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Abstract

Deep learning models often fail to generalize well under distribution shifts. Understanding
and overcoming these failures have led to a new research field on Out-of-Distribution (OOD)
generalization. Despite being extensively studied for static computer vision tasks, OOD
generalization has been severely underexplored for time series tasks. To shine a light on this
gap, we present WOODS: 11 challenging time series benchmarks covering a diverse range of
data modalities, such as videos, brain recordings, and smart device sensory signals. We revise
the existing OOD generalization algorithms for time series tasks and evaluate them using our
systematic framework. Our experiments show a large room for improvement for empirical
risk minimization and OOD generalization algorithms on our datasets, thus underscoring
the new challenges posed by time series tasks.
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1 Introduction

In the last decade, the success of deep learning has led to impactful applications spanning many
fields (Krizhevsky et al., 2012; Vaswani et al., 2017b; Silver et al., 2016; Jumper et al., 2021; Brown
et al., 2020b). However, parallel to this surge, there is growing evidence that deep learning models exploit
undesired correlations due to selection biases, confounding factors, and other biases in the data (Geirhos et al.,
2020; Shen et al., 2021; Ye et al., 2021a). These biases can often create shortcuts that help the model arrive at
low empirical risk on a dataset. Nevertheless, a prediction rule relying on these shortcuts will not generalize
out of its training distribution as it uses spuriously correlated factors instead of causal factors (Rojas-Carulla
et al., 2015; Schölkopf et al., 2021). Such a failure becomes very concerning in real-life applications that
directly impact human lives, such as medicine (Razzak et al., 2018; Ching et al., 2018; Rajkomar et al., 2018)
or self-driving cars (Badue et al., 2021; Janai et al., 2020).
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Figure 1: Summary of WOODS benchmark: tasks, modalities, domains and distribution shifts.

Let us explain an important failure mode with a common example from the work of Beery et al. (2018).
Consider the task of distinguishing cows and camels in pictures. The training dataset is heavily tainted by
selection bias, as the vast majority of cow images were taken in green pastures, and the vast majority of
camel images were taken in sandy areas. A model trained to minimize empirical risk over the training dataset
leverages the selection bias and ends up using green background to classify cows and beige backgrounds to
classify camels. As a way to capture different failures of deep learning models, much work has gone into
finding and standardizing datasets with distribution shifts (Gulrajani & Lopez-Paz, 2020; Ye et al., 2021b;
Koh et al., 2021). These datasets provide a direction for research efforts in the field of OOD generalization.
Gulrajani & Lopez-Paz (2020) gathered seven standard image datasets with distribution shifts and concluded
that no OOD generalization algorithm considerably outperformed ERM, highlighting the need for better
and more versatile solutions. Ye et al. (2021b) showed that some algorithms outperform ERM on specific
types of shifts, highlighting that different algorithms might be needed for different type of distribution shifts.
Koh et al. (2021) created a set of benchmarks of in-the-wild distribution shifts, highlighting the challenges in
real-world applications. Further related works can be found in Appendix B.

The above mentioned works have led to crucial empirical and theoretical insights towards addressing the
OOD generalization failure in deep learning. However, they have been predominantly focused on static
computer vision tasks, leaving the field of time series severely underexplored despite being essential to
various applications such as computational medicine (Topol, 2019; Yang et al., 2021; Jarrett et al., 2021),
natural sciences (Stoffer & Ombao, 2012; Tanaka et al., 2021), finance (Sezer et al., 2020; Heaton et al., 2016;
Andersen et al., 2005), climate (Mudelsee, 2019), retail (Böse et al., 2017), ecology (Capinha et al., 2021;
Christin et al., 2019), energy (Deb et al., 2017) and many more (Torres et al., 2021; Lim & Zohren, 2021). In
this work, we take the first step towards a deeper understanding of distribution shifts in time series data.
Our key contributions are:
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• We propose WOODS: a benchmark of 3 synthetic challenge and 8 real-world datasets, totaling
11 datasets spanning a wide array of critical problems and data modalities, such as videos, brain
recordings, and smart device sensory signals (See Figure 1).

• We develop a systematic framework for easy evaluation of new time series datasets and algorithms.
The framework includes adaptation of existing OOD generalization algorithms for time series datasets.

• We conduct extensive experiments on the above datasets with ERM and various OOD generalization
algorithms. Our findings lead us to conclude that OOD generalization in time series brings its own
set of challenges and that there is a large room for improvement as shown in Table 1.

Why OOD generalization in time series?
Recently, work in the deep learning community
have shown that large scale pretrained models
such as CLIP (Radford et al., 2021a) show con-
siderable improvements when it comes to OOD
generalization performance for static computer
vision tasks (Cha et al., 2022). Since large scale
pretrained models for time series data do not ex-
ist yet, whether or not large scale pretraining on
time series data helps address OOD generalization
challenge of time series remains to be determined.
We hope our datasets and benchmarks help shed
light on this important question.
In the next section, we discuss problem formu-
lation, followed by discussion on the various
datasets we use. In Section 5, we describe the
adaptation of existing methods for time series set-
tings. In Section 6, we discuss the results followed
by the conclusion and limitations in Section 7.

Table 1: Generalization gap between the In-Distribution
(ID) performance and the OOD performance of ERM on
the WOODS benchmarks. See Section 6.2 for more details.

Dataset Performance
(Perf. is accuracy ID OOD Gapunless specified)

Spur.-Fourier 74.5 (0.1) 9.8 (0.2) 64.7
TCM.-Source 68.4 (0.1) 10.2 (0.1) 58.2
TCM.-Time 89.4 (0.0) 10.0 (0.0) 79.3
CAP 75.1 (0.7) 62.8 (0.6) 12.3
SEDFx 72.5 (0.4) 67.3 (0.8) 5.2
PCL 73.6 (0.2) 64.3 (0.5) 9.3
HHAR 93.4 (0.4) 84.4 (0.6) 9.0
LSA64 86.6 (1.0) 53.4 (2.0) 33.2
PedCount (rmse) 99.1 (2.7) 204.9 (11.4) 105.8
AusElec (rmse) 232.0 (2.6) 397.2 (8.4) 165.2
IEMOCAP 69.1 (0.4) 57.7 (1.9) 11.4

2 Problem formulation

2.1 Static tasks

Consider the standard OOD generalization setting for static supervised learning tasks. Data samples: (X, Y )
consists of the input observation X and the corresponding label Y . We gather the datasets Dd from the
domains d ∈ E train which follow the follows the distribution Pd(X,Y ). Datasets from these domains form the
training dataset Dtrain which follows the training distribution Ptrain =

∑
d∈E train qtrain

d Pd, where qtrain ∈ R|E train|

is the vector of training mixture weights and qtrain
d is the mixture weight for domain d. We define a predictor

f . The performance of f on domain d is measured in terms of the risk Rd(f) = Ed
[
`(f(X), Y )

]
, where Ed is

the expectation over the distribution Pd and `→ R≥0 denotes the loss function. We evaluate the predictor on
a set of test domains denoted as Eall. The goal of OOD generalization is to use the training dataset Dtrain and
construct a predictor f that can perform well on the test domains. We write this objective formally below.
Problem 2.1. Find a predictor f∗ that solves minf maxd∈Eall Rd(f).

In the above problem, some restrictions are necessary on the set of testing domains Eall to make Problem 2.1
of practical interest. Otherwise, the best predictor is random guessing, as nothing can be assumed about the
test domains. Many works (Arjovsky et al., 2020; Chen et al., 2021; Sun & Saenko, 2016) provide guarantees
of generalizing to OOD domains by assuming that the relationship between the label and some subset of
features (potentially a nonlinear transform of the observation (Rojas-Carulla et al., 2018; Ahuja et al., 2020b))
is invariant across all domains. We call this subset of features the invariant features, and any other features
that might be correlated with the label are called spurious features. The predictor f∗ solving Problem 2.1 is
said to be OOD-optimal; f∗ relies on the invariant features that generalize to all domains in Eall (Koyama &
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Yamaguchi, 2020). Because the set of training domains E train is much smaller than the set of testing domains
Eall, learning features that generalize to all test domains is a challenging task.

In practice, we aim to solve Problem 2.1 to avoid the predictor to fail at test time when evaluated on the test
dataset Dtest which follows the test distribution Ptest =

∑
d∈E test qtest

d Pd, where qtest ∈ R|E test| is the vector of
training mixture weights and qtest

d is the mixture weight for domain d. There exists 2 significant ways the
distribution Ptest can shift:

• Domain generalization (Arjovsky et al., 2020) The test domains are a superset of the training
domains, such that E train ⊆ E test. We seek to generalize to the unseen domains E train \ E test (Gulrajani
& Lopez-Paz, 2020; Wang et al., 2022).

• Subpopulation shift (Koh et al., 2021) There are no unseen domains, such that E train ⊇ E test,
however, the test domains mixture is different than the training distribution such that qtrain

d 6= qtest
d .

We seek to minimize the maximum domain error in E test (Sagawa et al., 2020; Yang et al., 2023;
Santurkar et al., 2020).

2.2 Time series tasks

Data samples consist of the input time series observation X = [Xt]t∈St
, where St is the set of time steps,

and the set of labels Y = [Yt]t∈Sp
, where Sp ⊆ St is the set of labeled time steps. The performance of the

predictor f is measured in terms of the risk Rd(f) = Ed
[
`(f(X),Y)

]
, where the expectation is taken over

time samples from domain d. We formalize the OOD generalization problem in time series as Problem 2.1.

In time series, similar to static tasks, the distribution shift can occur across data sources. Additionally, the
distribution can also shift over time. As a concrete real-world example of this characteristic, consider a
predictor monitoring a person’s health from vital signs gathered with a smart watch.
Example 2.2 (Source-domains). Wrist characteristics such as size or hair vary across person, or sources.
The solution to Problem 2.1 with persons as source domains d would be a predictor that does not rely on
spurious wrist characteristics and thus generalizes to new persons. We call this formulation of domains as
Source-domains as time series are taken from different sources, see Figure 2(b).
Example 2.3 (Time-domains). Heart rate is lower during the night when we are asleep and higher during
the day when we are awake. However, when we are working during the night, our heart rate might be higher
than on a typical night. A predictor that relies on spurious features like the time of day could make a false
alarm regarding our health on an atypical day. The solution to Problem 2.1 with time of day as time domains
d would be a predictor that does not rely on spurious features, and thus generalizes to different activities at
different times. We call this way of defining domains Time-domains, as the data distribution changes through
time, see Figure 2(c).

Time Domains

Xt

time

Domain A Domain B Domain C

Figure 2: Illustration of the Source- and Time-domain definitions.

3 Synthetic challenge datasets

3.1 Spurious-Fourier: Spurious features encoded in the frequency domain

Colored MNIST (CMNIST) (Arjovsky et al., 2020) presented the failure mode of ERM under distribution
shift in the image domain. This was accomplished by creating training domains with strongly predictive
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Figure 3: (a) Fourier spectrum construction in the
Spurious-Fourier dataset. Signals have one low-
frequency peak and one high-frequency peak. Signals
are constructed from the Fourier spectrum with an in-
verse Fourier transform. (b) Examples of reconstructed
signals, both signals have the same high frequency, but
different low frequencies, which are hard to distinguish
visually.

spurious features and weakly predictive invariant features. The spurious correlation would be flipped at test
time while the invariant correlation was kept the same. The correlation flip made it clear which features the
model relied on to make predictions.

We create a dataset composed of one-dimensional signals, where the task is to perform binary classification
based on the frequency characteristics. Signals are constructed from Fourier spectra with one low-frequency
peak (LA or B) and one high-frequency peak (HA or B), see Figure 3. Domains Dd|d∈{10%, 80%, 90%} contain
signal-label pairs, where the labels are created such that the information carried by the low-frequency signal
are d% correlated with the label (varies by domain), while the information carried by the high-frequency
signal is 75% correlated with the label.

In the training dataset Dd|d∈{80%, 90%}, the low-frequency signal are a stronger predictor of the label (85%)
than the high-frequency signal (75%). Therefore, minimizing the empirical risk fails at learning the invariant
high frequencies as the low frequencies achieve the lower risk.

Appendix C.1 provides more information about the dataset.

3.2 Temporal Colored MNIST: A study of domain definitions in sequential data

d=90% d=80% d=10%

Figure 4: Domain definition of both TCMNIST (a)
Source and (b) Time datasets. Data samples are videos
of four colored MNIST digits where the task is to
predict whether the sum of the current and previous
digits in the sequence is odd or even. The color is
spuriously correlated with the label.

5



Published in Transactions on Machine Learning Research (08/2023)

In Temporal CMNIST (TCMNIST), we extend the CMNIST dataset to a binary classification task of video
frames in order to investigate both domain definition paradigms presented in Section 2.2: Source-domains
(Example 2.2) and Time-domains (Example 2.3). Videos are sequences of four colored MNIST digits where
the goal is to predict whether the sum of the current and previous digits in the sequence is odd or even, see
Figure 4. Prediction is made for all frames except for the first one. The labels are created such that the
information carried by the color of the digits are d% correlated with the label (varies by domain), while the
information carried by the value of the digit is 75% correlated with the label.

TCMNIST-Source Domains are created such that the color correlation is constant among the frames of
a video, but varies between video from different domains d ∈ {10%, 80%, 90%}. The domain definition is
depicted in Figure 4(a).

Appendix C.2 provides more information about the dataset.

TCMNIST-Time Domains are created such that the color correlation varies across frames. However,
videos all have the same sequence of color correlation, where the first labeled frame correlation is 90%, second
is 80% and third is 10%. The domain definition is depicted in Figure 4(b).

Appendix C.3 provides more information about the dataset.

4 Real-world datasets

4.1 CAP: Sleep classification across different machines

ZZ
Z

Machine C

Machine B

Machine A

(a) (b)
Machine E

Machine D

Figure 5: Summary of the CAP dataset. (a) The task
is to perform sleep stage classification from EEG mea-
surements. (b) The dataset has five source domains,
where each domain contains data gathered with a dif-
ferent machine. The goal is to generalize to unseen
machines.

A recurrent problem in computational medicine is that models trained on data from a given recording device
will not generalize to data coming from another device, even when both devices are from a similar equipment
provider. Failure to generalize to unseen machines can cause critical issues for clinical practice because a
false sense of confidence in a model could lead to a false diagnosis (Kim et al., 2018; Engemann et al., 2018).
We study these machinery-induced distribution shifts with the CAP (Terzano et al., 2001; Goldberger et al.,
2000) dataset (Figure 5).

We consider the sleep stage classification task from electroencephalographic (EEG) measurements. The
dataset has five source domains, where each domain contains data gathered with a different machine. The
goal is to generalize to unseen machines.

Appendix C.4 provides more information about the dataset.

4.2 SEDFx: Sleep classification across age groups

ZZ
Z

(a) (b)
Age 60-80

Age 20-40

Age 80-100

Age 40-60

Figure 6: Summary of the SEDFx dataset. (a) The task
is to perform sleep stage classification from EEG mea-
surements. (b) The dataset has four source domains,
where each domain contains data from participants of
a certain age group. The goal is to generalize to unseen
age groups.
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In clinical settings, we train a model on the data gathered from a limited number of patients and hope this
model will generalize to new patients in the future (Pfohl et al., 2022). However, this generalization between
observed patients in the training dataset and new patients is not guaranteed. Distribution shifts caused by
shifts in patient demographics (e.g., age, gender, and ethnicity) can cause the model to fail. We study age
demographic shift with the SEDFx (Kemp et al., 2000; Goldberger et al., 2000) dataset (Figure 6).

We consider the sleep classification task from EEG measurements. The dataset has four source domains,
where each domain contains data from participants of a certain age group. The goal is to generalize to unseen
age groups.

Appendix C.5 provides more information about the dataset.

4.3 PCL: Motor imagery classification across data-gathering procedures

Lee2019_MI

Cho2017

(a) (b)

PhysionetMI

or

Figure 7: Summary of the PCL dataset. (a) The
task is to perform motor imagery classification from
EEG measurements. (b) The dataset has three source
domains, where each domain contains a dataset from
a different research group carrying out the same task.
The goal is to generalize to unseen datasets of the same
task.

Aside from changes in the recording device and shifts in patient demographics, human intervention in the data
gathering process is another contributing factor to the distribution shift that can lead to failure of clinical
models (e.g., Camelyon17 (Koh et al., 2021; Sagawa et al., 2021)). This challenge is especially prevalent in
temporal medical data (e.g., EEG, MEG, and others) because recording devices are complex tools greatly
affected by nonlinear effects and modulations. These effects are often caused by context and preparations
made before the recording (Engemann et al., 2018). We study these procedural shifts with the PCL (Lee
et al., 2019; Cho et al., 2017; Schalk et al., 2004; Jayaram & Barachant, 2018) dataset (Figure 7).

We consider the motor imagery task from EEG measurements. The dataset has three source domains, where
each domain contains a dataset from a different research group carrying out the same task. The goal is to
generalize to unseen datasets of the same task.

Appendix C.6 provides more information about the dataset.

4.4 LSA64: Sign language video classification across speakers

5 & 6 
3 & 4 

(a) (b)
9 & 10 

1 & 2 7 & 8 

Figure 8: Summary of the LSA64 dataset. (a) The task
is to perform signed word classification from videos.
(b) The dataset has five source domains, where each
domain contains videos of different signers. The goal
is to generalize to unseen signers.

Communication is an individualistic way to convey information through different media: text, speech, body
language, and many others. However, some media are more distinctive and challenging than others. For
example, text communication has less inter-individual variability than body language or speech. If deep
learning systems hope to interact with humans effectively, models need to generalize to new and evolving
mannerisms, accents, and other subtle variations in communication that significantly impact the meaning
of the message conveyed. We study the ability of models to recognize information coming from unseen
individuals with the LSA64 (Ronchetti et al., 2016) dataset (Figure 8).

We consider the video classification of signed words in Argentinian Sign Language. The dataset has five
source domains, where each domain contains videos of different signers. The goal is to generalize to unseen
signers.
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Appendix C.7 provides more information about the dataset.

4.5 HHAR: Human activity recognition across smart devices

Accelerometer
Gyroscope

G. S3 mini

Galaxy S3 

(a) (b)

Nexus 4 

Sam. Gear 

LG watch 

Figure 9: Summary of the HHAR dataset. (a) The task
is to perform human activity classification from smart
devices sensory data. (b) The dataset has five source
domains, where each domain contains data gathered
with a different smart device. The goal is to generalize
to unseen smart devices.

The intrinsic biases from inaccurate and poorly calibrated sensors of smart devices, along with the accumulated
biases from everyday use makes human activity recognition a notoriously difficult task when task when done
across devices (Stisen et al., 2015; Blunck et al., 2013). Contrary to static tasks where uninformative features
can often be segmented out from the input features (e.g., background when classifying an animal from an
image), invariant features in time series are often highly convoluted with other spurious features. We study
the ability of models to ignore spurious information from complex signals with the HHAR (Stisen et al., 2015;
Dua & Graff, 2017) dataset (Figure 9).

We consider the human activity classification task from accelerometer and gyroscope measurements of
smartphones and smartwatches. The dataset has five source domains, where each domain contains data
gathered with a different device. The goal is to generalize to unseen smart devices.

Appendix C.8 provides more information about the dataset.

4.6 PedCount: Forecasting of pedestrian crossings throughout locations

...

T10
T09
T08
T07
T06
T05
T04
T03
T02
T01

T20
T19
T18
T17
T16
T15
T14
T13
T12
T11

T65
T64
T63
T62
T61

(a) (b) Figure 10: Summary of the PedCount dataset. (a)
The task is to forecast the count of pedestrian crossing
streets of Melbourne. (b) The dataset has 65 source
domains, where each domain contains pedestrian counts
of a different street crossing. The goal is to perform
well on unseen street crossings.

Data gathered from the behavior of a population follows seasonal (daily, weekly, yearly) trends. An example
of this is the movement of population within a city, either by walking, public transport or car. These trends
form from the daily life of the population, e.g., the influx in the morning, outflux in the evening, and absence
on the weekend. However, these trends can shift when the data is gathered from different sources in a city.
We study the impact of those trend shifts with the PedCount (City of Melbourne, 2017; Godahewa et al.,
2021) dataset (Figure 10).

The dataset has 65 source domains, where each domain contains pedestrian counts of a different street crossing.
The goal is to perform well on unseen street crossings. Specifically, we investigate the OOD generalization to
location T22 and T25.

Appendix C.9 provides more information about the dataset.

4.7 AusElec: Forecasting of energy consumption throughout the year

Seasonality is the property of time series where recurring characteristics appear every cycle of a fixed period,
e.g., weekly. A common practice in the forecasting field is to provide models with additional information, e.g.,
day of week in order to allow models to leverage seasonality for better predictions. However, holidays is a
seasonality of time series that is very sparse which models often fail to capture. We study the performance of
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Figure 11: Summary of the AusElec dataset. (a) The
task is to forecast electricity consumption. (b) The
dataset has 13 time domains, where each domain con-
tains data from different months and holidays. The
goal is to perform well on all seasonalities.

models on sparse seasonality with the AusElec (Hyndman & Athanasopoulos, 2018; Godahewa et al., 2021)
dataset (Figure 11)

We consider the electricity consumption forecasting task. The dataset has 13 time domains, where each
domain contains data from different months and holidays. The goal is to perform well on all seasonalities.

Appendix C.10 provides more information about the dataset.

4.8 IEMOCAP: Emotion recognition across different conversational emotion shifts

neutral/angry

neutral/excitedsad/frustrated

sad/neutral neutral/frustrated

angry/frustratedhappy/excited

No shifts

(a) (b)

happy/angry

happy/neutral Rare shifts

Figure 12: Summary of the IEMOCAP dataset. (a)
The task is to perform emotion recognition from multi
modal data (video, sound, text). (b) The dataset has 11
time domains, where each domain contains data from
a different emotion shifts during conversations. The
goal is to perform well on all conversational emotion
shifts.

Speakers tend to maintain an emotional state over a conversation. However, external stimuli can invoke a
shift in the emotional state of speakers (Poria et al., 2019). Such emotion shift are often sparsely represented
in the data, making it hard for models to classify them adequately. Recent work on emotion recognition
models (Poria et al., 2019; 2018; Majumder et al., 2019) show the failure of existing models to adapt to those
emotion shift. We study the performance of models on emotional shift with the IEMOCAP (Bulut et al.,
2008) dataset (Figure 12).

We consider the emotion recognition task. The dataset has 11 time domains, where each domain contains
data from a different emotion shift during conversations. The goal is to perform well on all conversational
emotion shifts.

Appendix C.11 provides more information about the dataset.

5 Adaptation of OOD generalization algorithms to time series

Many algorithms were proposed to address the failure of machine learning models under distribution shifts.
However, they were formulated for the image domain and require adaptation to be used with time series. We
now describe how we adapt them to the time series settings.

On top of Empirical Risk Minimization (ERM, Vapnik (1998)), we have selected commonly used al-
gorithms from the OOD generalization research field to adapt and evaluate on WOODS benchmarks:
Invariant Risk Minimization (IRM, Arjovsky et al. (2020)), Group Distributionally Robust Optimiza-
tion (GroupDRO, Sagawa et al. (2020)), Variance Risk Extrapolation (VREx, Krueger et al. (2021)),
Spectral Decoupling (SD, Pezeshki et al. (2021)), Information Bottleneck Empirical Risk Minimization
(IB-ERM, Ahuja et al. (2021)), Transfer (Transfer, Zhang et al. (2021a)), Contrastive Adversarial Domain
bottleneck (CAD, Ruan et al. (2021)), Conditional CAD (CondCAD, Ruan et al. (2021)), Conditional
Contrastive Domain Generalization (CCDG, Ragab et al. (2022)), Diversify (Diversify, Lu et al. (2023)).

The loss function of above algorithms (except GroupDRO and Transfer) comprises of two terms: the empirical
risk for a domain Rd(f) and a penalty function P (f). For the empirical risk of domain d, we average the risk
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across the set of labeled time steps of a time series belonging to domain d: Sd
p .

Rd(f) = 1
nd

∑
(X,Y)∈D

1
|Sd

p |
∑
t∈Sd

p

L
(
f(X1:t), Yt

)
(1)

where nd is the number of samples from domain d in the dataset D. In the case of Source-domains, all
time steps of a time series belongs to the same domain, while for the Time-domains there can be time steps
belonging to different domains in the time series. IRM and VREx use a penalty that relies on the risk across
domains, we use the risk from Equation (1) in the corresponding penalties.

P (f) = 1
nd

∑
(X,Y)∈D

1
|Sd

p |
∑
t∈Sd

p

P̃ (f,X1:t, Yt), (2)

where P̃ is the penalty applied at each prediction point, e.g., P̃ (f,X1:t, Y ) = ‖f(X1:t)‖2 for SD. Equations (1)
and (2) are a simplifications of the adaptation; in Appendix D we provide a more general formulation along
with explicit penalty definitions for all algorithms used in this work.

6 Experiments

Our framework follows the DomainBed (Gulrajani & Lopez-Paz, 2020) workflow for hyperparameter search
and model selection for a fair and systematic evaluation of OOD generalization algorithms. We perform a
random search over 20 hyperparameter configurations, which we repeat three times for error estimation. We
then report the performance of the model chosen with our model selection methods (see Section 6.1). Table 2
summarizes the technical characteristics and backbone used for every datasets in our experimentation (See
Appendix C for full details of each dataset.)

Appendix F provides more information on the on the framework along with hyperparameter search spaces.

Table 2: Technical characteristic summary of WOODS datasets

Spur.-Fourier TCM.-Source TCM.-Time CAP SEDFx PCL LSA64 HHAR PedCount AusElec IEMOCAP
Task Classification Classification Classification Classification Classification Classification Classification Classification Forecasting Forecasting Classification
Num. Samples 12,000 17,500 17,500 40,390 238,712 22,598 3,200 13,674 - - 7,433
Num. classes 2 2 2 6 6 2 64 6 - - 6
Domain type Source Source Time Source Source Source Source Source Source Source Time
Num. domains 3 3 3 5 4 3 5 5 65 13 11
Sequence length 50 4 4 3000@100Hz 3000@100Hz 752@250Hz 20 500@Hz 500@ 1

hour 500@ 1
30min Varies

Steps shape (1) (2,28,28) (2,28,28) (19) (4) (48) (3,224,224) (6) (1+45) (1+47) (712)
Prediction times End [2nd,3rd,4th] [2nd,3rd,4th] End End End End End 24 steps ahead 48 steps ahead All steps
Backbone LSTM CNN+LSTM CNN+LSTM CNN CNN CNN CNN+LSTM CNN Transformer Transformer Multimodal LSTM
Further details Appx C.1 Appx C.2 Appx C.3 Appx C.4 Appx C.5 Appx C.6 Appx C.7 Appx C.8 Appx C.9 Appx C.10 Appx C.11

6.1 Model selection methods

For domain generalization We split all the training domains into training and validation sets. With
train-domain validation, we choose the model that gets the best average validation performance across training
domains. With test-domain validation, we choose the model with the best performance on the test domain,
however, we restrict the test domain queries to the final training checkpoint only, effectively disallowing early
stopping. With oracle train-domain validation, we choose the model with the best performance on the test
domain, however, we restrict the test domain queries to the training checkpoint with the best performance on
the validation set of the training domains.

For subpopulation shift We split all domains into training, validation and test sets. With domain-
average validation, we choose the model with the best average validation performance across domains. With
worst-domain validation, we choose the model with the best worst domain performance.

Appendix G provides more details on the model selection methods, and why we chose them.
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Table 3: Summary of baseline algorithms performance on the real-world domain generalization datasets.

Train-domain validation

Objective CAP SEDFx PCL LSA64 HHAR Average(accuracy) (accuracy) (accuracy) (accuracy) (accuracy)

ERM 62.8 (0.6) 67.3 (0.8) 64.3 (0.5) 53.4 (2.0) 84.4 (0.6) 66.4
IRM 58.7 (1.3) 62.7 (0.7) 63.9 (0.2) 45.0 (1.6) 82.9 (0.9) 62.6
VREx 48.6 (1.7) 56.1 (1.4) 63.2 (0.3) 46.8 (2.9) 83.2 (0.5) 59.6
GroupDRO 62.0 (0.8) 65.2 (0.8) 64.8 (0.3) 46.3 (2.1) 84.2 (0.4) 64.5
IB-ERM 63.2 (0.8) 69.5 (0.5) 64.4 (0.3) 57.3 (1.9) 83.5 (0.7) 67.6
SD 60.8 (0.9) 69.8 (0.5) 64.4 (0.2) 50.7 (1.7) 85.6 (0.1) 66.2
CAD 62.2 (1.1) 66.1 (0.5) 64.6 (0.6) 50.3 (2.2) 85.0 (0.6) 65.6
CondCAD 62.6 (0.5) 66.1 (0.8) 64.2 (0.3) 53.4 (1.5) 84.3 (0.8) 66.1
Transfer 55.0 (1.3) 61.0 (0.9) 62.3 (0.2) 47.3 (1.3) 84.4 (0.5) 62.0
CCDG 61.7 (1.0) 68.2 (0.6) 64.3 (0.2) 53.0 (1.2) 84.7 (0.7) 66.4
Diversify 57.4 (1.9) 76.9 (0.1) 64.4 (0.4) 48.6 (1.8) 85.2 (0.7) 66.5

Oracle train-domain validation

Objective CAP SEDFx PCL LSA64 HHAR Average(accuracy) (accuracy) (accuracy) (accuracy) (accuracy)

ERM 64.2 (0.6) 68.5 (0.3) 65.3 (0.3) 58.2 (0.9) 85.3 (0.5) 68.3
IRM 60.5 (0.9) 64.3 (0.6) 64.4 (0.4) 43.6 (2.0) 83.4 (0.6) 63.2
VREx 49.3 (1.6) 57.0 (0.7) 63.3 (0.3) 50.0 (0.8) 83.2 (0.6) 60.6
GroupDRO 62.9 (0.6) 66.1 (0.5) 64.5 (0.3) 54.0 (1.3) 84.3 (0.4) 66.4
IB-ERM 65.2 (0.6) 70.6 (0.4) 65.0 (0.3) 59.8 (1.0) 85.5 (0.2) 69.2
SD 63.2 (0.4) 70.6 (0.4) 65.3 (0.12) 58.6 (1.0) 86.3 (0.2) 68.8
CAD 63.6 (0.8) 67.5 (0.3) 64.5 (0.4) 57.8 (1.5) 84.8 (0.3) 67.7
CondCAD 63.3 (0.7) 66.6 (0.6) 63.6 (0.3) 57.4 (1.3) 84.7 (0.6) 67.1
Transfer 57.7 (0.8) 61.5 (0.7) 61.9 (0.2) 51.3 (1.6) 85.1 (0.3) 63.5
CCDG 63.1 (0.6) 69.2 (0.4) 64.4 (0.5) 56.0 (1.6) 85.8 (0.3) 67.7
Diversify 62.3 (1.1) 77.2 (0.1) 64.2 (0.4) 50.6 (1.3) 86.7 (0.6) 68.2

Table 4: Summary of baseline algorithms performance on the synthetic challenge domain generalization
datasets.

Train-domain validation

Objective Spur.-Fourier TCM.-Source TCM.-Time Average(accuracy) (accuracy) (accuracy)

ERM 9.9 (0.1) 10.1 (0.0) 9.9 (0.1) 10.0
IRM 10.3 (0.1) 9.8 (0.1) 10.3 (0.1) 10.1
VREx 10.4 (0.2) 9.8 (0.2) 9.8 (0.1) 10.0
GroupDRO 10.1 (0.2) 10.4 (0.0) 10.1 (0.1) 10.2
IB-ERM 9.2 (0.3) 10.0 (0.1) 10.2 (0.0) 9.8
SD 9.7 (0.2) 10.2 (0.1) 10.2 (0.1) 10.0
CAD 10.3 (0.4) 9.8 (0.1) 9.9 (0.1) 10.0
CondCAD 10.3 (0.6) 10.1 (0.1) 9.9 (0.2) 10.1
Transfer 9.5 (0.1) 10.0 (0.2) 9.8 (0.0) 9.8
CCDG 11.2 (0.7) 10.1 (0.0) 9.9 (0.1) 10.4
Diversify 12.2 (0.9) 9.9 (0.1) 10.2 (0.0) 10.7

Test-domain validation

Objective Spur.-Fourier TCM.-Source TCM.-Time Average(accuracy) (accuracy) (accuracy)

ERM 12.1 (2.0) 30.3 (0.8) 28.6 (2.4) 23.7
IRM 58.8 (2.0) 52.7 (0.6) 50.6 (0.2) 54.1
VREx 63.7 (0.7) 49.7 (0.2) 50.6 (0.6) 54.7
GroupDRO 21.5 (2.1) 33.5 (2.9) 24.8 (3.9) 26.6
IB-ERM 18.6 (4.0) 28.1 (1.1) 33.7 (6.5) 26.8
SD 10.0 (0.1) 27.4 (3.5) 31.8 (5.1) 23.0
CAD 20.4 (2.4) 26.3 (3.3) 27.2 (2.3) 28.0
CondCAD 16.0 (1.6) 20.6 (2.5) 22.7 (2.9) 20.1
Transfer 13.4 (2.8) 18.3 (0.8) 24.2 (5.3) 21.6
CCDG 50.6 (0.2) 49.8 (0.3) 49.2 (0.3) 49.9
Diversify 67.0 (3.2) 29.1 (1.4) 29.8 (2.1) 42.0

6.2 OOD generalization algorithms results

WOODS datasets have a significant generalization gap Table 1 summarizes the generalization gap
for all WOODS datasets, along with the In-Distribution (ID) and OOD performance. We compute the
generalization gap to be an upper bound of the attainable performance on the test domains. This is positively
indicative that there is significant improvements to be made over ERM.

Appendix E provide more details on how the generalization gaps are obtained.

Marginal improvement over ERM on WOODS real-world datasets Table 3, 5 and 6 summarizes
the baseline results on our real-world datasets1. We observe a marginal improvement over ERM on several
datasets with the adapted algorithms.

1Performance of SD, IRM, CAD, CondCAD, and Transfer are not reported on forecasting datasets, because their adaptation
to a forecasting task is not possible without significant alterations to their formulations.

Table 5: Summary of baseline algorithms performance
on subpopulation shifts datasets.

Domain-average validation

Objective AusElec IEMOCAP
(rmse) (accuracy)

ERM 397 (9) 57.7 (1.9)
IRM X 55.9 (1.2)
VREx 415 (10) 59.4 (1.4)
GroupDRO 409 (2) 56.1 (1.2)
IB-ERM 394 (2) 59.9 (0.5)
SD X 58.0 (0.4)

Worst-domain validation

Objective AusElec IEMOCAP
(rmse) (accuracy)

ERM 404 (7) 56.3 (2.8)
IRM X 58.9 (1.1)
VREx 409 (4) 57.7 (3.1)
GroupDRO 424 (13) 58.8 (1.0)
IB-ERM 391 (5) 58.8 (1.5)
SD X 56.1 (1.2)

Table 6: Summary of baseline algorithms perfor-
mance on forecasting domain generalization datasets.

Train-domain validation

Objective PedCount
(rmse)

ERM 204.1 (11.4)
VREx 201.6 (6.0)
GroupDRO 243.2 (13.0)
IB-ERM 213.1 (10.9)

Oracle train-domain val.

Objective PedCount
(rmse)

ERM 223.2 (7.1)
VREx 213.1 (3.1)
GroupDRO 242.1 (9.9)
IB-ERM 205.7 (11.3)

11



Published in Transactions on Machine Learning Research (08/2023)

Algorithms fail on synthetic challenge dataset with train-domain validation Table 4 summarizes
the baseline results on our synthetic challenge datasets. We observe that IRM and VREx significantly
outperform ERM on WOODS synthetic datasets with test-domain validation. However, all algorithms
fail with train-domain validation as chosen models learned to rely on the spurious features which were
anti-correlated with the label during testing. This caused accuracies of 10%, significantly below the random
guessing accuracy of 50%. We also observe that IRM and VREx under perform on real-world dataset.

6.3 Discussion and future research directions

Recent advancements in the fields of computer vision (CV) and natural language processing (NLP) have
witnessed remarkable performance gains through the utilization of large-scale web data for training mod-
els (Brown et al., 2020a; Rae et al., 2021; Chowdhery et al., 2022; Radford et al., 2021b; Wei et al., 2021).
This approach, which involves training models on diverse and abundant data (Kaplan et al., 2020), has
demonstrated enhanced OOD generalization capabilities across various tasks and domains (Miller et al., 2021).
However, when it comes to time series data, the transferability of concepts learned from self-supervision
is not guaranteed (Ma et al., 2023a), posing challenges for achieving similar scaling benefits in time series
OOD generalization. As a result, it remains uncertain whether a solution analogous to CV or NLP exists
for effectively addressing OOD generalization in the context of time series data. In the scenario where
research advances are able to achieve universal pre-training in time series, we hope WOODS can be a reliable
evaluation ground for the development of these foundation models.

In the scenario that foundation models in time series remain unattainable for the near future, opportunities
for alternative research directions aimed at tackling the OOD generalization problem arise. One promising
avenue for exploration involves the deliberate construction of pre-training datasets tailored specifically for
downstream tasks with distribution shift (Kostas et al., 2021; Malkiel et al., 2022). By designing datasets
that align closely with the characteristics of the target tasks, it could be possible to maximize the transfer of
learned representations to tackle distribution shift. This approach offers a potential proxy for achieving the
benefits of large-scale pre-training. Consequently, investigating the construction and utilization of task-specific
pre-training datasets represents an interesting direction for further research in this area.

Moreover, gaining a deeper understanding of the distribution shifts that occur in time series OOD generalization
is essential for advancing the field. Similar studies conducted in the domain of computer vision (Ye et al., 2021b;
Ruan et al., 2021; Ahuja et al., 2020b) have yielded valuable insights into the characteristics of distribution
shift. Building upon this knowledge and exploring how these insights can be translated and applied to the
unique challenges and characteristics of time series data could unlock more effective methodologies and
algorithms.

Several factors contribute to the complexity of establishing a universal representation for time series data.
Characteristics such as seasonality, frequencies, sampling rate, signal amplitude, and dimensionality introduce
inherent challenges that impact the generalizability of models. However, maybe such factors could be leveraged
with expert knowledge as part of the solution. By incorporating domain-specific insights and inductive biases
derived from these characteristics, significant improvements in OOD generalization performance might be
possible.

Furthermore, investigating the influence of model architecture on OOD generalization is another key aspect
that warrants thorough analysis. Understanding the relationship between the architectural choices of
models and their ability to generalize OOD can provide valuable insights for addressing the challenges of
OOD generalization in time series. This knowledge could guide the development of novel architectures or
modification strategies that are specifically tailored to enhance OOD generalization capabilities in time series
data.

7 Conclusion & Limitations

This work introduced WOODS: a benchmark of 11 datasets for OOD generalization in time series. We
formulated the Source- and Time-domain settings for dealing with different scenarios of distribution shifts
in time series. We adapted OOD algorithms to the time series setting, and provided their performance on
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WOODS datasets using our fair and systematic evaluation framework. With WOODS, we take the first step
and lay the groundwork towards understanding and solving distribution shifts failure mode of deep learning
in time series.

While this work proposes an initial set of benchmarks for OOD generalization in time series, our benchmarks
are inherently biased toward Source-domains problems, classification tasks, and neurophysiology modalities.
We hope for WOODS to be a platform to continue building towards a complete set of benchmarks with
datasets covering those missing settings and other data modalities not currently studied in WOODS.

Broader Impact Statement

Failures of deep learning models under distribution shifts are very concerning in real-life applications that
directly impact human lives, such as medicine or self-driving cars. The WOODS benchmark hopes to give
researchers and engineers a meaningful measure of generalization performance to test new algorithms and
alleviate potentially dangerous failures. However, it is possible that our benchmark does not accurately
reflect OOD generalization performance for all possible applications. This could lead to false confidence in a
deployed system that could be dangerous to human life.
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Ethical concern address

Comments on personally identifiable information or sensitive personally identifiable informa-
tion

• EEG datasets (CAP, SEDFx and PCL) The dataset does not hold personally identifiable informa-
tion.

• HHAR: The dataset does not hold personally identifiable information.

• LSA64 The dataset holds videos of signers, which might be considered as personally identifiable
information. However, because of the naturs of the data gathering process, i.e. deliberate head shot
of the signers and that the dataset is openly distributed by the author at http://facundoq.github.
io/datasets/lsa64/ we can assume that participants gave permission to distribute their videos.
Efforts were made to speak with Ronchetti et al. (2016) on the subject, but we were not able to make
contact.

• AusElec The dataset does not hold personally identifiable information.

• Pedestrian The dataset does not hold personally identifiable information.

• IEMOCAP The dataset holds videos and voice recording of actors, which might be considered as
personally identifiable information. However, it is reasonable to assume that actors gave consent to
the data gathering because of the nature of the data, i.e., acted dialogues by actors. In any case, the
data is protected by a release and will not be distributed by us as to protect property and identity of
actors.

Comments on consent to use or share the data

• EEG datasets (CAP, SEDFx and PCL) the datasets were accessed through open forums of dataset
(Physionet (Goldberger et al., 2000) for CAP and SEDFx, and MOABB (Jayaram & Barachant,
2018) for PCL) and thus we can assume that we have consent to use. Additionally, licenses allows us
to use and distribute derived products of the data.

• HHAR was accessed through the UCI (Dua & Graff, 2017) open forums and thus we assume that
we have consent to use.

• LSA64 is openly distributed by the author at http://facundoq.github.io/datasets/lsa64/
which allows us to assume that we have consent to use. The dataset has a Attribution-NonCommercial-
ShareAlike 4.0 International license which gives us permission to distribute derived products. Efforts
were made to speak with Ronchetti et al. (2016) to confirm assumptions on the subject, but we were
not able to make contact.

• AusElec was accessed through the Monash time series archive (Godahewa et al., 2021). We obtained
direct consent from Godahewa et al. (2021) to use the dataset in our work.

• Pedestrian was accessed through the Monash time series archive (Godahewa et al., 2021). We
obtained direct consent from Godahewa et al. (2021) to use the dataset in our work.

• IEMOCAP: We obtained direct consent to use under the license agreement on their website
(https://sail.usc.edu/iemocap/). However, we will not ourselves be distributing this dataset,
users will need to sign the release form and obtain the dataset themselves from SAIL at USC
(https://sail.usc.edu/) in order to use it in WOODS. This is to protect property and identity of
actors.
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A Organization

In Appendix B, we provide additional related works, including works in both OOD generalization algorithms
and existing datasets in the field. In Appendix C, we provide further details on all WOODS datasets, along
with model architecture choices and licenses. In Appendix D, we provide a general formulation for OOD
generalization algorithms adaptation to time series, along with explicit penalty value function definitions for
the algorithms used in this work. In Appendix E, we give further details on how we define the generalization
gaps in our datasets. In Appendix F, we describe our evaluation framework. In Appendix G, we discuss the
model selection strategies used in this work.

B Related works

In the main text, we covered important benchmarks in the field of OOD generalization. In this section, we
detail a broader horizon of datasets in the field along with OOD generalization algorithms.

B.1 OOD generalization algorithms

Several algorithms were recently proposed to address the OOD generalization failures of deep learning (Arjovsky
et al., 2020; Krueger et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Sagawa et al., 2020; Parascandolo
et al., 2020; Shahtalebi et al., 2021; Koyama & Yamaguchi, 2020; Robey et al., 2021; Ruan et al., 2021;
Rame et al., 2021; Ahuja et al., 2020a; Xu & Jaakkola, 2021; Müller et al., 2021; Liu et al., 2021; Lu et al.,
2021; Rosenfeld et al., 2022; Chen et al., 2022; Sharifi-Noghabi et al., 2021; Ragab et al., 2022). Several
of these algorithms adopt the invariance principle from causality (Pearl, 2009; 1995; Peters et al., 2016) to
create predictors that rely on the causes of the label to make predictions. Invariance is leveraged because
it is a more flexible and scalable alternative to conditional independence testing typically used for causal
discovery (Zhang et al., 2012; Strobl et al., 2019). An optimal predictor that relies on the cause will be
min-max optimal (Ahuja et al., 2020b; Müller et al., 2021; Rojas-Carulla et al., 2018) under a large class of
distribution shifts. Some works have also been proposed to address the distribution shift that arises through
time in time series forecasting tasks (Du et al., 2021; Wu et al., 2021; Ye & Dai, 2022). Other works look at
representation learning for time series OOD generalization (Lu et al., 2023; Ma et al., 2023b).

B.2 Existing benchmarks for OOD generalization

Synthetic datasets Many synthetic and semi-synthetic datasets were created to gain a better understanding
of generalization failure in deep learning, e.g., CMNIST (Arjovsky et al., 2020) investigates our motivating cow
or camel classification problem, RMNIST (Ghifary et al., 2015) investigates invariance with respect to rotation
of images, and Invariance Unit Tests (Aubin et al., 2021) investigates six different types of distribution shifts
for linear models.

Image datasets Many real (i.e., non-synthetic) image datasets were proposed, some with naturally
occurring distribution shifts and some with artificially induced distribution shifts. Several of these datasets
are composed of different renditions of the same underlying labels, e.g., PACS (Li et al., 2017) (Photo, Art,
Cartoon, Sketch), DomainNet (Peng et al., 2019) (Clipart, Infographic, Painting, Quickdraw, Photo, Sketch),
Office-Home (Venkateswara et al., 2017) (Art, Clipart, Product, Photo), and ImageNet-R (Hendrycks et al.,
2021a) (art, cartoons, graffiti, embroidery). Others focus on the generalization across different datasets
with same rendition, such as many altered versions of ImageNet, e.g., ImageNet-A (Hendrycks et al., 2021b)
comprises of ImageNet images that are missclassified by ResNet models, ImageNet-C (Hendrycks & Dietterich,
2019) comprises algorithmically corrupted images from the original ImageNet, ImageNet-Sketch (Wang et al.,
2019) comprises samples through Google Image queries, ImageNet-V2 (Recht et al., 2019) comprises similar
images to ImageNet collected by closely following the original labeling protocol, BREEDS (Santurkar et al.,
2020) comprises of ImageNet subclasses that are held out during training. Others created datasets of similar
renditions but different sources, e.g., VLCS (Torralba & Efros, 2011) comprises images from four different
photo datasets, ObjectNet (Barbu et al., 2019) comprises images from different predefined viewpoints, Terra
Incognita (Beery et al., 2018) comprises images from multiple different traps. Another dataset class has
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strong spurious features that create shortcuts to minimize the empirical risk, e.g., in CelebA (Liu et al.,
2015) hair color as a spurious attribute to a gender classification task, while in NICO (He et al., 2019),
Waterbirds (Sagawa et al., 2020) and backgrounds challenge (Xiao et al., 2020) use the background as a
spurious attribute of animal classification task. Finally, some other datasets were created to study specific
problems, e.g., Shift15m (Kimura et al., 2021) that looks at OOD generalization in the large data regime.

Language datasets Natural language is prone to distribution shifts because of interindividual variability,
consequently, many works investigated OOD generalization in language. The Machine Translation dataset
from the work of Malinin et al. (2021) investigates generalization to atypical language usage in a translation
task. Csordás et al. (2021) explored the systematic generalization of transformers with five datasets, i.e.,
SCAN (Lake & Baroni, 2018) uses splits of different sentence lengths, CFQ (Keysers et al., 2019) uses
splits of different text structures, PCFG (Hupkes et al., 2020) uses different split definitions to investigate
different aspects of generalization, COGS (Kim & Linzen, 2020) uses splits that can be addressed with
compositional generalization, and the Mathematics dataset (Saxton et al., 2019) uses extrapolation sets to
measure generalization. Hendrycks et al. (2020) showed that pretrained transformers help OOD generalization
compared to other language models. They use three sentiment analysis datasets, i.e., generalization between
SST-2 (Socher et al., 2013) and IMDb (Maas et al., 2011), the Yelp Review dataset with food types as
domains, the Amazon Review dataset (McAuley et al., 2015; He & McAuley, 2016) with domains composed
of clothing categories. They also used three reading comprehension datasets, i.e., STS-B (Cer et al., 2017)
has text of different genres (news and captions), ReCoRD (Zhang et al., 2018) has news paragraphs from
different news sources (CNN and Daily Mail), and MNLI (Williams et al., 2017) has text from differently
communicated interactions such as transcribed telephone and face-to-face conversations.

Temporal datasets Some works looked at temporal distribution shifts in different settings. In natural
language processing, Lazaridou et al. (2021) investigated the ability of language models to generalize to
future utterances beyond their training period on the WMT (Barrault et al., 2019) and ArXiv (Warner, 2001)
datasets. In the clinical setting, both Zhang et al. (2021b) and Guo et al. (2022) investigated shifts when
data is grouped according to the year in which they were gathered: the former used in-hospital mortality
records and X-rays of the lungs, while the later used patients health record in the ICU. Malinin et al. (2021)
investigated temporal shifts in large amounts of weather data.

Other modalities There have been efforts in studying OOD generalization on graphs, such as works
from Li et al. (2022) and the OGB-MolPCBA (Koh et al., 2021) dataset adapted from the Open Graph
Benchmark (Hu et al., 2020).

As mentionned in Section 1, multiple works focused on gathering and standardizing datasets for a unified
measure of OOD generalization algorithm performance. Gulrajani & Lopez-Paz (2020) introduced DomainBed:
a collection of seven image datasets (i.e., CMNIST, RMNIST, PACS, VLCS, Office-Home, Terra Incognita,
DomainNet) for a systematic OOD performance evaluation of algorithms. Ye et al. (2021b) built on top of
DomainBed and added three datasets (i.e., Camelyon17-WILDS, NICO, and CelebA), along with a measure
to group the datasets according to their distribution shift. Koh et al. (2021) introduced WILDS: a benchmark
of several new in-the-wild distribution shifts datasets across diverse data modalities, i.e., IWildCam2020-
WILDS, Camelyon17-WILDS, RxRx1-WILDS, OGB-MolPCBA, GlobalWheat-WILDS, CivilComments-
WILDS, FMoW-WILDS, PovertyMap-WILDS, Amazon-WILDS, and Py150-WILDS. WILDS was recently
extended with unlabeled samples for multiple of its datasets (Sagawa et al., 2021).
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C Additional dataset information

C.1 Spurious-Fourier

Spurious

freq
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or or

Invariant

75% 
correlation

{10, 80, 90}% 
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Figure 13: Description of the Spurious-Fourier dataset. Signals have one low-frequency peak and one
high-frequency peak. They are then constructed from the Fourier spectrum with an inverse Fourier transform.
(b) Examples of reconstructed signals, both signals have the same high frequency, but different low frequencies,
which are hard to distinguish visually.

C.1.1 Setup

Motivation Recall the cow or camel classification problem from Section 1, where a deep learning model
trained to distinguish cows from camels learns to rely on the background properties (e.g., grass or sand)
instead of the animal characteristic features (e.g., color) to make a prediction. Arjovsky et al. (2020) proposed
Colored MNIST (CMNIST) to recreate the the cow or camel classification problem into a simple benchmark
in the image domain. We propose the Spurious-Fourier dataset which is an adaptation of the cow or camel
classification problem to time series.

Problem setting We create a dataset composed of one-dimensional signals, where the task is to perform
binary classification based on the frequency characteristics. Signals are constructed from Fourier spectra with
one low-frequency peak (LA = 2Hz or LB = 4Hz) and one high-frequency peak (HA = 7Hz or HB = 9Hz),
see Figure 13. Domains Dd|d∈{10%, 80%, 90%} contain signal-label pairs, where the label is a noisy function of
the low- and high-frequencies such that low-frequency peaks bear a varying correlation of d with the label
and high-frequency peaks bear an invariant correlation of 75% with the label.

Data We first create four Fourier spectra with all combinations of low- and high-frequency peaks. From
each of the spectra, we perform an inverse Fourier transform to get a 1 dimensional signal of 100 seconds
sampled at 100Hz. We then split this long signal into smaller overlapping sequences of 50 time-steps, i.e.,
half a second. We then recreate the Colored MNIST (Arjovsky et al., 2020) dataset characteristic. We build
datasets Dd by repeating the following protocol 4000 times. First, we sample y from a Bernoulli distribution
p = 0.5. Second, we obtain ỹ by flipping y with a probability of 25%, this gives us our high-frequency
component h (ỹ = 0→ HA, ỹ = 1→ HB). Third, we sample z from a Bernoulli distribution of parameter
p = d, this gives us our low-frequency component l (z = 0 → LA, z = 1 → LB). Finally, we add to the
domains dataset Dd a random signal of configuration l + h with the label ỹ.

Domain information Table 7 details the distribution of labels for every domain in the Spurious-Fourier
dataset.
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Table 7: Distribution of labels for every domain in the Spurious-Fourier dataset

Domain 7Hz 9Hz Total
10% 2043 1957 4000
80% 2013 1987 4000
90% 1991 2009 4000
Total 6047 5953 12000

Architecture choice For this simple task, we use the LSTM (Hochreiter & Schmidhuber, 1997) model
because it is a simple model well accepted in the time series/sequential prediction field. We stack on top
of the LSTM a fully connected (FC) layer used to make predictions at the last time step of the time series.
Layers are detailed in Table 8

Table 8: Model architecture used for the Spurious-Fourier dataset

# Layer
15 LSTM(in=1, hidden_size=20, num_layers=2)
16 Linear(in=20, out=20)
17 ReLU
18 Linear(in=20, out=2)

C.1.2 Detailed results

Oracle task Investigating the impact of spurious correlation in a dataset is meaningless if the underlying
invariant task is impossible to solve with a given model or hyperparameter configuration. In order to avoid
this, we provide the Basic-Fourier dataset in the WOODS repository. It consists of the oracle task of the
Spurious-Fourier dataset, i.e., classifying 7Hz and 9Hz signals with no label noise or spurious features. We
create two Fourier spectra with 7Hz and 9Hz frequency peaks respectively. From both of the spectra, we
perform an inverse Fourier transform to get a one-dimensional signal of 100 seconds sampled at 100Hz. We
then split this long signal into smaller overlapping sequences of 50 time-steps, i.e., half a second. While this
is not a domain generalization task, the Basic-Fourier dataset is included in the WOODS repository as a
sanity check that the underlying invariant task of the Spurious-Fourier dataset is possible with the model
and hyperparameter configuration we are using. We show the results of ERM on the Basic-Fourier dataset in
Table 9.

Table 9: Result for the Basic-Fourier dataset.

Objective Performance
ERM 100.00 (0.00)

ID evaluation We evaluate the performance of ERM with access to all domains Dd|d∈{10%,80%,90%}. We
obtain these results by doing a hyperparameter search with the methodology detailed in Appendix F with no
held-out test domain and choose the model with train-domain validation. In other words, the training is
done with all domains; thus, all domains are ID. The columns correspond to the validation accuracy of the
chosen model in each domain. We see that the model learns the invariant solution to the task because the
high frequencies (75%) are a stronger predictor of the label than the low frequencies (60%).
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Table 10: ID results for wthe Spurious-Fourier dataset

Algorithm 10% 80% 90% Average
ID ERM 74.46 (0.07) 74.79 (0.03) 73.54 (0.07) 74.26

Benchmark results We present the detailed evaluation of OOD generalization algorithms on the Spurious-
Fourier dataset. Important note: We evaluate performance only when holding out the 10% domain as it is
the only domain of meaning, and including the other domains only dilutes the information carried by this
dataset.

Table 11: OOD generalization algorithms performance on the Spurious-Fourier dataset

Train-domain validation
Objective 10%
ERM 9.91 (0.12)
IRM 10.30 (0.09)
VREx 10.36 (0.23)
GroupDRO 10.06 (0.19)
IB-ERM 9.21 (0.31)
SD 9.67 (0.20)

Test-domain validation
Objective 10%
ERM 12.07 (1.99)
IRM 58.82 (1.98)
VREx 63.69 (0.70)
GroupDRO 21.49 (2.12)
IB-ERM 18.65 (4.01)
SD 9.97 (0.11)

C.2 Temporal Colored MNIST with source domains
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Figure 14: Description of the Temporal Colored MNIST dataset with source domains. (a) Data samples
are videos of four colored MNIST digits where the task is to predict whether the sum of the current and
previous digits in the sequence is odd or even. (b) Spuriously correlated color is added to each digit such that
the correlation is constant among the frames of a video, but varies between video from different domains
d ∈ {10%, 80%, 90%}.

C.2.1 Setup

Motivation Arjovsky et al. (2020) proposed the CMNIST dataset as a synthetic investigation of the cow or
camel classification problem. We propose an extension of this widely used dataset to time series to investigate
both domain definition paradigms presented in Section 2.2: Source-domains (Example 2.2) and Time-domains
(Example 2.3). In this section, we give more details on the Source-domain formulation of the the dataset.

Problem setting In Temporal Colored MNIST with source domains (TCMNIST-Source), we create a
binary classification task of video frames. Videos are sequences of four colored MNIST digits where the
goal is to predict whether the sum of the current and previous digits in the sequence is odd or even, see
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Figure 14(a). Prediction is made for all frames except for the first one. The label is a noisy function of the
digit and color, such that the color bears a varying correlation of d with the label of the frame, and the digit
sums bears an invariant correlation of 75% with the label of the frame. Domains are created such that the
color correlation is constant among the frames of a video, but varies between video from different domains
d ∈ {10%, 80%, 90%}. The domain definition is depicted in Figure 14(b).

Data We create videos by concatenating four digits together and attributing labels y to the second, third
and fourth frames following the parity task, see Figure 14(a). For every labeled frame i in a sequence from
the domain d ∈ {10%, 80%, 90%}, we define the final label of that frame ỹi by flipping the label yi with a
probability of 25%. Second, we define z as ỹi flipped with a probability equals to the domain definition (10%,
80% or 90%). Finally, we color the digit red if z = 0 or green if z = 1.

Domain information Table 12 details the distribution of labels for every domain in the TCMNIST-Source
dataset.

Table 12: Distribution of labels for every domain in the TCMNIST-Source dataset

Domain Even Odd Domain Total
10% 8603 8899 17502
80% 8583 8916 17499
90% 8563 8936 17499
Total 25749 26751 52500

Architecture choice For this task, we use a combination of a CNN and an LSTM architecture. Table 18
details the layers of the model architecture. Its parameters were hand tuned to perform well on this task.

Table 13: Model architecture used for the TCMNIST-Source dataset

# Layer
1 Conv2D(in=d, out=8, padding=1)
2 ReLU
3 Conv2D(in=8, out=32, stride=2, padding=1)
4 ReLU
5 MaxPool2d
6 Conv2D(in=32, out=32, padding=1)
7 ReLU
8 MaxPool2d
9 Conv2D(in=32, out=32, padding=1)
10 ReLU
11 Linear(in=288, out=64)
12 ReLU
13 Linear(in=64, out=32)
14 ReLU
15 LSTM(in=32, hidden_size=128, num_layers=1)
16 Linear(in=128, out=64)
17 ReLU
16 Linear(in=64, out=64)
17 ReLU
18 Linear(in=64, out=2)
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C.2.2 Detailed results

Oracle task Investigating the impact of spurious correlation in a dataset is meaningless if the underlying
invariant task is impossible to solve with a given model or hyperparameter configuration. In order to avoid
this, we provide the Temporal MNIST (TMNIST) dataset in the WOODS repository. It consists of the oracle
task of the TCMNIST-Source dataset, i.e., classifying whether the sum of the current and last digit is odd
or even without label noise and without spurious features. We create videos by concatenating four digits
together and attributing labels y to the second, third and fourth frames following the parity task. While
this is not a domain generalization task, the TMNIST dataset is included in the WOODS repository as a
sanity check that the underlying invariant task of the Spurious-Fourier dataset is possible with the model
and hyperparameter configuration we are using. We show the results of ERM on the TMNIST dataset in
Table 14.

Table 14: Result for the TMNIST dataset

Objective Performance
ERM 98.77 (0.02)

ID evaluation We show the ID results of ERM for TCMNIST-Source in Table 15. We obtain these results
by doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.

Table 15: ID results for the TCMNIST-Source dataset

Algorithm 10% 80% 90% Average
ID ERM 68.36 (0.13) 73.49 (0.13) 74.85 (0.16) 72.23

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 16.

Table 16: OOD generalization algorithms performance on the TCMNIST-Source dataset

Train-domain validation
Objective 10%
ERM 10.07 (0.02)
IRM 9.82 (0.13)
VREx 9.83 (0.22)
GroupDRO 10.39 (0.02)
IB-ERM 9.97 (0.07)
SD 10.24 (0.12)

Test-domain validation
Objective 10%
ERM 30.34 (0.82)
IRM 52.74 (0.59)
VREx 49.69 (0.25)
GroupDRO 33.52 (2.95)
IB-ERM 28.12 (1.12)
SD 27.35 (3.51)
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C.3 Temporal colored MNIST with time domains
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Figure 15: Description of the Temporal Colored MNIST dataset with time domains. (a) Data samples are
videos of four colored MNIST digits where the task is to predict whether the sum of the current and previous
digits in the sequence is odd or even. (b) Spuriously correlated color is added to each digit such that the
correlation varies across frames. However, videos all have the same sequence of color correlation, where the
first labeled frame correlation is 90%, second is 80% and third is 10%.

C.3.1 Setup

Motivation Arjovsky et al. (2020) proposed the CMNIST dataset as a synthetic investigation of the cow or
camel classification problem. We propose an extension of this widely used dataset to time series to investigate
both domain definition paradigms presented in Section 2.2: Source-domains (Example 2.2) and Time-domains
(Example 2.3). In this section, we give more details on the Time-domain formulation of the the dataset.

Problem setting In Temporal Colored MNIST with time domains (TCMNIST-Time), we create a binary
classification task of video frames. Videos are sequences of four colored MNIST digits where the goal is to
predict whether the sum of the current and previous digits in the sequence is odd or even, see Figure 15(a).
Prediction is made for all frames except for the first one. The label is a noisy function of the digit and color,
such that the color bears a varying correlation of d with the label of the frame, and the digit sums bears an
invariant correlation of 75% with the label of the frame. Domains are created such that the color correlation
varies across frames. However, videos all have the same sequence of color correlation, where the first labeled
frame correlation is 90%, second is 80% and third is 10%. The domain definition is depicted in Figure 15(b).

Data We create videos by concatenating four digits together and attributing labels y to the second, third
and fourth frames following the parity task, see Figure 15(a). For every labeled frame i ∈ {2, 3, 4} of all
videos in the dataset, we define the final label of that frame ỹi by flipping the label yi with a probability
of 25%. Second, we define z as ỹi flipped with a probability equals to the domain definition for that frame
index (i = 2→ 90%, i = 3→ 80% or i = 4→ 10%). Finally, we color the digit red if z = 0 or green if z = 1.

Domain information Table 17 details the distribution of labels for every domain in the TCMNIST-Time
dataset.

Table 17: Distribution of labels for every domain in the TCMNIST-Time dataset

Domain Even Odd Domain Total
10% 8564 8936 17500
80% 8765 8735 17500
90% 8613 8887 17500
Total 25942 26558 52500

32



Published in Transactions on Machine Learning Research (08/2023)

Architecture choice For this task, we use a combination of a CNN and an LSTM architecture. Table 18
details the layers of the model architecture. Its parameters were hand tuned to perform well on this toy task.

Table 18: Model architecture used for the TCMNIST-Time dataset

# Layer
1 Conv2D(in=d, out=8, padding=1)
2 ReLU
3 Conv2D(in=8, out=32, stride=2, padding=1)
4 ReLU
5 MaxPool2d
6 Conv2D(in=32, out=32, padding=1)
7 ReLU
8 MaxPool2d
9 Conv2D(in=32, out=32, padding=1)
10 ReLU
11 Linear(in=288, out=64)
12 ReLU
13 Linear(in=64, out=32)
14 ReLU
15 LSTM(in=32, hidden_size=128, num_layers=1)
16 Linear(in=128, out=64)
17 ReLU
16 Linear(in=64, out=64)
17 ReLU
18 Linear(in=64, out=2)

C.3.2 Detailed results

Oracle task Investigating the impact of spurious correlation in a dataset is meaningless if the underlying
invariant task is impossible to solve with a given model or hyperparameter configuration. In order to avoid
this, we provide the Temporal MNIST (TMNIST) dataset in the WOODS repository. It consists of the oracle
task of the TCMNIST-Time dataset, i.e., classifying whether the sum of the current and last digit is odd
or even without label noise and without spurious features. We create videos by concatenating four digits
together and attributing labels y to the second, third and fourth frames following the parity task. While
this is not a domain generalization task, the TMNIST dataset is included in the WOODS repository as a
sanity check that the underlying invariant task of the Spurious-Fourier dataset is possible with the model
and hyperparameter configuration we are using. We show the results of ERM on the TMNIST dataset in
Table 19.

Table 19: Result for the TMNIST dataset

Objective Performance
ERM 98.77 (0.02)

ID evaluation We show the ID results of ERM for TCMNIST-Time in Table 20. We obtain these results
by doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.
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Table 20: ID results for the TCMNIST-Time dataset

Algorithm 10% 80% 90% Average
ID ERM 89.97 (0.00) 80.98 (0.02) 91.20 (0.00) 87.38

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 21.

Table 21: OOD generalization algorithms performance on the TCMNIST-Time dataset

Train-domain validation
Objective 10%
ERM 9.88 (0.11)
GroupDRO 10.09 (0.14)
IB-ERM 10.19 (0.04)
IRM 10.27 (0.05)
SD 10.19 (0.14)
VREx 9.80 (0.06)

Test-domain validation
Objective 10%
ERM 28.61 (2.41)
GroupDRO 24.85 (3.91)
IB-ERM 33.70 (6.49)
IRM 50.65 (0.17)
SD 31.76 (5.15)
VREx 50.57 (0.59)

C.4 CAP
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Figure 16: Summary of the CAP dataset. (a) The task is to perform sleep stage classification from EEG
measurements. (b) The dataset has five source domains, where each domain contains data gathered with a
different machine. The goal is to generalize to unseen machines.

C.4.1 Setup

Motivation A recurrent problem in computational medicine is that models trained on data from a given
recording device will not generalize to data coming from another device, even when both devices are from a
similar equipment provider. Failure to generalize to unseen machines can cause critical issues for clinical
practice because a false sense of confidence in a model could lead to a false diagnosis (Kim et al., 2018;
Engemann et al., 2018). We study these machinery-induced distribution shifts with the CAP (Terzano et al.,
2001; Goldberger et al., 2000) dataset (Figure 5).

Problem setting We consider the sleep stage classification task from electroencephalographic (EEG)
measurements. The dataset has five source domains, where each domain contains data gathered with a
different machine. The goal is to generalize to unseen machines.

Data The dataset is composed of 40 390 gathered on 41 participants. Each participants had one night of
sleep recorded. The inputs X are recordings of 30 seconds each with 19 channels sampled at 100Hz. The
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channels include EEG but also include Electromyography (EMG), Electrocardiography (ECG), and heart
rate measurements. The labels Y consist of 6 sleep stages: Awake, Non-REM 1, Non-REM 2, Non-REM
3, Non-REM 4, and REM. The domains d are the 5 EEG machines: Machine A, Machine B, Machine C,
Machine D, and Machine E.

Preprocessing This section details the preprocessing steps taken for the CAP dataset. The raw CAP
dataset contains data from 15 machines, each with different channels and sampling frequency characteristics.
We only use recordings from the five machines with the most data. Removing machines with less data allows
us to retain a reasonable number (19) of shared channels between them. Next, we resample the data to a
standard sampling frequency of 100Hz for all five machines. We then apply a bandpass filter from 0.3Hz
to 30Hz. This bandpass filter removes frequency bands generally considered uninformative for sleep stage
classification. Next, we split the nights of sleep into sequences of 30 seconds for training and testing. Finally,
we then detrend and normalize the 30 second recordings with a standard scaler applied to the channels
individually.

Domain information Table 22 details the number of participants per domain and some demographic
information; each had a single night of sleep recorded. Table 23 details the proportion of samples and labels
across domains.

Table 22: Number of participants and demographic information of the CAP dataset

Domain Number of participants Male Female Age
Machine A 13 7 6 33.1± 13.9
Machine B 5 5 0 26.4± 8.2
Machine C 5 4 1 73.4± 6.42
Machine D 10 5 5 30.7 (8.9
Machine E 8 3 5 36.8± 16.7
Total 41 24 17 37.3± 18.1

Table 23: Domain proportions of labels in the CAP dataset

Domain Awake NREM 1 NREM 2 NREM 3 NREM 4 REM Domain Total
Machine A 1448 350 4986 1533 2110 2342 12769
Machine B 318 171 1933 595 706 971 4694
Machine C 1318 294 1168 595 810 547 4732
Machine D 1114 580 3547 1273 1606 1810 9930
Machine E 967 276 3377 711 1251 1683 8265
Total 5165 1671 15011 4707 6483 7353 40390

Architecture choice For this dataset, we use a deep convolution network model as defined in work
from Schirrmeister et al. (2017). We use the implementation of the BrainDecode (Schirrmeister et al., 2017)
Toolbox. We chose this model because it is the perfect combination of performance stability and recogni-
tion from the EEG community. The implementation is available at https://github.com/TNTLFreiburg/
braindecode.

C.4.2 Detailed results

ID evaluation We show the results of ERM for the CAP dataset in Table 24. We obtain these results by
doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
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thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.

Table 24: ID results for the CAP dataset

Algorithm Machine A Machine B Machine C Machine D Machine E Average
ID ERM 78.26 (0.52) 78.14 (1.00) 63.39 (1.38) 78.73 (0.34) 77.09 (0.37) 75.12

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 25. Each results is obtained by holding out one domain during training and reporting the performance
of the chosen model from the hyperparameter sweep on that held out domain, more details in Appendix F.

Table 25: OOD generalization algorithms performance on the CAP dataset

Train-domain validation
Objective Machine A Machine B Machine C Machine D Machine E Average
ERM 68.93 (0.54) 61.98 (0.53) 40.10 (0.75) 73.10 (0.83) 70.13 (0.33) 62.85
IRM 67.59 (0.55) 48.40 (3.14) 41.01 (1.10) 69.52 (1.03) 66.86 (0.71) 58.68
VREx 57.97 (1.92) 38.96 (0.42) 33.81 (1.19) 52.53 (3.49) 59.71 (1.53) 48.60
GroupDRO 68.07 (0.33) 59.22 (1.53) 41.38 (0.52) 72.25 (0.70) 69.12 (0.90) 62.01
IB-ERM 70.20 (0.71) 62.03 (1.79) 40.66 (0.58) 72.73 (0.18) 70.57 (0.83) 63.24
SD 69.29 (0.25) 55.53 (1.45) 41.36 (1.78) 71.14 (0.22) 66.48 (0.92) 60.76

Oracle train-domain validation
Objective Machine A Machine B Machine C Machine D Machine E Average
ERM 69.00 (0.51) 65.21 (1.38) 43.11 (0.30) 73.31 (0.67) 70.34 (0.16) 64.19
IRM 67.59 (0.55) 55.09 (2.08) 41.20 (1.19) 70.72 (0.46) 67.87 (0.26) 60.49
VREx 57.79 (2.06) 39.49 (0.65) 36.38 (0.57) 52.95 (3.15) 59.71 (1.53) 49.26
GroupDRO 68.73 (0.22) 60.39 (1.23) 43.19 (0.56) 72.51 (0.49) 69.91 (0.50) 62.95
IB-ERM 71.06 (0.37) 66.99 (0.93) 43.21 (0.76) 73.64 (0.50) 70.88 (0.59) 65.16
SD 69.38 (0.20) 61.84 (0.39) 43.97 (1.09) 71.41 (0.14) 69.41 (0.29) 63.20

C.4.3 Credit and license

This dataset is adapted from the work of Terzano et al. (2001), as made available on the online Phys-
ionet (Goldberger et al., 2000) platform. This dataset is licensed under the Open Data Commons Attribution
License v1.0.
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C.5 SEDFx
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Figure 17: Summary of the SEDFx dataset. (a) The task is to perform sleep stage classification from EEG
measurements. (b) The dataset has four source domains, where each domain contains data from participants
of a certain age group. The goal is to generalize to unseen age groups.

C.5.1 Setup

Motivation In clinical settings, we train a model on the data gathered from a limited number of patients and
hope this model will generalize to new patients in the future (Pfohl et al., 2022). However, this generalization
between observed patients in the training dataset and new patients is not guaranteed. Distribution shifts
caused by shifts in patient demographics (e.g., age, gender, and ethnicity) can cause the model to fail. We
study age demographic shift with the SEDFx (Kemp et al., 2000; Goldberger et al., 2000) dataset (Figure 17).

Problem setting We consider the sleep classification task from EEG measurements. The dataset has four
source domains, where each domain contains data from participants of a certain age group. The goal is to
generalize to an unseen age demographic.

Data The dataset is composed of 238 712 recordings gathered on 100 participants. Every participant
had 2 nights of sleep recorded. The inputs X are recordings of 30 seconds each with four EEG channels
sampled at 100Hz. The channels include 2 EEG channels, one Electromyography (EOG) channel, and one
Electrocardiography (ECG) channel. The labels Y consist of 6 sleep stages: Awake, Non-REM 1, Non-REM
2, Non-REM 3, Non-REM 4, and REM. The domains d are the four disjoint age groups: Age 20-40, Age
40-60, Age 60-80, and age 80-100.

Preprocessing This section details the preprocessing steps taken for the SEDFx dataset. The raw SEDFx
dataset contains data from 2 machines with different channels and sampling frequency characteristics. We
use the data from both machines and keep only the four channels they have in common. First, we resample
the data to a standard sampling frequency of 100Hz for both machines. We then apply a bandpass filter from
0.3Hz to 30Hz. This bandpass filter removes frequency bands generally considered uninformative for sleep
stage classification. Next, we crop the unlabeled onset and end of the complete recordings. Next, we split the
nights of sleep into shorter sequences of 30 seconds for training and testing. Finally, we detrend the data and
normalize the 30 second recordings with a standard scaler applied to channels individually.

Domain information The data from the different machines consists of data from disjoint sets of partici-
pants. Table 27 details the number of participants per domain and some demographic information. Table 27
details the proportion of samples and labels across domains.
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Table 26: Number of participants and demographic information of the SEDFx dataset

Domain Number of participants Male Female Age
Age 20-40 32 14 18 27.6± 4.7
Age 40-60 29 12 17 53.3± 3.4
Age 60-80 23 10 13 69.2± 3.5
Age 80-100 16 8 8 90.5 (4.5
Total 100 44 56 54.7± 22.6

Table 27: Domain proportions of labels in the SEDFx dataset

Domain Awake NREM 1 NREM 2 NREM 3 NREM 4 REM Domain Total
Age 20-40 10505 4222 28105 4830 4254 12348 64264
Age 40-60 20405 7182 27222 3243 1423 10007 69482
Age 60-80 14708 7087 19186 2830 1400 6917 52128
Age 80-100 25358 6684 14410 1288 186 4912 52838
Total 70976 25175 88923 12191 7263 34184 238712

Architecture choice For this dataset, we use a deep convolution network model as defined in work
from Schirrmeister et al. (2017). We use the implementation of the BrainDecode (Schirrmeister et al., 2017)
Toolbox. We chose this model because it is the perfect combination of performance, stability, and recogni-
tion from the EEG community. The implementation is available at https://github.com/TNTLFreiburg/
braindecode.

C.5.2 Detailed results

ID evaluation We show the results of ERM for the SEDFx dataset in Table 28. We obtain these results by
doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.

Table 28: ID results for the SEDFx dataset

Algorithm Age 20-40 Age 40-60 Age 60-80 Age 80-100 Average
ID ERM 74.11 (0.12) 74.19 (0.47) 72.39 (0.41) 69.22 (0.49) 72.48

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 29. Each results is obtained by holding out one domain during training and reporting the performance
of the chosen model from the hyperparameter sweep on that held out domain, more details in Appendix F.

C.5.3 Credit and license

This dataset was adapted from the work of Kemp et al. (2000), as made available on the online Phys-
ionet (Goldberger et al., 2000) platform. This dataset is licensed under the Open Data Commons Attribution
license v1.0.
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Table 29: OOD generalization algorithms performance on the SEDFx dataset

Train-domain validation
Objective Age 20-40 Age 40-60 Age 60-80 Age 80-100 Average
ERM 65.90 (2.06) 70.59 (0.54) 68.48 (0.17) 64.18 (0.33) 67.29
IRM 60.76 (0.94) 67.69 (0.80) 63.04 (0.81) 59.13 (0.43) 62.65
VREx 57.21 (2.39) 58.80 (0.94) 56.81 (0.97) 51.74 (1.23) 56.14
GroupDRO 67.01 (0.90) 68.31 (0.73) 65.08 (0.42) 60.48 (1.07) 65.22
IB-ERM 69.41 (0.12) 72.58 (0.46) 69.79 (0.42) 66.16 (0.87) 69.48
SD 69.87 (1.34) 73.18 (0.19) 69.14 (0.16) 67.18 (0.26) 69.84

Oracle train-domain validation
Objective Age 20-40 Age 40-60 Age 60-80 Age 80-100 Average
ERM 69.87 (0.41) 71.03 (0.20) 68.88 (0.18) 64.36 (0.26) 68.53
IRM 66.02 (0.55) 67.69 (0.80) 63.16 (0.65) 60.14 (0.32) 64.25
VREx 59.63 (0.76) 58.80 (0.94) 56.78 (0.95) 52.73 (0.22) 56.99
GroupDRO 68.73 (0.37) 69.14 (0.40) 65.17 (0.35) 61.54 (0.85) 66.15
IB-ERM 70.42 (0.41) 72.79 (0.62) 70.25 (0.12) 69.08 (0.56) 70.64
SD 71.22 (0.60) 73.18 (0.19) 69.60 (0.04) 68.41 (0.60) 70.60

C.6 PCL

Lee2019_MI

Cho2017

(a) (b)

PhysionetMI

or

Figure 18: Summary of the PCL dataset. (a) The task is to perform motor imagery classification from EEG
measurements. (b) The dataset has three source domains, where each domain contains a dataset from a
different research group carrying out the same task. The goal is to generalize to unseen datasets of the same
task.

C.6.1 Setup

Motivation Aside from changes in the recording device and shifts in patient demographics, human
intervention in the data gathering process is another contributing factor to the distribution shift that can
lead to failure of clinical models (e.g., Camelyon17 (Koh et al., 2021; Sagawa et al., 2021)). This challenge
is especially prevalent in temporal medical data (e.g., EEG, MEG, and others) because recording devices
are complex tools greatly affected by nonlinear effects and modulations. These effects are often caused by
context and preparations made before the recording (Engemann et al., 2018). We study these procedural
shifts with the PCL (Lee et al., 2019; Cho et al., 2017; Schalk et al., 2004; Jayaram & Barachant, 2018)
dataset (Figure 18).
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Problem setting We consider the motor imagery task from electroencephalographic (EEG) measurements.
The dataset has three source domains, where each domain contains a dataset from a different research group
carrying out the same task. The goal is to generalize to unseen data gathering processes.

Data The dataset is composed of 22 598 recordings gathered with 215 participants. The inputs X are
recordings of three seconds each with 48 EEG channels sampled at 250Hz. The 48 channels contain only
EEG measurements. The labels Y are two imagined movements: left hand and right hand. The domains
d are three different motor imagery datasets: Schalk04 (Schalk et al., 2004), Cho17 (Cho et al., 2017) and
Lee19 (Lee et al., 2019).

The 48 channels are: AF7, CP5, AF4, P4, P8, P2, FC6, Fz, C5, O1, Fp1, Fp2, F4, CP4, PO3, C1, FC1, T8,
Pz, Oz, TP7, Cz, FC2, CP6, CP2, POz, PO4, C6, P7, AF3, FC4, TP8, CP1, O2, C2, F8, FC3, P3, AF8,
FC5, F7, F3, T7, C4, CP3, CPz, C3, P1. The channel locations are shown in Figure 19.
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Figure 19: International 10-10 system EEG channel labeling.

Preprocessing This section details the preprocessing steps taken for the PCL dataset. The raw PCL
dataset contains data from 2 machines, Schalk04 (Schalk et al., 2004) and Cho17 (Cho et al., 2017) both
used a BCI2000 system (Schalk et al., 2004) while Lee19 (Lee et al., 2019) used an undefined machine. Both
machines have different channels and sampling frequency characteristics. We take only the 48 channels they
have in common and we resample the data to a standard sampling frequency of 250Hz for both machines.
We then apply a bandpass filter from 0.3Hz to 30Hz. This bandpass filter removes frequency bands generally
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considered uninformative for the motor imagery task. Finally, we then detrend the data and normalize the
three second recordings with a standard scaler applied to the channels individually.

Domain information Table 30 details the number of participants per domain and some demographic
information; we put N/A for unavailable demographic information. Table 31 details the proportion of samples
and labels across domains.

Table 30: Number of participants and demographic information of the PCL dataset

Domain Number of participants Male Female Age
Schalk04 109 N/A N/A N/A
Cho2017 52 33 19 24.8± 3.9
Lee19 54 29 25 [24, 35]
Total 215 N/A N/A N/A

Table 31: Domain proportions of labels in the PCL dataset

Domain Left Hand Right Hand Domain Total
Schalk04 2480 2438 4918
Cho2017 4940 4940 9880
Lee19 3900 3900 7800
Total 11320 11278 22598

Architecture choice For this dataset, we use a deep convolution network model as defined in work
from Lawhern et al. (2018). We use the implementation of the BrainDecode Schirrmeister et al. (2017)
Toolbox. We chose this model because it is well recognized by the EEG community. It also has a smaller
architecture that better fits the data amount and task complexity of the PCL dataset. The implementation
is available at https://github.com/TNTLFreiburg/braindecode.

C.6.2 Detailed results

ID evaluation We show the results of ERM for the PCL dataset in Table 32. We obtain these results by
doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.

Table 32: ID results for the PCL dataset

Algorithm Schalk04 Cho17 Lee19 Average
ID ERM 76.40 (0.19) 68.07 (0.09) 76.45 (0.23) 73.64

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 33. Each results is obtained by holding out one domain during training and reporting the performance
of the chosen model from the hyperparameter sweep on that held out domain, more details in Appendix F.
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Table 33: OOD generalization algorithms performance on the PCL dataset

Train-domain validation
Objective Schalk04 Cho17 Lee19 Average
ERM 63.52 (0.92) 59.34 (0.23) 70.06 (0.46) 64.31
IRM 63.43 (0.37) 60.41 (0.07) 67.90 (0.27) 63.91
VREx 62.65 (0.29) 58.84 (0.26) 68.22 (0.33) 63.24
GroupDRO 63.97 (0.57) 60.24 (0.35) 70.34 (0.02) 64.85
IB-ERM 63.31 (0.16) 59.82 (0.38) 70.18 (0.41) 64.44
SD 63.72 (0.20) 59.31 (0.36) 70.15 (0.16) 64.40

Oracle train-domain validation
Objective Schalk04 Cho17 Lee19 Average
ERM 64.52 (0.25) 60.41 (0.22) 71.11 (0.29) 65.35
IRM 63.28 (0.30) 61.09 (0.42) 68.77 (0.41) 64.38
VREx 62.41 (0.47) 59.28 (0.29) 68.08 (0.20) 63.26
GroupDRO 63.96 (0.36) 59.60 (0.38) 70.09 (0.16) 64.55
IB-ERM 64.63 (0.22) 60.22 (0.38) 70.27 (0.34) 65.04
SD 64.50 (0.05) 60.80 (0.17) 70.72 (0.14) 65.34

C.6.3 Credit and license

This dataset is built from 3 different motor imagery datasets (Schalk et al., 2004; Cho et al., 2017; Lee et al.,
2019) as made available on the online MOABB (Jayaram & Barachant, 2018) platform. The PhysionetMI
dataset is licensed under the Open Data Commons Attribution license v1.0.

C.7 LSA64
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Figure 20: Summary of the LSA64 dataset. (a) The task is to perform signed word classification from videos.
(b) The dataset has five source domains, where each domain contains videos of different signers. The goal is
to generalize to unseen signers.

C.7.1 Setup

Motivation Communication is an individualistic way to convey information through different media: text,
speech, body language, and many others. However, some media are more distinctive and challenging than
others. For example, text communication has less inter-individual variability than body language or speech.
If deep learning systems hope to interact with humans effectively, models need to generalize to new and
evolving mannerisms, accents, and other subtle variations in communication that significantly impact the
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meaning of the message conveyed. We study the ability of models to recognize information coming from
unseen individuals with the LSA64 (Ronchetti et al., 2016) dataset (Figure 20).

Problem setting We consider the video classification of signed words in Argentinian Sign Language. The
dataset has five source domains, where each domain contains videos of different signers. The goal is to
generalize to unseen signers.

Data The dataset consists of 3200 videos from 10 different signers signing in Argentinian Sign Language.
The inputs X are videos of 20 frames with resolution (3, 224, 224). Sequences are two and a half seconds
long. The labels Y consist of 64 words: Opaque, Red, Green, Yellow, Bright, Light-blue, Colors, Light-red
Women, Enemy, Son, Man, Away, Drawer, Born, learn, Call, Skimmer, Bitter, Sweet milk, Milk, Water, Food,
Argentina, Uruguay, Country, Last name, Where, Mock, Birthday, Breakfast, Photo, Hungry, Map, Coin,
Music, Ship, None, Name, Patience, Perfume, Deaf, Trap, Rice, Barbecue, Cady, Chewing-gum, Spaghetti,
Yogurt, accept, Thanks, Shut down, Appear, To land, Catch, Help, Dance, Bathe, Buy, Copy, Run, Realize,
Give, and Find. The domains d are 5 subgroups of signers: Signers 1 & 2, Signers 3 & 4, Signers 5 & 6,
Signers 7 & 8 and Signers 9 & 10.

Preprocessing This section details the preprocessing steps taken for the LSA64 dataset. The raw LSA64
dataset contains 3200 videos, each about 3 seconds long with the resolution of 1920x1080, at 60 frames per
second. We first crop all videos at precisely 2.5 seconds to have videos of the same length. This cropping
does not impact the information content of the video as signers pause at the end of their signed words. We
then resize the frames to 224x224. Finally, we use PyTorchVideo (Fan et al., 2021) to uniformly sample 20
frames from each video in a sequence for prediction.

Domain information Table 34 details the proportion of samples and labels across domains.

Table 34: Domain proportions of labels in the LSA64 dataset

Domain 64 words Domain Total
Signer 1 & 2 10 videos per word 640
Signer 3 & 4 10 videos per word 640
Signer 5 & 6 10 videos per word 640
Signer 7 & 8 10 videos per word 640
Signer 9 & 10 10 videos per word 640
Total 50 videos per word 3200

Architecture choice We use a Convolutional Recurrent Neural Network (CRNN) for this dataset. The
CRNN model has 4 model blocks: Convolutional, Recurrent, attention, and prediction. First, we feed each
video frame through a frozen Resnet50 model that is pretrained on Imagenet to extract relevant features. We
then feed these feature vectors sequentially to an LSTM model. Finally, push the output of the LSTM model
for each frame through a self-attention layer which linearly combines the LSTM output weighed by their
attention scores. We the use a fully connected network to make predictions. Table 35 details the layers of the
model architecture.
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Table 35: Model architecture used for the LSA64 dataset

# Layer
1 Resnet50(in=3x224x224, out=2048)
2 Linear(in=2048, out=512)
3 ReLU
4 BatchNorm(num_features=512, momentum=0.01)
5 Linear(in=512, out=512)
6 ReLU
7 BatchNorm(num_features=512, momentum=0.01)
8 Linear(in=512, out=216)
9 ReLU
10 LSTM(in=256, hidden_size=128, num_layers=2)
11 SelfAttention(in=128, out=128)
12 Linear(in=128, out=64)
13 ReLU
14 Linear(in=64, out=64)

C.7.2 Detailed Results

ID evaluation We show the results of ERM for the LSA64 dataset in Table 36. We obtain these results by
doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.

Table 36: ID results for the LSA64 dataset

Algorithm Signers 1 & 2 Signers 3 & 4 Signers 5 & 6 Signers 7 & 8 Signers 9 & 10 Average
ID ERM 90.10 (0.56) 89.58 (1.13) 80.21 (1.06) 85.16 (1.61) 87.76 (0.77) 86.56

Benchmarks results We show the detailed benchmark results of the adapted OOD generalization algo-
rithms in Table 37. Each results is obtained by holding out one domain during training and reporting the
performance of the chosen model from the hyperparameter sweep on that held out domain, more details in
Appendix F.

C.7.3 Credit and license

This dataset was adapted from the work of Ronchetti et al. (2016). The LSA64 dataset is under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
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Table 37: OOD generalization algorithms performance on the LSA64 dataset

Train-domain validation
Objective Signers 1 & 2 Signers 3 & 4 Signers 5 & 6 Signers 7 & 8 Signers 9 & 10 Average
ERM 48.50 (2.93) 50.65 (2.28) 47.53 (1.32) 57.49 (2.49) 62.96 (0.98) 53.42
IRM 44.34 (0.60) 43.16 (1.48) 38.28 (2.01) 46.88 (1.13) 52.47 (2.78) 45.03
VREx 42.19 (3.64) 45.57 (1.67) 42.06 (2.82) 51.82 (1.95) 52.21 (4.26) 46.77
GroupDRO 43.62 (3.95) 44.14 (1.87) 43.29 (1.58) 47.79 (1.70) 52.73 (1.36) 46.32
IB-ERM 55.66 (1.71) 56.71 (2.16) 49.80 (2.41) 64.52 (0.61) 59.70 (2.51) 57.28
SD 48.63 (2.46) 50.20 (1.60) 40.89 (0.84) 57.68 (2.54) 56.32 (1.19) 50.74

Oracle train-domain validation
Objective Signers 1 & 2 Signers 3 & 4 Signers 5 & 6 Signers 7 & 8 Signers 9 & 10 Average
ERM 54.43 (1.11) 59.24 (0.23) 48.89 (1.45) 62.96 (1.25) 65.62 (0.42) 58.23
IRM 42.06 (1.17) 43.16 (1.48) 39.06 (1.39) 46.22 (3.83) 47.46 (1.95) 43.59
VREx 46.29 (1.81) 49.93 (0.45) 42.84 (0.75) 54.23 (0.59) 56.90 (0.53) 50.04
GroupDRO 50.52 (1.01) 54.49 (1.87) 45.12 (1.27) 56.51 (1.66) 63.22 (0.75) 53.97
IB-ERM 56.51 (1.38) 59.51 (0.91) 51.82 (0.96) 64.52 (0.61) 66.54 (1.27) 59.78
SD 56.58 (1.24) 60.68 (1.08) 49.35 (0.51) 62.43 (0.83) 64.06 (1.39) 58.62

C.8 HHAR
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Figure 21: Summary of the HHAR dataset. (a) The task is to perform human activity classification from
smart devices sensory data. (b) The dataset has five source domains, where each domain contains data
gathered with a different smart device. The goal is to generalize to unseen smart devices.

C.8.1 Setup

Motivation The intrinsic biases from inaccurate and poorly calibrated sensors of smart devices, along
with the accumulated biases from everyday use makes human activity recognition a notoriously difficult
task when task when done across devices (Stisen et al., 2015; Blunck et al., 2013). Contrary to static tasks
where uninformative features can often be segmented out from the input features (e.g., background when
classifying an animal from an image), invariant features in time series are often highly convoluted with other
spurious features. We study the ability of models to ignore spurious information from complex signals with
the HHAR (Stisen et al., 2015; Dua & Graff, 2017) dataset (Figure 21).

Problem setting We consider the human activity classification task from accelerometer and gyroscope
measurements of smartphones and smartwatches. The dataset has five source domains, where each domain
contains data gathered with a different device. The goal is to generalize to unseen smart devices.
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Data The dataset consists of 13674 recordings of 3-axis accelerometer and 3-axis gyroscope data from 5
different smart devices (3 smartphones and 2 smartwatches). The inputs X are five second recordings of a
6-dimensional signal sampled at 100Hz. The labels Y consist of 6 activities: Stand, Sit, Walk, Bike, Stairs
up, and Stairs Down. Domains d consist of five smart device models: Nexus 4, Galaxy S3, Galaxy S3 Mini,
LG Watch, and Samsung Galaxy Gears.

Preprocessing This section details the preprocessing steps taken for the HHAR dataset. The raw data
was gathered with 10 different smart devices (2 from each model). Different models have different sampling
frequencies, plus recordings have gaps in the data samples where devices temporarily stopped recording,
making the time series irregularly sampled. We first remove the recordings of any device that either is missing
considerable amounts of signals or has less than 100 seconds of recording. We then sort the data points in
each sequence according to their recorded time, instead of time the data was saved on the device. Next, we
split the full recordings into sequences of five seconds and resample at 100Hz. Finally, we normalize the data
with a standard scaler applied to the accelerometer and gyroscope channels separately.

Domain information Table 38 details the proportion of samples and labels across domains.

Table 38: Domain proportions of labels in the HHAR dataset

Domain Stand Sit Walk Bike Stairs up Stairs down Domain Total
Nexus 4 760 911 1024 644 695 543 4577
Galaxy S3 664 889 944 560 635 474 4166
Galaxy S3 Mini 409 501 524 297 396 280 2407
LG watch 368 358 382 424 315 307 2154
Gear watch 21 23 78 42 120 86 370
Total 2222 2682 2952 1967 2161 1690 13674

Architecture choice As this data is similar to EEG recordings, we use the same deep convolution network
model as in the CAP and SEDFx datasets. The architecture is defined in work from Schirrmeister et al.
(2017). We use the implementation of the BrainDecode (Schirrmeister et al., 2017) Toolbox. Temporal
Convolutional Networks (TCN) are powerful tools for processing time series data (Bai et al., 2018). The
architecture we use combines temporal and spatial convolution, which fits this data well. We found that
it performed well on this task and obtained stable performance. The implementation is available at
https://github.com/TNTLFreiburg/braindecode.

C.8.2 Detailed results

ID evaluation We show the results of ERM for the HHAR dataset in Table 39. We obtain these results by
doing a hyperparameter search with the methodology detailed in Appendix F with no held-out test domain
and choose the model with train-domain validation. In other words, the training is done with all domains;
thus, all domains are ID. The columns correspond to the validation accuracy of the chosen model in each
domain.

Table 39: ID results for the HHAR dataset

Algorithm Nexus 4 Galazy S3 Galaxy S3 Mini LG watch Sam. Gear Average
ID ERM 98.91 (0.24) 98.44 (0.15) 98.68 (0.15) 90.08 (0.28) 80.63 (1.33) 93.35

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 40. Each results is obtained by holding out one domain during training and reporting the performance
of the chosen model from the hyperparameter sweep on that held out domain, more details in Appendix F.
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Table 40: OOD generalization algorithms performance on the HHAR dataset

Train-domain validation
Objective Nexus 4 Galazy S3 Galaxy S3 Mini LG watch Sam. Gear Average
ERM 97.91 (0.03) 98.17 (0.18) 92.49 (0.26) 71.33 (0.67) 62.16 (1.69) 84.41
IRM 95.68 (0.47) 96.31 (0.53) 91.10 (0.35) 69.76 (1.44) 61.71 (1.56) 82.91
VREx 95.53 (0.55) 96.51 (0.16) 91.36 (0.43) 69.72 (0.29) 62.73 (1.15) 83.17
GroupDRO 96.49 (0.18) 96.79 (0.12) 92.13 (0.09) 71.64 (0.43) 63.74 (1.34) 84.16
IB-ERM 97.56 (0.06) 97.93 (0.21) 91.76 (0.57) 71.38 (1.02) 59.01 (1.86) 83.53
SD 98.14 (0.01) 98.32 (0.19) 92.71 (0.09) 75.12 (0.18) 63.85 (0.28) 85.63

Oracle train-domain validation
Objective Nexus 4 Galazy S3 Galaxy S3 Mini LG watch Sam. Gear Average
ERM 97.64 (0.06) 98.05 (0.07) 93.18 (0.20) 73.11 (0.77) 64.64 (1.20) 85.32
IRM 96.81 (0.14) 96.43 (0.09) 91.26 (0.23) 70.61 (0.51) 61.82 (2.21) 83.39
VREx 96.60 (0.24) 96.68 (0.29) 92.00 (0.65) 71.67 (0.84) 59.23 (1.17) 83.24
GroupDRO 96.54 (0.23) 96.94 (0.15) 91.62 (0.34) 71.33 (0.68) 64.86 (0.69) 84.26
IB-ERM 98.16 (0.09) 98.22 (0.09) 93.18 (0.16) 73.40 (0.68) 64.64 (0.09) 85.52
SD 98.48 (0.01) 98.67 (0.11) 94.36 (0.24) 75.12 (0.18) 64.86 (0.28) 86.30

C.8.3 Credits and license

This dataset was adapted from the work of Stisen et al. (2015) as made available on the online UCI Machine
Learning Repository (Dua & Graff, 2017). This dataset is licensed under the Open Data Commons Attribution
license v1.0.

C.9 PedCount
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Figure 22: Summary of the PedCount dataset. (a) The task is to forecast the count of pedestrian crossing
streets of Melbourne. (b) The dataset has 65 source domains, where each domain contains pedestrian counts
of a different street crossing. The goal is to perform well on unseen street crossings.

C.9.1 Setup

Motivation Data gathered from the behavior of a population follows seasonal (daily, weekly, yearly) trends.
An example of this is the movement of population within a city, either by walking, public transport or car.
These trends form from the daily life of the population, e.g., the influx in the morning, outflux in the evening,
and absence on the weekend. However, these trends can shift when the data is gathered from different sources
in a city. We study the impact of those trend shifts with the Pedestrian (City of Melbourne, 2017; Godahewa
et al., 2021) dataset (Figure 22).
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Problem setting The dataset has 65 source domains, where each domain contains pedestrian counts of a
different street crossing. The goal is to perform well on unseen street crossings. Specifically, we investigate
the OOD generalization to location T22 and T25.

Data The dataset consists of 65 time series comprising pedestrian crossing counts in the city of Melbourne,
Australia. The time series are gathered from various parts of the city. The time series are gathered up to
30/04/2020, and the start of the data gathering process range from 1/5/2009 to 13/3/2020. The inputs X
are seven days of pedestrian count sampled hourly, to which we add 40 lag features and four time features.
Lag features are past pedestrian count values that go past the seven day context given to the model. The
time features are time indicators: hour of the day, day of the week, day of the month, and day of the year.
The labels Y is the pedestrian count for the day following the seven days of context. Domains d consist of 65
different counters (T1-T65).

Preprocessing We do not perform any preprocessing for this dataset, this was already accomplished by
prior work from Godahewa et al. (2021).

Domain information Information on start date and end date of data gathering can be found in Table 41
along with some statistics such as time series average and maximum value.

Architecture choice For this dataset, we use a forecasting Transformer architecture closely following the
original formulation of Vaswani et al. (2017a). We found that it performed well on this task and obtained
stable performance. Details are in Table 42.

Table 42: Model architecture used for the Pedestrian dataset

# Layer
1 TransformerEncoder(d_model=48, nhead=2, num_encoder_layers=2,

dim_feedforward=32, dropout=0.1, activation=gelu)
2 TransformerDecoder(d_model=48, nhead=2, num_encoder_layers=2,

dim_feedforward=32, dropout=0.1, activation=gelu)

C.9.2 Detailed Results

ID evaluation We show the in-distribution (ID) ERM results for the Pedestrian dataset in Table 43. We
obtain these results by doing a hyperparameter search with the methodology detailed in Appendix F with no
held-out test domain and choose the model with train-domain validation. In other words, the training is
done with all domains; thus, all domains are ID. The columns correspond to the validation accuracy of the
chosen model in each domain.

Table 43: ID results for the Pedestrian dataset

Algorithm T22 T25 T1-T65 \{T22,T25} Average
ID ERM 96.40 (4.46) 101.73 (1.02) 61.48 (1.15) 62.65

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 44. Each results is obtained by holding out one domain during training and reporting the performance
of the chosen model from the hyperparameter sweep on that held out domain, more details in Appendix F.
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Table 41: Domain information in the Pedestrian dataset

Domain Start date End date Time series length Time series average Time series maximum
T1 1/5/2009 13/12/2018 84331 1157 5573
T2 1/5/2009 20/4/2020 96187 1074 7035
T3 19/5/2009 30/10/2019 91594 1207 5890
T4 1/5/2009 17/8/2019 90260 1480 8052
T5 1/5/2009 12/12/2019 93068 1081 7391
T6 1/5/2009 12/4/2020 95994 1193 6568
T7 25/9/2009 15/8/2018 77924 366 11742
T8 21/5/2009 14/3/2020 94801 151 3275
T9 1/5/2009 30/4/2020 96424 518 5873
T10 1/5/2009 12/4/2020 95985 176 3113
T11 1/5/2009 27/2/2020 94908 99 9805
T12 1/5/2009 6/12/2019 92917 202 11284
T13 1/5/2009 26/4/2017 70028 743 7510
T14 1/5/2009 14/9/2019 90930 398 7304
T15 1/5/2009 13/6/2019 88700 800 5559
T16 1/5/2009 3/7/2014 45359 713 4640
T17 1/5/2009 10/8/2019 90091 460 3938
T18 1/5/2009 30/4/2020 96423 344 3759
T19 1/9/2013 1/3/2020 56969 566 2544
T20 6/9/2013 20/3/2020 57307 372 2231
T21 1/9/2013 12/4/2020 57979 606 5438
T22 1/9/2013 1/12/2018 46030 1531 5654
T23 1/9/2013 30/1/2020 56227 334 3845
T24 1/9/2013 10/3/2020 57187 1195 5880
T25 1/9/2013 3/12/2019 54826 561 7664
T26 28/9/2013 27/4/2020 57691 548 2957
T27 1/9/2013 20/3/2020 57426 127 888
T28 20/9/2013 19/3/2020 56946 984 7954
T29 11/10/2013 16/12/2019 54186 444 7494
T30 16/10/2013 13/12/2019 53996 506 2801
T31 9/10/2013 15/4/2020 57139 282 3040
T32 20/12/2013 25/12/2016 26443 1057 9791
T33 23/4/2014 15/9/2019 47315 156 2218
T34 8/6/2014 30/4/2020 51683 144 3708
T35 12/4/2016 25/4/2020 35398 1545 9912
T36 21/1/2015 19/1/2020 43795 291 1389
T37 1/2/2015 30/4/2020 45976 159 1656
T38 1/1/2015 5/1/2017 17662 2448 6965
T39 23/8/2014 10/11/2019 45724 226 1823
T40 20/1/2015 9/4/2020 45765 287 2103
T41 1/7/2017 20/4/2019 15815 1786 7138
T42 15/4/2015 24/3/2020 43336 247 2292
T43 15/4/2015 30/4/2020 44219 201 1539
T44 15/4/2015 29/4/2020 44207 97 906
T45 1/7/2017 17/12/2019 21599 883 4736
T46 8/8/2017 12/4/2020 23472 100 678
T47 25/8/2017 26/4/2020 23411 950 4532
T48 3/10/2017 1/4/2020 21876 249 2375
T49 30/11/2017 14/4/2020 20784 181 2167
T50 1/7/2017 4/4/2020 24215 255 2271
T51 1/12/2017 1/5/2020 21168 124 564
T52 1/8/2017 25/4/2020 23974 395 1918
T53 1/10/2015 13/4/2020 39765 695 3738
T54 1/7/2018 29/4/2020 16032 148 1316
T55 1/8/2018 23/3/2019 5616 817 2638
T56 1/8/2018 18/4/2020 15027 310 1219
T57 1/9/2018 11/3/2020 13368 798 15979
T58 1/10/2018 1/5/2020 13872 745 3352
T59 13/2/2019 1/5/2020 10632 252 3849
T60 18/4/2019 23/7/2019 2291 1600 5424
T61 1/7/2019 1/5/2020 7320 447 2984
T62 1/10/2019 1/5/2020 5112 120 606
T63 8/1/2020 22/3/2020 1777 294 2106
T64 17/1/2020 14/4/2020 2112 168 1157
T65 13/3/2020 1/5/2020 1176 136 1486
Total 2222 2682 2952 1967 2161

C.9.3 Credits and license

This dataset was adapted from the work of City of Melbourne (2017) as made available on the online Monash
time series archive (Godahewa et al., 2021). This dataset is licensed under the Creative Commons Attribution
4.0 International License.

49



Published in Transactions on Machine Learning Research (08/2023)

Table 44: OOD generalization algorithms performance on the Pedestrian dataset

Train-domain validation
Objective T22 T25 Average
ERM 196.07 (10.21) 212.11 (12.65) 204.09
VREx 197.98 (7.31) 205.19 (4.74) 201.58
GroupDRO 243.53 (16.90) 242.94 (9.17) 243.23
IB-ERM 224.55 (15.43) 201.60 (6.41) 213.07

Oracle train-domain validation
Objective T22 T25 Average
ERM 226.78 (11.88) 219.71 (2.25) 223.24
VREx 203.52 (2.82) 222.63 (4.39) 213.07
GroupDRO 261.10 (12.11) 223.04 (7.84) 242.06
IB-ERM 201.43 (10.94) 209.89 (11.65) 205.66

C.10 AusElec
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Figure 23: Summary of the AusElec dataset. (a) The task is to forecast electricity consumption. (b) The
dataset has 13 time domains, where each domain contains data from different months and holidays. The goal
is to perform well on all seasonalities.

C.10.1 Setup

Motivation Seasonality is the property of time series where recurring characteristics appear every cycle of
a fixed period, e.g., weekly. A common practice in the forecasting field is to provide models with additional
information, e.g., day of week in order to allow models to leverage seasonality for better predictions. However,
holidays is a seasonality of time series that is very sparse which models often fail to capture. We study the
performance of models on sparse seasonality with the AusElec (Hyndman & Athanasopoulos, 2018; Godahewa
et al., 2021) dataset (Figure 23)

Problem setting We consider the electricity consumption forecasting task. The dataset has 13 time
domains, where each domain contains data from different months and holidays. The goal is to perform well
on all seasonalities.

Data The dataset consists of five time series comprising 13 years of electricity demand across five states
in Australia: Victoria, New South Wales, Queensland, Tasmania and South Australia. The inputs X are
seven days of electricity demand sampled half hourly to which we add 42 lag features and 5 time features.
Lag features are past electricity demand values the goes past the seven day context given to the model. The
time features are time indicators: minute of hour, hour of day, day of week, day of month, and day of year.
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The labels Y is the electricity demand for the day following the seven days of context. Domains d consist of
time intervals throughout the year: January, February, March, April, May, June, July, August, September,
October, November, December, and holidays.

Preprocessing We do not perform any preprocessing for this dataset, this was already accomplished by
prior work from Godahewa et al. (2021).

Domain information We define the time interval of the Holidays domain as union of the following
Australian holidays: New Year’s Day, Australia Day, Good Friday, Easter Monday, Anzac Day, Christmas
Day, Boxing Day.

Architecture choice For this dataset, we use a forecasting Transformer architecture closely following the
original formulation of Vaswani et al. (2017a). We found that it performed well on this task and obtained
stable performance. Details are in Table 45.

Table 45: Model architecture used for the AusElec dataset

# Layer
1 TransformerEncoder(d_model=48, nhead=2, num_encoder_layers=2,

dim_feedforward=32, dropout=0.1, activation=gelu)
2 TransformerDecoder(d_model=48, nhead=2, num_encoder_layers=2,

dim_feedforward=32, dropout=0.1, activation=gelu)

C.10.2 Detailed Results

Unbalanced results It has been reported in prior work (Koh et al., 2021) that OOD generalization
algorithms such as IRM outperforms ERM on subpopulation shift datasets. However, it is unclear whether
the improvements originates from the nature OOD generalization algorithms to upsample minority domains
when computing the empirical risk or because the algorithm is performing well. In this work, we create an
Unbalanced dataset of the subpopulation shift dataset which is agnostic of the domain definition during
training. This allows us to compare the gain in performance obtained by upsampling the minority domain
when minimizing the empirical risk. We show those results in Table 46.

Table 46: Results for the AusElecUnbalanced dataset

Average validation
Objective Average Worse
ERM 227.73 (2.64) 409.80 (4.21)

Worst-domain validation
Objective Average Worse
ERM 235.40 (4.38) 395.99 (5.49)

Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 47. Each line is obtained by training on all domains of the dataset and reporting the average and
worst domain performance of the chosen model, more details in Appendix F.

C.10.3 Credits and license

This dataset was adapted from the work of Hyndman & Athanasopoulos (2018) as made available on the
online Monash time series archive (Godahewa et al., 2021). This dataset is licensed under the Creative
Commons Attribution 4.0 International License.
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Table 47: OOD generalization algorithms performance on the AusElectricity dataset

Average validation
Objective Average Worse
ERM 232.01 (2.60) 397.27 (8.48)
VREx 237.96 (2.53) 415.01 (9.92)
GroupDRO 237.09 (3.63) 408.83 (2.37)
IB-ERM 232.03 (2.68) 393.56 (2.41)

Worst-domain validation
Objective Average Worse
ERM 247.08 (7.59) 403.56 (6.57)
VREx 247.09 (2.19) 408.87 (3.97)
GroupDRO 252.95 (7.58) 424.44 (13.34)
IB-ERM 235.87 (3.11) 391.13 (5.44)

C.11 IEMOCAP
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Figure 24: Summary of the IEMOCAP dataset. (a) The task is to perform emotion recognition from multi
modal data (video, sound, text). (b) The dataset has 11 time domains, where each domain contains data
from a different emotion shifts during conversations. The goal is to perform well on all conversational emotion
shifts.

C.11.1 Setup

Motivation Speakers tend to maintain an emotional state over a conversation. However, external stimuli
can invoke a shift in the emotional state of speakers (Poria et al., 2019). Such emotion shift are often
sparsely represented in the data, making it hard for models to classify them adequately. Recent work on
emotion recognition models (Poria et al., 2019; 2018; Majumder et al., 2019) show the failure of existing
models to adapt to those emotion shift. We study the performance of models on emotional shift with the
IEMOCAP (Bulut et al., 2008) dataset (Figure 12).

Problem setting We consider the emotion recognition task. The dataset has 11 time domains, where each
domain contains data from a different emotion shift during conversations. The goal is to perform well on all
conversational emotion shifts.

Data The dataset consists of 151 videos about dyadic interactions, where professional actors are required to
perform scripted scenes that elicit specific emotions. Each video contains a single dyadic dialogue, segmented
into utterances. It contains 7433 utterances in total. The inputs X are utterances of video, speech, and text
transcriptions. The labels Y consist of 6 emotions: Happy, Sad, Neutral, Angry, Excited, and Frustrated.
Domains d consist of 11 emotion shift during conversations: No-Shift, Rare-Shift, and 9 common emotion
shifts including Happy-Neutral, Happy-Angry, Happy-Excited, Sad-Neutral, Sad-Frustrated, Neutral-Angry,
Neutral-Excited, Neutral-Frustrated, and Angry-Frustrated .

Preprocessing This section details the preprocessing steps taken to bring the IEMOCAP dataset from its
raw form to its final form used in WOODS. For each utterance, we extract multimodal features (audio, visual
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and text) following the same approach as Hazarika et al. (2018) and Majumder et al. (2019). To get our text
embedding, we use a simple CNN with one convolutional layer followed by max-pooling (Poria et al., 2016).
To extract high dimensional audio vectors, we use openSMILE (Eyben et al., 2010). These vectors comprise
features like loudness, Mel-spectra, MFCC, pitch, etc. We use a 3D-CNN to capture video embeddings (Tran
et al., 2015). This embedding contains information for detecting emotional expressions like a smile or frown.
We use concatenation of the unimodal features as a fusion method.

Domain information We consider utterances that have the same label as the previous utterance spoken by
the same speaker as a no-shift domain. We consider emotion-shifts that appear in less than 20 utterances as
rare-shift domain, namely, Happy-Angry, Excited-Angry, Frustrated-Happy, Sad-Excited, frustrated-Excited,
and Sad-Angry. We consider the remaining 9 emotion shifts as common ones and create a separate domain for
each of them. For brevity, we call these domains common-shift in general. The ratios for the rare emotion-shift
domain are 1/6, 1/6, and 2/3 for training, validation, and test respectively. For the remaining domains,
dialogues are randomly chosen to achieve the ratios of 0.7, 0.1, and 0.2 for the size of training, validation,
and test respectively.

Table 48 details the proportion of utterances and dialogues in the training, validation, and test sets across
domains.

Table 48: Domain proportions of utterances and dialogues in the training, validation and test sets of
IEMOCAP dataset

Training Validation Test
# of utterances in rare-shift domain 22 19 61
# of utterances in no-shift domain 3785 369 957
total # of utterance in common-shift domains 1297 196 527
total # of utterances 5298 589 1546
total # of dialogues 108 12 31

Architecture choice For this dataset, we use a DialogueRNN model as defined in work from Majumder
et al. (2019). We chose this model because it is well recognized by the ERM community. It also has an effective
mechanisms to model context by tracking individual speaker states throughout the conversation for emotion
classification. The implementation is available at https://github.com/declare-lab/conv-emotion/tree/
master/DialogueRNN.

C.11.2 Detailed results

Unbalanced results It has been reported in prior work (Koh et al., 2021) that OOD generalization
algorithms such as IRM outperforms ERM on subpopulation shift datasets. However, it is unclear whether
the improvements originates from the nature OOD generalization algorithms to upsample minority domains
when computing the empirical risk or because the algorithm is performing well. In this work, we create an
Unbalanced dataset of the subpopulation shift dataset which is agnostic of the domain definition during
training. This allows us to compare the gain in performance obtained by upsampling the minority domain
when minimizing the empirical risk. We show those results in Table 49.

Table 49: Results for the IEMOCAPUnbalanced dataset

Average validation
Objective Average Worst
ERM 70.53 (0.05) 58.24 (1.41)

Worst-domain validation
Objective Average Worst
ERM 70.01 (0.77) 56.76 (1.24)
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Benchmark results We show the detailed benchmark results of the adapted OOD generalization algorithms
in Table 50. Each line is obtained by training on all domains of the dataset and reporting the average and
worst domain performance of the chosen model, more details in Appendix F.

Table 50: OOD generalization algorithms performance on the IEMOCAP dataset

Average validation
Objective Average Worst
ERM 69.12 (0.36) 57.75 (1.85)
IRM 68.73 (0.24) 55.93 (1.20)
VREx 70.12 (0.51) 59.45 (1.43)
GroupDRO 69.21 (0.75) 56.11 (1.19)
IB-ERM 68.79 (0.08) 59.93 (0.55)
SD 68.62 (0.22) 58.04 (0.39)

Worst-domain validation
Objective Average Worst
ERM 69.85 (0.03) 56.33 (2.76)
IRM 70.21 (0.31) 58.95 (1.13)
VREx 69.64 (0.44) 57.66 (3.13)
GroupDRO 70.08 (0.86) 58.79 (1.00)
IB-ERM 70.04 (0.42) 58.81 (1.50)
SD 68.75 (0.28) 56.14 (1.24)

C.11.3 Credits and license

This dataset was adapted from the work of Bulut et al. (2008) as made available by the Speech Analysis and
Interpretation Laboratory (SAIL) at the University of Southern California (USC). This dataset is licensed
under the license availabel at https://sail.usc.edu/iemocap/iemocap_release.htm.

D Further details on adapation of OOD generalization algorithms

D.1 General adaptation of OOD generalization algorithms to time series

The problem formulation in Section 2.2 applies only sequence of same length St and prediction times Sp across
samples. However, for several dataset and tasks, this does not hold up. Take as example the IEMOCAP
dataset, conversations can vary in length and prediction times across samples. In this section, we provide a
general formulation that accounts these changes.

Data samples consist of the input time series observation Xi = [Xi
t ]t∈Si

t
, where Si

t is the set of time steps for
sample i, and the set of labels Yi = [Y i

t ]t∈Si
p
, where Si

p ⊆ Si
t is the set of labeled time steps for sample i.

Empirical risk For the empirical risk of domain d, we average the risk across the set of labeled time steps
of sample i belonging to domain d: Sd,i

p .

Rd(f) = 1
nd

∑
(Xi,Yi)∈D

1
|Sd,i

p |

∑
t∈Sd,i

p

L
(
f(Xi

1:t), Y i
t

)
, (3)

where nd is the number of samples from domain d in the dataset D.

Penalty value function IB-ERM and SD penalize representation and logits during prediction, we follow
Equation (1) and define the penalty below.

P (f) = 1
nd

∑
(Xi,Yi)∈D

1
|Sd,i

p |

∑
t∈Sd,i

p

P̃ (f,Xi
1:t, Y

i
t ). (4)

D.2 OOD generalization algorithm definition

• IRM performs a constrained empirical risk minimization such that the optimal classifier of represen-
tations is the same across the domains. It does so by penalizing a function of empirical risk across
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domains. We adapt IRM by using the empirical risk from Equation (3):

P (f) = 1
d

∑
Dd∈D

‖∇w|w=1.0R
d(w · f)‖2, (IRM)

where |d| is the number of domains.

• VREx penalizes the variance of risk across domains We adapt VREx by using the empirical risk
from Equation (3):

P (f) = VarDd∈D

(
Rd(f)

)
, (VREx)

where Var is the variance taken across domains.

• GroupDRO performs importance weighting of the domains when calculating the empirical risk. We
adapt the domain weighting parameter qd using the empirical risk from Equation (3):

qd = q′deRd(f)∑
Dd∈D q′d(f) , (GroupDRO)

where q′d is the domain weights from the previous iteration.

• IB-ERM penalizes the variance of representation within domains. Consider a representation map Φ
(that transforms inputs X as Φ(X)) and a linear classifier w such that our predictor f is defined as
w · Φ. We define the IB-ERM penalty as:

P (f) = 1
|d|

∑
Dd∈D

Var(X,Y)∈Dd

(
Φ(X)

)
, (IB-ERM)

where Var is the variance is taken across samples of a domain.

• SD penalizes the squared l2 norm of the logits of the predictor f :

P (f) = 1
nd

∑
(Xi,Yi)∈D

1
|Sd,i

p |

∑
t∈Sd,i

p

‖f(Xi
1:t)‖2, (SD)

where nd is the number of samples from domain d in the dataset D.

E Measuring the impact of distribution shifts

We use the generalization gap to empirically measure the impact of the distribution shifts on the performance
of models. It measures the drop in performance between data drawn In-Distribution (ID) and Out-of-
Distribution (OOD), where the former is independent and identically distributed (i.i.d.) to the training
distribution and the later is not. 2 However, the generalization gap can be a misleading measure as it does
not intrinsically indicate attainable performance gains. We show an example of unattainable performance
gains later in this section. In this work, we do our best to measure an achievable performance gap for our
dataset, i.e., an upper bound to the achievable performance on unseen domains. In this section we give details
on of the generalization gaps described in Table 1 are obtained for domain generalization and subpopulation
shift datasets.

E.1 Generalization gap for domain generalization

Given a set of training domains Dtrain and a test domain Dtest, we measure the OOD performance by training
a model on the training domains Dtrain with ERM and measure the performance of this model on the test
domain Dtest. The ID performance can be measured in multiple ways. Koh et al. (2021) provides multiple
definitions for it:

2Some restriction with respect to the training distribution is implied, see Section 2.1.
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• Train-to-train Performance of a model on Dtrain when trained on Dtrain

• Mixed-to-test Performance of a model on Dtest when trained on a mixture of Dtrain and Dtest.

• Test-to-test Performance of a model on Dtest when trained on Dtest

We use the mixed-to-test measure for ID performance, because test-to-test and train-to-train can lead to
erroneous measures leading to an inflated generalization gap that is unattainable in reality. To illustrate
this problem, consider the generalization gap obtained with the train-to-train ID performance on the
Spurious-Fourier dataset.
Example E.1 (Unattainable performance gap). Performing ERM on the training domains Dd|d∈{80%, 90%}
will lead to a model relying on the spurious features to make predictions, as they are a stronger predictor
of the label (85%) than the invariant features (75%). Thus, the model will achieve 85% accuracy on data
sampled ID to domains d ∈ {80%, 90%}, but only achieve 10% accuracy on the test domain D10%. Comparing
the ID and OOD performance would lead to a generalization gap of 75%. However, this gap is misleading as
a model could never achieve 85% accuracy on the test domain because the strongest invariant predictor can
only achieve 75%. A similar case can be made for the test-to-test measure of ID performance, where the
generalization gap lead to an unattainable performance on the test domain.

Instead, consider the generalization gap obtained with the mixed-to-test ID performance for the same dataset.
Example E.2 (Attainable performance gap). Performing ERM on the training domains Dd|d∈{10%, 80%, 90%}
will lead to a predictor that relies on the invariant features, as they are a stronger predictor of the label (75%)
than the spurious features (60%). Therefore, the ID performance will be 75%, and the OOD performance will
be 10%, leading to a generalization gap of 65%. This gap is a much more significant measure of the upper
bound of the performance than the original definition.

To summarize, we compute the generalization gap for domain generalization datasets as follows. Given a set of
training domains Dtrain and a test domain Dtest, we first measure the OOD performance by training a model
on the training domains Dtrain with ERM and measure the performance of this model on the test domain
Dtest. Second, we measure the ID performance by training a model on all domains D = ∪d={train,test}D

d and
evaluate the model on the test domain Dtest. The generalization gap for that test domain is then defined as
the difference between the ID and OOD performance. That process can then be repeated for all domains in
the dataset and we average the performance.

E.2 Generalization gap for subpopulation shifts

In subpopulation shift datasets, we measure the OOD performance as the worst domain performance, and the
ID performance as the train-to-train performance, i.e., the average domain performance. We recognize that
this measure is not a perfect because of similar arguments made in Section E.1, e.g., one domain might be
much more difficult that the others and thus might be impossible to achieve the level of average performance
on it. However, we argue that it is reasonable to consider the gap between the average domain performance
and the worst domain performance as attainable. As a sanity check, one could verify that the average
performance is achievable for a domain d by doing a test-to-test style measure. We leave this to future work.

To summarize, we compute the generalization gap for subpopulation shifts datasets as follows. Given a set of
training domains Dtrain. we measure the ID performance by training a model on all domains, and measure the
average performance across domains. We define the OOD performance as the performance of the model on
the worst domain in Dtrain. The generalization gap for that dataset is then defined as the different between
the ID and OOD performance.

F Evaluation framework workflow

In this section of the appendix, we detail the methodology employed to evaluate the performance of OOD
generalization algorithms on our datasets. We follow the workflow used by Gulrajani & Lopez-Paz (2020) in
their DomainBed testbed and adapt the framework to time series tasks.
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F.1 Reported performance

We detail in this section the performance measure used for the different datasets in the WOODS benchmark.

Synthetic challenge datasets Spurious-Fourier, TCMNIST-Source and TCMNIST-Time were formulated
to address specific OOD generalization challenges in time series; thus we only investigate the training and
testing domain configuration of interest, i.e., Dtrain = Dd|d∈{80%, 90%} and Dtest = D10%. With this domain
configuration, we perform a hyperparameter sweep, the model selection (see Section G) and report the
performance of the chosen model on the 10% domain.

Real-world domain generalization datasets We report the performance of an OOD generalization
algorithm with a domain cross-validation measure as follows. For every domain in a dataset, we perform
a hyperparameter sweep with that domain held out from training. After this hyperparameter search, we
perform the model selection associated with the dataset (see Section G) and report the performance of the
chosen model on the held out test set. We then report the average performance across domains.

Real-world subpopulation shift datasets We report the performance of an OOD generalization algo-
rithm with the worst domain performance. We perform a hyperparameter sweep with all domains in the
training dataset Dtrain. After this search, we perform model selection (see Section G) and report the worst
domain performance.

F.2 Systematic framework

Hyperparameter search All hyperparameter searches in this work use random searches (Bergstra &
Bengio, 2012) over the hyperparameter distribution spaces defined in Table 51 and Table 52. We train 20
models using randomly sampled hyperparameter configurations. We then select the best performing model of
those 20 configurations using different validation sets definitions, see Appendix G.

Statistically relevant We repeat each hyperparameter search three times to obtain statistically relevant
results. This reduces the probability that some algorithm samples a lucky configuration of hyperparameters.
All the results reported in this work are averaged over those three trials with a different seed. We also provide
the estimated standard deviation of those averaged results.

Reducing bias The search range is an important topic when discussing the fairness of this evaluation
strategy. Having reasonable hyperparameter distributions for sampling in the random search is essential
to remaining fair between the algorithms and reducing the induced bias in the results. Defining a narrow
hyperparameter distribution for which one knows the algorithm performs very well on a dataset or test
domain leads to a bias of the evaluation due to queries of the test domain through human intervention. This
bias could lead to algorithms getting better results by increasing the chance of the random search finding a
good value. When defining the hyperparameter range, one should define a range wide enough as to cover at
least the relevant search space for this hyperparameter. In this work we use ranges that accurately reflects
the range of useful hyperparameters values, see Table 52.

G Model Selection

Section F detailed the hyperparameter search and uncertainty estimation used in this framework. In this
section, we detail the model selection strategy used in hyperparameter sweeps to determine the model to
evaluate on the test domain.

G.1 Model selection for domain generalization

A fundamental restriction in domain generalization is that the training procedure does not have access to the
test domains during training. As a result, the challenge of OOD generalization is not only to create models
that generalize to the test domains but also to select the right models without having access to the test
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Table 51: Distributions of training hyperparameters for random search

Dataset Hyperparameter Random distribution

Spurious-Fourier

learning rate 10Uniform(−4.5,−2.5)

batch size 2Uniform(3,9)

class balance True

TCMNIST-Source

learning rate 10Uniform(−4.5,−2.5)

batch size 2Uniform(3,9)

class balance True

TCMNIST-Time

learning rate 10Uniform(−4.5,−2.5)

batch size 2Uniform(3,9)

class balance True

CAP

learning rate 10Uniform(−5,−3)

batch size 2Uniform(3,4)

class balance True

SEDFx

learning rate 10Uniform(−5,−3)

batch size 2Uniform(3,4)

class balance True

PCL

learning rate 10Uniform(−5,−3)

batch size 2Uniform(3,5)

class balance True

LSA64

learning rate 10Uniform(−5,−3)

batch size 2Uniform(3,4)

class balance True

HHAR

learning rate 10Uniform(−4,−2)

batch size 2Uniform(3,4)

class balance True

PedCount

learning rate 10Uniform(−5,−3)

batch size 2Uniform(3,5)

class balance True

AusElec

learning rate 10Uniform(−5,−3)

batch size 2Uniform(3,5)

class balance True

IEMOCAP

learning rate 10Uniform(−5,−3)

batch size 2Uniform(1,4)

class balance True

domains. Many model selection strategies were proposed (Gulrajani & Lopez-Paz, 2020; Ye et al., 2021b;
Koh et al., 2021), the simplest of which is Train-domain validation.

Train-domain validation We split the training domains into training and validation sets. The training
split of the training domain is used to train the model. We choose the model that gets the best average
validation performance across training domains. We report the performance of the chosen model on the
testing domains.

However, tackling both problems of creating and finding invariant models at the same time might be a very
difficult research endeavor. Instead, we can first start by narrowing the scope and only focus on creating
invariant models. For this purpose, we relax the fundamental restriction and allow the queries of the test
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Table 52: Distributions of algorithm hyperparameters for random search

Dataset Hyperparameter Random distribution

Invariant Risk Minimization penalty weight 10Uniform(−1,5)

annealing iterations Uniform(0, 2000)

Variational REx penalty weight 10Uniform(−1,5)

annealing iterations Uniform(0, 2000)

GroupDRO η 10Uniform(−3,−1)

IB-ERM penalty weight 10Uniform(−3,0)

Spectral Decoupling penalty weight 10Uniform(−5,−1)

CAD λ Choice([10−4, 10−3, 10−2, 10−1, 1, 101, 102])
temperature Choice([0.05, 0.1])

CondCAD λ Choice([10−4, 10−3, 10−2, 10−1, 1, 101, 102])
temperature Choice([0.05, 0.1])

Transfer λ 10Uniform(−2,1)

δ Uniform(0.1, 3.0)
adv lr 10Uniform(−4.5,−2.5)

adv steps Choice([1, 2, 5])
CCDG α Uniform(0, 1)

temperature Uniform(0, 1)
Diversify λ1 Uniform(0, 1)

λ2 Uniform(0, 1)

domain to obtain some signal on the absolute performance of an algorithm. Although querying the test
domain can never be considered a valid model selection strategy in practical scenarios, the results can be
very insightful when evaluating the behavior of an algorithm. Gulrajani & Lopez-Paz (2020) formulated
Test-domain validation that queries the test domains to perform model selection.

Test-domain validation We split the test domains into testing and validation sets. Models are trained
for a fixed number of training steps on the training domains. We choose the model with the best performance
on the validation set of the test domains. However, we only consider the final checkpoint of the model after a
fixed number of steps, effectively disallowing early stopping. We report the performance of the chosen model
on the testing set of test domains.

Test-domain validation has proven to be a very useful measure of performance for algorithms on synthetic
datasets driven primarily by correlation shift (Ye et al., 2021b), e.g., CMNIST. In such datasets, simple
spurious features highly correlated with the label create shortcuts in the data that model leverage to minimize
the empirical risk quickly (e.g., cow or camel classification problem). As a result, these shortcuts lead to very
high training domain performance and very low test domain performance early in training. Consequently,
any model selection criteria that rely on performance on data drawn i.i.d. to the training distribution is a
poor way to investigate the performance of an algorithm because there is a bias of model selection towards
early training correlation. Thus, by disallowing early stopping, we obtain an insightful measure to investigate
the absolute performance of an algorithm.

On the other hand, Test-domain validation is ill-equipped to provide meaningful measures of performance
with other kinds of datasets. For example, Test-domain validation is not an insightful measure of performance
when dealing with real-world datasets. The reason is that we often do not know beforehand the number of
training steps required for a given set of hyperparameters such that a model will finish the learning of the
task. Therefore, we train models past the point of overfitting and pick the model with the highest validation
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performance. This renders the last checkpoint in training suboptimal for generalization performance, both ID
and OOD, and leads to an uninformative measure of the generalization performance.

We introduce a more pragmatic model selection method that queries the test domain for real-world datasets
to resolve this problem: Oracle train-domain validation.

Oracle train-domain validation We split the training domains into training and ID validation splits.
We also split the test domains into testing and OOD validation splits. For every model training run, we
choose the early stopped model that performs best on the ID validation split. Among all early stopped model
of the sweep, we then choose the model that performs the best in the OOD validation split. Notice that this
model selection method has the same number of queries of the test domain as the test-domain validation, i.e.,
one query per training run.

In light of the discussion of this section, we use two different sets of model selection methods for the two
different types of datasets in WOODS: Synthetic challenge and real-world datasets. We use train-domain
validation and test-domain validation for our synthetic challenge datasets driven by correlation shift.
We use train-domain validation and oracle train-domain validation for our real-world datasets which
are likely driven by other kinds of shifts.

G.2 Model selection for subpopulation shifts

Model selection in subpopulation shift dataset is a much simpler endeavor because access to domains is not
restricted. We define the two model selection strategies for our real-world datasets as follows.

Average domain validation We split all domains into training, validation and testing splits. The training
splits of that dataset is used to train the model. We choose the model that gets the best average validation
performance on all domains. We report the worst testing split performance of the chosen model.

Worst-domain validation We split all domains into training, validation and testing splits. The training
splits of that dataset is used to train the model. We choose the model that gets the best worst domain
validation performance. We report the worst testing split performance of the chosen model.
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