
Q-Ensemble for Offline RL: Don’t Scale the Ensemble,
Scale the Batch Size

Alexander Nikulin
Tinkoff

a.p.nikulin@tinkoff.ai

Vladislav Kurenkov
Tinkoff

v.kurenkov@tinkoff.ai

Denis Tarasov
Tinkoff

den.tarasov@tinkoff.ai

Dmitry Akimov
Tinkoff

d.akimov@tinkoff.ai

Sergey Kolesnikov
Tinkoff

s.s.kolesnikov@tinkoff.ai

Abstract

Training large neural networks is known to be time-consuming, with the learning
duration taking days or even weeks. To address this problem, large-batch optimiza-
tion was introduced. This approach demonstrated that scaling mini-batch sizes with
appropriate learning rate adjustments can speed up the training process by orders of
magnitude. While long training time was not typically a major issue for model-free
deep offline RL algorithms, recently introduced Q-ensemble methods achieving
state-of-the-art performance made this issue more relevant, notably extending the
training duration. In this work, we demonstrate how this class of methods can
benefit from large-batch optimization, which is commonly overlooked by the deep
offline RL community. We show that scaling the mini-batch size and naively
adjusting the learning rate allows for (1) a reduced size of the Q-ensemble, (2)
stronger penalization of out-of-distribution actions, and (3) improved convergence
time, effectively shortening training duration by 3-4x times on average.

1 Introduction

Offline Reinforcement Learning (ORL) provides a data-driven perspective on learning decision-
making policies by using previously collected data without any additional online interaction during
the training process (Lange et al., 2012; Levine et al., 2020). Despite its recent development (Fujimoto
et al., 2019; Nair et al., 2020; An et al., 2021; Zhou et al., 2021; Kumar et al., 2020) and application
progress (Zhan et al., 2022; Apostolopoulos et al., 2021; Soares et al., 2021), one of the current
challenges in ORL remains algorithms extrapolation error, which is an inability to correctly estimate
the values of unseen actions (Fujimoto et al., 2019). Numerous algorithms were designed to address
this issue. For example, Kostrikov et al. (2021) (IQL) avoids estimation for out-of-sample actions
entirely. Similarly, Kumar et al. (2020) (CQL) penalizes out-of-distribution actions such that their
values are lower-bounded. Other methods explicitly make the learned policy closer to the behavioral
one (Fujimoto & Gu, 2021; Nair et al., 2020; Wang et al., 2020).

In contrast to prior studies, recent works (An et al., 2021) demonstrated that simply increasing
the number of value estimates in the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm is
enough to advance state-of-the-art performance consistently across various datasets in the D4RL
benchmark (Fu et al., 2020). Furthermore, An et al. (2021) showed that the double-clip trick actually
serves as an uncertainty-quantification mechanism providing the lower bound of the estimate, and
simply increasing the number of critics can result in a sufficient penalization for out-of-distribution
actions. Despite its state-of-the-art results, the performance gain for some datasets requires significant

3rd Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022.

computation time or optimization of an additional term, leading to extended training duration
(Figure 2).

In this paper, inspired by parallel works on reducing the training time of large models in other areas
of deep learning (You et al., 2019, 2017) (commonly referred to as large batch optimization), we
study the overlooked use of large batches1 in the deep ORL setting. We demonstrate that, instead
of increasing the number of critics or introducing an additional optimization term in SAC-N (An
et al., 2021) algorithm, simple batch scaling and naive adjustment of the learning rate can (1) provide
a sufficient penalty on out-of-distribution actions and (2) match state-of-the-art performance on
the D4RL benchmark. Moreover, this large batch optimization approach significantly reduces the
convergence time, making it possible to train models 4x faster on a single-GPU setup. To the best of
our knowledge, this is the first study that examines large batch optimization in the ORL setup.

2 Q-Ensemble For Offline RL

Mini- Batch, B = 256

Q- Ensemble, N < 500 Q- Ensemble Update, Vanilla
SAC- N

Mini- Batch, B = 256

Q- Ensemble, N < 50 Q- Ensemble Update, Diversified
EDAC

Mini- Batch, B = 10K

Q- Ensemble, N < 50 Q- Ensemble Update, Vanilla
LB- SAC

Figure 1: The difference between recently introduced SAC-N, EDAC, and the proposed LB-SAC.
The introduced approach does not require an auxiliary optimization term while making it possible to
effectively reduce the number of critics in the Q-ensemble by switching to the large-batch optimization
setting.

Ensembles have a long history of applications in the reinforcement learning community. They are
employed in the model-based approaches to combat compounding error and model exploitation
(Kurutach et al., 2018; Chua et al., 2018; Lai et al., 2020; Janner et al., 2019), in model-free to greatly
increase sample efficiency (Chen et al., 2021; Hiraoka et al., 2021; Liang et al., 2022) and in general
to boost exploration in online RL (Osband et al., 2016; Chen et al., 2017; Lee et al., 2021; Ciosek
et al., 2019). In offline RL, ensembles were mostly utilized to model epistemic uncertainty in value
function estimation (Agarwal et al., 2020; Bai et al., 2022; Ghasemipour et al., 2022), introducing
uncertainty aware conservatism.

Recently, An et al. (2021) investigated an isolated effect of clipped Q-learning on value overestimation
in offline RL, increasing the number of critics in the Soft Actor Critic (Haarnoja et al., 2018) algorithm
from 2 to N . Surprisingly, with tuned N SAC-N outperformed previous state-of-the-art algorithms

1Offline RL is often referred to as Batch RL, here, we extensively use the batch term to denote a mini-batch,
not the dataset size.

2

on D4RL benchmark (Fu et al., 2020) by a large margin, although requiring up to 500 critics on some
datasets. To reduce the ensemble size, An et al. (2021) proposed EDAC which adds auxiliary loss to
diversify the ensemble, allowing to greatly reduce N (Figure 1).

Such pessimistic Q-ensemble can be interpreted as utilizing the Lower Confidence Bound (LCB)
of the Q-value predictions. Assuming that Q(s, a) follows a Gaussian distribution with mean m,
standard deviation σ and {Qj(s, a)}Nj=1 are realizations of Q(s, a), we can approximate expected
minimum (An et al., 2021; Royston, 1982) as

E
[

min
j=1,...,N

Qj(s, a)

]
≈ m(s, a)− Φ−1

(
N − π

8

N − π
4 + 1

)
σ(s, a) (1)

where Φ is the CDF of the standard Gaussian distribution. In practice, OOD actions have higher
variance on Q-value estimates compared to ID (Figure 5a). Thus, with increased N we strengthen
value penalization for OOD actions, inducing conservatism. As we will show in Section 5.2, this
effect can be amplified by scaling batch instead of ensemble size.

3 How Long Does It Take for Q-Ensemble to Converge?

EDAC (Ensemble)
Score = 93.4

2.72 Hours

SAC-N (Ensemble)
Score = 92.6
2.63 Hours

CQL
Score = 78.1
0.69 Hours

IQL
Score = 79.7
0.48 Hours

TD3+BC
Score = 76.4
0.21 Hours

Algorithm

0

1

2

3

4

5

6

7

8

9

H
ou

rs

Figure 2: The convergence time of popular deep offline RL algorithms on 9 different D4RL locomo-
tion datasets (Fu et al., 2020). We consider algorithm convergence similar to Reid et al. (2022), i.e.,
marking convergence at the point of achieving results similar to the ones reported in performance
tables. White boxes denote mean values (which are also illustrated on the x-axis). Black diamonds
denote samples. Note that the convergence time of Q-ensemble based methods is significantly higher.
Raw values can be found in the Appendix A.6.

To demonstrate the inflated training duration of Q-ensemble methods, we start with an analysis of
their convergence time compared to other deep offline RL algorithms. Here, we show that while these
methods consistently achieve state-of-the art performance across many datasets, the time it takes to
obtain such results is significantly longer when compared to their closest competitors.

While it is not a common practice to report training times or convergence speed, some authors
carefully analyzed these characteristics of their newly proposed algorithms (Fujimoto & Gu, 2021;
Reid et al., 2022). There are two prevailing approaches for this analysis. First is to study the total
training time for a fixed number of training steps or the speed per training step (Fujimoto & Gu, 2021;
An et al., 2021). Second approach, such as the one taken by Reid et al. (2022), is to measure the
convergence time using a relative wall-clock time to achieve the results reported in the performance
tables.

Measuring the total training time for a fixed number of steps can be considered a straightforward
approach. However, it does not take into account that some algorithms may actually require a smaller
(or bigger) number of learning steps. Therefore, in this paper, we choose the second approach, which
involves measuring the relative clock-time until convergence. Similar to Reid et al. (2022), we deem

3

an algorithm to converge when its evaluation (across multiple seeds) achieves a normalized score
within two points2 or higher of the one reported for the corresponding method in the performance
table.

We carefully reimplemented all the baselines in same codebase and re-run the experiments to make
sure that they are executed on the same hardware (Tesla A100) in order for the relative-clock time to
be comparable. The results are depicted in Figure 2. One can see that IQL and TD3+BC are highly
efficient compared to their competitors, and their convergence times do not exceed two hours even in
the worst case scenarios. This efficiency comes from the fact that these methods do not take long for
one training step (Fujimoto & Gu, 2021; Kostrikov et al., 2021). However, while being fast to train,
they severely underperform when compared to the Q-ensemble based methods (SAC-N, EDAC).

Unfortunately, this improvement comes at a cost. For example, SAC-N median convergence time is
under two hours (2-3x times longer than for IQL or TD3+BC), but some datasets may require up to
nine hours of training. This is due to its usage of a high number of critics, which requires more time
for both forward and backward passes. Notably, EDAC was specifically designed to avoid using a
large number of critics, reporting smaller computational costs per training step (An et al., 2021) and
lower memory consumption. However, as can be seen in Figure 2, its convergence time is still on par
with the SAC-N algorithm. As we discussed earlier, some algorithms might require a higher number
of training iterations to converge, which is exactly the case for the EDAC algorithm.

4 Large Batch Soft Actor-Critic

One common approach for reducing training time of deep learning models is to use large-batch
optimization (Hoffer et al., 2017; You et al., 2017, 2019). In this section, we investigate a similar line
of reasoning for deep ORL and propose several adjustments to the SAC-N algorithm (An et al., 2021)
in order to leverage large mini-batch sizes:

1. Scale mini-batch Instead of using a significantly larger number of critics, as is done in SAC-N,
we instead greatly increase the batch size from the typically used 256 state-action-reward tuples to
10k. Note that in the case of commonly employed D4RL datasets and actor-critic architectures, this
increase does not require using more GPU devices and can be executed on the single-GPU setup.
While higher batch sizes are also viable, we will demonstrate in Section 5 that this value is sufficient,
and does not result in over-conservativeness.

2. Learning rate square root scaling In other research areas, it was often observed that a simple
batch size increase can be harmful to the performance, and other additions are needed (Hoffer et al.,
2017). The learning rate adjustment is one such modification. Here, we use the Adam optimizer
(Kingma & Ba, 2014), fixing the learning rate derived with a formula similar to Krizhevsky (2014)
also known as "square root scaling":

learning rate = base learning rate ∗
√

Batch Size

Base Batch Size
(2)

where we take both base learning rate and base batch size to be equal to the values used in the
SAC-N algorithm. Note that they are the same across all datasets. The specific values can be found in
the Appendix A.5. Unlike Hoffer et al. (2017), we do not use a warm-up stage.

We refer to the described modifications as Large-Batch SAC (LB-SAC)3. Overall, the resulting
approach is equivalent to the SAC-N algorithm, but with carefully adjusted values which are typically
considered hyperparameters. Figure 1 summarizes the distinctive characteristics of LB-SAC and the
recently proposed deep offline Q-ensemble based algorithms.

2We derive this value as a mean standard deviation typically observed when evaluating checkpoints across
random seeds, e.g., see Table 1.

3One may rightfully point out that, while we work in a single-GPU setup, we rely on modern computational
devices such as A100 with large memory capabilities. However, as we will demonstrate in the next section, the
memory consumption on D4RL datasets does not exceed 5GB of video memory in the worst-case scenarios, i.e.,
making it possible to utilize devices with less computation power.

4

5 Experiments

In this section, we present the empirical results of comparing LB-SAC with other Q-ensemble
methods. We demonstrate that LB-SAC significantly improves convergence time while matching the
final performance of other methods, and then analyze what contributes to such performance.

5.1 Evaluation on the D4RL MuJoCo Gym Tasks

We run our experiments on the commonly used MuJoCo locomotion subset of the D4RL benchmark
(Fu et al., 2020): Hopper, HalfCheetah, and Walker2D. Similar to the experiments conducted in
Section 3, we use the same GPU device and codebase for all the comparisons.

LB-SAC Normalized Scores First, we report the final scores of the introduced approach. The results
are illustrated in Table 1. We see that the resulting scores outperform the original SAC-N algorithm
and match the EDAC scores. Moreover, when comparing on the whole suit of locomotion datasets, the
average final performance is above both SAC-N and EDAC results (see Table 3 in the Appendix). We
highlight this result, as it is a common observation in large-batch optimization that naive learning rate
adjustments typically lead to learning process degradation, making adaptive approaches or a warm-up
stage necessary (Hoffer et al., 2017; You et al., 2017, 2019). Evidently, this kind of treatment can be
bypassed in the ORL setting for the SAC-N algorithm.

Table 1: Final normalized scores on D4RL Gym tasks, averaged over 4 random seeds. LB-SAC out-
performs SAC-N and attains a similar performance to the EDAC algorithm while being considerably
faster to converge as depicted in Figure 3. For ensembles, we provide additional results on more
datasets in the Appendix A.4.

Task Name TD3+BC IQL CQL SAC-N EDAC LB-SAC

halfcheetah-medium 48.1 48.3 47.0 67.5±1.2 65.9±0.6 71.5±1.2
halfcheetah-medium-expert 90.7 94.5 95.9 107.1±2.0 106.3±0.6 109.1±2.6
halfcheetah-medium-replay 44.8 43.5 45.1 63.9±0.8 61.3±1.9 64.3±0.7

hopper-medium 60.3 62.7 64.9 100.3±0.3 101.6±0.6 100.7±5.2
hopper-medium-expert 101.1 106.2 93.8 110.1±0.3 110.7±0.1 110.9±0.4
hopper-medium-replay 64.4 84.5 87.6 101.8±0.5 101.0±0.5 101.6±1.0

walker2d-medium 82.7 84.0 80.3 87.9±0.2 92.5±0.8 90.1±1.4
walker2d-medium-expert 110.0 111.6 109.6 116.7±0.4 114.7±0.9 113.4±3.4
walker2d-medium-replay 85.6 82.5 79.2 78.7±0.7 87.1±2.3 79.9±0.4

Average 76.4 79.7 78.1 92.6 93.4 93.4

LB-SAC Convergence Time Second, we study the convergence time in a similar fashion to Section 3.
The results are depicted in Figure 3. One can see that the training times of LB-SAC are less than those
of both EDAC and SAC-N, outperforming them in terms of average and the worst convergence times.
Moreover, LB-SAC even outperforms CQL in the worst-case scenario, achieving commensurate
average convergence time. This improvement comes from both (1) the usage of low number of critics,
similar to EDAC (see Figure 4) and (2) improved ensemble convergence rates, which we demonstrate
further in Section 5.2. Additionally, we report convergence times for different return thresholds on all
D4RL Gym datasets in the Appendix A.4 (Figure 13) confirming faster convergence to each of them.

Table 2: Worst-case number of critics
and memory consumption for D4RL lo-
comotion datasets.

Critics GPU Mem.
(Quantity) (GB)

SAC-N 500 5.1
EDAC 50 1.8

LB-SAC 50 5.4

LB-SAC Memory Consumption Memory consumption
is an obvious caveat of using large batch sizes. Here,
we report the worst-case memory requirements for all of
the Q-ensemble algorithms. Table 2 shows that utiliza-
tion of large batches can indeed lead to a considerable
increase in memory usage. However, this still makes it
possible to employ LB-SAC even using single-GPU setups
on devices with moderate computational power, requiring
around 5GB of memory in the worst-case scenarios. Ad-
ditionally, we report memory usage for high dimensional
Ant task in the Appendix A.4 (Table 5).

5

EDAC (Ensemble)
Score = 93.4

2.72 Hours

SAC-N (Ensemble)
Score = 92.6
2.63 Hours

CQL
Score = 78.1
0.69 Hours

LB-SAC (Ensemble)
Score = 93.4

0.66 Hours

IQL
Score = 79.7
0.48 Hours

TD3+BC
Score = 76.4
0.21 Hours

Algorithm

0

1

2

3

4

5

6

7

8

9

H
ou

rs

Figure 3: The convergence time of LB-SAC in comparison to other deep offline RL algorithms on 9
different D4RL locomotion datasets (Fu et al., 2020). We consider an algorithm to converge similar
to (Reid et al., 2022), i.e., marking convergence at the point of achieving results similar to those
reported in performance tables. White boxes denote mean values (which are also illustrated on the
x-axis). Black diamonds denote samples. LB-SAC shows significant improvement distribution-wise
in comparison to both SAC-N and EDAC, notably performing better on the worst-case dataset even
when compared to the ensemble-free CQL algorithm. Raw values can be found in the Appendix A.6.

medium-expert medium medium-replay

Dataset

0

2

4

6

8

10

N

HalfCheetah
Algorithm

SAC-N
EDAC
LB-SAC

medium-expert medium medium-replay

Dataset

0

100

200

300

400

500

N

hopper
Algorithm

SAC-N
EDAC
LB-SAC

medium-expert medium medium-replay

Dataset

0

5

10

15

20
N

Walker2D
Algorithm

SAC-N
EDAC
LB-SAC

Figure 4: The number of Q-ensembles (N) used to achieve the performance reported in Table 1 and
the convergence times in Figure 3. LB-SAC allows to use a smaller number of members without the
need to introduce an additional optimization term. Note that, for both SAC-N and EDAC, we used
the number of critics described in the appendix of the original paper (An et al., 2021).

5.2 Bigger Batch Sizes Penalize OOD Actions Faster

As argued in An et al. (2021), the major factor contributing to the success of Q-ensemble based
methods in deep ORL setups is the penalization of actions based on prediction confidences. This
is achieved by optimizing the lower bound of the value function. Both increasing the number of
critics and diversifying their outputs can improve prediction confidence, which in turn leads to
enhanced performance (An et al., 2021). On the other hand, unlike SAC-N, the proposed LB-SAC
method does not rely on a large amount of critics (see Figure 4), or an additional optimization
term for diversification as required by EDAC, while matching their performance with an improved
convergence rate.

To explain the empirical success of LB-SAC, we vary the batch size and analyze the learning
dynamics in a similar fashion to An et al. (2021) both in terms of out-of-distribution penalization
and the resulting conservativeness, which is currently known to be the main observable property of
successful ORL algorithms (Kumar et al., 2020; Rezaeifar et al., 2022). To do so, we keep track of
two values. First, we calculate the standard deviation of the q-values for both random and behavioral

6

policies and record its relation throughout the learning process. The former is often utilized as the
one producing out-of-distribution actions (Kumar et al., 2020; An et al., 2021). Second, we estimate
the distance between the actions chosen by the learned policy to the in-dataset ones for tracking how
conservative the resulting policies are.

The learning curves are depicted in Figure 5. We observe that increasing the batch size results in
faster growth of the standard deviation relation between out-of-distribution and in-dataset actions,
which can produce stronger penalization on out-of-distribution actions earlier in the training process.
This, in turn, leads to an elevated level of conservativeness, as demonstrated in Figure 5b.

0 100000 200000 300000 400000 500000
Training Steps

1.5

2.0

2.5

3.0

3.5

4.0

O
O

D
 to

 ID
 S

td
 R

at
io

256
1024
4096
10000

(a) Standard Deviation Relation

0 100000 200000 300000 400000 500000
Training Steps

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

256
1024
4096
10000

(b) Distance to In-Dataset Actions

0 100000 200000 300000 400000 500000
Training Steps

0

20

40

60

80

100

120

Av
er

ag
e

N
or

m
al

iz
ed

 S
co

re

256
1024
4096
10000

(c) Normalized Score

Figure 5: Effects of increasing the batch size. (a) Depicts the relation of standard deviation for
random actions to dataset actions (b) Plots the distance to the dataset actions from the learned policy
(c) Shows averaged normalized score.

Despite the fact that Figure 5 depicts the effect of increasing batch size on standard deviation ratio
between random and dataset actions, the true nature of this outcome remains not completely clear.
One possible explanation can be based on a simple empirical observation confirmed by our practice
(Section 2) and An et al. (2021) analysis: with further training Q-ensemble becomes more and more
conservative (Figure 5a). While standard deviation for dataset actions stabilizes at some value, for
random actions it continues to grow for a very long time. Hence, one might hypothesize that for
different ensemble sizes N > N ′, both will achieve some prespecified level of conservatism, but for
a smaller one it will take a lot more training time. Therefore, since by increasing the batch we also
increase the convergence rate, we should observe that with equal ensemble size LB-SAC will reach
same penalization values but sooner.

To test the proposed hypothesis, we conduct an experiment on two datasets, fixing number of critics,
only scaling batch size and learning rate as described in Section 4 and training SAC-N for 10 million
instead of 1 million training steps. One can see (Figure 6) that larger batches indeed only increase
convergence speed, as SAC-N can achieve same standard deviation values but much further during
training. Thus, on most tasks, we can reduce the ensemble size for LB-SAC, since accelerated
convergence compensates for the reduction in diversity, allowing us to remain at the same or higher
level of penalization growth as SAC-N with larger ensemble.

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

1

2

3

4

5

6

7

O
O

D
 to

 ID
 S

td
 R

at
io

LB-SAC-10
LB-SAC-3
SAC-10

(a) halfcheetah-medium-v2

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

1

2

3

4

5

6

O
O

D
 to

 ID
 S

td
 R

at
io

LB-SAC-20
LB-SAC-6
SAC-20

(b) walker2d-medium-v2

Figure 6: Both LB-SAC and SAC-N with same ensemble size achieve similar standard deviation ratio
between random and dataset actions, but with larger batches it happens a lot faster. This allows us to
reduce the size of the ensemble for most environments while leaving the growth rate comparable to
the SAC-N. Results averaged over 4 seeds. All hyperparameters except batch size and learning rate
are fixed for a fair comparison. Notice that we train SAC-N for 10 million steps.

7

6 Ablations

6.1 How Large Should the Batch Be?

0 100000 200000 300000 400000
Training Steps

1

2

3

4

5

6

O
O

D
 to

 ID
 S

td
 R

at
io

256
10000
20000
40000

(a) Standard Deviation Relation

0 100000 200000 300000 400000
Training Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

256
10000
20000
40000

(b) Distance to In-Dataset Actions

0 100000 200000 300000 400000
Training Steps

0

10

20

30

40

50

60

70

Av
er

ag
e

N
or

m
al

iz
ed

 S
co

re

256
10000
20000
40000

(c) Normalized Score

Figure 7: Scaling batch size even further leads to diminishing returns. (a) Depicts the relation of
standard deviation for random actions to dataset actions (b) Plots the distance between dataset actions
and the learned policy (c) Shows the averaged normalized score. The number of critics is fixed for all
batch sizes. Results were averaged over 4 seeds. For presentation brevity, the results are reported for
the halfcheetah-medium-v2 dataset. However, similar behavior occurs on all other datasets as well.

Observing that the increased mini-batch size improves the convergence, a natural questions to ask is
whether should we scale it even bigger. To answer this, we run LB-SAC with batch-sizes up to 40k.

We analyze the learning dynamics in a similar way to Section 5.2. The learning curves can be found
in the Figure 7. Overall, we see that further increase leads to diminishing returns on both penalization
and the resulting score. For example, Figure 7a shows that increasing the batch further leads to an
improved penalization of the out-of-distribution actions. However, this improvement becomes less
pronounced as we go from 20k to 40k. It may be interesting to note that the normalized scores for the
typically utilized batch size of 256 start to rise after a certain level of penalization, and conservatism
(MSE is around 0.3) is achieved. Evidently, the utilization of larger batch sizes helps achieve this
level significantly earlier in the learning process.

6.2 Is It Just the Learning Rate?

To illustrate that the attained convergence rates benefit from an increased batch size and not merely
from an elevated learning rate, we conduct an ablation, where we leave size of the batch equivalent to
the one used in the SAC-N algorithm (B = 256), but scale the learning rate. The results are depicted
in Figure 8.

0 100000 200000 300000 400000
Training Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

N
or

m
al

iz
ed

 S
co

re

Learning Rate Scaling for SAC-N

LB-SAC (B=10k, LR=0.0018)
SAC-N (B=256, LR=0.0018) Scaled LR
SAC-N (B=256, LR=0.0003) Base LR

Figure 8: The average normalized score. The improvement comes from both large batch size and
adjusted learning rate. Fixing batch size to the values typically used for SAC-N and scaling the
learning rate does not help. The results are averaged over 4 seeds. For presentation brevity, the results
are reported for the walker2d-medium-expert-v2 dataset.

8

Unsurprisingly, scaling learning rate without doing the same for batch size does not result in effective
policies and stagnates at some point during the training process. This can be considered expected, as
the hyperparameters for the base SAC algorithm were extensively tuned by an extensive number of
works on off-policy RL and seem to adequately transfer to the offline setting, as described in An et al.
(2021).

6.3 Do Layer-Adaptive Optimizers Help?

0 100000 200000 300000 400000 500000
Training Steps

1

2

3

4

5

6

O
O

D
 to

 ID
 S

td
 R

at
io

Adam
LARS
LAMB

(a) Standard Deviation Relation

0 100000 200000 300000 400000 500000
Training Steps

20

30

40

50

60

70

Av
er

ag
e

N
or

m
al

iz
ed

 S
co

re

Adam
LARS
LAMB

(b) Normalized Score

Figure 9: Using layer-adaptive optimizers leads either to a similar performance or degrades the
learning process. (a) Depicts the relation of standard deviation for random actions to dataset actions
(b) Shows the averaged normalized score. The number of critics is fixed for all optimizers. The
results are averaged over 4 seeds. For presentation brevity, the results are reported for the halfcheetah-
medium-v2 dataset.

While we settled on a naive approach for large-batch optimization in the setting of deep offline RL,
one may wonder whether using more established and sophisticated optimizers may work as well.
Here, we take a look at commonly employed LARS (You et al., 2017) and LAMB (You et al., 2019)
optimizers reporting learning dynamics similar to the previous sections. The resulting curves can be
found in Figure 9.

We see that the LAMB optimizer could not succeed in the training process diverging with more
learning steps. On the other hand, LARS behaves very similar to the proposed adjustments. While by
no means we suggest that adaptive learning rates are not useful for offline RL, the straight adoption
of established large-batch optimizers for typically used neural network architecture (linear layers
with activations) in the context of locomotion tasks does not bring much benefits. Seemingly, these
methods may require more hyperparameter tuning, different learning rate scaling rules or a warm-up
schedule as opposed to the simple "square root scaling".

7 Conclusion

In this work, we demonstrated how the overlooked use of large-batch optimization can be leveraged
in the setting of deep offline RL. We showed that a naive adjustment of the learning rate in the
large-batch optimization setting is sufficient to significantly reduce the training times of methods
based on Q-ensembles (4x on average) without the need to use adaptive learning rates.

Moreover, we empirically illustrated that the use of large batch sizes leads to an increased penalization
of out-of-distribution actions, making it an efficient replacement for an increased number of q-value
estimates in an ensemble or an additional optimization term. We hope that this work may serve as a
starting point for further investigation of large-batch optimization in the setting of deep offline RL.

References
Igor Adamski, Robert Adamski, Tomasz Grel, Adam Jędrych, Kamil Kaczmarek, and Henryk

Michalewski. Distributed deep reinforcement learning: Learn how to play atari games in 21
minutes. In International conference on high performance computing, pp. 370–388. Springer,
2018.

9

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Arthur Allshire, Roberto Martín-Martín, Charles Lin, Shawn Manuel, Silvio Savarese, and Animesh
Garg. Laser: Learning a latent action space for efficient reinforcement learning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6650–6656. IEEE, 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Pavlos Athanasios Apostolopoulos, Zehui Wang, Hanson Wang, Chad Zhou, Kittipat Virochsiri,
Norm Zhou, and Igor L Markov. Personalization for web-based services using offline reinforcement
learning. arXiv preprint arXiv:2102.05612, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Richard Y Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. Ucb exploration via q-ensembles.
arXiv preprint arXiv:1706.01502, 2017.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic
actor critic. Advances in Neural Information Processing Systems, 32, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic?
estimating uncertainties for offline rl through ensembles, and why their independence matters.
arXiv preprint arXiv:2205.13703, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout q-functions for doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034,
2021.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. Advances in neural information processing
systems, 30, 2017.

10

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2021.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Vladislav Kurenkov and Sergey Kolesnikov. Showing your offline reinforcement learning work:
Online evaluation budget matters. In International Conference on Machine Learning, pp. 11729–
11752. PMLR, 2022.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Hang Lai, Jian Shen, Weinan Zhang, and Yong Yu. Bidirectional model-based policy optimization.
In International Conference on Machine Learning, pp. 5618–5627. PMLR, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pp. 6131–6141. PMLR, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Nir Levine, Tom Zahavy, Daniel J Mankowitz, Aviv Tamar, and Shie Mannor. Shallow updates for
deep reinforcement learning. Advances in Neural Information Processing Systems, 30, 2017.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander Ihler, Pieter Abbeel, and Roy
Fox. Reducing variance in temporal-difference value estimation via ensemble of deep networks.
In International Conference on Machine Learning, pp. 13285–13301. PMLR, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

11

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? arXiv preprint arXiv:2201.12122, 2022.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8106–8114, 2022.

J. P. Royston. Algorithm as 177: Expected normal order statistics (exact and approximate). Journal of
the Royal Statistical Society. Series C (Applied Statistics), 31(2):161–165, 1982. ISSN 00359254,
14679876. URL http://www.jstor.org/stable/2347982.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. arXiv
preprint arXiv:2111.03788, 2021.

Hassam Sheikh, Kizza Frisbee, and Mariano Phielipp. DNS: Determinantal point process based
neural network sampler for ensemble reinforcement learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 19731–19746. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/sheikh22a.html.

Douglas W Soares, Acordo Certo, Telma Lima, and Deep Learning Brazil. Pulserl: Enabling offline
reinforcement learning for digital marketing systems via conservative q-learning. Advances in
Neural Information Processing Systems, 2nd Workshop on Offline Reinforcement Learning, 2021.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. arXiv
preprint arXiv:1803.02811, 2018.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2019.

Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepthermal:
Combustion optimization for thermal power generating units using offline reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 4680–4688, 2022.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, pp. 1719–1735. PMLR, 2021.

12

http://www.jstor.org/stable/2347982
https://proceedings.mlr.press/v162/sheikh22a.html
https://proceedings.mlr.press/v162/sheikh22a.html

A Appendix

A.1 Related Work

Model-Free Offline RL A large portion of recently proposed deep offline RL algorithms focuses
on addressing the extrapolation issue, trying to impose a certain degree of conservatism limiting the
deviation of the final policy from the behavioral one. Researchers approached this problem from
multiple angles. For example, Kumar et al. (2020) proposed to directly penalize out-of-distribution
actions, while Kostrikov et al. (2021) avoids estimating values for out-of-sample actions completely.
Others (Fujimoto & Gu, 2021; Nair et al., 2020; Wang et al., 2020) put explicit constraints to stay
closer to the behavioral policy either by directly making models closer to the behavioral one (Fujimoto
& Gu, 2021), or by re-weighting behavioral policy actions with the estimated advantages. In addition,
there are works that construct a latent policy action space and optimize models within it (Zhou
et al., 2021; Allshire et al., 2021). In our work, we explore a different class of methods based on a
model-free uncertainty quantification (An et al., 2021), and demonstrate that it can be achieved with
a sufficiently large mini-batch sizes and a handful number of value estimates.

Q-Ensembles in RL There has been a body of work on leveraging ensembles in deep reinforcement
learning (Sheikh et al., 2022; An et al., 2021; Lee et al., 2021, 2022; Osband et al., 2018). For
offline RL, An et al. (2021) demonstrated that using the soft-actor critic with a large amount of
value estimates leads to state-of-the art results on D4RL benchmark. As the number of critics grows,
so do the computational time, in order to remedy this issue, An et al. (2021) further proposed to
diversify the ensemble by disaligning the critics. In our work, we largely build upon these findings.
However, we demonstrate that it is possible to alleviate a large number of critics by simply using
large mini-batch sizes, which stabilizes the training process and speeds up convergence both in terms
of training cycles and wall time.

Large Batch Optimization Unlike deep offline RL, the effect of larger mini-batch sizes was exten-
sively studied in other areas of deep learning. This is typically referred as large batch optimization
(Hoffer et al., 2017). For example, You et al. (2017) proposed to use layer-wise adaptive learning
rates to train big vision models in minutes. In the Natural Language Processing field, You et al.
(2019) proposed another adaptive learning rates mechanism to train attention-based models such as
BERT, making it possible to train big language models within hours instead of days. In our work, we
investigate a similar line of reasoning, and demonstrate that simply increasing the mini-batch size
and naively adjusting the learning rate is sufficient for obtaining a faster convergence speed while
matching state-of-the-art performance on the D4RL benchmark.

Large Batch in RL While large batches are not commonly employed in online RL, their benefits
were already extensively demonstrated and analyzed. For example, Berner et al. (2019) describes
a large-scale setting and uses over a million timesteps per update to train a Dota-agent. On the
other hand, in simple Atari environments, batch sizes of thousands were also found to be effective
for online RL algorithms Levine et al. (2017); Horgan et al. (2018); Adamski et al. (2018); Stooke
& Abbeel (2018). Notably, McCandlish et al. (2018) proposed a statistic called "gradient noise
scaling" to predict the largest useful batch size for both supervised and online reinforcement learning
problems. As for offline RL, to the best of our knowledge, we are the first to explore the effects
of large mini-batch sizes and demonstrate how it can benefit the learning process of Q-ensemble
methods.

A.2 Limitations and Future Work

Multiple Evaluations In our study we extensively use the notion of convergence time by evaluating
multiple checkpoints during the training process. This contradicts the penultimate limitation of
pure offline RL, where one should be allowed to evaluate exactly one policy. However, in this
work, we were specifically interested in studying the convergence properties, therefore requiring
multiple evaluations for such an analysis. Still, the practice of multiple evaluations is common in
the community (Kurenkov & Kolesnikov, 2022; Seno & Imai, 2021) since the proper approach to
compare offline RL methods is still an open question.

Overfitting It was noted in Seno & Imai (2021) that the best checkpoint across the training process
significantly outperforms the final performance typically reported in deep offline RL papers. This is
either attributed to the noisy learning process or some form of overfitting, as it can be often observed

13

that the performance starts to deteriorate with more learning steps (Seno & Imai, 2021). We observed
a similar behavior for large-batch optimization on some datasets (see Section 6.1, Figure 7 for 40k
batch size). We believe this is an interesting direction for future work (including large-batch settings),
since the methodological apparatus for studying the properties of overfitting is yet to be developed
for the offline RL setting.

LBO for Other Offline RL Algorithms Although the sole focus of our work was on studying
large-batch optimization for Q-ensemble methods to demonstrate the benefits it can bring (e.g. a
reduced number of critics or improved convergence time), an intriguing line of investigation would
be the application of big batch sizes to other deep offline RL algorithms which could potentially also
lead to improved convergence.

Layeradaptive Optimizers for Offline RL While we conducted a preliminary set of experiments
on layer-adaptive optimizers (You et al., 2017, 2019) in the Appendix 6.3, more investigation is
certainly needed in this direction. Since we run our experiments on D4RL benchmark and locomotion
environments, we believe these optimizers may find their use in the context of different tasks typically
employing other types of architecture (e.g. convolutional neural networks, recurrent networks, and
transformers).

A.3 On Layer Normalization

While scaling batch size significantly improves convergence speed and penalization of OOD actions,
there were some difficult tasks where such naive approach could not help as much. As we showed
in 6.1, scaling has its limits and can lead to diminishing returns, where at some point (around 10k
batch size) the std ratio (as well as penalization) will stop growing. From this point, increasing
batches further does not always provide much benefit, since without a sufficient level of penalization
for a given task even with a faster convergence rate the agent may not converge or the training can
be unstable. With a default MLP critic architecture, the only option left is to make the ensemble
bigger or use diversity loss from EDAC. In our preliminary experiments, we found that increasing the
ensemble size could remedy this issue but led to longer training times.

After more experimentation, we found that the use of Layer Normalization (Ba et al., 2016) completely
reduces diminishing returns on all batch sizes we considered (Figure 10). One can see in Figure 10 that
the scaling tendency is preserved in opposition to the results we observed without layer normalization
(Figure 7).

0 100000 200000 300000 400000
Training Steps

2

4

6

8

10

12

O
O

D
 to

 ID
 S

td
 R

at
io

256
10000
20000
40000

(a) Standard Deviation Relation

0 100000 200000 300000 400000
Training Steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
SE

256
10000
20000
40000

(b) Distance to In-Dataset Actions

0 100000 200000 300000 400000
Training Steps

0

10

20

30

40

50

60

Av
er

ag
e

N
or

m
al

iz
ed

 S
co

re

256
10000
20000
40000

(c) Normalized Score

Figure 10: Layer normalization reduces the effects of diminishing returns. (a) Depicts the relation of
standard deviation for random actions to dataset actions (b) Plots the distance to the dataset actions
from the learned policy (c) Shows the averaged normalized score. The number of critics is fixed for
all batch sizes. Results were averaged over 4 seeds. halfcheetah-medium-v2 is the dataset used.

The most illustrative example is the hopper-medium-v2 dataset, which can be considered the hardest
task among all others. To solve it, SAC-N uses 500 critics while EDAC uses 50 (An et al., 2021). In
our experiments, we were unable to get competitive results with bigger batches and 50 critics, and
increasing ensemble size was not an option due to efficiency reasons. However, with additional layer
normalization for critics (after each layer and before nonlinearity), we were able to get strong results
using only 25 critics due to increased penalization. Note that on more simple tasks (Figure 10), such
a boost can lead to overconservative policies and lower scores as a result (almost 10 points worse on
halfcheetah-medium-v2).

14

A.4 Results On Additional Datasets

Table 3: Final normalized scores on all D4RL Gym tasks, averaged over 4 random seeds. LB-
SAC attains a better average performance over both the SAC-N and EDAC algorithm while being
considerably faster to converge as depicted in Figure 11.

Task Name SAC-N EDAC LB-SAC

halfcheetah-random 28.0±0.9 28.4±1.0 31.1±1.8
halfcheetah-medium 67.5±1.2 65.9±0.6 71.5±1.2
halfcheetah-expert 105.2±2.6 106.8±3.4 109.0±2.8
halfcheetah-medium-expert 107.1±2.0 106.3±0.6 109.1±2.6
halfcheetah-medium-replay 63.9±0.8 61.3±1.9 64.3±0.7
halfcheetah-full-replay 84.5±1.2 84.6±0.9 86.6±0.5

hopper-random 31.3±0.0 25.3±10.4 31.4±0.0
hopper-medium 100.3±0.3 101.6±0.6 100.7±5.2
hopper-expert 110.3±0.3 110.1±0.1 110.0±0.1
hopper-medium-expert 110.1±0.3 110.7±0.1 110.9±0.4
hopper-medium-replay 101.8±0.5 101.0±0.5 101.6±1.0
hopper-full-replay 102.9±0.3 105.4±0.7 108.3±0.3

walker2d-random 21.7±0.0 16.6±7.0 21.6±0.1
walker2d-medium 87.9±0.2 92.5±0.8 90.1±1.4
walker2d-expert 107.4±2.4 115.1±1.9 107.6±0.4
walker2d-medium-expert 116.7±0.4 114.7±0.9 113.4±3.4
walker2d-medium-replay 78.7±0.7 87.1±2.3 79.9±0.4
walker2d-full-replay 94.6±0.5 99.8±0.7 109.1±2.9

Average 84.5 85.2 86.4

Table 4: Normalized maximum scores on all D4RL Gym tasks, averaged over 4 random seeds.
LB-SAC attains a better average performance over both the SAC-N and EDAC algorithms.

Task Name SAC-N EDAC LB-SAC

halfcheetah-random 29.7±1.0 29.9±1.6 34.1±1.4
halfcheetah-medium 71.0±1.3 68.2±2.3 73.0±1.4
halfcheetah-expert 108.5±1.0 108.2±0.7 110.2±1.1
halfcheetah-medium-expert 109.1±2.1 107.0±1.3 110.6±2.7
halfcheetah-medium-replay 65.8±0.9 65.0±2.1 66.0±0.7
halfcheetah-full-replay 85.9±0.4 85.6±0.5 87.6±0.8

hopper-random 32.0±1.6 32.9±0.2 31.4±0.0
hopper-medium 101.0±0.6 102.7±0.2 103.8±0.0
hopper-expert 110.6±0.5 111.8±0.0 110.1±0.1
hopper-medium-expert 110.4±0.4 111.4±0.2 110.9±0.4
hopper-medium-replay 102.9±0.8 102.6±0.6 104.1±0.5
hopper-full-replay 107.9±0.3 107.9±0.4 109.3±0.3

walker2d-random 21.9±0.0 22.0±0.3 21.8±0.0
walker2d-medium 88.7±0.5 94.6±1.5 91.6±1.4
walker2d-expert 110.6±0.6 116.7±0.7 109.8±0.9
walker2d-medium-expert 116.0±0.8 115.3±0.2 115.5±1.1
walker2d-medium-replay 83.3±2.9 87.8±2.3 88.1±2.8
walker2d-full-replay 97.8±0.8 100.8±0.5 110.4±5.0

Average 86.2 87.2 88.3

15

LB-SAC
Score = 86.4

0.82 Hours

SAC-N
Score = 84.5
3.07 Hours

EDAC
Score = 85.2
2.77 Hours

Algorithm

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

H
ou

rs

Figure 11: The convergence time of LB-SAC in comparison to SAC-N & EDAC on all D4RL Gym
datasets (Fu et al., 2020). We consider an algorithm to converge similar to (Reid et al., 2022), i.e.,
marking convergence at the point of achieving results similar to those reported in performance tables.
White boxes denote mean values (which are also illustrated on the x-axis). Black diamonds denote
samples. LB-SAC shows significant improvement distribution-wise in comparison to both SAC-N
and EDAC, notably performing better on the worst-case dataset.

random

medium-expert

medium

medium-replay

expert

full-replay

Dataset

0

2

4

6

8

10

N

HalfCheetah
Algorithm

SAC-N
EDAC
LB-SAC

random

medium-expert

medium

medium-replay

expert

full-replay

Dataset

0

100

200

300

400

500

N

hopper
Algorithm

SAC-N
EDAC
LB-SAC

random

medium-expert

medium

medium-replay

expert

full-replay

Dataset

0

20

40

60

80

100
N

Walker2D
Algorithm

SAC-N
EDAC
LB-SAC

Figure 12: The number of Q-ensembles (N) used to achieve the performance reported in Table 3 and
the convergence times in Figure 11. LB-SAC makes it possible to use a smaller number of members
without the need to introduce an additional optimization term. Note that, for both SAC-N and EDAC,
we used the number of critics described in the appendix of the original paper (An et al., 2021).

Table 5: Q-ensemble methods evaluation on ant-medium-v2 with large action and observation
spaces (119 dimensions in total). Results are averaged over 4 seeds. As one can see, LB-SAC can
successfully scale to high dimensional problem achieving higher score faster. Note that the EDAC’s
memory consumption is more than the one required by the SAC-N with higher number of critics.
This is due to the need to compute the gradient for each ensemble member with respect to the action
space.

Method Score Critics Time (Min) GPU Mem. (GB)

SAC-N 121.5±1.1 50 116 2.47
EDAC 120.4±1.5 10 122 2.85
LB-SAC 126.1±1.0 10 21 3.27

16

25 50 75 100 125 150 175
Minutes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f t
he

 fi
na

l s
co

re

LB-SAC
SAC-N
EDAC

Figure 13: Relative wall-clock time in minutes to achieve a specified percentage of final score for
ensemble algorithms. Results are averaged over all D4RL Gym datasets (Fu et al., 2020) with 4 seeds
each. As one can see, LB-SAC converges faster to any given return threshold. Note that LB-SAC
achieves competitive average final score (see Table 3).

A.5 Hyperparameters

Table 6: SAC-N, LB-SAC, EDAC shared hyperparameters
Parameter Value
optimizer AdamW (Loshchilov & Hutter, 2017)
tau (τ) 5e-3 (5e-4 on walker2d-expert-v2)
hidden dim (all networks) 256
hidden layers (all networks) 3
target entropy -action_dim
gamma (γ) 0.99
nonlinearity ReLU

Table 7: Algorithm specific hyperparameters. For LB-SAC algorithm on all environments we used
SAC-N batch size and learning rate as base values for learning rate scaling (precise formula described
in Equation 2).

Algorithm Batch size Learning rate
SAC-N 256 3e-4
EDAC 256 3e-4
LB-SAC 10000 1.8e-3

17

Table 8: Environment specific hyperparameters.

Task Name SAC-N (N) LB-SAC (N, LayerNorm) EDAC (N, η)

halfcheetah-random 10 2, False 10, 0.0
halfcheetah-medium 10 4, False 10, 1.0
halfcheetah-expert 10 6, False 10, 1.0
halfcheetah-medium-expert 10 8, False 10, 5.0
halfcheetah-medium-replay 10 4, False 10, 1.0
halfcheetah-full-replay 10 4, False 10, 1.0

hopper-random 500 25, False 50, 1.0
hopper-medium 500 25, True 50, 1.0
hopper-expert 500 50, False 50, 1.0
hopper-medium-expert 200 40, False 50, 1.0
hopper-medium-replay 200 20, False 50, 1.0
hopper-full-replay 200 25, False 50, 1.0

walker2d-random 20 15, False 10, 1.0
walker2d-medium 20 10, False 10, 1.0
walker2d-expert 100 30, False 10, 5.0
walker2d-medium-expert 20 10, False 10, 5.0
walker2d-medium-replay 20 10, False 10, 1.0
walker2d-full-replay 20 4, False 10, 1.0

ant-medium 50 10, True 10, 5.0

A.6 Convergence Time

Table 9: Convergence times in minutes for each D4RL Gym dataset.

Task Name TD3+BC IQL CQL SAC-N EDAC LB-SAC

halfcheetah-random — — — 18.0 18.0 1.0
halfcheetah-medium 3.1 6.5 20.6 26.0 84.0 5.0
halfcheetah-expert — — — 435.0 563.0 50.0
halfcheetah-medium-expert 89.5 13.0 289.7 336.0 537.0 60.0
halfcheetah-medium-replay 89.5 3.2 24.4 17.0 23.0 2.0
halfcheetah-full-replay — — — 83.0 164.0 4.0

hopper-random — — — 7.0 3.0 19.0
hopper-medium 10.7 50.5 3.7 508.0 105.0 115.0
hopper-expert — — — 853.0 276.0 276.0
hopper-medium-expert 10.2 51.0 58.3 219.0 408.0 93.0
hopper-medium-replay 11.1 72.2 112.9 54.0 44.0 16.0
hopper-full-replay — — — 60.0 38.0 16.0

walker2d-random — — — 132.0 73.0 26.0
walker2d-medium 16.1 11.4 24.4 39.0 115.0 15.0
walker2d-expert — — — 267.0 330.0 116.0
walker2d-medium-expert 9.3 19.5 48.9 216.0 125.0 48.0
walker2d-medium-replay 10.2 10.3 26.3 6.0 33.0 4.0
walker2d-full-replay — — — 41.0 58.0 26.0

Average 12.6 26.4 41.6 166.5 184.2 49.5

18

	Introduction
	Q-Ensemble For Offline RL
	How Long Does It Take for Q-Ensemble to Converge?
	Large Batch Soft Actor-Critic
	Experiments
	Evaluation on the D4RL MuJoCo Gym Tasks
	Bigger Batch Sizes Penalize OOD Actions Faster

	Ablations
	How Large Should the Batch Be?
	Is It Just the Learning Rate?
	Do Layer-Adaptive Optimizers Help?

	Conclusion
	Appendix
	Related Work
	Limitations and Future Work
	On Layer Normalization
	Results On Additional Datasets
	Hyperparameters
	Convergence Time

