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Abstract

Previous studies have revealed that vanilla
pre-trained language models (PLMs) lack the
capacity to handle knowledge-intensive NLP
tasks alone; thus, several works have at-
tempted to integrate external knowledge into
PLMs. However, despite the promising out-
come, we empirically observe that PLMs may
have already encoded rich knowledge in their
pre-trained parameters but fail to fully uti-
lize them when applying them to knowledge-
intensive tasks. In this paper, we propose a
new paradigm dubbed Knowledge Rumina-
tion to help the pre-trained language model uti-
lize that related latent knowledge without re-
trieving it from the external corpus. By sim-
ply adding a prompt like “As far as I know”
to the PLMs, we try to review related la-
tent knowledge and inject them back into the
model for knowledge consolidation. We apply
the proposed knowledge rumination to various
language models, including RoBERTa, De-
BERTa, and GPT-3. Experimental results on
six commonsense reasoning tasks and GLUE
benchmarks demonstrate the effectiveness of
our proposed approach, which proves that the
knowledge stored in PLMs can be better ex-
ploited to enhance performance1.

1 Introduction

Pre-trained language models (PLMs) have waved
the NLP community as fundamental infrastruc-
ture by demonstrating remarkable abilities with
the “pre-train, prompt, and predict” paradigm (Liu
et al., 2023b; Zhao et al., 2023). The mere PLMs,
however, lack the capacity to handle knowledge-
intensive tasks with advanced functionalities like
commonsense reasoning (Lin et al., 2019; Qiao
et al., 2022; Liu et al., 2023a) and open-domain
question answering (Yang et al., 2015). This ne-
cessitates a boosting trend for research focusing

∗Corresponding author.
1Code is available in https://github.com/zjunlp/

knowledge-rumination.

Q:  If a bird is a carnivore, then it is likely a(n) 
 A). prey   B). predator   C). herbivore   D). canary

Directly finetuning answer is  A: prey

About carnivore, as far as I know, 

Probed answer is B: predator

rethinking about the problem

a carnivore 
 is a predator

Figure 1: A pilot experimental case for the motivation
of knowledge rumination. The PLM succeeds in prob-
ing the related commonsense knowledge but fails to ob-
tain the answer with finetuning.

on augmenting PLMs with external knowledge
sources (Chen et al., 2017, 2022a; Welleck et al.,
2021, 2022; Zhang et al., 2022, 2023).

However, despite the empirical success, we
observe that PLMs can often encode extensive
knowledge within their parameters yet fail to uti-
lize this effectively for knowledge-intensive tasks.
Taking pilot experiments as an example, we use
knowledge probing (Petroni et al., 2019) to the
PLM as shown in Figure 1. Given a question “If a
bird is a carnivore, then it is likely a(n) what?”, we
notice that the PLM has known the knowledge “a
carnivore is likely a(n) predator” in its parameters;
however, we surprisingly find that the finetuned
PLM chose the wrong answer despite the model
knowing the related knowledge. Interestingly, this
phenomenon mirrors human behavior. As an ex-
ample, in the cognitive reflection test (CRT) (Fred-
erick, 2005), participants have posed a series of
straightforward questions (already learned), yet
they often initially fail in their intuitive reason-

https://github.com/zjunlp/knowledge-rumination
https://github.com/zjunlp/knowledge-rumination


ing. Upon reflection, however, individuals typi-
cally identify their erroneous responses and cor-
rect them. Consequently, we conjecture that the
prominent PLMs of today have flaws as humans
and we still have the following problem: are we
fully exploiting the potential of the PLMs?

Some pioneering researchers have attempted to
unravel this enigma. For instance, Chen et al.
(2022b) and van de Kar et al. (2022) propose to
utilize the knowledge in the pre-traning corpus by
retrieve-then-fine-tuning method. Likewise, Bha-
gavatula et al. (2020) capitalizes on the implicit
knowledge within large language models (>10B)
by retrieving from model weights with recitation-
augmented generation. These studies affirm that
PLMs encapsulate a vast body of knowledge, with
untapped potential, while in our paper, we pursue
a more universally applicable, yet simple solution
to fully harness knowledge in PLMs for NLP.

To address this need, we introduce Knowl-
edge Rumination to assist the model in think-
ing thoughtfully in handling knowledge-intensive
tasks. Analogous to how animals ruminate food
for better digestion and absorptionby regurgitating
it from the stomach back to the mouth for addi-
tional chewingwe aim to mimic this process by
having the model first review the relevant knowl-
edge stored in its parameters and then consolidate
this knowledge to better tackle associated tasks.
In detail, we propose knowledge reviewing with
a task-guided prompt by simply adding “As far
as I know” to stimulate the model to recall latent
knowledge. Subsequently, we consolidate knowl-
edge via FFN to explicitly leverage latent knowl-
edge to help address downstream tasks since FFN
plays a crucial role in PLMs (Wang et al., 2022).

We apply the proposed knowledge rumination
to various PLMs, including RoBERTa (Liu et al.,
2019), DeBERTa (He et al., 2021). We also trans-
fer knowledge rumination to large language GPT-
3 (175B) (Brown et al., 2020). Experimental re-
sults on six commonsense reasoning tasks and the
GLUE benchmark demonstrate that the proposed
simple method can obtain performance gain and
even outperform baselines of retrieving external
knowledge. To conclude, we summarize the con-
tributions of this work as follows:

• We propose a novel approach of Knowledge
Rumination to better utilize the knowledge
stored in the parameters, which is model ag-
nostic and can be applied to any PLMs

• Experimental results demonstrate that the
proposed approach can successfully elicit re-
lated knowledge for both small and large
PLMs, yielding better performance on six
commonsense tasks and GLUE benchmarks.

• Comprehensive empirical analysis indicates
that still a large underestimated amount of
knowledge can be retrieved from PLM’s
model weights, and our work takes a small
step in this direction.

2 Related Work and Background

Extracting Knowledge from PLMs Previous
studies have shown that PLMs implicitly contain
a large amount of knowledge. Petroni et al. (2019)
have shown that such language models can be used
in a Knowledge Base (KB) completion task by
converting KB relations into natural language tem-
plates. Based on this finding, researchers attempt
to treat the PLM as a knowledge base. Some stud-
ies (Bosselut et al., 2019; West et al., 2022; Hao
et al., 2022) employ PLMs to construct knowledge
graphs automatically. Meanwhile, some others
(Shwartz et al., 2020; Li et al., 2022) find that the
knowledge possessed by the PLMs can be used to
enhance the model’s performance in downstream
tasks. To date, several work (Wang et al., 2023;
Zelikman et al., 2022; Bhagavatula et al., 2020)
attempt to utilize PLMs to generate free-text ratio-
nales for reasoning. Our approach differs from pre-
vious works in that we aim to enhance the model’s
understanding of what it already knows in order to
improve performance.

Knowledge-Enhanced Models Researchers re-
sort to external sources to facilitate the model’s
ability to deal with knowledge-intensive situations.
One direction is to ground the question in a KB
and conduct inference with both the question and
the retrieved knowledge (Yasunaga et al., 2022,
2021; Zhang et al., 2022; Sun et al., 2019; Yao
et al., 2022; Lv et al., 2020; Lin et al., 2019).
Since the pre-trained model can also be viewed
as a knowledge store, several recent studies in-
cluding Self-talk (Shwartz et al., 2020), Rainier
(Liu et al., 2022a), GKP (Liu et al., 2022b), Elic-
itKnowledge (Li et al., 2022) propose to treat the
large language model (e.g., GPT-3) as an external
source to elicit knowledge for downstream tasks.
In contrast, our approach diverges from relying
on external sources such as knowledge bases (KB)



or language models (LM). Instead, we concentrate
on fully leveraging the latent knowledge acquired
by the model itself. There are also some kinds
of work that decompose the question into sub-
questions and ask the model to answer each sub-
question such as least-to-most prompt (Zhou et al.,
2023). However, even these approaches encounter
the issue we proposed where the model may pos-
sess the answer to the sub-question within its pa-
rameters but fails to provide the correct response.
The underlying intuition behind our method is that
current methods for harnessing the power of pre-
trained language models (PLMs) have not fully
tapped into the knowledge residing within the
model’s parameters.

Note that our approach most closely aligns with
Self-talk (Shwartz et al., 2020), but with an addi-
tional capability to manage parametric knowledge
(such as embeddings in Feed-Forward Networks).
This capability broadens the spectrum of the aca-
demic idea to a certain extent.

3 Knowledge Rumination

In this section, we introduce technical details of
knowledge rumination to tap into the potential
of PLMs (§3.1). Given a PLM G, we first freeze
the model parameters and design a task-specific
prompt (§3.2) to guide the model in reviewing
its stored knowledge regarding the task and in-
put (knowledge reviewing). We then consolidate
the model’s latent knowledge (§3.3) during tuning
downstream tasks (knowledge consolidation).

3.1 Model Architecture
We take a representative task, multiple-choice
commonsense reasoning, as an example to eluci-
date the details of knowledge rumination, which
can be simply adapted to any other tasks in NLP.
Given a question q, multiple-choice commonsense
reasoning aims to selecting the correct answer
ak ∈ A provided with an optional context c. The
set of possible answers A is finite and varies for
each question. In the vanilla setting, the PLM is
used to directly answer the question by selecting
the answer choice â with the highest score, based
on the concatenation of the question q, context c,
and one possible answer choice ai as:

â = argmax
ai∈A

P (ai | c, q) (1)

Here, before making a prediction, we ask the
model to carefully consider the question and re-

view its prior knowledge. We freeze the PLM Gθ

to probe the knowledge it has stored (θ represents
the model’s parameter) and prepend trainable con-
tinuous tokens to each layer. For each question q,
we create a unique prompt pq to guide the model
in reflecting on its knowledge:

r = Gθ ([q; pq]) (2)

Then, the PLM will reinforce its knowledge r of
the problem and infer the answer augmented with
r. Ideally, the model is supposed to generate help-
ful knowledge texts for the question. However,
training the model requires expensive knowledge
annotations for all training instances. To handle
this problem, we use the model’s contextualized
representation output as the knowledge for rumi-
nation and leverage it as a latent variable. The
model will answer the question based on both the
question q and the vectorized knowledge r:

â = argmax
ai∈A

P (ai | c, q, r) (3)

Then, the cross-entropy loss is used to train the
whole model. Assuming the answer ak is correct,
the loss can be obtained as follows:

Lce = −
∑
ai∈A

Q(ai | c, q) logP (ai | c, q, r) (4)

where Q(ai | c, q) is 1 if ai = ak and 0 otherwise.
During training, the gradient flows back into the
model, which helps it learn to review and consoli-
date useful information.

3.2 Knowledge Reviewing with Task-guided
Prompting

Analogically, animals return partially digested
food from the stomach to the mouth for re-
chewing; we design specific prompts for each
question to probe the latent knowledge for rumina-
tion. As shown in Figure 2, we begin by using the
background prompt: “As far as I know, [MASK]”.
Note that humans consider mentions in the descrip-
tions to better understand the question. For exam-
ple, when answering the question “ If a bird is a
carnivore, then it is likely a(n) what?”, humans
would consider the mentions of bird and carnivore
to better comprehend the question. We further in-
troduce the mention prompt to review knowledge
of mentions. Specifically, we extract mentions M
from the questions using off-the-shelf tools2 and

2https://github.com/marcocor/tagme-python
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(a) Fine-Tuning for PLM 

(c) Knowledge Rumination for PLM 

(b) Prompt Learning for PLM 
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Figure 2: An illustration of different methodologies to utilize the PLM. (a): standard finetuning, (b): prompt
learning, and (c) the proposed knowledge rumination method. During the knowledge reviewing with task-guided
prompting (§3.2), the model parameters are frozen. h[MASK] (the hidden vector of “[MASK]”) is the elicited latent
knowledge, which will be injected into FFNs for knowledge consolidation (§3.3).

build prompts to elicit memories about these men-
tions. However, it should be noted that some men-
tions contain unrelated information and may divert
attention. To address this, we propose “mention
relevance scoring,” where we utilize an encoder
model Genc to evaluate the relevance of each men-
tion in relation to the question context. Specif-
ically, we compute the relevance score for each
mention m ∈ M by concatenating the text with
the question q and using the output of “[CLS]” as
the score (fcls in the following equation):

ρm = fcls (Genc([q;m])) (5)

We sample mentions with the Top-2 relevance
scores ρ as the target mentions. The details of
“mention relevance scoring” can be found in Ap-
pendix A.5. Actually, apart from this common-
sense or context knowledge, it is important to
note that PLMs also store other types of knowl-
edge, including skill knowledge and task knowl-
edge (Wang et al., 2022). Hence, we assume that
the model may acquire latent knowledge regarding
the task itself, so we further build task prompts to
encourage the model to reflect on the skill knowl-
edge encoded within its parameters.

Overall, we probe the PLM using three differ-
ent types of task-guided prompts, along with three
areas of interest:

• Background Prompt: is designed to help
the model to think about the background, the
prompt is As far as I know [MASK].

• Mention Prompt: is used to elicit memories
of mentions, the formation is About <Men-
tion>, I know [MASK].

• Task Prompt: is designed to help the model
reminisce memories of the task. For exam-
ple, for the sentiment analysis, the prompt is
About sentiment analysis, I know [MASK].

We put several ‘[MASK]’ in the task-guided
prompt, and the length of the ‘[MASK]’ is a hy-
perparameter for different tasks.

Our approach can be applied to different PLMs.
For the encoder-style model like RoBERTa, we
utilize the hidden states h[MASK] of the ‘[MASK]’
as the latent knowledge for rumination. fmask in
the following equation means taking the h[MASK]

from the model’s output.

r = fmask(Gθ ([q; pq])) (6)

The following section will explain how to utilize
this elicited knowledge.



CSQA SocialIQA aNLI OBQA PIQA HellaSwag

Basic Model RoBERTa* 68.7 75.9 82.7 64.9 79.4 82.3
DeBERTa 72.4 77.2 86.0 74.6 81.1 89.0

Ext.
Knowledge

QAGNN* 73.4 75.7 83.0 67.8 79.6 82.6
GreaseLM* 74.2 75.5 83.3 66.9 79.6 82.8
Dragon* 76.0 76.8 84.0 72.0 81.1 85.2

Rumination
Model

RumiRoBERTa 70.3 77.7 86.1 70.0 80.8 85.8
RumiDeBERTa 74.3 78.4 86.7 76.0 81.9 89.5

Table 1: Accuracy on downstream commonsense reasoning tasks. Scores of the methods marked with * are taken
from Yasunaga et al. (2022). As the official tests for CSQA, PIOA and HellaSwag are hidden, here we report the
in-house Dev (IHdev) and Test (IHtest) accuracy, following the data split in Yasunaga et al. (2022).

3.3 Knowledge Consolidation with FFN
Neuron Augmentation

To reinforce its understanding, the model should
re-digest (inject) the elicited knowledge r of the
q, similar to how animals chew their food again.
However, where to inject the PLMs remains a chal-
lenging issue, indicating potential work to investi-
gate how the model’s knowledge is kept. Previous
studies (Dai et al., 2022; Wang et al., 2022) have
discovered that the Feed Forward Network works
(FFN) as the knowledge neuron or skill neuron, il-
lustrating that FFN may store factual information
and encode task-specific skills. Inspired by these
findings, we incorporate r into the FFNs, as previ-
ous work (Yao et al., 2022) does. Here, we select
the Top-1 layer to re-diest (inject) the knowledge.
Suppose the two linear layers in FFN emulate as a
key-value network K and V , we employ two dis-
tinct linear layers to project the information r to
the vector space of the matching layer:

ϕk = Wk · r (7)

ϕv = Wv · r (8)

where Wk and Wv represents the weights of the
two linear layers (Wk,Wv ∈ Rd×d, d is the inter-
mediate size of the PLM). The two matrices, Wk

and Wv, are initialized randomly and will be up-
dated during training. We expand the FFN by con-
catenating the projected knowledge to the end of
the linear layer and obtain the expanded KE ,V E .
The computing can be described as follows:

FFN(H) = f(H ·KE) · V E

= f(H · [ϕk : K]) · [ϕv : V ]
(9)

H denotes the output hidden states of the self-
attention module. The model would answer the
question with the help of regurgitated knowledge.

4 Experiments

4.1 Dataset

We evaluate the proposed approach on six
knowledge-intensive tasks of commonsense rea-
soning benchmarks: CommonsenseQA (CSQA)
(Talmor et al., 2019), SocialIQA(Sap et al., 2019),
PhysicalQA (PIQA) (Bisk et al., 2020), Open-
book QA (OBQA) (Mihaylov et al., 2018), Hel-
laSwag (Zellers et al., 2019) and Abductive Nat-
ural Language Inference (aNLI) (Bhagavatula
et al., 2020). We follow the data split used
by prior works (Yasunaga et al., 2022). Mean-
while, to better understand the effect of the
task prompt in our method and the skill knowl-
edge (Wang et al., 2022) learned in the pre-
trained language model, we consider tasks of the
GLUE benchmarks (Wang et al., 2018), includ-
ing single-sentence tasks (SST, CoLA), inference
tasks (QNLI, RTE), and similarity and paraphrase
tasks (STS-B, MRPC). We provide dataset details
in Appendix A.7.

4.2 Baselines

We choose RoBERTa_large (Liu et al., 2019) and
DeBERTa_large (He et al., 2021) as our backbone
models for moderately sized language models and
compare performance with the following strong
external knowledge-enhanced approaches: QA-
GNN (Yasunaga et al., 2021), GreaseLM (Zhang
et al., 2022) and Dragon (Yasunaga et al., 2022).
More details about baseline models can be seen in
Appendix A.3.2. For the tasks in the GLUE bench-
mark, in addition to RoBERTa_large, we com-
pare our model with a prompt learning method,
LM-BFF (Gao et al., 2021). LM-BFF proposes
a prompt-based finetuning method and a refined



SST-2 SST-5 CoLA RTE MRPCf1 QNLI STS-Bpear AVG

Basic Model RoBERTa 95.00 58.70 62.60 80.90 91.40 93.30 91.90 81.97
LM-BFF 95.41 60.67 69.27 86.28 92.76 94.60 92.00 84.42

Rumination
Model

RumiRoBERTa 95.75 60.85 68.57 85.92 93.92 94.84 92.23 84.58
RumiLM-BFF 96.21 61.17 70.85 86.64 93.73 94.64 92.05 85.04

Table 2: Supervised GLUE benchmark results. Here, we report the results on the validation set following LM-
BFF (Gao et al., 2021). The prompt used here is the same as LM-BFF.

strategy for dynamically and selectively incorpo-
rating demonstrations into each context. In our pa-
per, we simply use the human-curated prompt (pro-
vided by LM-BFF) and leverage RoBERTa_large
as the backbone.

4.3 Experiment Implementation

In the stage of knowledge reviewing with task-
guided prompting, the backbone of the model is
frozen, and we only update the prepended train-
able continuous tokens (prefix prompt). When im-
plementing the DeBERTa, due to the complex at-
tention mechanism, we simply freeze the whole
model and do not add the prefix tokens. For
the commonsense reasoning task, we combine
the mentioned prompt and background prompt,
and for the GLUE benchmarks, we find the task
prompt to be more useful. More details can be
found in Appendix A.2 and A.3.

4.4 Main Results

We list the results in Table 1 for the commonsense
reasoning tasks and Table 2 for the GLUE bench-
mark. The proposed technique, called knowl-
edge rumination, demonstrates superior perfor-
mance on a majority of datasets. To be noted,
it outperforms naive baselines and obtains better
or comparable performance with baselines that in-
corporate external knowledge. As the Table illus-
trates, the proposed method of knowledge rumina-
tion, RumiRoBERTa, and RumiDeBERTa, shows
improved performance on six commonsense rea-
soning tasks. The results demonstrate that Ru-
miRoBERTa and RumiDeBERTa consistently out-
perform existing language models (RoBERTa
and DeBERTa), with a notable improvement of
+2% absolute accuracy on CSQA compared to
RoBERTa and DeBERTa. These results indicate
that the knowledge stored in the PLM’s parameters
can still be further exploited. In addition, it can
be observed that RumiRoBERTa and the method
that incorporates external knowledge have compa-

rable results. Notably, on SocialIQA, aNLI, and
HellaSwag, RumiRoBERTa even outperforms the
pre-trained, knowledge-enhanced model Dragon.
On the other hand, RumiDeBERTa performs bet-
ter than Dragon on most of the tasks. However,
the model that uses external knowledge performs
best on the CommonsenseQA task. It is hypothe-
sized that some commonsense reasoning datasets
are derived from pre-existing knowledge bases.
For instance, CommonsenseQA is derived from
ConceptNet. The above observations suggest that:
1) the knowledge stored in the parameters is ro-
bust and requires explicit activation during fine-
tuning. 2) the performance of the model that
retrieves knowledge from external sources is im-
pacted by the quality and relevance of the knowl-
edge sources, while our rumination methods can
produce more pertinent knowledge.

As shown in Table 2, the results of the GLUE
benchmark demonstrate that the knowledge rumi-
nation method outperforms the basic finetuning
model RoBERTa and the prompt-based method
LM-BFF, with an average improvement of +1%
for LM-BFF and 3% for RoBERTa. These gains in
performance highlight the effectiveness of knowl-
edge rumination methods compared to finetuning
and prompt learning.

4.5 Out-of-Distribution (OOD) Performance

To better illustrate the wide applicability and gen-
eralization prowess of the knowledge rumination
method, we extended our evaluation to incor-
porate performance on out-of-distribution (OOD)
test sets. Table 3 presents a comparative study of
the OOD performance of fine-tuning techniques
applied to both RoBERTa and RumiRoBERTa
models. In general, RumiRoBERTa demonstrates
superior performance on OOD tests compared
to the conventional fine-tuning model. Notably,
when RumiRoBERTa was trained on OBQA and
subsequently tested on HellaSwag and PIQA, it
achieved a 5% advantage over RoBERTa. This



Method Finetuning RumiRoBERTa

CSQA ⇒ OBQA 50.04 52.20
CSQA ⇒ SocialIQA 46.17 50.53
CSQA ⇒ HellaSwag 46.60 45.46
OBQA ⇒ PIQA 58.59 63.38
OBQA ⇒ HellaSwag 33.37 39.07
PIQA ⇒ CSQA 49.07 51.97
PIQA ⇒ HellaSwag 38.47 48.97
PIQA ⇒ OBQA 46.20 44.60
HellaSwag ⇒ CSQA 47.30 58.20
HellaSwag ⇒ PIQA 38.47 48.97
HellaSwag ⇒ SocialIQA 36.20 48.60

Table 3: OOD Results. Performance (accuracy) of
the compared methods, which are firstly trained on a
source dataset and then directly conduct prediction on
a target dataset (denoted as source ⇒ target).

enhancement in performance can be attributed to
the importance of knowledge rumination in effec-
tive problem-solving and knowledge application.
Despite exhibiting slightly sub-optimal results on
CSQA ⇒ HellaSwag and PIQA ⇒ OBQA tests,
RumiRoBERTa’s performance still compares fa-
vorably with the traditional fine-tuning method.

SocialIQA OBQA HellaSwag

RoBERTa 75.9 64.9 82.3

Concat 77.2 68.8 85.8
FFN 77.7 70.9 85.7

Table 4: Results of different knowledge integration
methods on three commonsense reasoning tasks. The
backbone model is RoBERTa_Large.

5 Analysis

5.1 Impact of Different Knowledge
Consolidation Methods

Apart from injecting knowledge in FFN, we com-
pare and evaluate another injection method: Con-
catenation. Since the knowledge r is a vec-
tor, we concatenate it into the sequence after
the embedding layer and report the results in Ta-
ble 4. We notice that both methods benefit from
knowledge rumination. Typically, integrating the
knowledge through feed-forward networks (FFN)
demonstrates better performance than concatena-
tion, with an average improvement of +0.5% in So-
cialIQA and +2.1% in OBQA. This supports previ-
ous research findings that Feed-Forward Networks
(FFNs) store some factual knowledge (Dai et al.,
2022; Yao et al., 2022) and that our method can ef-

Who is likely to have a caring heart ? As far as I know,  [MASK]

MLM Head

Candidates: person, species,  
artichoke, all mammals, live animal people 
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w
ord space

Despite all that he is still a good person. He helps victims and 

people …… always shows huge concern for his friends. 

)( person , like to , job

)( person , wants , love and respect

Figure 3: Case study of Knowledge Rumination in
CommonsenseQA dataset. Given the question, we map
the ‘[MASK]’ token into vocabulary space, pre-train
corpus space and external corpus space. We observe
that successful knowledge rumination always contains
similar information with answers.

fectively consolidate this knowledge within FFNs.

5.2 What does the Model Ruminate?

Despite the advantages of knowledge rumination,
it is essential to understand the nature of the knowl-
edge generated and the mechanism behind the
method. In our model, the model produces a con-
textualized embedding r as latent knowledge. To
make the knowledge more interpretable to humans,
we convert the vectorized knowledge to symbolic
text. In order to evaluate the effectiveness of the
method, we sample successful cases where the
simple finetuning model makes the incorrect pre-
diction while our knowledge rumination method
provides the correct answer.

Figure 3 illustrates an example from the Com-
monsenseQA task. To generate the output words
in the vocabulary space, we apply the masked lan-
guage modeling (MLM) head over the position of
the ‘[MASK]’. We notice that the masked word
often includes similar information to the answer.
For example, in the question “Who is likely to
have a caring heart?”, the ‘[MASK]’ token con-
tains words such as ‘people,’ ‘heart,’ and ‘like.’ In
addition, we map the knowledge rumination out-
put r to the pre-trained corpus space as the mem-
ory is constructed during pre-training. We con-
duct a dense embedding similarity search to iden-
tify what our generated contextualized represen-
tation is most similar to. In this case, we repre-
sent the ruminated knowledge by taking the aver-
age of the ‘[MASK]’ embedding. For each sample
from external sources, we add a ‘[MASK]’ token
at the end of the sentence and use the ‘[MASK]’
to represent the sentence. We use the pre-trained
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Figure 4: Results of GPT-3 on commonsense reason-
ing datasets. Baseline refers to GPT-3 answering the
question directly with few-shot demonstrations.

corpus Wikipedia (Milne and Witten, 2008) as
the retrieval source and employ FAISS (Johnson
et al., 2021) for dense vector search. Interestingly,
we notice that the model recalls its memory of a
person with a caring heart, “a good person. He
helps victims and people.”. This suggests that
the model has remembered this information during
pre-training, and if it is given a chance to think, the
model is aware of what it has learned. Besides, we
also map the knowledge into the external knowl-
edge source ConceptNet (Speer et al., 2017) since
CommonsenseQA is derived from it. More details
can be found in Appendix A.6.

5.3 Transfer to LLMs

In this part, we endeavor to transfer knowledge
rumination to LLMs. Compared to small lan-
guage models, LLMs demonstrate an excellent
ability to recall and deal with knowledge by few-
shot demonstration as a prompt. GKP (Liu et al.,
2022b) notes that pre-appending knowledge re-
trieved from LLMs can facilitate both the LLMs
and other models in effectively handling tasks. As
such, we follow suit (Liu et al., 2022b,a) in our
knowledge review process, using prompts to recall
the memorized knowledge for the target inputs.
Nevertheless, simply concatenating the recalled
knowledge might not lead to effective utilization
by the model. Here, in the knowledge consolida-
tion phase, we explicitly ask the model to atten-
tively consider the recalled knowledge by crafting
a stimulus prompt “According to the [knowledge],
the answer is” or “think by the [knowledge]”.
Furthermore, recent work suggests that Chain-Of-
Thought (COT) (Wei et al., 2022) can elicit lan-
guage LLMs’ reasoning ability by employing a se-

ries of intermediate reasoning rationales. In con-
trast, the knowledge generated by the Knowledge
Rumination model contains implicit information
derived from pre-trained language models during
pre-training which may otherwise be overlooked
by the reasoning steps. Here, we report the re-
sults on GPT-3 Davinci (175B) with knowledge
rumination in Figure 4 and compared with original
few-shot GPT-3, GKP, and COT. The implementa-
tion details can be found in Appendix A.3.2 and
the demonstrations can be found in Appendix A.2.
Our findings indicate that the performance of GPT-
3 can be significantly enhanced through knowl-
edge rumination, as evidenced by the 16% im-
provement in OBQA accuracy, 12% in CSQA, and
11% in SocialIQA. Compared to GKP, it’s evident
that merely concatenating the elicited knowledge
doesn’t adequately leverage it. In contrast, the
knowledge rumination approach surpasses GKP
by an average of 6%, demonstrating its efficacy.
What’s more, knowledge rumination attains better
performance than COT on OBQA and CSQA ex-
cept for the SocialIQA, demonstrating the effec-
tiveness of the background knowledge. In this pre-
liminary exploration, we discovered that guiding
LLMs to deliberate thoroughly on recalled knowl-
edge can augment their understanding and reason-
ing capabilities. Looking forward, enhancing the
utilization and integration of the model’s inherent
knowledge for reasoning remains a promising area
for future investigation.

Error Analysis We conduct an error analysis
on the evaluation examples from the OBQA and
CSQA datasets for the GPT-3 model. We catego-
rize the errors into four categories: 1): Failure to
Utilize: the model recalls helpful information but
does not provide the correct answer. 2): Ineffec-
tive Rumination: the rumination information with
the highest logprobs is irrelevant to the question,
but there are some relevant ones in the remaining.
3): Incorrect Memory: the model’s stored informa-
tion about the question is incorrect. 4): Missing
Information: the model does not have the neces-
sary information about the problem. Examples for
each error type can be seen in Appendix A.8.

The statistics are presented in Table 5. We
observe that the majority of errors are caused
by missing information, indicating that large pre-
trained language models still have difficulty retain-
ing all the knowledge acquired during pre-training.
Additionally, our method still has difficulty acti-



OBQA CSQA
Failure to Utilize 24% 18%
Ineffective Rumination 27% 32%
Incorrect Memory 7% 9%
Missing Information 42% 41%

Table 5: Error analysis on OBQA and CSQA.

vating all the stored knowledge, as 32% of er-
ror cases are caused by ineffective rumination and
18% by failure to utilize retrieved information for
the CSQA task. This suggests that there is still
room for improvement in this area.

6 Conclusion and Future Work

In this work, we propose knowledge rumination
for PLMs, which can serve as a general solution
to exploit latent knowledge for downstream tasks
and demonstrate promising results. This concept
is akin to humans often erring when answering
without thorough thinking. In the future, we plan
to apply knowledge rumination to more NLP tasks
and more types of models.
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Limitations

The proposed work still has some limitations to
address in future work.

Method. One limitation of knowledge rumina-
tion is that it cannot handle incorrect memory as
shown in §5.3, and may amplify the effects of
those errors (there may exist a tug of war between
task data optimization and knowledge consolida-
tion from PLMs). Adatable retrieval-based meth-
ods may be a solution for this issue, and we leave
this for future work.

PLMs. We apply knowledge rumination to four
PLMs; however, it is still unknown whether the
proposed approach works for other language mod-
els such as T5 (Raffel et al., 2019), BART (Lewis
et al., 2020) and so on. We plan to extend our work
in the future to cover more PLMs and multimodal,
multilingual scenarios. Besides, knowledge stored
in PLMs may have factual errors or severe bias,
and knowledge rumination may augment such be-
havior.

Tasks. We only evaluate text classification and
commonsense reasoning tasks. Due to the lim-
ited budget and computation resources, we can-
not afford evaluation on more tasks. We will plan
to evaluate the proposed approach on more NLP
benchmark datasets such as KILT (Petroni et al.,
2021).

Ethical Considerations

The model in this paper is indented to be used
for exploratory analysis of PLMs. Note that the
pre-training corpus contains rich biased data; thus,
the proposed knowledge rumination approach may
elicit some knowledge with offensive language or
discriminatory.
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A Appendix

A.1 Detailed Comparison with Previous
Approaches

Specifically, we note that Self-talk (Shwartz et al.,
2020), Rainier (Liu et al., 2022a), GKP (Liu et al.,
2022b), and ElicitKnowledge (Li et al., 2022) all
harness knowledge, in the form of text sequences,
extracted from pre-trained language models to en-
hance performance in knowledge-intensive tasks.

Similarly, the concept of Knowledge Rumina-
tion draws from the same inspiration, enabling
pre-trained language models to leverage related la-
tent knowledge without the need for retrieval from
an external corpus. Among these prior studies,
our method bears the closest resemblance to Self-
talk (Shwartz et al., 2020), with the added capabil-
ity of Knowledge Rumination to handle paramet-
ric knowledge (e.g., embeddings in Feed-Forward
Networks). This extends the scope of the aca-
demic concept to a certain degree.

Our work also shares a connection with COT
(Wei et al., 2022). However, while COT gener-
ates rationales (texts) and appends them to output
sequences to assist reasoning, our Knowledge Ru-
mination model generates implicit knowledge and
integrates it with the input sequence to produce
desired results. Additionally, COT is primarily
focused on reasoning, thus its rationales serve as
intermediary steps in the reasoning process. By
contrast, the knowledge generated by our Knowl-
edge Rumination model constitutes implicit infor-
mation derived from pre-trained language models
during the pre-training phase.

A.2 Prompts for Knowledge Rumination
with LLM

Table 7 through Table 9 shows the full prompts
for knowledge rumination that we use for each
evaluated task (demonstrations are derived from
Liu et al. (2022b,a)): CSQA, OBQA, and SO-
CIALIQA.

A.3 Experimental Settings

In this section, we describe the implementation
of our experiments in detail, including the base-
line methods, backbone models, and hyperparam-
eters. Our model is built based on the Hugging-
face framework (Wolf et al., 2020). Unlike fine-
tuning, which updates all model parameters θ of
a PLM, prefix-tuning freezes all pre-trained Trans-
former parameters and only optimizes prefix vec-
tors that are prepended to each Transformer layer.
We use prefix-tuning (Li and Liang, 2021) to train
the knowledge reviewing model to reflect informa-
tion for each task because: 1) the rumination mod-
els for different tasks can share the same backbone
Transformer parameters, with only the prefix vec-
tors being different. 2) Prefix-tuning has compara-
ble performance to finetuning but avoids the risk
of catastrophic forgetting.

For the tasks in the GLUE benchmarks, most of
the hyperparameters are the default parameters of
LM-BFF. For commonsense reasoning tasks, we
follow previous preprocessing from QA-GNN (Ya-
sunaga et al., 2021). We chose RoBERTa (Liu
et al., 2019) large and DeBERTa (He et al., 2021)
large as our backbone models, and the average
training time for each model is 2 to 4 hours. We
apply grid search for each hyperparameter tuning.
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A.3.1 Hyperparameters
The detailed hyperparameter search space is as fol-
lows: (maximum values bolded below)
CommonsenseQA (CSQA) .

• epoch: [5, 10, 15]roberta, [5, 10, 15]deberta
• batch size: [8, 16, 32]roberta, [8, 16,

32]deberta
• learning rate: [5e-6, 1e-5]
• rumi length: [7, 10, 15]roberta, [3, 5, 7]deberta

OpenbookQA (OBQA) .
• epoch: [5, 10, 15]roberta, [5, 10, 15]deberta
• batch size: [8, 16, 32]roberta, [8, 16,

32]deberta
• learning rate: [5e-6, 1e-5]
• rumi length: [7, 10, 15]roberta, [3, 5, 7]deberta

Social Interaction QA (SocialIQA) .
• epoch: [5, 10, 15]roberta, [5, 10, 15]deberta
• batch size: [8, 16, 32]roberta, [8, 16,

32]deberta
• learning rate: [5e-6, 1e-5]
• rumi length: [7, 10, 15]roberta, [3, 5, 7]deberta

Physical Interaction QA (PIQA) .
• epoch: [10, 15, 20]roberta, [10, 15, 20]deberta
• batch size: [8, 16, 32]roberta, [8, 16,

32]deberta
• learning rate: [5e-6, 1e-5]
• rumi length: [3, 5, 10]roberta, [1, 3, 5]deberta

Abductive Natural Language Inference (aNLI) .
• epoch: [3, 5, 7]roberta, [3, 5, 7]deberta
• batch size: [8, 16, 32]roberta, [8, 32,

64]deberta
• learning rate: [5e-6roberta, 8e-6deberta]
• rumi length: [5, 10, 15]roberta, [1, 3, 5]deberta

HellaSwag .
• epoch: [1, 3, 5]roberta, [1, 3, 5]deberta
• batch size: [8, 16, 32]roberta, [8, 16,

32]deberta
• learning rate: [5e-6roberta, 1e-5deberta]
• rumi length: [3, 5, 7]roberta, [3, 5, 7]deberta

A.3.2 Baselines
QA-GNN (Yasunaga et al., 2021) makes use of
the external KG related to the context to enhance
the PLMs.

GreaseLM (Zhang et al., 2022) also employs
the well-known ConceptNet and constructs a deep
fusion model to incorporate the text and knowl-
edge graph information.

Dragon (Yasunaga et al., 2022) is a deeply
joint language-knowledge foundation model pre-
trained from text and KG at scale, which achieves
strong performance on reasoning about language
and knowledge.

GKP (Liu et al., 2022b) prepends the knowl-
edge before the question. The original paper con-
catenates knowledge before each candidate and
compute the probability for each candidate. In our
setting, to compare with COT, we provide all the
candidates and ask the LLM to obtain the final an-
swer.

COT (Wei et al., 2022), we use the chain-of-
thought provided by previous work (Fu et al.,
2023)3 and utilize the same number of demonstra-
tions for GKP and Knowledge Rumination.

A.4 Evaluation Metrics
For the commonsense reasoning task, we use Ac-
curacy as the evaluation metric. For the GLUE
benchmark, we use the same metric in the original
paper.

A.5 Mention Relevance Score
To score the relevance of each mention condi-
tioned on the question context (§3.2), we use the
sentence embedding model: all-roberta-large-v1
from SentenceBert (Reimers and Gurevych, 2020)
for calculating cosine-similarity.

A.6 Retrieval Process from Pre-trained
Corpus

Corpus #Sents #Dim #faiss-index
Wikipedia 2,621,823 1,024 indexPQ

ConceptNet 2,543,176 1,024 indexPQ

Table 6: Statistics of Retrieved corpus.

To identify what our generated contextualized
representation is similar to, we use the pre-trained
corpus Wikipedia (Milne and Witten, 2008) and
external knowledge source ConceptNet (Speer
et al., 2017) as the retrieval sources (Table 6).
For efficient similarity search, we use the 1024-
dimensional hidden representations to create a
FAISS (Johnson et al., 2021) index and search for
top-20 similar triples/samples. By the way, the
type of faiss-index is indexPQ, which bases on

3https://github.com/FranxYao/
chain-of-thought-hub

https://github.com/FranxYao/chain-of-thought-hub
https://github.com/FranxYao/chain-of-thought-hub


a product quantizer. Stored vectors are approxi-
mated by PQ codes.

For ConceptNet, we follow KagNet (Lin et al.,
2019), which uses sentence template for generat-
ing TRIPLESTRING like diamond can be in jew-
elry store. Additionally, we add a ‘[MASK]’ token
at the end of the TRIPLESTRING and then feed it
as text inputs. For Wikipedia, we retrieve 10000
samples for each sentence based on the prebuilt in-
dex in Pyserini (Lin et al., 2021) and then use the
original text as inputs.

A.7 Downstream Evaluation Datasets
We use the following six commonsense reasoning
benchmarks for the experiments in the general do-
main (§4)

CommonsenseQA (CSQA) (Talmor et al.,
2019) is a 5-way multiple-choice QA task testing
commonsense reasoning. The dataset has 12,102
questions. We use the in-house data splits by (Lin
et al., 2019).

OpenbookQA (OBQA) (Mihaylov et al., 2018)
is a 4-way multiple-choice QA task containing ele-
mentary science questions. It has 5,957 questions.
We use the original data splits in (Mihaylov and
Frank, 2018).

Social Interaction QA (SocialIQA) (Sap et al.,
2019) is a 3-way multiple-choice QA task testing
social commonsense reasoning. It has 37K ques-
tions. We use the original data splits in (Sap et al.,
2019).

Physical Interaction QA (PIQA) (Bisk et al.,
2020) is a 2-way multiple-choice QA task testing
physics reasoning about objects. It has 20K ques-
tions. We split the dev set in half to make in-house
dev/test sets.

HellaSwag (Zellers et al., 2019) is a 4-way
multiple-choice task testing grounded common-
sense reasoning about events. It has 70K ques-
tions. We split the dev set in half to make in-house
dev/test sets.

Abductive Natural Language Inference
(aNLI) (Bhagavatula et al., 2020) is a 2-way
multiple-choice task testing abductive common-
sense reasoning. It has 170K questions. We use
the original data splits in (Bhagavatula et al.,
2020).

A.8 Examples for Different Error Case
In this section, we shows one example for each
error type. For each example, we list the knowl-
edge in descending order by the probability score.

It only takes the highest-score knowledge (the
knowledge in bold) as rumination information in
our experiment.

A.8.1 Failure to Utilize
Question:

What do people typically do while playing gui-
tar?
Answer:

Singing
Knowledge List:

• People play guitar while singing.
• Playing guitar is an activity.
• Playing guitar is a hobby.
• People usually play guitar while singing.
• People play guitar to entertain others
In this example, “People play guitar while

singing” has shown the correct answer to the mod-
els, but it still remains wrong.

A.8.2 Ineffective Rumination
Question:

What do people aim to do at work?
Answer:

Complete Job
Knowledge List:

• People work to earn money.
• People aim to earn money.
• People aim to get their work done.
• People aim to do their work.
• People aim to do their job well.
In this example, "people work to earn money"

has nothing to do with "Complete Job", while the
third one in the list, "People aim to get their work
done.", conveys the meaning of "Complete Job".

A.8.3 Incorrect Memory
Question:
Where can a human find clothes that aren’t pants?
Answer:

Dress Shop
Knowledge List:

• A human can find clothes that aren’t pants
at the beach.

• Pants are a type of clothing.
• Clothes that aren’t pants are dresses and

skirts.
• Pants are the most common type of clothing.
• Pants are not the only type of clothing.
In this example, "A human can find clothes that

aren’t pants at the beach" is the wrong information
for the question.



A.8.4 Missing Information
Question:

The freeway had no traffic and few buildings,
where is it?
Answer:

Countryside
Knowledge List:

• Freeways are usually in cities.
• Freeways are usually located in urban areas.
• Freeways are in cities.
• Freeways are located in urban areas.
• Freeways are usually in the middle of cities.
In this example, all the knowledge in list indi-

cate that mostly freeways can be found in cities,
lacking of the information about the freeway had
no traffic and few buildings.



Task Knowledge

CSQA

Input: What do people use to absorb extra ink from a fountain pen?
Knowledge: A blotter is used to absorb extra ink from a fountain pen.

Input: What home entertainment equipment requires cable?
Knowledge: Cable TV is the most common home entertainment equipment that requires cable.

Input: The fox walked from the city into the forest, what was it looking for?
Knowledge: Natural habitats are usually away from cities.

Input: Google Maps and other highway and street GPS services have replaced what?
Knowledge: Electronic maps are the modern version of paper atlas.

Input: Too many people want exotic snakes. The demand is driving what to carry them?
Knowledge: Some people raise snakes as pets.

Input: Before getting a divorce, what did the wife feel who was doing all the work?
Knowledge: Divorce is usually a result of an unhappy marriage.

Table 7: The knowledge we used for GKP and Knowledge Rumination on CSQA, derived from Liu et al. (2022b).

Task Knowledge

OBQA

Input: The sun is responsible for?
Knowledge: The sun is the source of energy for physical cycles on Earth.

Input: For it to survive, the horse relied on its owner to bring it what?
Knowledge: An animal requires nutrients for survival.

Input: If the Earth revolved around another planet instead of a star, what might it lack?
Knowledge: The Earth revolving around the Sun causes the seasons to change.

Input: A bird such as a penguin can survive in arctic weather due to what?
Knowledge: Thick feathers can be used for keeping warm.

Input: The gravitational pull between two objects increases as they are
Knowledge: As the distance from an object decreases, the pull of gravity on that object increases.

Table 8: The knowledge we used for GKP and Knowledge Rumination on OBQA.



Task Knowledge

SocialIQA

Input: What will Quinn want to do next? \n (A) Eat messy snacks (B) help out a friend (C) Pick
up the dirty clothes \n Quinn wanted to help me clean my room up because it was so messy.
Knowledge: A messy room likely contains dirty clothes.

Input: What will Aubrey want to do next? \n (A) help Aubrey go back home (B) keep on partying
without the mom (C) going on with the mom \n Sashas mom passed out in the middle of the
party. Aubrey took Sashas mom to the hospital.
Knowledge: One should attend to their sick family member.

Input: How would Jan feel afterwards? \n (A) scared of losing the cat (B) normal (C) relieved
for fixing the problem \n Their cat kept trying to escape out of the window, so Jan placed an
obstacle in the way.
Knowledge: One usually has positive emotions after solving a problem.

Input: How would Sydney feel afterwards? \n (A) affected (B) like they released their tension
(C) worse \n Sydney had so much pent up emotion, they burst into tears at work.
Knowledge: Crying can be a catharsis.

Input: What does Sydney need to do before this? \n (A) be bad at her job (B) do a good job (C)
be lazy \n Sydney got a raise and a new promotion.
Knowledge: Pay raise and promotions are usually results of good job performance.

Table 9: The knowledge we used for GKP and Knowledge Rumination on SocailIQA, derived from Liu et al.
(2022a).


