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Abstract
We propose an AID-purifier that can boost the
robustness of adversarially-trained networks by
purifying their inputs. AID-purifier is an auxiliary
network that works as an add-on to an already
trained main classifier. To keep it computationally
light, it is trained as a discriminator with a binary
cross-entropy loss. To obtain additionally useful
information from the adversarial examples, the ar-
chitecture design is closely related to information
maximization principles where two layers of the
main classification network are piped to the auxil-
iary network. To assist the iterative optimization
procedure of purification, the auxiliary network is
trained with AVmixup. AID-purifier can be used
together with other purifiers such as PixelDefend
for an extra enhancement. The overall results indi-
cate that the best performing adversarially-trained
networks can be enhanced by the best perform-
ing purification networks, where AID-purifier is a
competitive candidate that is light and robust.

1. Introduction
Deep neural networks are vulnerable to adversarial exam-
ples generated by adding imperceptible adversarial pertur-
bations to the original examples (Szegedy et al., 2013). To
address this problem, various adversarial defense schemes
have been proposed, where a vast majority of them can be
grouped into three categories. The first category is gradi-
ent masking (Xiao et al., 2020; Athalye et al., 2018). The
second category is adversarial training (Madry et al., 2017;
Zhang et al., 2019; Lee et al., 2020). The third category
is adversarial purification (Samangouei et al., 2018; Song
et al., 2018; Meng & Chen, 2017; Shi et al., 2021).

In this study, we focus on the third category, adversarial
purification. Our objective is to develop a computationally
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light and easily attachable purifier such that it can be utilized
as an add-on. Specifically, we show that we can boost the
performance of Madry et al. (2017); Zhang et al. (2019),
and Lee et al. (2020) with a light auxiliary network named
AID-Purifier. AID-Purifier utilizes AVmixup, Information
maximization principles, and Discriminative task as the
underlying foundations. Before describing AID-Purifier, we
first summarize previous works on adversarial purification
methods.

Adversarial purification modifies input examples to increase
adversarial robustness, and four well-known purification
methods are shown in Figure 1. In (a), a denoising purifier,
MagNet (Meng & Chen, 2017), is shown. It uses an auto-
encoder, called a reformer, as an auxiliary network. The
resulting network as a whole, however, becomes just another
feedforward network that is vulnerable to auxiliary-aware
white-box attacks (Tramer et al., 2020). In (b), a generative
purifier, Defense-GAN (Samangouei et al., 2018), is shown.
Defense-GAN is not easy to train, and its performance is
worse than that of another well-known generative purifier.
In (c), another generative purifier, PixelDefend (Song et al.,
2018), is shown. PixelDefend is computationally heavy
owing to its pixel-wise operation. In (d), a self-supervised-
learning-based purifier, SOAP (Shi et al., 2021), is shown.
SOAP yields competitive robust accuracy against state-of-
the-art adversarial training and purification methods, but it
needs to be jointly trained with the main classifier C. Of
the four purification methods in Figure 1, SOAP is the only
one that requires joint training and thus cannot be used as
an add-on.

We herein propose a discriminative purifier named AID-
Purifier. To the best of our knowledge, this is the first
successful purification method based on a discrimination
task. AID-Purifier uses an auxiliary discriminator network
D to project xadv to a purified example xpur that belongs
to a low padv(x) region. Compared to the four methods
in Figure 1, AID-Purifier is distinct because it has all the
advantages of the four methods. Unlike denoising purifiers,
it is robust against auxiliary-aware attacks. Unlike gener-
ative purifiers, it requires light computation and is easy to
train. Unlike SOAP, it is an add-on that can be attached
to any frozen state-of-the-art network. AID-Purifier is an
effective stand-alone defense method; however, it can also
create synergies with adversarially-trained networks or other
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(a) Denoising Purifier (b) Generative Purifier (c) Generative Purifier (d) SSL-based Purifier
(MagNet (Meng & Chen, 2017)) (Defense-GAN (Samangouei et al., 2018)) (PixelDefend (Song et al., 2018)) (SOAP (Shi et al., 2021))

Figure 1. Summary of four existing purifiers. The upper diagrams show algorithm overviews. We denote main classification network as
C, auxiliary network as Aux, network with frozen weights in gray, and network to be trained in green. The lower diagrams show the
conceptual relationships between xclean, xadv , and xpur .

purifier networks such as PixelDefend. For all experiments
we performed, AID-Purifier was able to boost the robust-
ness of state-of-the-art adversarial training and purification
methods.

2. Related Works
2.1. Detecting adversarial examples with an auxiliary

network

For humans, it is difficult to tell the difference between a
clean example and its adversarial example. The difference,
however, can be detected well by training a binary classifi-
cation network (Gong et al., 2017; Metzen et al., 2017). A
standard binary cross-entropy (BCE) loss can be used for
training, where the loss is interpreted as the probability of
an adversarial example. In this study, we extend the idea of
adversarial detector and show that a light auxiliary network
can improve the adversarial robustness.

2.2. Information maximization principles

Following the principle of maximum information preser-
vation in (Linsker, 1988) and the information maximiza-
tion approach in (Bell & Sejnowski, 1995), Hjelm et al.
(2018) demonstrated that unsupervised learning of rep-
resentations is possible by maximizing mutual informa-
tion between a lower layer’s representation hlow(x) and
a higher layer’s representation hhigh(x) for a given in-

Figure 2. Algorithm overview and conceptual relationship of AID-
Purifier. D is the discriminator network.

put image x. Unfortunately, the precise estimation of
mutual information is known to be difficult (McAllester
& Stratos, 2020; Song & Ermon, 2020). A known
workaround for this problem is to evaluate BCE loss or
Jensen-Shannon divergence between the positive example
pairs of (hlow(xi), hhigh(xi)) and the negative example
pairs of (hlow(xi), hhigh(xj)) (Hjelm et al., 2018; Brakel
& Bengio, 2017; Veličković et al., 2019; Ravanelli & Ben-
gio, 2018), known as contrastive learning (Hadsell et al.,
2006). In our AID-Purifier, we also use a BCE loss but
we discriminate between (hlow(xadv), hhigh(xadv)) and
(hlow(xclean), hhigh(xclean)) instead. This can be a nat-
ural choice for adversarial defense, because the information
theoretic relationship between hlow(x) and hhigh(x) should
be different for clean examples and adversarial examples.
In particular, the perturbation of features induced by xadv
increases gradually as it passes through the network (Guo
et al., 2017; Liao et al., 2018; Xie et al., 2019). The auxiliary
network is denoted as D(hlow(x), hhigh(x)).

2.3. AVmixup

Zhang et al. (2018) proposed mixup that is a data augmenta-
tion scheme with linearly interpolated training examples for
regularizing deep networks. Mixup can be considered as a
derivative of label smoothing (Szegedy et al., 2016). As a
variant of the mixup, Lee et al. (2020) proposed AVmixup
for performing data augmentation of adversarial examples.
While AVmixup was shown to be effective for the adver-
sarial training of the main classification network C(x), we
apply AVmixup to train the auxiliary discriminator network
D(hlow(x), hhigh(x)). This data augmentation with linear
interpolation plays a pivotal role in training AID-Purifier.
As a basic iterative procedure is applied at the inference
time for purification, the discriminator needs to learn how to
purify not only a strong adversarial example but also a weak
adversarial example. Ideally, we would like the discrimina-
tor to learn a continuous path for purifying an adversarial
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Figure 3. AID-Purifier. An auxiliary network D is attached to the
main classification network C.

example with an iterative procedure.

3. AID-Purifier
3.1. Discriminator: D(hlow(x), hhigh(x))

A diagram of AID-Purifier is shown in Figure 3. The
main classification network C(x) can be any naturally
or adversarially-trained network. The main network was
frozen before attaching our auxiliary discriminator network
D(hlow(x), hhigh(x)). Following the information maxi-
mization principles, a lower layer representation hlow(x)
and a higher layer representation hhigh(x) are passed from
classifier C to discriminator D. In contrast to the work in
(Hjelm et al., 2018), we apply global average pooling as
the first operation in the discriminator. Despite the loss
of spatial resolution in each feature map, global average
pooling is helpful for making D computationally light for
two reasons. First, the size of the representation is signifi-
cantly reduced by averaging the spatial dimensions where
purification can still enforce spatial variations over the chan-
nels. Second, as the resulting representations are invariant
to spatial translations (Lin et al., 2013), we can simply use a

Algorithm 1 AVmixup training of discriminator D.
Input:Dataset S, input example x, main classifierC with weights θC , main clas-
sification label y, scaling factor γ, number of epochs E, learning rate lr, batch
sizeB, tclean , 0, tadv , 1
Output:DiscriminatorD with weights θD
Freeze θC , initialize θD of networkD
for e=1, . . . ,E do

for mini-batch {x, y} ∼ S do
δ ← PGD(x, y; θC)
AVmixup:
xAV ← x+ γ · δ
u ∼ Uniform(0, 1)
x̂← u · x+ (1− u) · xAV
t̂← u · tclean + (1− u) · tadv
Model update:
θD ← θD − lr · 1

BΣBi=1∇θDLD(D(hlow(x̂), hhigh(x̂)), t̂)
end for

end for

fully connected network of a small size as the discriminator.
Fully connected layers follow the global average pooling.
The discriminator is trained with a standard BCE loss over
adversarial and clean examples, and the loss function is
as LD = −t log(D(hlow(x), hhigh(x)))− (1− t) log(1−
D(hlow(x), hhigh(x))), where x is the input example and t
is the corresponding binary label (adversarial or clean). See
Appendix A for the architecture details.

3.2. Training: AVmixup

To train the discriminator, we apply AVmixup (Lee et al.,
2020) such that the discriminator learns how to purify any
strength of adversarial example. As explained in Section 2.3,
this is an essential requirement for the iterative purification
procedure to work well. The details of the AVmixup training
are shown in Algorithm 1. We use only PGD to generate
adversarial examples because PGD is the worst case attack
for most scenarios.

3.3. Inference: iterative purification

For inference, the auxiliary discriminator network D is used
to purify x into xpur. The purification is applied to any x
including both clean and adversarial examples. As in the
PGD attack, a basic iterative procedure is applied, and the
purification is summarized in Algorithm 2. Specifically, an
iterative gradient sign method is applied with the goal of
reducing the probability of an adversarial attack, padv(x).
We constrain the algorithm to keep the purified image xpur
within the ε-ball of x, because an xpur far from xmight alter
the class output of the main classification network C(x).

4. Experiments
It is certainly possible to use a purifier as a stand-alone de-
fense, but some of the purifiers can be also used as an add-on
defense for boosting the performance of another adversarial
defense. In this section, we investigate the performance
of AID-Purifier as a stand-alone defense and as an add-on
defense. As explained in Section 1, MagNet is vulnerable
to auxiliary-aware attack and SOAP cannot be used as an
add-on. Thus, we only focus on Defense-GAN and Pix-
elDefend. For the baseline adversarial training models of
add-on experiments, we use Madry (Madry et al., 2017),
Zhang (Zhang et al., 2019), and Lee (Lee et al., 2020) as the

Algorithm 2 Purification at inference time
1: Input:Main classifierC, discriminatorD, input example x, number of iteration
N , step size α, epsilon ε

2: Output:Purified example xpur
3: xpur ← x

4: for n=1, . . . ,N do
5: xpur ← xpur − α · sign(∇xpurD(hlow(xpur), hhigh(xpur)))

6: xpur ← clip(xpur, x− ε, x+ ε)
7: xpur ← clip(xpur, 0, 1)

8: end for
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Table 1. Robust accuracy: Stand-alone and add-on performances
are shown for the worst white-box attack for SVHN.

Stand-alone Add-on

Natural training Madry Zhang Lee

No purification 0.01 22.63 36.72 46.17
Defense-GAN 41.89 28.42 38.60 43.42
PixelDefend 23.34 52.83 55.42 64.14
AID-Purifier (Ours) 29.10 49.85 44.76 62.70
PixelDefend + AID-Purifier (Ours) 42.67 64.35 56.68 65.61

Table 2. Computational load: Purification time (i.e., inference
time) and training time of the adversarial purifiers. Purification
time was measured with batch size one. The reported values
were measured with a single RTX2080ti, except for the training
time of PixelDefend’s TinyImageNet that was measured with four
RTX2080ti’s due to the memory requirement.

SVHN CIFAR-10 CIFAR-100 TinyImageNet

Purification Training Purification Training Purification Training Purification Training
time time time time time time time time

(sec/img) (min) (sec/img) (min) (sec/img) (min) (sec/img) (min)

Defense-GAN 0.14 205 0.13 197 0.14 198 0.31 1385
PixelDefend 41.97 1185 40.54 1056 40.96 1056 166.31 5131
AID-Purifier (Ours) 0.59 23 0.59 15 0.59 16 0.60 147

most representative set of defense models. Implementation
details are described in Appendix A.

Robust accuracy: The robust accuracy results for SVHN
are shown in Table 1. Defense-GAN performs well as a
stand-alone, but its performance as an add-on is inferior
to the other purifiers. In fact, as an add-on, it usually un-
dermines the baseline performance for complex datasets
as shown in Appendix B. For this reason, Defense-GAN
is not investigated any further for the add-on performance.
When both of PixelDefend and AID-Purifier are utilized
together, however, they achieve 42.67% of robust accuracy
that is better than Madry or Zhang as a stand-alone. As an
add-on, the best performance is also achieved when both
are utilized together. This synergy is due to the diversity
between the two purifiers. While PixelDefend attempts to
purify an example by pushing it to a high pdata(x) region,
AID-Purifier is more adventurous because it is willing to
utilize out-of-distribution regions as well.

Computational load: We have measured the purification
time and training time of the purifiers, and the results are
shown in Table 2. For the purification time, both Defense-
GAN and AID-Purifier perform well but PixelDefend is
up to 277 times slower than AID-Purifier due to the pixel-
wise operation of PixelDefend. For the training time, AID-
Purifier is definitely faster than the other two purifiers.

Boosting performance as an add-on: As a deep dive,
we provide add-on experiment results for PixelDefend and
AID-Purifier in Table 3. Exhaustive results are provided in
Appendix C. The most important finding is that each of the
two adversarial purifiers provides a positive enhancement
for almost any individual combination of dataset and attack
method. To investigate if AID-Purifier can create a positive
synergy with purifiers other than PixelDefend, we have

Table 3. Robust accuracy: Experiment results of PixelDefend and
AID-Purifier are shown for the worst white-box attack.

Method SVHN CIFAR-10 CIFAR-100 TinyImageNet

Natural training 0.01 0.00 0.02 0.00
Madry 22.63 51.64 25.42 20.79
Zhang 36.72 55.32 28.51 20.96
Lee 46.17 46.44 27.35 26.91

Natural training + PixelDefend 23.34 29.41 20.78 0.66
Madry + PixelDefend 52.83 54.75 27.34 21.81
Zhang + PixelDefend 55.42 56.68 30.61 24.21
Lee + PixelDefend 64.14 51.83 30.82 29.81

Natural training + AID-Purifier (Ours) 29.10 1.35 1.72 0.61
Madry + AID-Purifier (Ours) 49.85 52.65 27.71 21.23
Zhang + AID-Purifier (Ours) 44.76 56.05 30.58 24.33
Lee + AID-Purifier (Ours) 62.70 49.13 29.35 30.97

Natural training + PixelDefend + AID-Purifier (Ours) 42.67 35.82 23.89 2.62
Madry + PixelDefend + AID-Purifier (Ours) 64.35 55.07 28.70 21.81
Zhang + PixelDefend + AID-Purifier (Ours) 56.68 57.22 30.99 24.54
Lee + PixelDefend + AID-Purifier (Ours) 65.61 53.33 32.43 30.56

carried out an extra experiment. For NRP, that is a type of
adversarial purifier and trains a conditional GAN to learn an
optimal input processing function, the experimental results
are shown in Table 9 of Appendix D and they are similar
to PixelDefend’s results. For the case of Defense-GAN, we
have tried using AID-Purifier together with Defense-GAN,
and we have found that the loss by Defense-GAN can be
mitigated by AID-Purifier as shown in Appendix G.

Additional experiments: We have performed auxiliary-
aware attack, a complete white-box attack where both of the
main classification network and the auxiliary network are
known to the attacker (Shi et al., 2021), as a strong adaptive
attack (Tramer et al., 2020) to show that the purification add-
on is robust to the attack as shown in Figure 4 in Appendix E.
Furthermore, we have investigated the influence of attack
hyperparameters, attack epsilon, and the number of attack
iterations for PGD attack as shown in Appendix J. We addi-
tionally investigate the sensitivities of the attack method, the
defense epsilon, and the number of iterations for training
discriminator. The results can be found in Appendix H and I.
Moreover, we show that the black-box attack is not effective
to AID-Purifier as shown in Table 10 of Appendix F. To
verify that the key features of AID-Purifier are effective,
we have performed ablation tests as shown in Table 15 of
Appendix K. All of the three key features are helpful for
enhancing the performance of AID-Purifier.

5. Conclusion
In this study, we have proposed AID-Purifier, a light aux-
iliary network for purifying adversarial examples. To the
best of our knowledge, AID-Purifier is the first successful
purification method that is based on a simple discrimina-
tor. It has a quite different characteristics from the previ-
ously known purifiers in terms of the purification objec-
tive, where a purified image xpur is allowed to lie in an
out-of-distribution region. It can consistently boost the
performance of adversarially-trained networks, and it can
create synergies with other adversarial purifiers such as Pix-
elDefend and NRP. Whether adversarially-trained networks
should be always used with one or more adversarial purifiers
remains as an open question.
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Supplementary materials for the paper
“AID-Purifier: A Light Auxiliary Network for

Boosting Adversarial Defense”

A. Experimental details
In this appendix, we provide the details of the experiments conducted in our study. We perform the experiments over four
datasets - SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009),
and TinyImageNet (Le & Yang, 2015). As in other studies (Madry et al., 2017; Zhang et al., 2019), we use a 10-widen
Wide-ResNet-34 (Zagoruyko & Komodakis, 2016) as the main classification network C(x). For the white-box adversarial
attack, we consider PGD (Madry et al., 2017), C&W (Carlini & Wagner, 2017), DeepFool (DF) (Moosavi-Dezfooli et al.,
2016), and MIM (Dong et al., 2018).

A.1. Other adversarial purifiers

The purifiers used in this paper are:

• Defense-GAN (Samangouei et al. (2018), Apache License) : https://github.com/kabkabm/defensegan.

• PixelDefend (Song et al. (2018), MIT License) : https://github.com/microsoft/PixelDefend.

A.2. AID-Purifier : discriminator architecture

For training discriminator, we first apply global average pooling to hlow(x) and hhigh(x). Then, we pass the results to a
fully-connected network described below in Table 4. In the case of SVHN, we use three hidden layers instead of two.

Table 4. Discriminator architecture
Operation Size Activation Output

hlow → Linear 1024 ReLU
Linear 1024 ReLU Output 1
hhigh→ Linear 1024 ReLU
Linear 1024 ReLU Output 2
Concat (Output 1, Output 2) 2048
Linear 1024 ReLU
Linear 512 ReLU
Linear 1
Sigmoid 1

A.3. AID-Purifier : discriminator hyperparameters

Training hyperparameters: We train the network using SGD with learning rate 0.01, weight decay 2e−4, and momentum
0.9 for 1 epoch. We use γ = 2 for SVHN and γ = 1.5 for CIFAR-10, CIFAR-100, and TinyImageNet.

Purification hyperparameters: For SVHN, we use εpur = 12/255, α = 3/255, N = 10. For CIFAR-10, we use
εpur = 8/255, α = 2/255, N = 10. For CIFAR-100, we use εpur = 16/255, α = 2/255, N = 20. For TinyImageNet, we
use εpur = 8/255, α = 2/255, N = 20.

A.4. Attack hyperparameters

All attacks are evaluated under the l2 metric for C&W and the l∞ metric for the others. For SVHN, we use the perturbation
size 12/255 and the step size 2/255. For CIFAR-10, CIFAR-100, and TinyImageNet, we use the perturbation size 8/255 and
the step size 1/255. We use Foolbox (Rauber et al., 2017), a third-party toolbox for evaluating adversarial robustness. All
other parameters are set by Foolbox to be its default values.

https://github.com/kabkabm/defensegan
https://github.com/microsoft/PixelDefend
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B. Comparison with other purifiers on various datasets
We repeated the same experiment of Table 1 for CIFAR-10 (Table 5), CIFAR-100 (Table 6), and TinyImageNet (Table 7).

Table 5. Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown for the worst white-box attack.
CIFAR-10 dataset is evaluated below.

Stand-alone Add-on

Natural training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.00 51.64 55.32 46.44
Defense-GAN 11.68 18.29 17.99 17.63
PixelDefend 29.41 54.75 56.68 51.83
AID-Purifier 1.35 52.65 56.05 49.13
PixelDefend + AID-Purifier(Ours) 35.82 55.07 57.22 53.33

Table 6. Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown for the worst white-box attack.
CIFAR-100 dataset is evaluated below.

Stand-alone Add-on

Natural training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.02 25.42 28.51 27.35
Defense-GAN 1.16 3.36 3.78 3.67
PixelDefend 20.78 27.34 30.61 30.82
AID-Purifier 1.72 27.53 30.58 29.35
PixelDefend + AID-Purifier(Ours) 23.89 28.70 30.99 32.43

Table 7. Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown for the worst white-box attack.
TinyImageNet dataset is evaluated below.

Stand-alone Add-on

Natual training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.00 20.79 20.96 26.91
Defense-GAN 2.76 4.95 4.79 4.74
PixelDefend 0.66 21.81 24.21 29.81
AID-Purifier 0.61 21.23 24.33 30.97
PixelDefend + AID-Purifier(Ours) 2.62 21.81 24.54 30.56

C. Boosting performance as an add-on
We provide exhaustive add-on experiment results for PixelDefend and AID-Purifier in Table 8.

D. Boosting performance as an add-on to NRP
We provide exhaustive add-on experiment results for NRP (Neural Representation Purifier (Naseer et al., 2020)) and
AID-Purifier in Table 9. For the worst performance column, which can be interpreted as the overall conclusion for each
dataset, AID-Purifier boosts the robustness in most scenarios.
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Table 8. Robust accuracy: Exhaustive experiment results for PixelDefend and AID-Purifier are shown for SVHN, CIFAR-10, CIFAR-100,
and TinyImageNet datasets. As an add-on, each of PixelDefend and AID-Purifier provides a positive improvement for almost any
individual combination of dataset and attack method. By inspecting the worst performance column of each dataset, it can be observed
that PixelDefend+AID-Purifier achieves the best performance for three datasets and AID-Purifier achieves the best performance for
TinyImageNet, which is the most complex dataset in our experiments.

SVHN CIFAR-10

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 96.19 0.01 44.98 0.57 0.04 0.01 95.44 0.00 2.98 0.01 0.00 0.00
Madry (Madry et al., 2017) 67.39 38.17 59.08 28.34 22.63 22.63 88.72 51.64 84.75 54.81 52.45 51.64
Zhang (Zhang et al., 2019) 94.98 36.72 93.61 62.15 40.46 36.72 84.49 55.32 80.73 57.68 56.14 55.32
Lee (Lee et al., 2020) 97.29 55.64 94.00 52.45 46.17 46.17 90.46 46.44 86.41 54.14 49.32 46.44

Natural training + PixelDefend 88.46 37.70 83.68 82.89 23.34 23.34 85.45 40.41 82.13 81.97 29.41 29.41
Madry (Madry et al., 2017) + PixelDefend 74.56 52.83 72.66 74.29 55.77 52.83 87.31 54.75 85.63 72.71 54.88 54.75
Zhang (Zhang et al., 2019) + PixelDefend 93.03 55.42 91.73 90.30 58.14 55.42 83.41 56.68 81.61 68.39 56.89 56.68
Lee (Lee et al., 2020) + PixelDefend 94.03 64.14 92.71 89.66 73.92 64.14 89.01 51.83 87.29 69.26 53.29 51.83

Natural training + AID-Purifier (Ours) 78.33 37.25 67.62 67.83 29.10 29.10 87.84 2.15 78.36 79.55 1.35 1.35
Madry (Madry et al., 2017) + AID-Purifier (Ours) 89.20 49.85 88.98 87.63 52.98 49.85 88.28 52.65 86.87 72.00 53.08 52.65
Zhang (Zhang et al., 2019) + AID-Purifier (Ours) 93.04 45.73 91.78 82.77 44.76 44.76 84.59 56.05 83.07 69.19 56.57 56.05
Lee (Lee et al., 2020) + AID-Purifier (Ours) 95.28 62.70 94.00 88.91 70.41 62.70 89.59 49.13 88.04 67.29 51.24 49.13

Natural training + PixelDefend + AID-Purifier (Ours) 71.32 49.76 67.44 67.75 42.67 42.67 76.27 41.81 73.25 72.97 35.82 35.82
Madry et al. (2017) + PixelDefend + AID-Purifier (Ours) 88.71 64.35 88.39 87.34 72.27 64.35 86.66 55.07 85.28 72.07 55.10 55.07
Zhang et al. (2019) + PixelDefend + AID-Purifier (Ours) 90.28 56.68 87.51 84.35 58.80 56.68 83.50 57.22 82.06 69.75 57.67 57.22
Lee et al. (2020) + PixelDefend + AID-Purifier (Ours) 93.04 65.61 91.44 89.07 74.23 65.61 87.85 53.33 86.34 69.67 54.32 53.33

CIFAR-100 TinyImageNet

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 78.17 0.02 3.23 0.04 0.05 0.02 64.98 0.02 20.91 0.00 0.31 0.00
Madry (Madry et al., 2017) 64.69 25.42 57.71 26.77 26.21 25.42 58.44 21.05 52.12 20.79 21.64 20.79
Zhang (Zhang et al., 2019) 56.90 29.87 51.13 28.51 30.29 28.51 50.28 24.11 44.97 20.96 24.32 20.96
Lee (Lee et al., 2020) 74.56 27.35 64.33 33.96 30.13 27.35 65.09 26.91 57.27 26.52 27.96 26.91

Natural training + PixelDefend 61.19 29.95 58.23 58.73 20.78 20.78 56.23 0.68 45.35 51.33 0.66 0.66
Madry (Madry et al., 2017) + PixelDefend 62.90 27.34 59.64 46.81 27.70 27.34 57.65 21.81 54.92 41.01 22.29 21.81
Zhang (Zhang et al., 2019) + PixelDefend 55.43 30.61 52.54 42.35 30.85 30.61 49.53 24.21 47.50 35.59 24.36 24.21
Lee (Lee et al., 2020) + PixelDefend 69.87 30.82 67.75 57.31 32.14 30.82 58.16 29.81 57.11 49.44 30.13 29.81

Natural training + AID-Purifier (Ours) 60.50 2.81 53.45 55.62 1.72 1.72 55.89 0.81 45.24 51.11 0.61 0.61
Madry (Madry et al., 2017) + AID-Purifier (Ours) 61.25 27.71 59.27 46.50 27.74 27.71 58.58 21.23 55.38 41.53 21.84 21.23
Zhang (Zhang et al., 2019) + AID-Purifier (Ours) 54.56 30.58 53.15 43.35 30.68 30.58 50.23 24.33 47.49 36.58 24.43 24.33
Lee (Lee et al., 2020) + AID-Purifier (Ours) 71.55 29.35 68.72 62.62 31.17 29.35 63.52 31.03 59.32 55.87 30.97 30.97

Natural training + PixelDefend + AID-Purifier (Ours) 50.88 27.74 48.79 49.01 23.89 23.89 49.26 4.34 43.16 45.76 2.62 2.62
Madry (Madry et al., 2017) + PixelDefend + AID-Purifier (Ours) 58.95 28.70 57.13 45.26 28.75 28.70 57.92 21.81 55.23 41.88 22.19 21.81
Zhang (Zhang et al., 2019) + PixelDefend + AID-Purifier (Ours) 52.93 30.99 51.62 42.48 31.18 30.99 49.76 24.54 47.63 36.92 24.66 24.54
Lee (Lee et al., 2020) + PixelDefend + AID-Purifier (Ours) 67.89 32.43 66.06 58.98 33.01 32.43 59.10 30.56 57.96 51.10 30.63 30.56

E. Auxiliary-aware attack
Following the approach in (Shi et al., 2021), we generate auxiliary-aware attack as

xadv ← argmax
xadv∈N (x)

LC − λ · LD, (1)

where λ is a trade-off parameter between the main cross entropy loss LC and the auxiliary (discriminator) loss LD. The
results are shown in Figure 4. Purification provides positive improvement for all the evaluated cases.

F. Black-box attack
We generate black-box adversarial examples using a pre-trained VGG19 network (Simonyan & Zisserman, 2014). PGD,
C&W, DF, and MIM attacks are used to evaluate black-box robustness on SVHN. We report only the worst black-box
accuracy in Table 10. For the case of Mardy, a large improvement is achieved.

G. Boosting performance of AID-Purifier as an add-on to the Defense-GAN
The robust accuracy results are shown in Table 11. Defense-GAN is actually harmful, but AID-Purifier can recover part of
the performance loss created by Defense-GAN.
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Table 9. Robust accuracy: exhaustive experiment results for NRP and AID-Purifier are shown for SVHN, CIFAR-10, CIFAR-100,
and TinyImageNet datasets. As an add-on, each of NRP and AID-Purifier provides a positive improvement for almost any individual
combination of dataset and attack method. By inspecting the worst performance column of each dataset, it can be observed that
NRP+AID-Purifier achieves the best performance for two datasets, CIFAR-10 and CIFAR-100, and AID-Purifier achieves the best
performance for two datasets, SVHN and TinyImageNet. Results of stand-alone and add-on using AID-Purifier only are duplicated from
Table 3.

SVHN CIFAR-10

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 96.19 0.01 44.98 0.57 0.04 0.01 95.44 0.00 2.98 0.01 0.00 0.00
Madry (Madry et al., 2017) 67.39 38.17 59.08 28.34 22.63 22.63 88.72 51.64 84.75 54.81 52.45 51.64
Zhang (Zhang et al., 2019) 94.98 36.72 93.61 62.15 40.46 36.72 84.49 55.32 80.73 57.68 56.14 55.32
Lee (Lee et al., 2020) 97.29 55.64 94.00 52.45 46.17 46.17 90.46 46.44 86.41 54.14 49.32 46.44

Natural training + NRP 88.42 33.52 80.44 77.81 19.70 19.70 70.95 41.02 62.82 62.79 6.60 6.60
Madry (Madry et al., 2017) + NRP 82.29 49.54 81.05 81.44 51.83 49.54 86.08 44.02 84.06 70.69 54.96 44.02
Zhang (Zhang et al., 2019) + NRP 93.00 52.71 91.68 84.94 50.63 50.63 81.90 55.83 79.69 66.04 56.15 55.83
Lee (Lee et al., 2020) + NRP 94.23 62.68 92.71 83.51 65.48 62.68 87.26 52.98 85.60 69.02 54.46 52.98

Natural training + AID-Purifier (Ours) 78.33 37.25 67.62 67.83 29.10 29.10 87.84 2.15 78.36 79.55 1.35 1.35
Madry (Madry et al., 2017) + AID-Purifier (Ours) 89.20 49.85 88.98 87.63 52.98 49.85 88.28 52.65 86.87 72.00 53.08 52.65
Zhang (Zhang et al., 2019) + AID-Purifier (Ours) 93.04 45.73 91.78 82.77 44.76 44.76 84.59 56.05 83.07 69.19 56.57 56.05
Lee (Lee et al., 2020) + AID-Purifier (Ours) 95.28 62.70 94.00 88.91 70.41 62.70 89.59 49.13 88.04 67.29 51.24 49.13

Natural training + NRP + AID-Purifier (Ours) 66.89 42.09 62.72 62.59 36.02 36.02 66.38 40.58 61.04 60.86 20.46 20.46
Madry et al. (2017) + NRP + AID-Purifier (Ours) 85.33 53.59 84.62 83.16 56.49 53.59 86.14 46.27 84.53 70.69 55.31 46.27
Zhang et al. (2019) + NRP + AID-Purifier (Ours) 87.02 53.39 83.65 73.59 50.27 50.27 82.22 56.63 81.03 67.26 56.71 56.63
Lee et al. (2020) + NRP + AID-Purifier (Ours) 92.05 61.97 90.35 81.34 65.22 61.97 86.25 53.92 84.40 68.57 55.06 53.92

CIFAR-100 TinyImageNet

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 78.17 0.02 3.23 0.04 0.05 0.02 64.98 0.02 20.91 0.00 0.31 0.00
Madry (Madry et al., 2017) 64.69 25.42 57.71 26.77 26.21 25.42 58.44 21.05 52.12 20.79 21.64 20.79
Zhang (Zhang et al., 2019) 56.90 29.87 51.13 28.51 30.29 28.51 50.28 24.11 44.97 20.96 24.32 20.96
Lee (Lee et al., 2020) 74.56 27.35 64.33 33.96 30.13 27.35 65.09 26.91 57.27 26.52 27.96 26.91

Natural training + NRP 40.25 6.23 35.93 36.45 5.85 5.85 49.28 9.13 43.41 45.71 7.22 7.22
Madry (Madry et al., 2017) + NRP 61.49 27.43 58.78 45.7 27.75 27.43 55.69 22.78 53.78 40.2 23.24 22.78
Zhang (Zhang et al., 2019) + NRP 54.74 30.25 52.58 42.44 30.55 30.25 47.69 23.98 45.80 33.30 24.00 23.98
Lee (Lee et al., 2020) + NRP 65.14 32.76 63.41 54.25 33.68 32.76 55.38 29.75 54.52 47.25 30.39 29.75

Natural training + AID-Purifier (Ours) 60.50 2.81 53.45 55.62 1.72 1.72 55.89 0.81 45.24 51.11 0.61 0.61
Madry (Madry et al., 2017) + AID-Purifier (Ours) 61.25 27.71 59.27 46.50 27.74 27.71 58.58 21.23 55.38 41.53 21.84 21.23
Zhang (Zhang et al., 2019) + AID-Purifier (Ours) 54.56 30.58 53.15 43.35 30.68 30.58 50.23 24.33 47.49 36.58 24.43 24.33
Lee (Lee et al., 2020) + AID-Purifier (Ours) 71.55 29.35 68.72 62.62 31.17 29.35 63.52 31.03 59.32 55.87 30.97 30.97

Natural training + NRP + AID-Purifier (Ours) 37.59 13.53 35.15 35.25 12.08 12.08 40.87 15.65 37.45 38.34 12.96 12.96
Madry (Madry et al., 2017) + NRP + AID-Purifier (Ours) 59.17 28.31 57.04 45.97 28.68 28.31 55.86 22.89 53.97 40.78 23.27 22.89
Zhang (Zhang et al., 2019) + NRP + AID-Purifier (Ours) 47.76 24.17 45.95 33.63 23.95 23.95 47.76 24.17 45.95 33.63 23.95 23.95
Lee (Lee et al., 2020) + NRP + AID-Purifier (Ours) 64.73 32.86 63.28 54.72 33.49 32.86 58.07 30.70 56.73 50.01 30.94 30.70

H. Various attack methods for training discriminator D

When training the discriminator, the attack method for generating adversarial examples need to be decided. The sensitivity
study results are shown in Table 12 for SVHN dataset.

I. Defense epsilon and defense iteration
The robust accuracy results for SVHN are shown in Figure 5 and Table 13.

J. Attack epsilon and attack iteration
The robust accuracy results for SVHN are shown in Table 14.

K. Ablation study
To verify that the key features of AID-Purifier are effective, we have performed ablation tests. The results are shown in
Table 15. All of the three key features are helpful for enhancing the performance of AID-Purifier, where the choice of
training target and the choice of data augmentation scheme are crucial for AID-Purifier’s performance. Additionally, the
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Figure 4. Robust accuracy: robustness before (blue) and after (orange) purification are shown against auxiliary-aware PGD attacks.

Table 10. Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown for the worst black-box attack on
SVHN.

Worst black-box attack

Training method No purification AID-Purifier (Ours)

Natural training 45.26 47.93
Madry (Madry et al., 2017) 62.52 80.74
Zhang (Zhang et al., 2019) 85.14 80.71
Lee (Lee et al., 2020) 79.94 79.69

ablation test results of the intermediate layers connected from C(x) to the discriminator D are presented in Table 16.
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Table 11. Robust accuracy. Experiment results for Defense-GAN and AID-Purifier are shown (SVHN under PGD attack; Madry is used to
train the main classification network).

PGD

No purification 38.17
Defense-GAN 28.59
Defense-GAN + AID-Purifier 32.29

Table 12. Attack method used at the time of training and the resulting robust accuracy (SVHN under PGD attack; Madry is used to train
the main classification network).

AID-Purifier PGD C&W DF Worst

PGD training (our work) 37.25 67.62 67.83 37.25
C&W training 11.36 52.27 45.73 11.36
DF training 0.39 74.12 74.65 0.39
PGD + CW training 8.51 54.77 48.85 8.51
PGD + DF training 1.16 68.01 69.74 1.16
CW + DF training 19.14 68.73 64.16 19.14
PGD + CW + DF training 8.73 67.83 62.94 8.73

Figure 5. Robust accuracy for Madry+AID-Purifier is shown with
respect to the variations in the defense epsilon (SVHN under PGD
attack; Madry is used to train the main classification network).

Number of iterations Madry+AID-Purifier

20 50.62
10 (our work) 49.85
5 49.26
4 48.95
2 46.68

Table 13. Robust accuracy for Madry+AID-Purifier with re-
spect to the variations in the number of iterations (SVHN under
PGD attack; Madry is used to train the main classification net-
work).

Table 14. Robust accuracy: (SVHN under PGD attack; Madry is used to train the main classification network) (a) Performance of Madry
and Madry+AID-Purifier for varying the attack epsilon of PGD are shown for SVHN. (b) Performance of Madry and Madry+AID-Purifier
for varying the attack iteration of PGD are shown for SVHN.

Attack eps Madry Madry + AID-Purifier

1/255 57.29 88.20
2/255 49.49 86.92
4/255 42.18 83.82
8/255 34.94 73.14
12/255 (our work) 38.17 49.85
16/255 22.28 28.62
32/255 1.27 1.59

Madry Madry + AID-Purifier

40 (our work) 38.17 49.85
100 35.64 48.60
200 34.86 48.34

(a) (b)
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Table 15. Ablation test results over the key features of AID-Purifier: The evaluations are over Madry, SVHN, and PGD. The baseline
performance of Madry without any add-on is 38.17%. (a) Number of intermediate layers connected from C(x) to the discriminator. (b)
Training targets. (c) Data augmentation method for training.

Number of h(x) Accuracy (%)

1 48.93
2 49.85

Targets Accuracy (%)

Contrastive 44.87
Clean vs. adv. 49.85

Augmentation Accuracy (%)

None 46.02
AV 47.73
Mixup 48.49
AVmixup 49.85

(a) Number of h(x) (b) Training targets (c) Data augmentation

Table 16. Ablation test of the intermediate layers connected from C(x) to the discriminator (SVHN under PGD attack; Madry is used to
train the main classification network). 1st Conv denotes the output of the first convolution layer and n-th Block denotes the output of the
n-th residual block, where downsampling is performed. Check symbols indicate the connected layers. The best performing combination is
{10th block, 15th block}, but we have used {1st Conv, 15th block} in our main experiment.

Used intermediate representation Worst white-box attack

Number of h(x) 1st Conv 5th Block 10th Block 15th Block AID-Purifier (Ours)

1

X 48.28
X 48.66

X 48.92
X 48.93

2

X X 44.43
X X 48.97
X X 49.85

X X 44.51
X X 45.77

X X 50.10


