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Abstract

Large language models (LLMs) have shown001
remarkable capabilities in general domains,002
but their application to multi-omics biology003
remains underexplored. To address this gap,004
we introduce Biology-Instructions, the first005
large-scale instruction-tuning dataset for multi-006
omics biological sequences, including DNA,007
RNA, proteins, and multi-molecules. This008
dataset bridges LLMs and complex biological009
sequences-related tasks, enhancing their versa-010
tility and reasoning while maintaining conver-011
sational fluency. We also highlight significant012
limitations of current state-of-the-art LLMs013
on multi-omics tasks without specialized train-014
ing. To overcome this, we propose ChatMulti-015
Omics, a strong baseline with a novel three-016
stage training pipeline, demonstrating supe-017
rior biological understanding through Biology-018
Instructions. Both resources are publicly avail-019
able, paving the way for better integration of020
LLMs in multi-omics analysis.021

1 Introduction022

Understanding the complex activities across var-023

ious omics in living organisms is of paramount024

importance. This includes studying DNA regula-025

tory elements that control gene expression (Emils-026

son et al., 2008), RNA regulation (Mattick, 2004)027

that influences protein synthesis, and the functional028

properties of proteins themselves (Marcotte et al.,029

1999). These molecular processes critically af-030

fect the development of diseases and the synthe-031

sis of drugs within organisms. Recent BERT-like032

encoder-only models (Devlin, 2018) have achieved033

significant advances in natural language under-034

standing tasks.035

When applied to genome or protein understand-036

ing tasks, these models (Zhou et al., 2023; Rives037

et al., 2021) are capable of capturing complex in-038

trinsic relationships within biological sequences,039

achieving high accuracy in tasks such as promoter040

prediction. However, their reliance on specific clas- 041

sification or regression heads to predict a single task 042

at a time limits their versatility, and their repeated 043

fine-tuning sessions with different prediction heads 044

to address multiple tasks further complicate the 045

training, inference, and deployment process. 046

In contrast, powerful general-purpose large lan- 047

guage models (LLMs) such as GPT-4 (Achiam 048

et al., 2023) and Gemini (Achiam et al., 2023; Team 049

et al., 2023) based on vast amounts of natural lan- 050

guage tasks and data that encompass the general 051

knowledge system of humanity, have shown sub- 052

stantial potential in domain-specific tasks. These 053

decoder-only models approach every task as a com- 054

pletion task through next-token prediction, and of- 055

fer an alternative by integrating various biological 056

sequence-related tasks using natural language as an 057

intermediary while retaining conversational capa- 058

bilities. Therefore, utilizing LLMs combined with 059

unified training and dataset construction techniques 060

can make it possible to replace BERT-like models 061

with the complicated fine-tuning pipeline. 062

Recently, some studies have explored lever- 063

aging LLMs for tasks related to biological se- 064

quences through instruction tuning, such as 065

ChatNT (Richard et al., 2024) and ProLlama (Lv 066

et al., 2024). Although showing promising re- 067

sults, these models are trained on instruction-tuning 068

datasets containing only basic language patterns, 069

underutilizing the full linguistic capabilities of the 070

original LLMs. Moreover, these models mainly 071

focus on single-omics data for either protein or 072

DNA, limiting their potential to provide important 073

multi-omics understanding ability as a unified foun- 074

dational language model. Inspired by multimodal 075

LLMs like MiniGPT-4 (Zhu et al., 2023), we see 076

an opportunity to extend this approach to biology. 077

In biology, where molecular interactions are fun- 078

damentally grounded in the central dogma (Crick, 079

1970), integrating multi-omics data holds immense 080

potential for generating mutually reinforcing in- 081
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Figure 1: Comparative examples showcasing ChatMultiOmics performance against baseline models on multi-
molecular tasks. (a) Enhancer-Promoter Interaction Prediction (Min et al., 2021) after stage2 training. (b)
Antibody-Antigen Neutralization (AAN) (Zhang et al., 2022) after stage3 training. Note that AAN is not included
in stage3 training, which showcases our model’s task generalization capability.

sights.082

Our study attempts to answer a key question:083

can instruction-tuned language models, proficient084

in understanding human language, also excel in085

understanding biological sequences to address bio-086

logically critical tasks? The motivation behind this087

inquiry lies in the intrinsic parallels between biolog-088

ical sequence data and human language—both are089

discrete, sequential, abundant and rich in encoded090

information. These shared characteristics suggest091

that, with appropriate adaptation, instruction-tuned092

LLMs could unlock transformative capabilities in093

biology.094

To properly investigate the gap between hu-095

man language and biological sequences understand-096

ing, we introduce Biology-Instructions, the first097

large-scale, multi-omics biology sequence-related098

instruction-tuning benchmark supporting 21 dis-099

tinct tasks. This benchmark covers DNA, RNA,100

proteins and multi-molecular prediction tasks for101

a comprehensive understanding of biology. With102

Biology-Instructions, we conduct a comprehen-103

sive evaluation of kinds of open-source and closed-104

source LLMs, and reveal that most models includ-105

ing the state-of-the-art GPT-4o, perform at near-106

random levels on biological sequence-related un-107

derstanding tasks without prior specialized train-108

ing. This suggests the lack of inherent biological109

sequence knowledge in LLMs and highlights the110

need for methods to effectively integrate these tasks 111

with LLMs. 112

Furthermore, we attempt to activate the biologi- 113

cal multi-omics sequence understanding ability of 114

LLMs with the constructed instruction data. We 115

discover that solely performing instruction tuning 116

on Biology-Instructions can not yield satisfactory 117

results. To address this gap, we propose a three- 118

stage training pipeline: (1) train the model on un- 119

supervised DNA, RNA, and protein sequences; (2) 120

train the model on the question-answer pairs of 121

Biology-Instructions; (3) train the model on reason- 122

ing data. The first stage serves as a warm-up to en- 123

hance the model’s ability to understand biological 124

sequences. In the second stage, the model follows 125

natural language instructions to interpret biological 126

sequences. In the third stage, the model leverages 127

the implicitly learned knowledge base to perform 128

reasoning and deepen its understanding of biologi- 129

cal sequences. We include reasoning data that starts 130

with biological sequence analysis and concludes 131

with results based on prior analyses and reason- 132

ing. This approach ensures that models maintain 133

comprehensive conversational abilities while gain- 134

ing deeper insights into biological sequences and 135

tasks. We have implemented this training pipeline 136

on Llama3.1-8b-Instruct (Dubey et al., 2024) using 137

Biology-Instructions, resulting in significant perfor- 138

mance improvements shown in Figure 1. Our find- 139
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ings and experiences are thoroughly documented.140

Our contributions can be summarized as:141

• Multi-omics Instruction-Following Data.142

We present the first dataset specifically de-143

signed for multi-omics instruction-following,144

which includes reasoning instruction data and145

multi-sequence, multi-molecule instruction146

data. This dataset aims to improve the ability147

of LLMs to comprehend and analyze biologi-148

cal sequences.149

• Multi-omics Instruction-Following Bench-150

mark. We benchmark Biology-Instructions151

on open-source and closed-source LLMs. Our152

results reveal that even current LLMs can not153

solve biological sequences-related tasks.154

• Biology-Specific LLMs and Three-Stage155

Training Pipeline. We develop a biology-156

focused LLM capable of handling tasks re-157

lated to multi-omics sequences by training158

an open-source LLM on biology-specific in-159

structions. We propose an efficient and novel160

three-stage pipeline to enhance the biology161

learning ability of LLM based on some impor-162

tant findings.163

• Fully Open-Source. We will release three as-164

sets to the public: the Biology Instructions165

dataset, the entire training pipeline’s code-166

base and the model checkpoints. The Biology-167

Instructions is publicly available through an168

anonymous data link.1.169

2 Biology-Instructions170

2.1 Overview of Biology-Instructions171

To build a large-scale biology instruction-following172

dataset, we have gathered biology sequence data173

from a substantial aggregation of sources. This174

effort has resulted in a dataset encompassing 21175

subtasks related to multi-omics fields. The Biology-176

Instructions exhibits the following characteristics:177

Multi-omics Biology-Instructions comprises 21178

subtasks across three types of omics, including179

single-omics tasks and multi-omics interaction180

tasks. Joint training of different omics not only en-181

hances efficiency by accomplishing multiple omics182

tasks with a single model but also improves the183

model’s capability in a specific omics domain.184

1https://anonymous.4open.science/r/Biology-
Instructions-FD66/

Large Scale With over 3 million training sam- 185

ples, the Biology-Instructions dataset provides 186

an extensive foundation for biological sequences- 187

related instruction data. This large-scale dataset 188

enables models to better understand the traits and 189

functions of biological sequences, leading to more 190

accurate and comprehensive responses to given 191

questions. 192

High Quality To ensure the quality of the 193

dataset, we manually draft question and answer 194

templates for each task type and expand the tem- 195

plate pool using Cluade-3.5-sunnet and GPT-4o. 196

The resulting number of question-answer template 197

pairs for each task range from 10,000 to 100,000, 198

depending on the data magnitude of each task type. 199

Throughout this process, we emphasize the impor- 200

tance of diversity in grammar and language style, 201

ensuring that samples in the Biology-Instructions 202

dataset have different question-answer style. For 203

examples of question-answer template pairs, please 204

refer to Table 9. 205

Reasoning data Although previous stud- 206

ies (Richard et al., 2024; Liu et al., 2024b; Lv 207

et al., 2024) have demonstrated large-scale primary 208

instruction-following datasets can teach LLMs 209

to answer biological sequences-related questions, 210

they often fail to fully harness the powerful lan- 211

guage abilities of LLMs, as they focus primarily 212

on basic language patterns. In other words, they 213

failed to leverage the powerful conversational abil- 214

ities of these models to form natural and fluent 215

dialogues, and further utilize reasoning to enhance 216

the validity of the output results. To address this 217

limitation, we design a prompt that requires pow- 218

erful closed-source LLMs to reformulate answers 219

for a subset of Biology-Instructions’ validation set 220

and provide polished answers ready for end-users 221

to read and understand, based on given questions 222

and original answers. We encourage the model to 223

deeply analyze the sequence and question first and 224

then generate a final polished answer grounded in 225

previous analysis and reasoning. 226

2.2 Biology-Instructions Construction 227

2.2.1 Tasks 228

As presented in Figure 2, the Biology-Instructions 229

dataset comprises 21 tasks: 6 DNA tasks, 6 RNA 230

tasks, 5 protein tasks, and 4 multi-molecule tasks. 231

When considering the number of input sequences, 232

there are 4 multi-molecule interaction tasks and 17 233

single-molecule tasks. Tasks were sourced from 234
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Figure 2: Distribution of tasks across four omics types in our dataset.

high-impact literature, journals, and competitions,235

ensuring coverage of biologically critical aspects236

in structure, function, and engineering across DNA,237

RNA, proteins, and their interactions. We focus on238

predictive sequence-understanding tasks, leaving239

generative applications, such as sequence design,240

for future research. To the best of our knowledge,241

Biology-Instructions is the first instruction dataset242

to include multi-omics tasks and multi-molecule243

interaction tasks. For detailed task definitions and244

distribution, please refer to Appendix B.2.245

2.2.2 Templates246

To convert the original classification and regres-247

sion task dataset into an instruction tuning dataset,248

we employ question-answer templates to integrate249

the data. The primary objective of creating these250

templates is to teach the model how to follow bi-251

ological instructions and complete tasks without252

overfitting to specific language patterns. To achieve253

this, we prioritize diversity in language styles, tones254

and lengths during the template construction pro-255

cess. We manually constructed 10 question tem-256

plates and 10 answer templates for each task, cov-257

ering various styles including, but not limited to,258

request, concise, informal, and academic styles.259

Then, we used GPT-4o and Claude-3.5-sunnet to260

expand the templates. Depending on the data vol-261

ume for each task, we included 100 to 300 question262

templates and 100 to 300 answer templates. Ul-263

timately, each task resulted in 10,000 to 100,000 264

question-answer template pairs. Since biological 265

sequences are generally much lengthier than nat- 266

ural language prompts, we place the biological 267

sequence at the very beginning of question tem- 268

plates for single biology sequence tasks for non- 269

interaction tasks. This approach helps prevent the 270

prompts from being overwhelmed by the lengthy bi- 271

ological sequences, ensuring that the model can ac- 272

curately understand the question and complete the 273

task. Figure 10 provides examples of the instruc- 274

tion prompts constructed for each type of omics, 275

illustrating the diversity and structure of the tem- 276

plates used in the dataset. 277

2.2.3 Reasoning data construction 278

Similar to the data construction method used by 279

LlaVA (Liu et al., 2024a). For a biology sequence 280

Xs and its related question Xq, simple answer Ys, 281

we prompt GPT-4o-Mini to construct optimized an- 282

swer Yo base on the given information. Generally, 283

the instruction data were transformed to the format 284

USER:Xs, Xq ASSISTANT:Yo. 285

In the system prompt used for GPT-4o-Mini, as 286

shown in Figure 9, we emphasized the following 287

key points to ensure the production of high-quality 288

data: (1) first understand the provided biological 289

sequence and the question; (2) analyze the bio- 290

logical sequence at the nucleotide or amino acid 291

level, aiming to extract question-related informa- 292
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Figure 3: Overview of our data construction pipeline: Step1: Collect data from primary databases and categorize
downstream tasks; Step2: Create diverse instruction prompts based on tasks; Step3: Use LLMs to enhance dataset
quality; Step4: Follow key principles for reasoning data construction.

tion from the sequence; (3) refine the answer based293

on the previous analysis, including a rational ex-294

planation and a chain of thought approach, espe-295

cially for complex questions; (4) list any relevant296

knowledge and information from reliable sources,297

and cite these sources appropriately; (5) return the298

polished answer in an end-to-end style, exclud-299

ing any information from the standard answer and300

task hint. By following this approach, we gathered301

8000 final AI-polished training data points without302

two multi-molecule tasks: antibody-antigen neu-303

tralization and RNA-protein interaction prediction304

to study transfer learning for reasoning capabil-305

ity. Figure 3 provides an overview of the complete306

construction process for Biology-Instructions, in-307

cluding the data collection, template construction,308

and reasoning data construction stages.309

2.3 Evaluation Pipeline and Metrics310

Our evaluation framework is designed to assess the311

performance of each model’s output on Biology-312

Instructions in a robust approach. The task types,313

regardless of their respective omics, can be orga-314

nized into single-label regression, multi-label re-315

gression, binary classification, multi-class classifi-316

cation, and multi-label classification, each requir-317

ing specialized evaluation metrics to capture model318

performance nuances. The evaluation pipeline in-319

volves pre-processing data from models’ output,320

grouping entries by task, and then computing task-321

specific metrics. The metrics outcomes for report-322

ing are all scaled by 100 and rounded to 2 decimals.323

Detail information is provided in Appendix B.3.324

3 Model 325

As shown in Figure 4, we train a model based on 326

Llama3.1-8B-Instruct (Dubey et al., 2024) named 327

ChatMultiOmics using multi-omics pre-training 328

data and Biology-Instructions. In general, we per- 329

form a three stages training paradigm to enhance 330

the interactive biological sequence-related chat per- 331

formance of the final biology assistant. For specific 332

training details, please refer to Appendix C. 333

3.1 Stage 1: biological sequences continued 334

pre-training 335

Although the memory savings facilitated by LoRA 336

(Devalal and Karthikeyan, 2018) are not that obvi- 337

ous when optimizer states are distributed across 338

GPUs compared with training on single GPU, 339

LoRA can still significantly reduce training time 340

by minimizing communication between data par- 341

allel ranks. However, directly applying LoRA to 342

train a chat model on Biology-Instructions results 343

in suboptimal performance on specific downstream 344

tasks. Specifically, the model shows near-random 345

performance in classification and regression tasks. 346

As noted by (Ghosh et al.), LoRA supervised fine- 347

tuning (SFT) primarily leverages pre-trained knowl- 348

edge to generate well-formed answers based on the 349

output format learned from SFT data. We suspect 350

that large-scale LoRA instruction tuning on biolog- 351

ical sequence-related data suffers due to the lack 352

of pre-training on biological sequence data, which 353

is evident from the baseline results. Therefore, 354

continued pre-training of the model is essential 355
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Figure 4: Overview of our three-stage training pipeline.

for better performance. This involves teaching the356

model with biological sequences to enable it to357

understand the nature and functions of biological358

sequences. For this process, we utilized unlabeled359

human DNA data from the Genome Reference Con-360

sortium Human genome (GRCh) (Harrow et al.,361

2012), human non-coding RNA data from RNA-362

Central (rna, 2019), and protein sequences from363

UniRef50 (Suzek et al., 2007) during the first phase364

of pre-training. This initial pre-training served as365

a foundational warm-up to improve the model’s366

comprehension across multi-omics biological se-367

quences.368

We employed LoRA+ (Hayou et al., 2024) for all369

linear layers of our model, training on a continued370

pre-training dataset. LoRA+ demonstrates superior371

convergence compared to vanilla LoRA by increas-372

ing the learning rate of the zero-initialized weight373

B relative to the base learning rate for normal-374

initialized weight A and other trainable param-375

eters. (Hayou et al., 2024) observed that setting376

the learning rate of weight B to 16 times that of377

weight A results in more effective model conver-378

gence. However, our experiments revealed that379

while LoRA+ indeed improves convergence rates,380

applying a large learning rate multiplier can lead381

to instability during the continued pre-training pro-382

cess for biological sequences. Based on this obser-383

vation, we opted for a more conservative learning384

rate multiplier of 4. We trained the normalization385

layers of the model alongside LoRA parameters.386

3.2 Stage 2: massive instruction tuning387

In Stage 2, we employ the Biology-Instructions388

dataset, excluding the reasoning sub-dataset. In389

the initial attempts of training, we find that the390

imbalance among tasks within the dataset can391

pose challenges for the model in distinguish-392

ing between different tasks. To mitigate this,393

we randomly select 30 percent of the training394

data and prepend a task label in the format 395

”[Classification/Regression:task name]” at 396

the beginning of each question. This method effec- 397

tively aids the model in identifying different tasks 398

and output objectives. 399

We use a system prompt Psc: ”You are a knowl- 400

edgeable and helpful biology assistant. Please an- 401

swer my biology sequence-related questions in a 402

clear and concise manner. For regression tasks, 403

please return a number.” This prompt helps the 404

model to differentiate biology sequence-related 405

tasks from other tasks. As illustrated in Figure 406

7, we maintain the data format: SYSTEM:Psc 407

USER:Xs, Xq ASSISTANT:Yo consistent with the 408

Llama3.1 instruct-tuned model chat completion for- 409

mat, which is crucial for optimal model perfor- 410

mance. 411

3.3 Stage 3: Reasoning instruction tuning 412

In stage 3, we use reasoning sub-dataset from 413

Biology-Instructions to fine-tune the model. To 414

keep the classification and regression performance 415

of the model, we additionally select 3000 samples 416

from validation set composed of non-reasoning 417

data to be trained simultaneously. 418

To better control the behavior of the model, a 419

more detail system prompt Psd was used for rea- 420

soning data: ”You are a highly knowledgeable 421

AI assistant specializing in biology, particularly 422

in sequence-related topics. Your primary task is 423

to provide clear, accurate, and comprehensive an- 424

swers to biology questions. When analyzing and 425

interpreting sequences, ensure to provide step-by- 426

step explanations to make your responses natural 427

and easy to understand. Engage with the user 428

by asking clarifying questions if needed and of- 429

fer detailed insights into the biological sequences.” 430

In this case, the format of training sample of 431

reasoning data is transformed to SYSTEM:Psd 432

USER:Xs, Xq ASSISTANT:Yo. 433
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Figure 5: Radar plot comparing the performance of ChatMultiOmics with SOTA baselines on all 21 downstream
tasks grouped by omics including DNA, RNA, Protein, and Multi-molecule tasks.

4 Results434

4.1 Experimental Setups435

To evaluate the biological sequence understand-436

ing capabilities of current LLMs and deter-437

mine if our method can enhance LLMs perfor-438

mance, we compare ChatMultiOmics with vari-439

ous open-source general-purpose LLMs: Llama3.1-440

8B-Instruct (Dubey et al., 2024), Llama2-7B-441

Chat (Touvron et al., 2023), Alpaca-7B (Taori442

et al., 2023), Vicuna-v1.5-7B (Chiang et al.,443

2023), Qwen2-7B (Bai et al., 2023), GLM4-9B-444

Chat (GLM et al., 2024), and Galactica-1.3b (Tay-445

lor et al., 2022). Additionally, we include com-446

parisons with SOTA closed-source LLMs: GPT-447

4o and GPT-4o-Mini We also evaluate biology-448

specialized LLMs: InstructProtein-1.3B (Wang449

et al., 2023), Llama-molinst-protein-7B (Fang et al.,450

2023), and BioMedGPT-LM-7B (Zhang et al.,451

2023). To ensure well-formed and quantifiable an-452

swers, we restrict the output format for all baselines453

and provide them with task information, enabling454

them to understand both what to output and how455

to format their output. The experimental results456

are visualized in Figure 5, showcasing the com-457

parative performance of various LLMs across four458

types of datasets: DNA, RNA, protein, and multi-459

molecule interactions. For the full experimental460

results, please refer to Appendix D.461

4.2 Findings.1: Generic LLMs are not462

capable of biological understanding463

To assess whether LLMs can effectively tackle464

tasks related to biological sequences, we con-465

ducted comprehensive experiments using both466

open-source and closed-source general-purpose467

LLMs. For open-source LLMs, we selected mod-468

els of comparable size to our model, ChatMulti-469

Omics. For closed-source LLMs, we evaluated 470

SOTA models such as GPT-4o and its streamlined 471

version, GPT-4o-mini.The results unequivocally 472

demonstrate that all open-source LLMs of simi- 473

lar size to ChatMultiOmics fail to surpass average 474

performance levels. Similarly, the closed-source 475

LLMs, GPT-4o and GPT-4o-mini, exhibit perfor- 476

mance on par with the open-source models. 477

Notably, models within the same series but with 478

different versions, such as Llama2-7B-Chat and 479

Llama3.1-8B-Instruct, as well as models within the 480

same series but of different sizes, like GPT-4o and 481

GPT-4o-mini, show comparable performance on 482

tasks involving biological sequences.These find- 483

ings suggest that the language capabilities of these 484

models do not directly correlate with their perfor- 485

mance in understanding biological sequences. This 486

implies that natural language performance does not 487

determine the effectiveness of these models in bio- 488

logical sequence understanding tasks, indicating a 489

significant lack of pre-trained biological sequences 490

knowledge. Despite LLMs possessing extensive 491

text-based biological knowledge, they struggle to 492

establish a connection between this knowledge and 493

biological sequences, and they are unable to delve 494

into the molecular level to analyze biological se- 495

quences effectively. 496

4.3 Findings.2: Current biology-specified 497

LLMs can not handle multi-omics tasks 498

Biology-specified LLMs have demonstrated re- 499

markable performance on a variety of tasks. For 500

instance, the Llama-molinst-protein-7B model ex- 501

cels in five key areas of protein understanding, in- 502

cluding the prediction of catalytic activity, protein 503

design, protein function prediction, and more. De- 504

spite these impressive achievements, these meth- 505

ods exhibit limitations. Notably, they lack trans- 506
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Figure 6: Ablation studies showing the performance across different training stages. One downstream task from
each omics type is selected for display. Each bar color corresponds to a specific training approach. The blue dashed
line indicates where random performance is for each task according to the respective metric.

fer learning capabilities across multi-omics tasks507

and fail to outperform general-purpose baselines508

even in single-omics tasks and in some cases these509

models even can not follow the instructions. This510

indicates that while specialized LLMs are highly511

effective within their specific domains, their appli-512

cability and efficiency in broader, more integrative513

biological studies remain constrained.514

4.4 Findings.3: Continued Pre-trained on515

biological sequences helps instruction516

tuning517

Previous studies have utilized LoRA (Fang et al.,518

2023; Lv et al., 2024) for model training. However,519

our experimental findings suggest that employing520

LoRA to fine-tune models on Biology-Instructions521

does not result in performance enhancements. For522

LoRA fine-tuning, the quality and quantity of the523

pre-training on related knowledge appears to be a524

critical factor for achieving good results, as indi-525

rectly proved by the experimental setup in (Fang526

et al., 2023), where full fine-tuning was applied527

to protein-related tasks and LoRA fine-tuning was528

used for other tasks, alongside the near-random per-529

formance of the baselines on biological-sequences530

understanding tasks. After continued pre-training531

on multi-omics sequences, LoRA fine-tuning on532

Biology-Instructions does help the model leverage533

the intrinsic relationships and dependencies from534

pre-trained knowledge. The results of the second535

stage surpass those of instruction-tuning without536

continued pre-training, as shown in Figure 6.537

4.5 Findings.4: Reasoning data boost overall538

performance and demonstrate transfer539

learning capcability540

We hypothesize that the model’s performance can541

be enhanced by incorporating task information and542

reasoning steps, which can aid the model in better543

understanding the task and consequently lead to im-544

proved results. We tested the third-stage model us-545

ing the system prompt Psc to facilitate results com-546

putation. The results indicate that in most tasks, 547

performance was enhanced. However, for some 548

regression tasks, the performance was slightly ad- 549

versely affected by the third-stage training. 550

Furthermore, when the reasoning system prompt 551

Psd was used, the model demonstrated excellent 552

reasoning capabilities and extended its perfor- 553

mance to untrained tasks, such as antibody-antigen 554

neutralization and RNA-protein interaction predic- 555

tion, as illustrated in Figure 1 (b). 556

5 Conclusion 557

In this work, we present Biology-Instructions, the 558

first large-scale, multi-omics biological sequences- 559

related instruction-tuning dataset. Biology- 560

Instructions bridges the gap between LLMs and 561

complex biological tasks by including 21 differ- 562

ent tasks involving DNA, RNA, proteins, and 563

multi-molecule interactions, covering both single- 564

sequence and interaction analyses. By incorpo- 565

rating reasoning capabilities, Biology-Instructions 566

make LLMs versatile in handling complex bio- 567

logical tasks while maintaining conversational flu- 568

ency. Our evaluation shows that SOTA LLMs, like 569

GPT-4, struggle with biological sequence-related 570

tasks without specialized training. Using Biology- 571

Instructions for instruction tuning, we demonstrate 572

significant improvements, proving its value in en- 573

hancing LLMs for multi-omics sequence analy- 574

sis. We also develop a strong baseline, ChatMul- 575

tiOmics, with a three-stage training pipeline: bio- 576

logical sequences continued pre-training, massive 577

instruction tuning, and reasoning instruction tuning. 578

This pipeline leads to notable performance gains, 579

providing an effective approach to train LLMs for 580

addressing biological challenges. 581

6 Limitations 582

While Biology-Instructions is a significant advance- 583

ment, it still has areas for improvement. The 584

dataset covers primarily the predictive tasks. Fu- 585

8



ture version should include generative tasks, such586

as designing novel protein sequences, which could587

greatly enhance its utility in protein engineering.588

ChatMultiOmics shows promising reasoning ca-589

pabilities, yet further enhancements are needed to590

make its outputs more practical and reliable. To591

enhance model performance, we could use hybrid592

architectures that combine specialized biological to-593

kenizers or encoders with LLMs. This could reduce594

information loss during the tokenization of biolog-595

ical sequences. Integrating structural data, such596

as 3D molecular coordinates, could improve the597

model’s ability to capture functional implications598

of molecular structures. Incorporating multi-hop599

data could be another potential enhancement for600

the model to reason over interconnected biological601

datasets and capture more intricate relationships602

across multiple omics layers. Future efforts should603

also expand evaluation metrics beyond accuracy to604

include interpretability, robustness, and computa-605

tional efficiency, offering a more holistic view of606

model performance.607
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A Related works888

A.1 Large Language Models889

In recent years, LLMs have demonstrated signifi-890

cant advancements in the field of natural language891

processing (NLP). These models undergo self-892

supervised training on a substantial corpus of data893

in order to acquire knowledge. By means of fine-894

tuning the instructions, the capabilities of the model895

are enhanced, enabling it to respond to questions896

based on the specific prompt. Currently, numerous897

open-source models are available, including the898

Llama series (Dubey et al., 2024), Qwen series (Bai899

et al., 2023), GLM series (GLM et al., 2024), and900

numerous models fine-tuned based on Llama, such901

as Alpaca (Taori et al., 2023) and Vicuna (Chiang902

et al., 2023). Additionally, Galactica (Taylor et al.,903

2022) is a model that demonstrates exceptional per-904

formance in scientific domains and is trained on905

data from a multitude of scientific fields. Further-906

more, there are closed-source SOTA models, such907

as GPT-4o and GPT-4o-mini. However, these mod-908

els are not pre-trained on specific biological data,909

and their capabilities are severely constrained, even910

Galactica.911

A.2 Biology Large Language Models912

Researchers have concentrated on enhancing the913

capabilities of LLMs in the biology area. Instruct-914

Protein (Wang et al., 2023) aligns human and pro-915

tein language through knowledge instructions. An-916

other study (Fang et al., 2023) utilizes the protein917

part of a specially designed dataset called Mol-918

Instructions for instrution tuning with LLaMA-7B.919

ProLLaMA (Lv et al., 2024) is also a recent work920

focusing on multi protein tasks through a two-stage921

traing process from LLaMA-2. These methods can922

only deal with several protein tasks well, limited by923

fixed instruction templates. BioMedGPT (Zhang924

et al., 2023) is equiped with special vision encoder,925

allowing the model to answer multi-modal biologi-926

cal questions. However, lack of specialized large-927

scale biological instruction datasets, BioMedGPT928

cannot understand biological sequence languages929

very well. ChatNT (Richard et al., 2024) integrates930

a biological sequence encoder with a LLM, en-931

abling effective handling of DNA-centric tasks us-932

ing only an instruction-tuning dataset. However,933

it faces challenges in combining multiple encoder934

models from various omics domains into a unified935

LLM due to dependence on the encoder’s capabili-936

ties.937

B Detail information of 938

Biology-Instructions and Evaluation 939

Metrics 940

B.1 Impact 941

The Biology-Instructions dataset addresses critical 942

challenges in computational biology across multi- 943

ple omics domains. DNA instructions improve our 944

understanding of regulatory elements in gene ex- 945

pression. RNA instructions tasks offer insights 946

into transcriptomics and regulation at the RNA 947

level. Protein instructions enhance our knowl- 948

edge of protein functions, interactions, and their rel- 949

evance in drug development. Multi-molecular in- 950

structions explore biomolecular interactions, such 951

as RNA-protein and promoter-enhancer, revealing 952

regulatory networks. By supporting these diverse 953

tasks, Biology-Instructions advances multi-omics 954

research and fosters new discoveries in genetic reg- 955

ulation and therapeutic development. 956

B.2 Tasks Definition 957

B.2.1 DNA tasks 958

Epigenetic Marks Prediction This is a binary 959

classification task that predicts whether a DNA se- 960

quence has chemical modifications affecting gene 961

regulation without changing the DNA itself. Epi- 962

genetic marks are crucial for understanding gene 963

regulation and its impact on health and disease. We 964

use part of the DNABERT-2 dataset (Zhou et al., 965

2024), containing 28,740 DNA sequences, some 966

of which are chemically modified. Model perfor- 967

mance is evaluated using the Matthews Correlation 968

Coefficient (MCC). 969

EA Prediction This is a regression task that pre- 970

dicts the activity levels of enhancer regions in the 971

DNA sequences. By predicting the activity levels 972

of enhancers, scientists can gain deeper insights 973

into how genes are regulated in specific tissues or 974

under certain conditions. The target value are two 975

numeric numbers that reflects the housekeeping 976

and developmental activity level. The dataset is 977

sourced from the DeepSTARR (de Almeida et al., 978

2022), consisting of DNA sequences annotated 979

with enhancer activities. We evaluate performance 980

of the model using Pearson Correlation Coefficient 981

(PCC), reflecting its ability to decide levels of ac- 982

tivity across different DNA sequences. 983

Promoter Detection 300 & Promoter Detec- 984

tion Core These two tasks are both binary classi- 985

fication tasks for identifying promoter regions in 986

DNA sequences(exist or not). Promoter Detection 987
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Table 1: Tasks information of Biology-Instructions

Task Omics #Training/Validation/Test

DNA Tasks
Epigenetic Marks Prediction (EMP) DNA 229885/28741/28741

EA Prediction (EA) DNA 402296/40570/41186
Promoter Detection 300 (PD300) DNA 94712/11840/11840
Core Promoter Detection (CPD) DNA 94712/11840/11840

Transcription Binding Sites Detection Human (TB-H) DNA 128344/5000/5000
Transcription Binding Sites Detection Mouse (TB-M) DNA 80018/10005/10005

RNA Tasks
APA Isoform Prediction (APA) RNA 1575557/33170/49755

Non-coding RNA Function Classification (ncRNA) RNA 5670/650/4840
Modification Prediction (Modif) RNA 304661/3599/1200

Mean Ribosome Loading Prediction (MRL) RNA 76319/7600/7600
Programmable RNA Switches (PRS) RNA 73227/9153/11019

CRISPR On Target Prediction (CRI-On) RNA 1453/207/416
Protein Tasks

Enzyme Commission Number Prediction (EC) Protein 15551/1729/1919
Stability Prediction (Sta) Protein 53614/2512/12851

Fluorescence Prediction (Flu) Protein 21446/5362/27217
Solubility Prediction (Sol) Protein 62478/6942/2001

Thermostability Prediction (Ther) Protein 5056/639/1336
Multi-molecular Tasks

Antibody-Antigen Neutralization (AAN) Multi-molecule 22359/1242/3301
RNA-Protein Interaction Prediction (RPI) Multi-molecule 14994/1666/4164

Enhancer-Promoter Interaction Prediction (EPI) Multi-molecule 14288/1772/308
siRNA Efficiency Prediction (siRNA) Multi-molecule 53592/6707/6688

Total
All 3330232/190946/244681

300 refers to detecting promoter regions within a988

300 base pair (bp) window, which includes both989

the core promoter region and the surrounding reg-990

ulatory elements. While promoter detection core991

refers to detect a shorter, core sequence (usually992

around 50-100 bp) directly upstream of the tran-993

scription start site. Both tasks are important for994

understanding gene regulation and can aid in study-995

ing transcriptional activity, identifying novel genes,996

and mapping gene expression patterns. For these997

tasks, we also adopt the dataset part of DNABERT-998

2 (Zhou et al., 2024). Evaluation of the model999

performance is done using MCC, capturing the1000

model’s ability to predict the existence of promot-1001

ers on different sequence contexts balancedly.1002

Transcription Binding Sites Detection We de-1003

fine this a binary classification task, to determine1004

whether specific regions with transcription factors1005

binding in the DNA sequences or not. These tran-1006

scription binding sites (TBS) are critical for con-1007

trolling the initiation, enhancement, or repression 1008

of transcription. Once more, data from DNABERT- 1009

2 is utilized for this task (Zhou et al., 2024), which 1010

includes numerous DNA sequences, partly possess- 1011

ing TBS. The performance of the model is eval- 1012

uated using MCC, fairly measuring its ability to 1013

discover TBS in different DNA sequences. 1014

Enhancer-Promoter Interaction Prediction 1015

This is a binary classification task, which involves 1016

identifying the interactions between enhancer re- 1017

gions and their corresponding promoter regions in 1018

a pair of DNA sequences. Predicting these interac- 1019

tions helps researchers understand the complex reg- 1020

ulatory networks governing DNA activity, which 1021

is essential for studying developmental processes 1022

and potential therapeutic targets. We extract our 1023

dataset from the research (Min et al., 2021), which 1024

all contains two DNA sequences. The model needs 1025

to figure out whether they interact with each other. 1026

We evaluate the performance of the model using 1027
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the metric MCC, to test whether the model can1028

identify these interactions correctly.1029

B.2.2 RNA tasks1030

APA Isoform Prediction This is a regression task1031

which predicts the usage of alternative polyadenyla-1032

tion (APA) isoforms by analyzing RNA sequences1033

and outputting a proportion between 0 and 1 that1034

represents the relative expression of each APA iso-1035

form. Accurate APA isoform prediction is critical1036

for understanding the regulation of gene expression1037

at the RNA level, which plays a fundamental role1038

in transcriptome diversity. For this task, we adopt1039

APARENT’s (Bogard et al., 2019) APA isoform1040

prediction dataset, which consists of isoform usage1041

data derived from synthetic and human 3’UTRs.1042

The output represents the proportion of isoform1043

usage, capturing the variability in polyadenylation1044

signal processing. The performance of the predic-1045

tion is evaluated using the Coefficient of Determi-1046

nation (R2).1047

Non-coding RNA Function Classification This1048

is a multi-label classification task that predicts the1049

functional class of non-coding RNA (ncRNA) se-1050

quences. The model outputs one or more class la-1051

bels from a set of 13 possible ncRNA classes, such1052

as ’tRNA’, ’miRNA’, and ’riboswitch’. Accurately1053

classifying ncRNAs is essential for improving our1054

understanding of their regulatory roles in gene ex-1055

pression, as well as their contributions to diverse1056

biological processes and diseases. For this task,1057

we adopt the nRC (non-coding RNA Classifier)1058

dataset from (Fiannaca et al., 2017), which utilizes1059

features derived from ncRNA secondary structures.1060

The output assigns each RNA sequence to one or1061

more functional classes, enabling a detailed exami-1062

nation of the functional diversity within ncRNAs.1063

The performance of the model is evaluated using1064

accuracy (Acc), reflecting the model’s ability to1065

correctly classify ncRNA functions across all cate-1066

gories.1067

Modification Prediction This is a multi-label1068

classification task that predicts post-transcriptional1069

RNA modifications from RNA sequences. The1070

model outputs one or more modification types from1071

a set of 12 widely occurring RNA modifications,1072

including ’m6A’, ’m1A’, and ’m5C’. Precise iden-1073

tification of RNA modification sites is essential for1074

understanding the regulatory mechanisms of RNA1075

and their roles in various biological processes. For1076

this task, we adopt the MultiRM dataset from (Song1077

et al., 2021), which contains RNA sequences an-1078

notated with multiple modification types. The per- 1079

formance of the model is evaluated using the Area 1080

Under the Curve (AUC), capturing the model’s abil- 1081

ity to predict RNA modifications across different 1082

contexts. 1083

Mean Ribosome Loading Prediction This is a 1084

regression task that predicts ribosome loading effi- 1085

ciency by analyzing RNA sequences and outputting 1086

a numeric value, representing mean ribosome load- 1087

ing, with two decimal precision. Accurate pre- 1088

diction of ribosome loading is essential for under- 1089

standing how cis-regulatory sequences, such as 5’ 1090

untranslated regions (UTRs), influence translation 1091

efficiency, which is crucial for both fundamental 1092

biological research and applications in synthetic 1093

biology and mRNA therapeutics. For this task, we 1094

adopt the dataset from (Sample et al., 2019), which 1095

includes polysome profiling data of 280,000 ran- 1096

domized 5’ UTRs and 35,212 truncated human 5’ 1097

UTRs. The performance of the model is evaluated 1098

using the Coefficient of Determination (R2), mea- 1099

suring its ability to predict ribosome loading across 1100

different sequence contexts. 1101

Programmable RNA Switches This is a multi- 1102

label regression task that predicts the behavior of 1103

programmable RNA switches by analyzing RNA 1104

sequences and outputting three numeric values rep- 1105

resenting the ’ON’, ’OFF’, and ’ON/OFF’ states, 1106

each with two decimal precision. Accurate predic- 1107

tion of these states is critical for advancing syn- 1108

thetic biology, as RNA switches are essential tools 1109

for detecting small molecules, proteins, and nu- 1110

cleic acids. For this task, we adopt the dataset 1111

from (Angenent-Mari et al., 2020), which includes 1112

synthesized and experimentally characterized data 1113

for 91,534 toehold switches spanning 23 viral 1114

genomes and 906 human transcription factors. The 1115

performance of the model is evaluated using the 1116

Coefficient of Determination (R2), measuring the 1117

model’s ability to predict the functional states of 1118

RNA switches across diverse sequence contexts. 1119

(Ren et al., 2024) 1120

This is a multi-label regression task that predicts 1121

the behavior of programmable RNA switches by 1122

analyzing RNA sequences and outputting three nu- 1123

meric values representing the ’ON’, ’OFF’, and 1124

’ON/OFF’ states, each with two-decimal precision. 1125

Accurate prediction of these states is crucial for ad- 1126

vancing synthetic biology, as RNA switches serve 1127

as essential tools for detecting small molecules, pro- 1128

teins, and nucleic acids. For this task, we use the 1129

dataset from (Angenent-Mari et al., 2020), which 1130
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includes synthesized and experimentally charac-1131

terized data for 91,534 toehold switches spanning1132

23 viral genomes and 906 human transcription fac-1133

tors. This dataset is also included in the RNA-1134

related tasks benchmark BEACON (Ren et al.,1135

2024). Model performance is evaluated using the1136

Coefficient of Determination (R2), assessing the1137

model’s ability to predict the functional states of1138

RNA switches across diverse sequence contexts.1139

CRISPR On Target Prediction This is a re-1140

gression task that predicts the on-target knockout1141

efficacy of single guide RNA (sgRNA) sequences1142

using CRISPR systems. The model outputs a nu-1143

meric value that represents the predicted sgRNA1144

knockout efficacy for a given RNA sequence. Accu-1145

rate prediction of on-target efficacy is essential for1146

optimizing the design of sgRNAs with high speci-1147

ficity and sensitivity, which is crucial for success-1148

ful CRISPR-based genome editing. For this task,1149

we adopt the DeepCRISPR dataset from (Chuai1150

et al., 2018), which includes sgRNA sequences1151

and their corresponding on-target knockout effi-1152

cacy data. The performance of the model is evalu-1153

ated using Spearman’s correlation, measuring the1154

model’s ability to predict the effectiveness of sgR-1155

NAs across different genetic contexts.1156

siRNA Efficiency Prediction This is a regres-1157

sion task that predicts the efficiency of siRNA in si-1158

lencing target genes by analyzing modified siRNA1159

sequences and corresponding target sequences, out-1160

putting a numeric value representing the percentage1161

of mRNA remaining after siRNA treatment. Ac-1162

curate prediction of siRNA efficiency is crucial1163

for optimizing siRNA design in RNA interference1164

(RNAi) applications, which plays a critical role in1165

gene expression regulation and has significant im-1166

plications in therapeutic interventions. For this task,1167

we adopt the dataset from the competition (SAIS,1168

2020), which contains chemically modified siRNA1169

sequences and their measured silencing efficiency1170

data. The performance of the model is evaluated1171

using a mixed score, reflecting its ability to predict1172

the mRNA remaining percentage across different1173

chemical modifications and experimental condi-1174

tions.1175

B.2.3 Protein tasks1176

Enzyme Commission (EC) Number Prediction.1177

This is a multi-label classification task which pre-1178

dicts enzyme functions by annotating protein se-1179

quences with all corresponding EC numbers. We1180

adopt DeepFRI’s (Gligorijević et al., 2021) EC an-1181

notation dataset from PDB chains, whose binary 1182

multi-hot vectors are converted back into corre- 1183

sponding EC numbers for language capability in 1184

our task. The performance of the prediction is eval- 1185

uated using the Fmax metrics. Accurate EC num- 1186

ber prediction is crucial for understanding enzyme 1187

catalytic functions, accelerating the discovery of 1188

novel enzymatic activities. This has applications 1189

in biotechnology, including optimizing enzymes 1190

for industrial use and drug development. By pre- 1191

dicting catalytic activities, researchers can engineer 1192

enzymes tailored for therapeutic interventions, con- 1193

tributing to drug discovery and targeted treatments. 1194

Stability Prediction. This is a regression task to 1195

assess the intrinsic stability of proteins under vari- 1196

ous conditions, with each protein sequence mapped 1197

to a continuous stability score that reflects how well 1198

the protein maintain its fold above a certain concen- 1199

tration threshold like EC50. We adopt the dataset 1200

from Rocklin et al. (Rocklin et al., 2017), which 1201

includes protease EC50 values derived from exper- 1202

imental data. The model’s performance is assessed 1203

using Spearman’s correlation. Predicting protein 1204

stability is essential in protein engineering, espe- 1205

cially for therapeutic applications where protein 1206

integrity is crucial. These predictions reduce the 1207

need for experimental screening, facilitating the de- 1208

sign and refinement of stable proteins for industrial, 1209

pharmaceutical, and research purposes. 1210

Fluorescence Prediction. This is a regression 1211

task that aims to evaluate the model’s ability to pre- 1212

dict fluorescence values for higher-order mutated 1213

green fluorescent protein (GFP) sequences. This 1214

is a regression task where each protein sequences 1215

is mapped to the logarithm of its florescence inten- 1216

sity (Sarkisyan et al., 2016). Following the setting 1217

in TAPE (Rao et al., 2019), the model is trained 1218

on a set of mutants with a low number of muta- 1219

tions, while tested on mutants with four or more 1220

mutations. The task is designed to assesses how 1221

well the model generalized to unseen combinations 1222

of mutations by leveraging Spearman’s correlation 1223

to evaluate predictive performance. Accurate fluo- 1224

rescence prediction in higher-order mutated GFP 1225

aids in understanding mutation effects and inter- 1226

actions. These predictions provide insights into 1227

protein function and help efficiently explore muta- 1228

tional landscapes, facilitating the design of fluores- 1229

cent proteins for applications in synthetic biology 1230

and protein engineering. 1231

Solubility Prediction. This is a binary clas- 1232

sification task to determine whether a protein is 1233
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soluble or insoluble. The dataset is sourced from1234

the DeepSol (Khurana et al., 2018), ensuring thast1235

protein sequences with a sequence identity greater1236

than 30 percent to any sequence in the test set are1237

excluded from training. The challenge is to test1238

a model’s capacity to generalize across dissimilar1239

protein sequences. Predicting protein solubility is1240

crucial for pharmaceutical research and industrial1241

biotechnology. Soluble proteins are essential for1242

drug formulation and large-scale production. This1243

task drives the development of advanced in silico1244

methods to predict solubility, reducing laboratory1245

testing and accelerating the discovery of therapeu-1246

tically relevant proteins.1247

Thermostability Prediction. This is a regres-1248

sion task to predict the stability of proteins at el-1249

evated temperatures. The target value reflects the1250

thermostability of a given protein sequence. We1251

focus on the Human-cell split from the FLIP (Dal-1252

lago et al., 2021), sequences are clustered by iden-1253

tity and divided into training and test sets. Model1254

prediction performance is evaluated by the met-1255

ric Spearman correlation. Accurate prediction of1256

protein thermostablity enhances understanding of1257

protein function and stability, which is critical for1258

protein engineering. These predictions support pro-1259

tein optimization in biotechnological applications,1260

including drug and vaccine development (Chen and1261

Gong, 2022), and provide a framework for select-1262

ing thermostable proteins.1263

B.2.4 Multi-molecule tasks1264

RNA-Protein This is a binary classification task,1265

the objective of which is to identify interactions1266

between non-coding RNAs (ncRNAs) and proteins,1267

based on the sequences of the aforementioned ncR-1268

NAs and proteins. The majority of ncRNAs interact1269

with proteins to perform their biological functions.1270

Consequently, inferring the interactions between1271

ncRNAs and proteins can facilitate the compre-1272

hension of the potential mechanisms underlying1273

biological activities involving ncRNAs (Li et al.,1274

2016). The dataset employed in this study was1275

derived from (Han and Zhang, 2023), comprising1276

14,994 samples. The evaluation metric employed1277

was MCC.1278

Antibody-Antigen This is a binary classifica-1279

tion task, which seeks to ascertain whether a cor-1280

responding interaction relationship exists based on1281

the sequences of antibodies and antigens. The ob-1282

jective of this task is to ascertain the correspon-1283

dence between antigens and antibodies and to pre-1284

dict more effective antibody characteristics for 1285

new variants of viruses. The dataset was sourced 1286

from (Zhang et al., 2022), which contains 22,359 1287

antibody-antigen pairs. MCC is employed for the 1288

assessment of the model’s performance. 1289

B.3 Evaluation Metrics 1290

Single-label Regression: This type of task in- 1291

volves predicting one continuous numerical value. 1292

The evaluation process extracts the numeric val- 1293

ues from model outputs using regular expressions, 1294

avoiding over- and underflow by limiting values to 1295

six significant digits. Metrics computed for regres- 1296

sion tasks include: 1297

• Spearman’s Rank Correlation Coefficient: 1298

Measures the monotonic relationship between 1299

predicted and true values according to their 1300

ranks. The metric value ranges from -1 to 1301

1, where -1 indicates perfect negative correla- 1302

tion, 0 indicates no correlation (random pre- 1303

dictions) and 1 indicates perfect positive cor- 1304

relation. 1305

• Coefficient of Determination (R2): Obtained 1306

by squaring the Pearson correlation coefficient 1307

to reflect the proportion of variance in the de- 1308

pendent variable explained by the independent 1309

variable. The metric value ranges from 0 to 1, 1310

where 1 indicates perfect prediction and 0 in- 1311

dicates predictions as good as the mean value 1312

(randomness). 1313

• Mixed Score: A custom metric (SAIS, 2020) 1314

balances regression error and classification 1315

accuracy by integrating F1 score (harmonic 1316

mean of precision and recall), Mean Absolute 1317

Error (MAE), and range-based MAE (MAE 1318

computed within a range threshold). Calcula- 1319

tion details will be further explained in B.3.1. 1320

Multi-label Regression: This type of task in- 1321

volves predicting multiple continuous output for 1322

each input. In the EA prediction task, two numeric 1323

values are required for the regression values of 1324

’Housekeeping EA’ and ’Developmental EA’. In 1325

the programmable RNA switches prediction task, 1326

three numeric values are required for predicting the 1327

regression values of ’ON’, ’OFF’, and ’ON/OFF’. 1328

• Pearson Correlation Coefficient (PCC): As- 1329

sesses the linear correlation between two sets 1330

of data. The metric value ranges from -1 to 1331

1, where -1 indicates perfect negative linear 1332
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correlation, 0 indicates no linear correlation1333

(random predictions), and 1 indicates perfect1334

positive linear correlation.1335

• Average R2: Computes individual R2 for1336

each label and take the mean across labels1337

to obtain an average R2 as the overall perfor-1338

mance metric. The metrics values shares the1339

same range and interpretations similar to the1340

single-label R2.1341

Binary Classification: This type of task asks1342

the model to predict one of two possible classes. In1343

our case, either positive or negative. The evalua-1344

tion pipeline involves first classifying via keywords1345

based on the presence of predefined positive or neg-1346

ative keywords. If keywords classification fails,1347

the pre-trained sentiment analysis model Twitter-1348

roBERTa-base ¡cite source?¿ will be utilized as1349

fallback to determine the class based on the sen-1350

timent polarity assigned with a higher probability1351

score.1352

• Matthews Correlation Coefficient (MCC):1353

Provides a balanced measure for binary clas-1354

sifications, even when classes are imbalanced.1355

The metric ranges from -1 to 1, where -1 in-1356

dicates perfect inverse correlation, 0 indicates1357

random predictions or no correlation, and 11358

indicates perfect postive correlation.1359

• Accuracy Score: Calculates the proportion1360

of correct predictions out of all predictions1361

made. It ranges from 0 to 1, where 0 indicates1362

no correct predictions, 1 indicates all correct1363

predictions and 0.5 as random predictions.1364

Multi-class Classification: This type of task1365

asks the model to assign each input to one of several1366

classes. In the non-coding RNA family prediction1367

task, the model is required to predict one from 131368

classes.1369

• Accuracy Score: Calculates the proportion1370

of correct predictions out of all predictions1371

made. It ranges from 0 to 1, where 0 indicates1372

no correct predictions, 1 indicates all correct1373

predictions and 0.5 as random predictions.1374

Multi-label Classification: This type of task in-1375

volves inputs that may belongs to multiple classes1376

and asks the model to predict all of them. The1377

evaluation process includes first extracting all rele-1378

vant labels from the model outputs and converting1379

them into binary multi-hot vectors representing the1380

presence or absence of each class.1381

• Area Under the ROC Curve (AUC): Mea- 1382

sures the model’s ability to distinguish be- 1383

tween classes across all shredsholds. The met- 1384

rics ranges from 0 to 1, where 1 indicates 1385

perfect ability to distinguish classes and 0.5 1386

as random performance. 1387

• Fmax Score: Represents the maximum F1 1388

score over all possible thresholds, providing 1389

a balanced measure of precision and recall in 1390

multi-label settings. The metric ranges from 1391

0 to 1, where 0 indicates worst balance of 1392

no correct predictions and 1 indicates perfect 1393

balance between precision and recall. 1394

B.3.1 Mixed Score Calculation 1395

The Mixed Score is a custom metric adopted 1396

from (SAIS, 2020) which is designed to balance 1397

regression error and classification accuracy by inte- 1398

grating three components: the F1 score, the Mean 1399

Absolute Error (MAE), and the Range-based MAE 1400

(Range-MAE). This metric provides a comprehen- 1401

sive evaluation by considering overall prediction 1402

accuracy, precision, and recall, as well as specific 1403

performance in a designated value range. The cal- 1404

culation is detailed below: 1405

• Mean Absolute Error (MAE): This mea- 1406

sures the average magnitude of prediction er- 1407

rors across all samples, providing an indica- 1408

tion of the model’s overall regression accuracy. 1409

The MAE is defined as: 1410

MAE =
1

n

n∑
i=1

|yi − ŷi|, 1411

where n is the total number of samples, yi is 1412

the ground truth value, and ŷi is the predicted 1413

value. The range of MAE is [0, 100]. 1414

• Range-based MAE (Range-MAE): This 1415

metric evaluates the Mean Absolute Error 1416

within a specific range of interest, emphasiz- 1417

ing regions where high predictive accuracy 1418

is particularly crucial. For the siRNA task, 1419

the ”low remaining” range is of significant im- 1420

portance in practical applications. Following 1421

(SAIS, 2020), we define this range as [0, 30]. 1422

The Range-MAE is computed as: 1423

Range−MAE =
1

m

m∑
j=1

|yj − ŷj |, 1424

where m is the number of samples within 1425

the specified range, and yj , ŷj represent the 1426
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ground truth and predicted values within this1427

range. The Range-MAE is also bounded1428

within [0, 100].1429

• F1 Score: This classification metric combines1430

precision and recall into a harmonic mean to1431

evaluate the quality of predictions within the1432

designated range. For the range [0, 30], preci-1433

sion and recall are calculated for predictions1434

falling within this interval, and the F1 score is1435

derived as:1436

F1 = 2 · Precision ·Recall

Precision+Recall
.1437

final Mixed Score integrates these three compo-1438

nents to provide a balanced assessment of regres-1439

sion and classification performance. The formula1440

for the Mixed Score is:1441

Mixed Score = 50% ·(1−MAE/100)1442

+ 50% · F1 · (1−Range−MAE/100).1443

where the first term emphasizes overall regres-1444

sion performance, and the second term focuses1445

on classification accuracy and precision within the1446

specified range.1447

This scoring mechanism is designed to reward1448

models that perform well both globally (via MAE)1449

and within critical regions (via Range-MAE and1450

F1), ensuring a comprehensive evaluation of model1451

capabilities.1452

C Model Training Details1453

As shown in TABLE 2, we adopt different training1454

methods for each stage due to limitations in com-1455

putational resources while attempting to improve1456

model performance as much as possible.1457

In Stage 1, we train the model using 5239331458

RNA sequences, 1561639 DNA sequences, and1459

2000000 protein sequences, each with a maximum1460

length of 2000 characters. The dataset weights1461

for RNA, DNA, and protein are [2, 1, 1], indi-1462

cating that RNA sequences are trained twice per1463

epoch. This stage consumes the majority of com-1464

putational resources. To reduce training time, we1465

apply LoRA to every linear layer in the model and1466

additionally train each RMS normalization (Zhang1467

and Sennrich, 2019) layer. To optimize process-1468

ing efficiency and balance model performance and1469

training efficiency, we impose a maximum input1470

length of 2000 characters for biological sequences,1471

which translates to a maximum of 1200 input to-1472

kens. To address the potential inefficiency arising1473

from varying input sequence lengths, we imple- 1474

ment a packing strategy2. This approach allows us 1475

to combine multiple samples of different lengths 1476

into a single sample, effectively eliminating the 1477

need for padding tokens in our training data. The 1478

training process encompassed approximately a to- 1479

tal of 140,000 parameter update steps, each step 1480

composed of 48 global samples, ensuring thorough 1481

optimization of the model’s performance on bio- 1482

logical sequence data. 1483

In Stage 2, we train the model with 3330232 sam- 1484

ples. As noted by (Ghosh et al.), we discover that 1485

using LoRA and it’s variants (Hayou et al., 2024; 1486

yang Liu et al., 2024; Kalajdzievski, 2023) for the 1487

entire model during supervised fine-tuning leads to 1488

sub-optimal performance. Therefore, we fully fine- 1489

tune the query and key layers in each self-attention 1490

module, along with the RMS normalization layers, 1491

while applying LoRA+ to the other linear layers 1492

in the model. This approach ensure the update for 1493

the whole model and improves model performance 1494

while maintaining relatively low training times by 1495

reduce the communication quantity of optimizer 1496

states.The base learning rate was set to 1e-4, with 1497

the learning rate for the weight B parameters group 1498

at 1.6e-3. We configured the gradient accumulation 1499

steps to 10 and set the micro-batch size on the GPU 1500

to 2, given the maximum input length was limited 1501

to 1024. This configuration result in a global batch 1502

size of 400. In Stage 3, minimal computational 1503

resources is required. Thus, we employ full fine- 1504

tuning for the entire model except embedding layer 1505

and output layer. 1506

We use DeepSpeedCPUAdam and 1507

adamw_mode=True for Stage 1 and Stage 2 1508

as LoRA efficiently reduces the communication 1509

time between CPU and GPU for offloaded 1510

optimizers. For Stage 3, we use FusedAdam 1511

and adam_w_mode=True to reduce training time. 1512

A warmup learning rate scheduler with cosine 1513

learning rate decay is used for all three stages. 1514

All stages employ a mixed precision training 1515

strategy where model parameters, gradients, and 1516

activations are stored in torch.bfloat16. To 1517

improve training efficiency, we use DeepSpeed 1518

ZeRO stage 2 (Rajbhandari et al., 2020) and 1519

FlashAttention-2 (Dao et al., 2022; Dao, 2023) for 1520

all training processes. We adopt PyTorch2.2.1’s 1521

scaled dot product attention for FlashAttention-2 1522

2https://github.com/meta-Llama/Llama-
recipes/tree/main/recipes/quickstart/finetuning/datasets
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implementation which is more convenient than1523

FlashAttention official library with a Python1524

environment. In summary, Stage 1 training is1525

conducted on 24 A100-40G PCIe GPUs over a1526

period of 1.5 days; Stage 2 training is conducted1527

on 20 A100-40G PCIe GPUs for approximately1528

16 hours; and Stage 3 training is conducted on 121529

A100-40G PCIe GPUs over 2 hours.1530

D Additional Results1531

Due to space constraints, we present only the radar1532

chart and key findings in the main text. Compre-1533

hensive results across 21 tasks, detailed in Tables1534

3, 4, 5, and 6, further demonstrate the effectiveness1535

of our dataset and three-stage training pipeline.1536

In the baseline experiments, we employ specific1537

prompts with format requirements to obtain well-1538

structured results, facilitating more accurate quan-1539

titative analysis. For closed-source LLMs, such as1540

GPT-4o and GPT-4o-mini, we require outputs to1541

be returned in JSON format, given their superior1542

ability to follow instructions and adhere to JSON1543

formatting. For open-source LLMs, we opt for rela-1544

tively brief format requirements to encourage more1545

diverse outputs, acknowledging their comparatively1546

weaker instruction-following capabilities.1547

As shown in Table 7, we also provide task-1548

relevant information as a hint to the baselines to1549

ensure a fair comparison and clarify the expected1550

output content. Specifically, we anticipate the fol-1551

lowing content: (1) for binary classification tasks, a1552

”yes” or ”no” response; (2) for multi-label classifi-1553

cation tasks, one of the specified labels; and (3) for1554

regression tasks, a value within the required range1555

or format. The final prompt formats are detailed in1556

Table 8.1557

We further explore the impact of balanced versus1558

imbalanced Stage 2 datasets on performance. Our1559

results indicate that balancing the dataset leads to a1560

general performance decline, with particularly sig-1561

nificant drops observed in tasks such as APA and1562

Enhancer Activity Prediction. We believe that bal-1563

anced datasets may distort the natural distribution1564

of real-world biological data and reduced overall1565

data size to match the smallest task, which contains1566

only a few thousand samples, limiting the model’s1567

ability to fully utilize available data.1568

Figure 8 illustrates two comparison examples1569

between ChatMultiOmics and baseline models. In1570

both cases, the baseline models failed to provide1571

correct answers due to various reasons, while Chat-1572

MultiOmics produced accurate responses, with or 1573

without reasoning. In one example, ChatMulti- 1574

Omics successfully reason through an antibody- 1575

antigen neutralization task, despite this reasoning 1576

not being part of the Biology-Instructions subset. 1577

However, while ChatMultiOmics arrive at the cor- 1578

rect final answer, it followed an incorrect reasoning 1579

path. We suspect this may be due to the absence of 1580

relevant textual knowledge, as we did not further 1581

pre-train the model on biology-specific text data. 1582
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Figure 7: Example of a training sample in stage 2.

Table 2: Hyper parameters at each stage. Wq,Wk,Wv,Wo: Four linear parameters in the self-attention modules
corresponding to query, key, value, and output. W1,W2,W3: Three linear parameters in the feed-forward modules
corresponding to up projection, gate projection, and down projection. RMSnorm: parameters in RMS normalization
layers. All: Parameters in RMS normalization layers. All: All parameters in the model.

Hyper Parameters stage 1 stage 2 stage 3
Fine-tune method Mixed Mixed Full

LoRA target modules All linear Wv,Wo,W1,W2,W3 -
Trainable parameters LoRA, RMSNorm LoRA, RMSNorm, wq, wv All

Base learning rate 1e-4 1e-4 1e-5
LoRA+ scaler 4 16 -

LoRA rank 128 64 -
LoRA α 32 32 -

Max input length 1200 1024 1024
Batch size per gpu 2 2 2

Gradient accumulation steps 1 10 1
Global batch size 48 400 24

Global steps 140000 80000 2750
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Figure 8: Comparison of ChatMultiOmics with baseline models in two examples.
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Table 3: Evaluation results on DNA tasks

Model/Task EA (hk) EA (dev) EMP TF-H TF-M PD300 CPD
Metrics % PCC PCC MCC MCC MCC MCC MCC

Literature SOTA
Literature DeepSTARR DeepSTARR DNABERT2 DNABERT2 DNABERT2 DNABERT2 DNABERT2
SOTA 68.00 74.00 58.83 66.84 71.21 83.81 71.07

Open source LLM
LLaMA3.1-8B-Instruct 0.61 0.27 -0.37 0.00 -1.42 0.01 0.00
Qwen2-7B 0.40 0.35 -0.66 -0.21 -1.59 -4.83 1.35
Llama2-7B-Chat 0.55 0.13 0.94 1.84 0.97 -0.29 -0.55
Alpaca-7B -0.11 0.31 -0.36 2.00 0.00 -0.15 -1.30
GLM-4-9B-Chat 0.87 0.17 -0.22 0.00 0.00 -0.25 -2.53
Vicuna-v1.5-7B 0.18 0.69 0.00 0.00 0.00 0.00 0.00
Galactica-1.3B 0.13 0.09 0.07 3.00 -2.81 0.41 -1.01

Closed source LLM
GPT-4o-mini -0.76 0.09 -0.91 0.14 -0.31 -4.44 -2.95
GPT-4o -1.17 -1.49 -0.49 -1.70 -1.38 8.67 -0.84

Biology-specialize LLM
InstructProtein-1.3B 0.00 0.39 0.22 -1.29 1.19 2.75 -0.33
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.10 -0.29 2.40 0.33 -5.76 1.98

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.92 0.06 1.40 2.46 0.88 5.19 5.57

Our Model on Our Dataset
ours (stage 2 only) -0.16 0.08 0.31 0.86 0.13 0.87 1.8
ours (stage 1 + stage 2) 59.74 46.82 8.1 19.07 27.94 49.01 41.18
ours (stage 1 + stage 2 + stage 3) 57.24 45.92 3.64 24.45 39.91 58.18 44.54

Table 4: Evaluation results on RNA tasks

Model/Task APA ncRNA Modif MRL PRS CRI-On

Metrics % R2 Acc Auc R2 R2 Spearman’s ρ

Literature SOTA

Literature APARENT GCN MultiRM Optimus MLP-O SCC
SOTA 50.82 85.73 84.00 78.00 55.67 44.10

Open-Source LLM

LLaMA3.1-8B-Instruct 0.01 6.32 50.52 0.01 0.02 -0.09
Qwen2-7B 0.00 7.08 50.34 0.00 0.01 -6.21
Llama2-7B-Chat 0.00 4.88 50.40 0.00 0.01 0.92
Alpaca-7B 0.00 7.42 50.00 0.03 0.01 -3.55
GLM-4-9B-Chat 0.00 8.23 50.05 0.00 0.01 -0.02
Vicuna-v1.5-7B 0.01 3.81 50.27 0.01 0.00 1.88
Galactica-1.3B 0.00 6.73 53.78 0.00 0.02 -5.56

Closed-Source LLM

GPT-4o-mini 0.05 3.00 50.49 0.01 0.03 3.77
GPT-4o 0.00 5.60 50.47 0.01 0.00 -3.31

Specific Biology LLM

InstructProtein-1.3B 0.00 0.00 51.08 0.02 0.00 0.00
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.00 52.51 0.00 0.02 -0.10
BioMedGPT-LM-7B 0.00 1.62 51.65 0.01 0.03 0.12

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 0.01 35.68 53.76 0.00 0.01 -0.31
Our Model on Our Dataset

ours (stage 2 only) 0.00 0.00 51.21 0.00 0.00 2.87
ours (stage 1 + stage 2) 50.68 62.77 57.45 29.12 26.65 -2.99
ours (stage 1 + stage 2 + stage 3) 59.01 63.09 59.06 47.64 26.57 -0.02
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Table 5: Evaluation results on protein tasks

Model/Task EC Sta Flu Sol Ther

Metrics % Fmax Spearman’s ρ Spearman’s ρ Acc Spearman’s ρ

Literature SOTA

Literature SaProt-GearNet Evoformer Shallow CNN DeepSol ESM-1v
SOTA 88.9 79.00 69.00 77.00 78.00

Open-Source LLM

LLaMA3.1-8B-Instruct 1.42 -0.61 0.91 50.27 4.67
Qwen2-7B 0.90 -5.86 0.81 52.52 -0.93
Llama2-7B-Chat 0.97 -0.51 0.28 49.48 0.40
Alpaca-7B 0.88 2.05 -0.20 50.12 2.27
GLM-4-9B-Chat 0.91 -2.72 0.63 50.72 1.40
Vicuna-v1.5-7B 0.88 5.65 -0.51 51.57 0.90
Galactica-1.3B 0.91 -0.52 -0.73 46.78 -0.58

Closed-Source LLM

GPT-4o-mini 1.73 -1.52 -0.47 50.02 0.32
GPT-4o 5.89 0.09 0.69 51.67 3.50

Specific Biology LLM

InstructProtein-1.3B 1.85 0.35 -0.03 47.88 -0.50
Llama-molinst-protein-7B (Mol-Ins) 1.85 0.05 0.27 48.33 1.07
BioMedGPT-LM-7B 1.07 -0.92 0.43 49.78 -0.72

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 10.76 0.48 0.55 52.37 39.97
Our Model on Our Dataset

ours (stage 2 only) 1.85 0.23 0.37 49.28 -0.51
ours (stage 1 + stage 2) 19.35 56.76 1.49 62.07 44.59
ours (stage 1 + stage 2 + stage 3) 19.79 60.25 2.57 63.02 45.07
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Table 6: Evaluation results on multi-molecule tasks

Model/Task EPI siRNA AAN RPI

Metrics % MCC Mixed Score MCC MCC
Literature SOTA

Literature EPI-DLMH – DeepAAI ncRPI-LGAT
SOTA 53.59 – 54.9 93.2

Open-Source LLM

LLaMA3.1-8B-Instruct 0.00 32.76 -1.05 3.82
Qwen2-7B 0.00 33.39 2.98 -2.15
Llama2-7B-Chat 0.00 17.43 -0.63 5.87
Alpaca-7B 0.00 19.12 -0.81 4.38
GLM-4-9B-Chat 0.00 23.33 1.32 0.13
Vicuna-v1.5-7B 0.00 14.28 2.00 0.00
Galactica-1.3B 0.00 33.55 0.01 0.24

Closed-Source LLM

GPT-4o-mini -0.39 30.37 1.59 1.22
GPT-4o 0.00 0.00 -3.29 1.17

Specific Biology LLM

InstructProtein-1.3B 0.00 5.58 1.53 -1.55
Llama-molinst-protein-7B (Mol-Ins) 0.00 13.85 -1.38 3.71
BioMedGPT-LM-7B 0.00 19.71 0.92 -2.39

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 4.13 42.92 -1.48 8.29
Our Model on Our Dataset

ours (stage 2 only) 4.77 4.25 0.72 1.61
ours (stage 1 + stage 2) 1.68 56.31 10.26 70.80
ours (stage 1 + stage 2 + stage 3) 3.37 56.25 1.06 74.26
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Table 7: Hints for each task

Task Hint

Epigenetic Marks Prediction Return yes or no.
Promoter Detection Return yes or no.
Core Promoter Detection Return yes or no.
Enhancer-Promoter Interaction Prediction Return yes or no.
RNA-Protein Interaction Prediction Return yes or no.
Antibody-Antigen Neutralization Return yes or no.
Transcription Binding Sites Detection Hu-
man

Return yes or no.

Transcription Binding Sites Detection
Mouse

Return yes or no.

EA Prediction Return two numeric values with two decimal places for ’House-
keeping EA’ and ’Developmental EA’.

Fluorescence Prediction Return one numeric value with two decimal places.
Enzyme Commission Number Prediction Return Enzyme Commission number(s), e.g., 2.7.11.12
Solubility Prediction Return yes or no.
Stability Prediction Return one numeric value with two decimal places.
Thermostability Prediction Return one numeric value with two decimal places.
APA Isoform Prediction Return one numeric value with two decimal places.
Non-coding RNA Function Classification Return one RNA class: 5S rRNA, 5 8S rRNA, tRNA, ri-

bozyme, CD-box, miRNA, Intron gpI, Intron gpII, HACA-box,
riboswitch, IRES, leader, or scaRNA.

Modification Return RNA modification(s): Am, Cm, Gm, Um, m1A, m5C,
m5U, m6A, m6Am, m7G, Psi, AtoI, or none.

Mean Ribosome Loading Prediction Return a numeric value with two decimal places.
Programmable RNA Switches Return three numeric values with two decimal places for ’ON’,

’OFF’, and ’ON/OFF’.
CRISPR On Target Prediction Return a numeric value with two decimal places.
siRNA Efficiency Prediction Return a numeric value with two decimal places.

Table 8: Prompt format for baselines

Prompt format for open-source LLMs:
My question is {input} This is a {task type} task. {hint} Do not explain or repeat.
Prompt format for closed-source LLMs:
You are an expert biology AI assistant specializing in sequence-related topics. Focus on: DNA,
RNA, and protein sequences When answering questions, please follow this format:
First give a direct answer in JSON dict such as: {”answer”: ”Yes”}:

Remember to follow the provided rules:
- For binary classification questions: Answer ”Yes” or ”No”.
- For multi-label classification questions: State the specific label(s).
- For regression questions: Provide the numerical value or range.

Answer the question: ”{input}”.
Task type: {task type}.
For better understanding the task, hint: {hint}.
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E Data quality control for Stage 31583

Reasoning Data1584

To ensure the quality and reliability of Stage 31585

reasoning data, we have established a robust multi-1586

step validation process:1587

E.1 Self-validation by the model1588

Once the data is generated, the large language1589

model conducts a self-check to ensure compliance1590

with four core criteria outlined in the data genera-1591

tion prompt, as illustrated in Figure 9:1592

• Providing a detailed and accurate analysis of1593

the sequence1594

• Accurately recalling task-related knowledge1595

from studies, databases, or academic sources;1596

• Engaging in comprehensive reasoning to draw1597

logical conclusions for the question1598

• Citing relevant references where applicable.1599

The model is required to output the results of1600

its self-check and provide recommendations1601

for improvement in cases that do not meet the1602

standards1603

For outputs that fail to meet these criteria, spe-1604

cific issues are identified, and the model is in-1605

structed to regenerate outputs that adhere to the1606

required standards based on the evaluation results.1607

E.2 Secondary review by an independent 1608

model 1609

Following the initial validation, a second large lan- 1610

guage model, Gemini-1.5-pro, is employed to in- 1611

dependently review and verify the accuracy and 1612

consistency of the reasoning paths. Additionally, 1613

GPT4o-mini is tasked with reconstructing any un- 1614

qualified cases based on feedback from Gemini- 1615

1.5-pro. 1616

This rigorous quality assurance process not only 1617

ensures the integrity of the data but also lays a 1618

strong foundation of high-quality training data, en- 1619

hancing interpretability in downstream tasks. 1620
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Figure 9: An example of a prompt used to generate reasoning data. The system prompt outlines the requirements
for the data construction task for GPT-4o-mini. Answers are refined, and corresponding questions are placed within
specific prompts.
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Figure 10: Examples of instruction prompts constructed for each omics type.

Table 9: Examples of question and answer template pairs in stage 2 training data.

Task Question template Answer template

Epigenetic Marks
Prediction

<dna>{DNA}</dna> Are there any charac-
teristic epigenetic marks in this DNA?

After careful EMP analysis, there
is conclusive evidence of epigenetic
marks in the given DNA sequence.
(Positive case)

Core Promoter Detection <dna>{DNA}</dna>: Evaluate this se-
quence for potential promoter regions.

No, a promoter region is not present
in the given genomic fragment. (Neg-
ative case)

Enhancer Activity
Prediction

<dna>{DNA}</dna> Enhancer activity in
this sequence - what’s the deal?

The enhancer activity prediction
yields: HK - {hk enrichment}, Dev -
{dev enrichment}

CRISPR On Target
Prediction

<rna>{RNA}<rna> What is the predicted
on-target activity of the sequence?

The sequence has an on-target effi-
ciency score of {label}.

Programmable RNA
Switches

<rna>{RNA}<rna> What ON/OFF ratio
can be expected from the sequence?

The ON state for this sequence
is {label ON}, the OFF state is
{label OFF}, and the ON/OFF ratio
is {label ON OFF}.

Modification Prediction <rna>{RNA}<rna> [RNA modification
classification] Which RNA modifications
are inferred from the sequence?

The RNA modifications for the se-
quence are predicted as {label}.

Fluorescence Prediction <protein>{protein}<protein> How
effective is the predicted fluorescence for
this GFP sequence?

The GFP’s fluorescence is calculated
to be {label}.

Enzyme Commission
Number Prediction

<protein>{protein}<protein> What
is the specific activity of this protein as an
enzyme?

Specific enzyme activities are de-
fined by EC number {label}.

Solubility Prediction <protein>{protein}<protein> Can
solubility be confirmed for this protein?

This protein shows positive solubility.
(Positive case)

Enhancer-Promoter
Interaction Prediction

<dna>{DNA1}<dna> promoter +
<dna>{DNA2}<dna> enhancer: con-
nected?

We find no support for promoter-
enhancer communication in this ge-
netic material. (Negative case)

Antibody-Antigen
Neutralization

Is there any molecular recogni-
tion between this Ab-Ag pair:
<protein>{AB}<protein>>-
<protein>{AG}<protein>>?

The computational predictions do not
support any significant Ab-Ag inter-
action. (Negative case)

siRNA Efficiency
Prediction

<rna>{SiRNA}<rna>
<dna>{targetDNA}<dna> How does
the target RNA perform in terms of
siRNA-induced mRNA reduction?

The siRNA treatment results in
an mRNA remaining percentage of
{label}.
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Table 10: An example of question and answer pairs in stage 3 training data for siRNA Efficiency Prediction task.

Task: siRNA Efficiency Prediction
Question <rna>{SiRNA}<rna> <dna>{targetDNA}<dna> How much mRNA remains

after siRNA treatment of the target RNA?

Answer To assess the amount of mRNA remaining after siRNA treatment, we first need
to understand the mechanisms involved in RNA interference (RNAi) and its
impact on mRNA levels.

siRNA (small interfering RNA) is a class of double-stranded RNA that
can lead to the degradation of complementary mRNA molecules, effectively
silencing their expression. When siRNA binds to target mRNA, it recruits
the RNA-induced silencing complex (RISC), which then cleaves the mRNA,
reducing its stability and leading to its degradation.

To determine how much mRNA remains after treatment, one typically
considers:
1. The initial concentration of mRNA.
2. The efficacy of siRNA in degrading the target mRNA.
3. The kinetic parameters related to both the mRNA decay rate and the siRNA
efficacy.

For instance, if initial studies or assays show that treatment with spe-
cific siRNA reduces target mRNA levels by approximately 80% under standard
experimental conditions, then we can assume that 20% of the original mRNA
remains. However, the problem states that the final calculated remaining
mRNA is estimated to be 80.6% of the original mRNA.

This indicates that the siRNA treatment was not completely effective,
or there might be factors such as incomplete targeting or secondary structures
in the mRNA that protected it from degradation.

In summary, after siRNA treatment of the target RNA, the remaining
amount of mRNA is therefore 80.6%, indicating a less than complete silencing
effect. This percentage reflects the balance of mRNA decay, the effectiveness
of the siRNA treatment, and the biological context in which the treatment was
performed.
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Table 11: An example of question and answer pairs in stage 3 training data for Noncoding RNA Family Prediction
task.

Task: Noncoding RNA Family Prediction
Question <rna>{RNA}<rna> How does this RNA sequence contribute to gene regula-

tion?

Answer This RNA sequence represents a component that likely plays a crucial role in
gene regulation, particularly through its classification as a ”leader” RNA. In the
context of molecular biology, leader RNAs are typically found at the 5’ end of
mRNA sequences and can influence gene expression by engaging in regulatory
interactions with ribosomes or other molecular partners.

Leader sequences can have multiple functions, including:
1. **Regulatory Functions:** They may harbor sequences that can bind
small regulatory molecules or proteins, thus modulating the transcription or
translation of the downstream coding region.
2. **Secondary Structures:** The folding patterns in leader sequences can
form intricate secondary structures that contribute to transcriptional attenuation
or the formation of a riboswitch. These structures can determine whether the
RNA remains in a transcriptionally active state or folds into a configuration that
halts transcription or translation.
3. **Interaction with Ribosomes:** The leader region often acts as a signal for
ribosomes to initiate translation. For mRNAs, the presence of specific motifs
within this region can influence how efficiently translation occurs, impacting
overall protein synthesis levels and thus the expression of the associated gene.

In summary, the RNA sequence presented can be classified as a leader,
contributing to gene regulation through its interactions and structural charac-
teristics. This underscores the importance of untranslated regions (UTRs) in
controlling gene expression. Understanding such RNA sequences and their
functions provides valuable insights into the mechanisms of gene regulation,
highlighting how sequences beyond coding regions play vital roles in cellular
processes.
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Table 12: An example of question and answer pairs in stage 3 training data for Core Promoter Detection.

Task: Core Promoter Detection
Question <dna>{DNA}<dna> Identify potential core promoter region in this sequence.

Answer The provided DNA sequence shows characteristics that warrant careful
examination for core promoter elements. Core promoters are essential in
initiating transcription and are typically located upstream of the transcription
start site. They often contain specific motifs, such as the TATA box, initiator
sequences (Inr), and other regulatory elements that facilitate binding of
transcription factors and RNA polymerase II.

In the sequence provided, critical components of core promoters might
include:
1. **Initiator sequences (Inr):** These sequences often span the transcription
start site and can exhibit variability but typically include consensus elements
that help delineate the start of transcription.
2. **TATA box:** A common feature among many eukaryotic promoters,
which is usually located about 25-30 bases upstream from the transcription
start point.
3. **GC-rich regions:** These regions can also play a role in promoter activity
by providing binding sites for transcription factors.

Upon examining the sequence:
- There are no clear TATA boxes or Inr motifs that align with typical core
promoter signatures.
- The sequence appears GC-rich, notably towards the middle, but does not show
significant promoter elements consistent with those typically required for core
promoter identification.

Given these observations, we can conclude that this sequence does not
contain recognizable features indicative of a core promoter region. Therefore,
the response to whether a potential core promoter region is present in this
sequence is negative.
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