positive invariants:

1. Closedness of Inv under system dynamics. The verifier checks if there exist states x ∈ Inv,
x′ 6∈ Inv and a BNN weight vector (w,b) ∈Wπ

ε such that f(x, πw,b(x)) = x′. To do this,
it introduces real variables x,x′ ∈ Rm, u ∈ Rn and y, y′ ∈ R, and solves:

maximize y − y′ subject to

y ≥ 0, y′ < 0, y = gInv(x), y′ = gInv(x′)

x′ = f(x,u)

u is an output of π on input x and weights (w,b) ∈Wπ
ε

7

The conditions y = gInv(x) and y′ = gInv(x′) are encoded by using the existing techniques
for encoding deterministic NNs as systems of MILP/Reluplex/NRA-SMT constraints. The
condition in the third equation is encoded simply by plugging variable vectors x and u into
the equation for f . Finally, for condition in the fourth equation we use our encoding from
Section 4.1 where we only need to omit the Input-output condition. The optimization objec-
tive is added in order to search for the “worst” counterexample. We note that MILP [20] and
SMT [16] solvers allow optimizing linear objectives, and recently Reluplex algorithm [26]
has also been extended to allow solving optimization problems [42]. If a counterexample
(x,x′) is found, it is added to Dce and the learner tries to learn a new candidate. If the
system of constraints is unsatisfiable, the verifier proceeds to the second check.

2. Non-negativity on X0. The verifier checks if there exists x ∈ X0 for which gInv(x) < 0. If
such x is found, (x, 1) is added to Dspec and the learner then tries to learn a new candidate.
If the system of constraints is unsatisfiable, the verifier proceeds to the third check.

3. Negativity on Xu. The verifier checks if there exists x ∈ Xu with gInv(x) ≥ 0. If such
x is found, (x, 0) is added to Dspec and the learner then tries to learn a new candidate. If
the system of constraints is unsatisfiable, the veririfer concludes that Inv is a Wπ

ε -positive
invariant which does not contain any unsafe state and so each trajectory in Trajf,πε is safe.

Theorem 3 shows that neural networks f Inv for which Inv is a Wπ
ε -safe positive invariants are

global minimizers of the loss function L with the 0/1-classification loss. Theorem 4 establishes the
correctness of our algorithm. Proofs can be found in the Supplementary Material.
Theorem 3. The loss function L is nonnegative for any neural network g, i.e. L(g) ≥ 0. Moreover, if
Inv is a Wπ

ε -safe positive invariant and Lcls the 0/1-loss, then L(gInv) = 0. Hence, neural networks
gInv for which Inv is a Wπ

ε -safe positive invariant are global minimizers of the loss function L when
Lcls is the 0/1-loss.
Theorem 4. If the verifier in Algorithm 1 shows that constraints in three checks are unsatisfiable,
then the computed Inv is indeed a Wπ

ε -safe positive invariant. Hence, Algorithm 1 is correct.

Safety via rejection sampling As discussed in Section 1, once the safety of all trajectories in Trajf,πε
has been verified, we can “re-calibrate” the BNN policy to reject sampled weights which are not in
Wπ
ε . Hence, rejection sampling gives rise to a safe BNN policy.

4.3 Computation of safe weight sets and the value of ε

Problems 1 and 2 assume a given value of ε for which safety needs to be verified. In order to compute
the largest value of ε for which our approach can verify safety, we start with a small value of ε and
iteratively increase it until we reach a value that cannot be certified or until the timeout is reached, in
order to compute as large safe weight set as possible. In each iteration, our Algorithm 1 does not
start from scratch but is initialized with the gInv and Dspec from the previous successful iteration,
i.e. attempting to enlarge the current safe weight set. Our iterative process significantly speeds up the
search process compared to naively restarting our algorithm in every iteration.

4.4 Safe exploration reinforcement learning

Given a safe but non-optimal initial policy π0, safe exploration reinforcement learning (SERL)
concerns the problem of improving the expected return of π0 while ensuring safety when collecting
samples of the environment [44, 1, 35]. Our method from Section 4.2 for computing safe weight sets
can be adapted to this setting with minimal effort. In particular, the safety bound ε for the intervals
centered at the weight means can be used in combination with the rejection sampling to generate safe
but randomized rollouts on the environment. Moreover, ε provides bounds on the gradient updates
when optimizing the policy using Deep Q-learning or policy gradient methods, i.e., performing
projected gradient descent. We sketch an algorithm for SERL in the Supplementary Material.

5 Experiments

We perform an experimental evaluation of our proposed method for learning positive invariant neural
networks that prove infinite time horizon safety. Our evaluation consists of an ablation study where
we disable different core components of Algorithm 1 and measure their effects on the obtained

8

(a) Vector field of the system when
controlled by the posterior’s mean.
Green/red arrows indicate empiri-
cal safe/unsafe estimates.

(b) First guess of gInv. Green area
shows gInv > 0, orange area gInv <
0. Red markers show the found
counterexample.

(c) Final gInv proving the safety of
the system. Previous counterexam-
ples marked in red.

Figure 2: Invariant learning shown on the inverted pendulum benchmark.

safety bounds and the algorithm’s runtime. First, we run the algorithm without any re-training on the
counterexamples. In the second step, we run Algorithm 1 by initializing Dspec with samples from X0

and Xu only. Finally, we bootstrap the positive invariant network by initializing Dspec with random
samples from the state space labeled with Monte-Carlo estimates of reaching the unsafe states. We
consider environments with a piecewise linear dynamic function, initial and unsafe state sets so that
the verification steps of our algorithm can be reduced to MILP-solving using Gurobi [20]. Details on
our evaluation are in the Supplementary Material. Code is publicly available 2.

We conduct our evaluation on three benchmark environments that differ in terms of complexity and
safety specifications. We train two BNN policies for each benchmark-ablation pair, one with Bayesian
weights from the second layer on (with N (0, 0.1) prior) and one with Bayesian weights in all layers
(withN (0, 0.05) prior). Recall, in our BNN encoding in Section 4.1, we showed that encoding of the
BNN input layer requires additional constraints and extra care, since we do not know the signs of
input neuron values. Hence, we consider two BNN policies in our evaluation in order to study how
the encoding of the input layer affects the safe weight set computation.

Our first benchmark represents an unstable linear dynamical system of the form xt+1 = Axt +But.
A BNN policy stabilizes the system towards the point (0, 0). Consequently, the set of unsafe states is
defined as {x ∈ R2 | |x|∞ ≥ 1.2}, and the initial states as {x ∈ R2 | |x|∞ ≤ 0.6}.
Our second benchmark is the inverted pendulum task, which is a classical non-linear control problem.
The two state variables a and b represent the angle and angular velocity of a pendulum that must be
controlled in an upward direction. The actions produced by the policy correspond to a torque applied
to the anchor point. Our benchmark concerns a variant of the original problem where the non-linearity
in f is expressed by piecewise linear functions. The resulting system, even with a trained policy, is
highly unstable, as shown in Figure 2. The set of initial states corresponds to pendulum states in
an almost upright position and with small angular velocity. The set of unsafe states represents the
pendulum falling down. Figure 2 visualizes the system and the learned invariant’s decision boundary
for the inverted pendulum task.

While the previous two benchmarks concern stability specifications, we evaluate our method on a
non-Lyapunovian safety specification in our third benchmark. In particular, our third benchmark is
a collision avoidance task, where the system does not stabilize to the same set of terminal states in
every execution. The system is described by three variables. The first variable specifies the agent’s
own vertical location, while the other two variables specify an intruder’s vertical and horizontal
position. The objective is to avoid colliding with the intruder who is moving toward the agent by
lateral movement commands as the policy’s actions. The initial states represent far-away intruders,
and crashes with the intruder define the unsafe states.

Table 1 shows the results of our evaluation. Our results demonstrate that re-training with the
counterexamples is the key component that determines our algorithm’s success. In all cases, except
for the linear dynamical system, the initial guess of the invariant candidate violates the invariant

2https://github.com/mlech26l/bayesian_nn_safety

9

https://github.com/mlech26l/bayesian_nn_safety

Table 1: Results of our benchmark evaluation. The epsilon values are multiples of the weight’s
standard deviation σ. We evaluated several epsilon values, and the table shows the largest that could
be proven safe. A dash ”-” indicates an unsuccessful invariant search. Runtime in seconds.

Environment No re-training Init Dspec with X0 and Xu Bootstrapping Dspec

Verified Runtime Verified Runtime Verified Runtime

Unstable LDS - 3 1.5σ 569 2σ 760
Unstable LDS (all) 0.2σ 3 0.5σ 6 0.5σ 96
Pendulum - 2 2σ 220 2σ 40
Pendulum (all) - 2 0.2σ 1729 1.5σ 877
Collision avoid. - 2 - - 2σ 154
Collision avoid. (all) - 2 - - 1.5σ 225

condition. Moreover, boostrapping Dspec with random points labeled by empirical estimates of
reaching the unsafe states improves the search process significantly.

6 Conclusion

In this work we formulated the safety verification problem for BNN policies in infinite time horizon
systems, that asks to compute safe BNN weight sets for which every system execution is safe as
long as the BNN samples its weights from this set. Solving this problem allows re-calibrating
the BNN policy to reject unsafe weight samples in order to guarantee system safety. We then
introduced a methodology for computing safe weight sets in BNN policies in the form of products
of intervals around the BNN weight’s means, and a method for verifying their safety by learning
a positive invariant-like safety certificate. We believe that our results present an important first
step in guaranteeing safety of BNNs for deployment in safety-critical scenarios. While adopting
products of intervals around the BNN’s weight means is a natural choice given that BNN priors are
typically unimodal distributions, this is still a somewhat restrictive shape for safe weight sets. Thus,
an interesting direction of future work would be to study more general forms of safe weight sets that
could be used for re-calibration of BNN posteriors and their safety verification. Another interesting
problem would be to design an approach for refuting a weight set as unsafe which would complement
our method, or to consider closed-loop systems with stochastic environment dynamics.

Any verification method for neural networks, even more so for neural networks in feedback loops,
suffers from scalability limitations due to the underlying complexity class [26, 24]. Promising research
directions on improving the scalability of our approach by potentially speeding up the constraint
solving step are gradient based optimization techniques [22] and to incorporate the constraint solving
step already in the training procedure [46].

Since the aim of AI safety is to ensure that systems do not behave in undesirable ways and that safety
violating events are avoided, we are not aware of any potential negative societal impacts.

Acknowledgments

This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23
(Wittgenstein Award), ERC CoG 863818 (FoRM-SMArt), and the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement
No. 665385.

References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.

In International Conference on Machine Learning, pages 22–31. PMLR, 2017.

[2] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

10

[4] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. Safe
model-based reinforcement learning with stability guarantees. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 908–918, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/766ebcd59621e305170616ba3d3dac32-Abstract.html.

[5] Franco Blanchini and Stefano Miani. Set-theoretic methods in control. Springer, 2008.

[6] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International Conference on Machine Learning, pages 1613–1622. PMLR,
2015.

[7] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and Pawan Kumar Mudigonda.
A unified view of piecewise linear neural network verification. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 4795–4804, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
be53d253d6bc3258a8160556dda3e9b2-Abstract.html.

[8] Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Andrea Patane, and Matthew
Wicker. Statistical guarantees for the robustness of bayesian neural networks. In Sarit Kraus,
editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 5693–5700. ijcai.org, 2019. doi:
10.24963/ijcai.2019/789. URL https://doi.org/10.24963/ijcai.2019/789.

[9] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 3240–3249, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html.

[10] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 258–263.
Springer, 2013. doi: 10.1007/978-3-642-39799-8_18. URL https://doi.org/10.1007/
978-3-642-39799-8_18.

[11] Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, and Mohammad Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In Samy Bengio, Hanna M. Wal-
lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 8103–8112, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
4fe5149039b52765bde64beb9f674940-Abstract.html.

[12] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range
analysis for deep feedforward neural networks. In NASA Formal Methods Symposium, pages
121–138. Springer, 2018.

[13] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural
feedback systems using regressive polynomial rule inference. In Necmiye Ozay and Pavithra
Prabhakar, editors, Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019, pages
157–168. ACM, 2019. doi: 10.1145/3302504.3311807. URL https://doi.org/10.1145/
3302504.3311807.

11

https://proceedings.neurips.cc/paper/2017/hash/766ebcd59621e305170616ba3d3dac32-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/766ebcd59621e305170616ba3d3dac32-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
https://doi.org/10.24963/ijcai.2019/789
https://proceedings.neurips.cc/paper/2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://proceedings.neurips.cc/paper/2018/hash/4fe5149039b52765bde64beb9f674940-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/4fe5149039b52765bde64beb9f674940-Abstract.html
https://doi.org/10.1145/3302504.3311807
https://doi.org/10.1145/3302504.3311807

[14] Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics, 19:19–32, 1967. URL http://laser.cs.umass.edu/courses/cs521-621.
Spr06/papers/Floyd.pdf.

[15] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 1050–1059. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/gal16.
html.

[16] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. δ-complete decision procedures for
satisfiability over the reals. In International Joint Conference on Automated Reasoning, pages
286–300. Springer, 2012.

[17] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin T. Vechev. AI2: safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23
May 2018, San Francisco, California, USA, pages 3–18. IEEE Computer Society, 2018. doi:
10.1109/SP.2018.00058. URL https://doi.org/10.1109/SP.2018.00058.

[18] Peter Geibel. Reinforcement learning for mdps with constraints. In Johannes Fürnkranz, Tobias
Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006, 17th European
Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings,
volume 4212 of Lecture Notes in Computer Science, pages 646–653. Springer, 2006. doi:
10.1007/11871842_63. URL https://doi.org/10.1007/11871842_63.

[19] Sophie Gruenbacher, Jacek Cyranka, Mathias Lechner, Md Ariful Islam, Scott A Smolka, and
Radu Grosu. Lagrangian reachtubes: The next generation. In 2020 59th IEEE Conference on
Decision and Control (CDC), pages 1556–1563. IEEE, 2020.

[20] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. URL http://www.
gurobi.com.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1026–1034. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.123. URL https:
//doi.org/10.1109/ICCV.2015.123.

[22] Patrick Henriksen and Alessio R. Lomuscio. Efficient neural network verification via adaptive
refinement and adversarial search. In ECAI, volume 325 of Frontiers in Artificial Intelligence
and Applications, pages 2513–2520. IOS Press, 2020.

[23] Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable verification of quantized
neural networks. In AAAI, pages 3787–3795. AAAI Press, 2021.

[24] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig:
verifying safety properties of hybrid systems with neural network controllers. In Necmiye
Ozay and Pavithra Prabhakar, editors, Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019, pages 169–178. ACM, 2019. doi: 10.1145/3302504.3311806. URL https:
//doi.org/10.1145/3302504.3311806.

[25] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the
best multi-stage architecture for object recognition? In IEEE 12th International Conference
on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, pages
2146–2153. IEEE Computer Society, 2009. doi: 10.1109/ICCV.2009.5459469. URL https:
//doi.org/10.1109/ICCV.2009.5459469.

[26] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor
Kuncak, editors, Computer Aided Verification - 29th International Conference, CAV 2017,

12

http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/11871842_63
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469

Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in
Computer Science, pages 97–117. Springer, 2017. doi: 10.1007/978-3-319-63387-9_5. URL
https://doi.org/10.1007/978-3-319-63387-9_5.

[27] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel
Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J.
Kochenderfer, and Clark W. Barrett. The marabou framework for verification and analysis
of deep neural networks. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verifica-
tion - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I, volume 11561 of Lecture Notes in Computer Science, pages 443–452.
Springer, 2019. doi: 10.1007/978-3-030-25540-4_26. URL https://doi.org/10.1007/
978-3-030-25540-4_26.

[28] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8248–8254. IEEE, 2019.

[29] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall Upper Saddle
River, NJ, 2002.

[30] Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and
Radu Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence,
2(10):642–652, 2020.

[31] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

[32] David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Comput., 4(3):448–472, 1992. doi: 10.1162/neco.1992.4.3.448. URL https://doi.org/10.
1162/neco.1992.4.3.448.

[33] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto Cipolla,
and Adrian Weller. Concrete problems for autonomous vehicle safety: Advantages of bayesian
deep learning. International Joint Conferences on Artificial Intelligence, Inc., 2017.

[34] Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin Gal, and
Marta Kwiatkowska. Uncertainty quantification with statistical guarantees in end-to-end au-
tonomous driving control. In 2020 IEEE International Conference on Robotics and Automation,
ICRA 2020, Paris, France, May 31 - August 31, 2020, pages 7344–7350. IEEE, 2020. doi:
10.1109/ICRA40945.2020.9196844. URL https://doi.org/10.1109/ICRA40945.2020.
9196844.

[35] Yashwanth Kumar Nakka, Anqi Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, and Soon-
Jo Chung. Chance-constrained trajectory optimization for safe exploration and learning of
nonlinear systems. IEEE Robotics and Automation Letters, 6(2):389–396, 2020.

[36] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[37] Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. Automated and formal synthesis
of neural barrier certificates for dynamical models. In Jan Friso Groote and Kim Guldstrand
Larsen, editors, Tools and Algorithms for the Construction and Analysis of Systems - 27th
International Conference, TACAS 2021, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part I, volume 12651 of Lecture Notes in Computer Science, pages
370–388. Springer, 2021. doi: 10.1007/978-3-030-72016-2_20. URL https://doi.org/10.
1007/978-3-030-72016-2_20.

[38] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates.
In Rajeev Alur and George J. Pappas, editors, Hybrid Systems: Computation and Control, 7th
International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27, 2004, Proceedings,
volume 2993 of Lecture Notes in Computer Science, pages 477–492. Springer, 2004. doi: 10.
1007/978-3-540-24743-2_32. URL https://doi.org/10.1007/978-3-540-24743-2_
32.

13

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1109/ICRA40945.2020.9196844
https://doi.org/10.1109/ICRA40945.2020.9196844
https://doi.org/10.1007/978-3-030-72016-2_20
https://doi.org/10.1007/978-3-030-72016-2_20
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-540-24743-2_32

[39] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case and stochas-
tic safety verification using barrier certificates. IEEE Trans. Autom. Control., 52(8):1415–
1428, 2007. doi: 10.1109/TAC.2007.902736. URL https://doi.org/10.1109/TAC.2007.
902736.

[40] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep neu-
ral networks with provable guarantees. In Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pages 2651–2659. ijcai.org, 2018. doi: 10.24963/ijcai.2018/368. URL
https://doi.org/10.24963/ijcai.2018/368.

[41] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image analysis.
Annual review of biomedical engineering, 19:221–248, 2017.

[42] Christopher A Strong, Haoze Wu, Aleksandar Zeljić, Kyle D Julian, Guy Katz, Clark Barrett,
and Mykel J Kochenderfer. Global optimization of objective functions represented by relu
networks. arXiv preprint arXiv:2010.03258, 2020.

[43] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=HyGIdiRqtm.

[44] Eiji Uchibe and Kenji Doya. Constrained reinforcement learning from intrinsic and extrinsic
rewards. In 2007 IEEE 6th International Conference on Development and Learning, pages
163–168. IEEE, 2007.

[45] Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska. Probabilistic safety
for bayesian neural networks. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings of
the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2020, virtual online,
August 3-6, 2020, volume 124 of Proceedings of Machine Learning Research, pages 1198–1207.
AUAI Press, 2020. URL http://proceedings.mlr.press/v124/wicker20a.html.

[46] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S.
Boning, and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural
networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=Skxuk1rFwB.

[47] Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. Synthesizing barrier certificates
using neural networks. In Aaron D. Ames, Sanjit A. Seshia, and Jyotirmoy Deshmukh, editors,
HSCC ’20: 23rd ACM International Conference on Hybrid Systems: Computation and Control,
Sydney, New South Wales, Australia, April 21-24, 2020, pages 25:1–25:11. ACM, 2020. doi:
10.1145/3365365.3382222. URL https://doi.org/10.1145/3365365.3382222.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In our conclusion in Section 6,

we say that the current form of safety weight set is somewhat restrictive although it is
naturally motivated. Thus, an interesting direction of future work is to consider more
general safe weight sets. Another potential limitation is the scalability of some of the
constraint solving techniques that we use in this work, which we discuss in Section 4.1.
However, all of the constraint-solving techniques we discuss were already used in
previous work for RL safety and stability verification.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] As the
aim of AI safety is to guarantee that safety-critical events are avoided, we are not aware
of any negative societal impact of our work. See Section 6.

14

https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.24963/ijcai.2018/368
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
http://proceedings.mlr.press/v124/wicker20a.html
https://openreview.net/forum?id=Skxuk1rFwB
https://openreview.net/forum?id=Skxuk1rFwB
https://doi.org/10.1145/3365365.3382222

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section 3

we say that our work considers NNs with ReLU activation functions and that our
framework can be applied to other piecewise linear activations. Thus, when we verify
safe weight sets, our safety certificate also takes the form of a deterministic NN with
ReLU activations. When it comes to solving systems of constraints in our algorithm, in
Section 4.1 we clearly state the assumptions each constraint solving technique makes.

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are included
in the Supplementary Material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Weights, code,
and data are provided.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] MIT license, not applicable
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We did not use crowdsourcing or conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We did not use crowdsourcing or conduct
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not use crowdsourcing or conduct
research with human subjects.

15

	Introduction
	Related work
	Preliminaries and problem statement
	Main results
	Safe weight sets for feed-forward BNNs
	Safe weight sets for closed-loop systems with BNN Policies
	Computation of safe weight sets and the value of
	Safe exploration reinforcement learning

	Experiments
	Conclusion

