
An Adaptive Entropy Threshold Watermark

Anonymous ACL submission

Abstract001

By embedding and detecting hidden features002
in text, watermarking algorithms for large lan-003
guage models can effectively identify machine-004
generated text. However, such embedding leads005
to a decline in text quality, especially in low-006
entropy scenarios where performance needs im-007
provement. Methods for determining entropy008
thresholds based on experimental and histor-009
ical text strategies require significant compu-010
tational resources and time, and they exhibit011
poor adaptability to unknown tasks. In this012
work, we propose an adaptive entropy thresh-013
old watermarking method that automates the014
determination of thresholds during the genera-015
tion and detection processes. Specifically, we016
leverage the entropy distribution characteris-017
tics of text sequences generated by large mod-018
els to identify task-specific entropy properties,019
thereby calculating entropy thresholds to filter020
low-entropy segments. This enhances detection021
capability while maintaining a certain level of022
code-related text quality. Experiments demon-023
strate that our method ensures code-related text024
quality and improves detection performance025
across diverse text tasks.026

1 Introduction027

The rapid advancement of large language models028

(LLMs) has revolutionized text generation across029

diverse domains, including creative writing (Sun030

et al., b,a), technical documentation (Yang et al.,031

a,b), and code synthesis (Li et al., b; Jain et al.;032

Gu et al.). However, the proliferation of machine-033

generated content raises critical challenges in au-034

thenticity verification (Burrus et al.; Ayoobi et al.,035

a) and misuse prevention (Ayoobi et al., b; Dammu036

et al.). Watermarking algorithms, which em-037

bed imperceptible features into generated text,038

have emerged as a promising solution to identify039

machine-originated content (Liu et al., 2024; Chen040

et al.; Yoo et al.). Despite their potential, existing041

watermarking methods face a fundamental trade-042

off between detection robustness and text quality 043

preservation, particularly in low-entropy scenar- 044

ios such as code generation, where model predic- 045

tions exhibit high confidence and limited variability 046

(Long et al.; Lee et al., 2023). 047

Current approaches, such as SWEET (Lee et al., 048

2023) and WLLM (Baldassini et al., 2024), rely on 049

static entropy thresholds to determine watermark 050

insertion points. While effective in high-entropy 051

contexts (e.g., open-ended text), these fixed thresh- 052

olds struggle to adapt to dynamic entropy distri- 053

butions inherent in code generation tasks. For 054

instance, programming languages often involve 055

repetitive syntactic structures (low entropy) inter- 056

spersed with variable naming or logical decisions 057

(higher entropy) (Liu and Bu, 2024; Liu et al., 058

2024). Manually calibrating thresholds for each 059

language or task demands extensive experimen- 060

tation, rendering these methods computationally 061

prohibitive and poorly generalizable (Liu and Bu, 062

2024; Antoun et al.). Existing methods also ex- 063

hibit inherent limitations in cross-model applica- 064

bility: thresholds optimized for specific architec- 065

tures (e.g., Starcoder) fail to generalize to others 066

(e.g., Qwen2.5-Coder), necessitating redundant pa- 067

rameter searches for each new model (Baldassini 068

et al., 2024; Li et al., a; Liu and Bu, 2024; Tu 069

et al., 2023). Furthermore, hybrid content gener- 070

ation—such as code interlaced with natural lan- 071

guage comments—introduces abrupt entropy shifts 072

that static strategies cannot reconcile, degrading 073

both watermark detectability and functional cor- 074

rectness (Liu and Bu, 2024; Chen et al.). An- 075

other critical shortcoming lies in detection sen- 076

sitivity: prior works assign uniform weights to 077

watermarked tokens, disregarding the importance 078

of entropy-driven variations (Lu et al., 2024; Bal- 079

dassini et al., 2024). This uniform weighting re- 080

duces sensitivity in low-entropy regimes, where 081

subtle watermark signals are easily overshadowed 082

by high-confidence model predictions (Baldassini 083

1

et al., 2024). These limitations collectively un-084

derscore the need for an adaptive framework that085

dynamically aligns watermarking strategies with086

the intrinsic entropy characteristics of generated087

text while ensuring cross-model robustness and088

task-agnostic adaptability (Yoo et al.; Liu and Bu,089

2024).090

In response, (Yoo et al.) proposes a watermark-091

ing method with dynamic entropy threshold ad-092

justment that adaptively selects embedding posi-093

tions via historical entropy distributions, though094

its generalizability across hybrid-modality cross-095

task scenarios requires further validation. Simi-096

larly, (Liu and Bu, 2024) introduces an adaptive097

entropy-threshold watermarking method leveraging098

historical entropy for dynamic adjustment, demon-099

strating robustness in low-entropy code generation100

but lacking comprehensive cross-model validation.101

WatME (Chen et al.) employs lexical redundancy-102

based watermarking with dynamic token optimiza-103

tion, yet limitations remain in dynamic entropy104

adaptation and cross-task robustness. Other no-105

table approaches, such as the unforgeable pub-106

licly verifiable watermark (UPV) (Liu et al., 2023)107

and distribution-preserving DiPmark (Liang et al.,108

2024), contribute valuable perspectives but fall109

short in addressing dynamic threshold adaptation110

for low-entropy and hybrid scenarios.111

In this work, we propose the Adaptive Entropy112

Threshold Watermarking (AETW) method,113

which automates entropy threshold determination114

by leveraging the statistical properties of token-115

level entropy distributions. Unlike static thresholds,116

AETW dynamically adjusts the threshold based on117

the historical entropy of the generated sequence,118

prioritizing high-entropy tokens for watermark em-119

bedding while preserving low-entropy segments120

critical for code correctness. This approach elimi-121

nates manual threshold tuning, enhances adaptabil-122

ity to unseen tasks (e.g., multilingual code gener-123

ation with comments), and mitigates text quality124

degradation (Hou et al., 2023; Chang et al., 2024).125

Our contributions are threefold:126

• Dynamic Threshold Automation: We intro-127

duce a data-driven mechanism to compute en-128

tropy thresholds using quantiles of historical129

entropy distributions, enabling real-time adap-130

tation to varying text complexities.131

• Cross-Task Robustness: We are the first to132

systematically analyze the impact of water-133

marking on LLMs’ cross-task performance,134

particularly in mixed-modality scenarios (e.g., 135

code with annotations), and propose a quality- 136

aware evaluation framework. 137

• Theoretical and Empirical Validation: We es- 138

tablish a theoretical lower bound for detec- 139

tion z-scores under adaptive thresholds and 140

demonstrate significant improvements in both 141

code quality (preserving >95% pass@1 accu- 142

racy on HumanEval) and detection robustness 143

(15% higher AUROC than SWEET) across 144

diverse programming languages and tasks. 145

By addressing the limitations of static water- 146

marking paradigms, AETW advances the practi- 147

cal deployment of LLMs in sensitive applications, 148

ensuring reliable content provenance without com- 149

promising functional integrity. 150

2 Related Work 151

Watermarking in Language Models. Water- 152

marking techniques aim to embed imperceptible 153

signatures into model outputs for origin verifica- 154

tion and misuse prevention (Kirchenbauer et al., 155

2023; Hou et al., 2023). Red/green list-based meth- 156

ods modify sampling distributions to increase the 157

frequency of selected tokens, achieving high de- 158

tectability but often degrading generation qual- 159

ity (Tu et al., 2023; Chang et al., 2024). Fixed- 160

threshold strategies like WLLM and SWEET (Lee 161

et al., 2023; Kirchenbauer et al., 2023) embed wa- 162

termarks in tokens exceeding a preset entropy value, 163

but are brittle in low-entropy settings such as code 164

generation or structured data outputs (Baldassini 165

et al., 2024; He et al., 2024). These approaches 166

require extensive task-specific calibration and fail 167

to generalize across models or content modalities. 168

Entropy-Adaptive and Low-Entropy Water- 169

marking. Several works address the challenge of 170

watermarking under low-entropy conditions. STA- 171

1 and STA-M (Mao et al., 2024) introduce un- 172

biased sampling and dynamic acceptance strate- 173

gies, improving robustness without modifying log- 174

its, yet still depend on fixed green list propor- 175

tions. Entropy-weighted detection methods (EWD) 176

(Lu et al., 2024; Räz, 2024) enhance sensitivity 177

by assigning entropy-proportional token weights 178

at detection, but do not adapt watermark embed- 179

ding during generation. Similarly, SWEET (Lee 180

et al., 2023) statically filters high-entropy tokens 181

to preserve code correctness, though it lacks task- 182

adaptive thresholding. While Liu and Bu (2024); 183

2

Yoo et al. explore adaptive entropy-aware embed-184

ding, they either rely on external estimation mod-185

ules or precomputed thresholds, which limit scala-186

bility.187

Cross-Task and Multimodal Generalization.188

Cross-task robustness remains an open problem, es-189

pecially in hybrid content such as code interleaved190

with natural language comments. Methods like191

POSTMARK (Chang et al., 2024), RE-MARK-192

LLM (Zhang et al., 2024), and VLPMarker embed193

watermarks without model access or via backdoor194

triggers, showing promise across tasks, but exhibit195

sensitivity to distribution shifts and entropy incon-196

sistencies (Christ et al., 2024; Nie and Lu, 2024).197

Surveys by Liu et al. (Liu et al., 2024) and Liang198

et al. (Liang et al., 2024) highlight the shortcom-199

ings of static-threshold watermarking in dynamic200

and multimodal scenarios, especially in code gen-201

eration tasks where entropy can fluctuate sharply202

across tokens (Baldassini et al., 2024; Hu et al.,203

2023). Furthermore, multilingual and cross-lingual204

settings introduce semantic drift, making consistent205

watermark preservation harder (Huang et al., 2023;206

Gloaguen et al.).207

To address these limitations, we propose Adap-208

tive Entropy Threshold Watermarking (AETW),209

a framework that dynamically adjusts the entropy210

threshold based on historical token entropy distribu-211

tions. Unlike prior works relying on fixed or man-212

ually tuned thresholds (Lee et al., 2023; Kirchen-213

bauer et al., 2023), AETW leverages quantile-based214

entropy sampling to select watermark positions in215

real time, enhancing robustness across tasks and216

models. The weighted detection mechanism further217

amplifies signal strength in low-entropy contexts,218

ensuring watermark effectiveness without compro-219

mising text quality (Liu and Bu, 2024; Chang et al.,220

2024).221

3 Method222

We propose a novel watermarking method, AETW,223

which leverages the entropy distribution character-224

istics of sequences to dynamically determine en-225

tropy thresholds based on the mean entropy of se-226

quences for selecting tokens to embed watermarks.227

3.1 Motivation228

Previous watermarking methods like WLLM faced229

the challenge of balancing watermark strength and230

code quality in low-entropy scenarios, particularly231

when embedding and detecting watermarks in code232

generation tasks. In contrast, the SWEET water- 233

marking method relies on static, manually cali- 234

brated entropy thresholds, failing to fully leverage 235

the distribution characteristics of entropy and thus 236

limiting its adaptability to real-world dynamic en- 237

tropy distributions. This limitation leads to two key 238

issues. 239

High computational cost and complexity in 240

determining entropy thresholds. Identifying an 241

appropriate entropy threshold typically requires sig- 242

nificant computational resources and time. If the 243

threshold is set too high, it may result in insuf- 244

ficient high-entropy tokens, especially impairing 245

watermark detection performance for short texts 246

(e.g., code snippets). A fixed-threshold strategy 247

tends to be either overly strict (leading to insuffi- 248

cient tokens for watermark embedding) or overly 249

lenient (degrading generated code quality). For ex- 250

ample, the SWEET method conducted extensive ex- 251

periments on the StarCoder model for Python pro- 252

gramming tasks using the CodeSearchNet dataset, 253

determining the optimal entropy threshold range to 254

be 0.3–0.9. To simplify the experimental process, 255

SWEET tested multiple thresholds to validate its 256

approach and ultimately selected 1.2 as a represen- 257

tative value. However, this strategy introduces the 258

following problems: 1. The diversity of program- 259

ming languages necessitates repeated experiments 260

to determine optimal thresholds for each language, 261

incurring high computational costs. 2. Thresh- 262

olds optimized for the StarCoder model may not 263

generalize to other large language model architec- 264

tures. For instance, experiments with the Qwen2.5- 265

Coder-14B-Instruct model for Python code genera- 266

tion revealed an entropy threshold of 0.6 to balance 267

watermark strength and code quality, whereas Star- 268

Coder’s threshold was set around 0.9. 269

Ignoring dynamic entropy distributions 270

across text tasks. During code generation tasks 271

with large language models, generated text (e.g., 272

code comments) often involves cross-task dynam- 273

ics that significantly impact code quality. Fixed- 274

threshold strategies may fail in such dynamic sce- 275

narios, disrupting the balance between watermark 276

strength and code quality. SWEET’s reliance on 277

task-specific human-curated datasets for threshold 278

setting renders it vulnerable when encountering un- 279

familiar tasks or languages. For example, when 280

generating both code and comments, the entropy 281

distribution of comments typically differs markedly 282

from that of code, causing thresholds determined 283

from historical text strategies or experiments to be- 284

3

Figure 1: In the experimental results, we use variations in the shade of yellow to represent the magnitude of entropy.
In our method, any token whose entropy is not entirely below a certain threshold may potentially be watermarked,
whereas the fixed threshold method strictly requires the entropy to exceed.

come ineffective for comments and compromising285

watermark detection performance.286

3.2 The AETW Method287

AETW dynamically determines the entropy thresh-288

old based on the entropy distribution characteristics289

of the sequence to address the computational bur-290

den of statically determining the threshold. This291

means that for low-entropy sequences, the thresh-292

old is relatively high, excluding more tokens for293

watermark embedding and detection, thereby im-294

proving the quality of the code text.295

Generation. The watermark generation algo-296

rithm is detailed in Algorithm 1. Given a tokenized297

prompt x = {x0, . . . , xM−1} and a previously gen-298

erated token sequence y[:t] = {y0, . . . , yt−1}, the299

model computes an entropy value(Ht) of the prob-300

ability distribution for the current token yt. The301

watermark is applied only when Ht exceeds a dy-302

namically computed threshold τ . To determine τ ,303

the sequence of entropy values for the previous304

t − 1 tokens, denoted as Hh = {H0, . . . ,Ht−1},305

is used. Let ρ represent a predefined minimum306

historical length threshold, and QHh
(p) denote the307

p-th quantile of the historical entropy sequence Hh.308

The threshold τ is calculated as:309

τ =

{
0 if |Hh| ≤ ρ,

QHh

(
e−µHh

)
otherwise,

(1)310

where µHh
= 1

|Hh|
∑

H∈Hh
H represents the mean311

of the historical entropy values. When the historical312

length |Hh| is less than or equal to ρ, the watermark 313

is applied unconditionally (τ = 0). Otherwise, τ is 314

set to the e−µHh -quantile of the historical entropy 315

sequence. 316

The vocabulary is randomly partitioned into a 317

red list and a green list, with a fixed proportion γ of 318

tokens designated as green. For tokens selected for 319

watermarking, a constant δ is added to the logits of 320

green tokens to promote their sampling. By restrict- 321

ing this promotion to high-entropy tokens, AETW 322

prevents alterations to the logit distributions of low- 323

entropy tokens, thereby preserving code quality. 324

Algorithm 1 Watermark Generation in AETW

Input: Tokenized prompt x = {x0, . . . , xM−1},
generated sequence y[:t] = {y0, . . . , yt−1}, min-
imum historical length ρ, green token proportion
γ, logit bias δ.
Output: Next token yt with watermark applied
if Ht > τ .
for each token yt do

Compute an entropy Ht by (??).
Update historical entropy sequence Hh.
Compute mean historical entropy µHh

.
Compute a threshold τ by (1)
if Ht > τ then

Add δ to logits of green tokens.
end if
Sample yt based on modified logits.

end for

Detection. The watermark detection algorithm 325

4

is detailed in Algorithm 2. Given a token sequence326

y = {y0, . . . , yN−1}, the objective is to detect the327

presence of a watermark to ascertain whether the se-328

quence was generated by a specific language model.329

Similar to the generation phase, the entropy Ht is330

computed for each token yt. The entropy sequence331

for all N tokens is denoted as H = {H1, . . . ,HN},332

and QH(p) represents the p-th quantile of H . The333

detection threshold τ is calculated as:334

τ = QH

(
e−µH

)
, (2)335

where µH = 1
|H|

∑
Hi∈H Hi is the mean entropy336

of the sequence.337

Inspired by the EWD framework, the influence338

of a token t on the detection outcome is modeled339

as positively correlated with its entropy. For tokens340

with entropy values exceeding τ , the entropy se-341

quence is denoted as HS . The weight W (tS) for a342

selected token tS is defined as:343

W (tS) = f(HS − C0), (3)344

where C0 = min(HS) normalizes the entropy val-345

ues, and f is a weighting function.346

The detection process proceeds as follows: First,347

the model logits for each token are computed to348

obtain the entropy Ht. Next, for each token with349

Ht > τ , the weight W (tS) is determined using350

the ComputeWeight function, which takes the nor-351

malized entropy as input. Subsequently, the stan-352

dard detection procedure from WLLM is applied353

to identify the green token list using the detection354

key and previously generated tokens. Finally, the355

weights of the green tokens, denoted as |s|G, are356

aggregated, and the z-score is computed as:357

z =
|s|G − γ

∑|T |−1
i=m WSi√

γ(1− γ)
∑|T |−1

i=m W 2
Si

, (4)358

where |s|G represents the weighted sum of detected359

green tokens, and WSi is the weight of token i360

with entropy above τ . If the z-score exceeds a361

predefined threshold, the detector returns a positive362

result, indicating the presence of a watermark.363

4 Experiments364

In this section, we present a series of experi-365

ments designed to evaluate the effectiveness of our366

proposed watermarking method for code-related367

text generation, focusing on both text quality368

preservation and watermark detectability. Our369

Algorithm 2 Watermark Detection in AETW

Input: Token sequence y = {y0, . . . , yN−1},
green token proportion γ, detection key.
Output: Detection result (positive if watermark
is present).
for each token yt do

Compute an entropy Ht by (??).
Update entropy sequence H .

end for
Compute a mean entropy µH .
for each token yt with Ht > τ do

Compute weight W (tS) by (3).
end for
Apply WLLM detection procedure to identify
green token list G.
Compute weighted sum of green tokens |s|G.
Compute z-score z by (4).
if z > predefined threshold then

Return positive detection result.
else

Return negative detection result.
end if

experiments are conducted using the Qwen2.5- 370

Coder-14B-Instruct model, a 14-billion-parameter 371

instruction-tuned variant of Qwen2.5-Coder, op- 372

timized for understanding and executing specific 373

instructions. 374

4.1 Experiments Setting 375

Tasks and Datasets. Code generation by large 376

language models (LLMs) often involves generat- 377

ing accompanying comments, which may impact 378

the model’s code generation performance. The in- 379

troduction of watermarks could further affect this 380

capability. To investigate these effects, we designed 381

two experimental tasks. 382

Code Generation Task. We evaluated our method 383

on two benchmark datasets: HumanEval, MBPP. 384

HumanEval and MBPP consist of Python program- 385

ming problems, associated test cases, and human- 386

written reference solutions. The language model 387

is prompted to generate code based on the prob- 388

lem descriptions, with the generated code expected 389

to pass the provided test cases. To demonstrate 390

the generalizability of our approach, we also con- 391

ducted experiments using CodeLlama-13B-HF, a 392

model designed specifically for code synthesis and 393

comprehension. 394

Code Generation with Comments Task. For 395

this task, we used HumanEval and MBPP as test 396

5

Model Qwen2.5-Coder-14B-Instruct CodeLlama-13b-hf

Method HUMANEVAL MBPP HUMANEVAL MBPP

PASS@1 AUROC TPR FPR PASS@1 AUROC TPR FPR PASS@1 AUROC TPR FPR PASS@1 AUROC TPR FPR

Non-watermarked 55.81 - - - 54.7 - - - 35.8 - - - 43.6 - - -
Non-watermarked (w/ high entropy) 49.5 - - - 42.1 - - - 13.6 - - - 21.1 - - -

Watermarking
WLLM (∆PASS@1 ∼ −10%)⋆ 64.6 0.750 0.313 <0.05 52.8 0.616 0.116 <0.05 32.6 0.807 0.365 <0.05 40.8 0.764 0.2 <0.05

SWEET (∆PASS@1 ∼ −10%)⋆ 66.1 0.815 0.405 <0.05 54.3 0.618 0.070 <0.05 32.1 0.801 0.415 <0.05 41.6 0.880 0.502 <0.05
AETW (∆PASS@1 ∼ −10%)⋆ 67.0 0.855 0.466 <0.05 52.6 0.750 0.178 <0.05 32.1 0.824 0.384 <0.05 40.4 0.98 0.993 <0.05

WLLM (AUROC≥ 0.9)† 44.2 0.859 0.579 <0.05 23.5 0.926 0.686 <0.05 23.0 0.936 0.634 <0.05 34.4 0.947 0.66 <0.05
SWEET (AUROC≥ 0.9)† 58.7 0.904 0.671 <0.05 39.9 0.906 0.648 <0.05 27.6 0.924 0.731 <0.05 37.1 0.940 0.674 <0.05
AETW (AUROC≥ 0.9)† 61.3 0.908 0.755 <0.05 40.7 0.906 0.682 <0.05 30.1 0.928 0.754 <0.05 40.4 0.98 0.993 <0.05

Table 1: Main results of code generation performance and detection capability. The non-watermarked code
generation quality is generally lower than watermarked methods, as detailed in the appendix. Due to the trade-off
between code generation quality and detection capability caused by watermark strength calibration, we provide
two sets of results for WLLM, SWEET, and AETW. ⋆ indicates the best detection scores (i.e., AUROC and
TPR) with a ∼10% drop in code generation quality compared to the non-watermarked baseline; † indicates the
best code generation quality (PASS@1) under AUROC ≥ 0.9. All data points are shown in Figure 2. We include a
non-watermarked baseline under high-entropy settings (i.e., temperature=1.0 and top-p=1.0) to account for detection
challenges in low-entropy environments.

datasets and required the model to generate line-397

by-line comments above each line of code during398

code generation.399

Baselines and Evaluation Metrics. For wa-400

termarking, we selected WLLM and SWEET as401

baseline methods. These watermarking techniques402

modify the model’s sampling distribution to em-403

bed watermarks, which, while improving detection404

performance, may compromise text quality. There-405

fore, we also compared the text generation per-406

formance of the original, non-watermarked model.407

For watermark detection, we employed WLLM,408

SWEET, and EWD as baseline detectors, using the409

WLLM watermark embedding method consistently410

across all detectors to ensure a fair comparison.To411

assess the quality of the generated text, including412

both source code and comments, we used multiple413

metrics. The functional correctness of the gener-414

ated code was evaluated using the pass@k metric,415

where for each programming problem, we gener-416

ated n(> k) outputs and computed the percent-417

age of generated code that correctly passes the test418

cases. For comment quality, we used GPT-4o to419

generate line-by-line reference comments for the420

standard solutions in the datasets and calculated the421

average text similarity between the watermarked422

comments and the reference comments. For wa-423

termark detection performance, we used the Area424

Under the Receiver Operating Characteristic Curve425

(AUROC) as the primary metric and reported the426

True Positive Rate (TPR) and F1 score when the427

False Positive Rate (FPR) was below 5%.428

5 Results 429

5.1 Main Results 430

Table 1 presents a comparative analysis of all base- 431

line methods and our proposed approach in terms of 432

detection performance and code generation capabil- 433

ity. The experiments reveal a significant trade-off 434

between the detection capability of watermarking 435

methods and their code generation performance, 436

with this trade-off being influenced by the water- 437

mark strength. To address this, we set a lower 438

bound for performance in other domains (e.g., code 439

generation quality) while optimizing performance 440

in one domain (e.g., AUROC score). Specifically, 441

to achieve the best AUROC score, we ensure that 442

the pass@1 performance of the non-watermarked 443

base model remains around 90%; when measuring 444

pass@1, we select the best results from those with 445

AUROC ≥ 0.9. 446

Detection Performance. According to the data 447

in Table 1, with an allowable degradation in code 448

generation quality of approximately 10%, our pro- 449

posed AETW method outperforms all baseline 450

methods in detection performance. For example, 451

in evaluations of the Qwen2.5-Coder-14B-Instruct 452

model on the HumanEval and MBPP datasets, the 453

AUROC scores of the AETW method reach 0.855 454

and 0.750, respectively, demonstrating significant 455

superiority over other methods, particularly on the 456

MBPP dataset. 457

Code Generation Quality. In terms of code 458

generation quality, Table 1 shows that, in tests on 459

the HumanEval dataset using the Qwen2.5-Coder- 460

14B-Instruct model, despite some performance fluc- 461

tuations, the AETW method retains higher code 462

6

Figure 2: The tradeoff between AUROC and pass@1 of detecting real and generated samples of HumanEval, MBPP,
and DS-1000 datasets. The pink line represents a Pareto frontier of AETW, while the blue line represents that of
WLLM. AETW shows consistent dominance. The red/orange line and circles are the points used in Table ??. The
entropy threshold for AETW is 1.2 here, and Pareto frontier figures for all threshold values are in Figure 1.

Methods HumanEval MBPP

pass@1 AUC T(F<5%) similarity pass@1 AUC T(F<5%) similarity

WLLM 0.659 0.824 0.439 0.749 0.142 0.580 0.104 0.517
SWEET 0.749 0.874 0.506 0.756 0.138 0.829 0.400 0.525
AETW 0.825 0.959 0.805 0.759 0.144 0.907 0.649 0.530
Origin 0.896 - - 0.726 0.263 - - 0.566

Table 2: Comparison of code generation and detection performance metrics (pass@1, AUC, T(F<5%), and similarity)
across different methods on HumanEval and MBPP datasets.

Methods
HumanEval MBPP

1% FRP 5% FRP Best 1% FRP 5% FRP Best
TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

WLLM 0.137 0.241 0.216 0.344 0.640 0.039 0.074 0.125 0.213 0.690
SWEET 0.314 0.478 0.451 0.605 0.772 0.316 0.483 0.600 0.691 0.743

EWD 0.403 0.564 0.601 0.695 0.745 0.431 0.599 0.711 0.807 0.863
AETW 0.512 0.667 0.707 0.763 0.769 0.482 0.646 0.764 0.838 0.866

Table 3: Comparison of detection performance metrics
(TPR and F1) across different methods on HumanEval
and MBPP datasets.

generation capability compared to other baseline463

methods under the condition of AUROC≥ 0.9. On464

the MBPP dataset, although the WLLM method465

achieves the best detection performance, its code466

generation quality degrades by 57.04% compared467

to the non-watermarked model. In contrast, the468

AETW method only degrades by 25.59% while469

maintaining AUROC ≥ 0.9, demonstrating a better470

balance in performance.471

Code Generation with Comments. Table 2472

presents the performance of the watermark-free473

baseline (Original) and watermarking methods474

(WLLM, SWEET, AETW) on the HumanEval475

and MBPP datasets in scenarios where mod-476

els are tasked with generating annotated code.477

AETW demonstrates superior detection perfor-478

mance, achieving an AUC of 0.959 and a TPR 479

(FPR<5%) of 0.805 on HumanEval, as well as an 480

AUC of 0.907 and a TPR of 0.649 on MBPP, sig- 481

nificantly outperforming WLLM (0.824 and 0.580, 482

0.439 and 0.104) and SWEET (0.874 and 0.829, 483

0.506 and 0.400). In terms of code generation qual- 484

ity, AETW’s pass@1 scores are 0.825 (a 7.92% 485

drop) on HumanEval and 0.144 (a 45.25% drop) 486

on MBPP, outperforming WLLM (26.45% and 487

46.01% drops) and SWEET (16.41% and 47.53% 488

drops). For comment similarity, AETW slightly 489

surpasses other methods on HumanEval (0.759) 490

and MBPP (0.530), though the difference from the 491

watermark-free baseline (0.726 and 0.566) is mi- 492

nor, possibly due to limitations in the evaluation 493

method. AETW’s dynamic threshold strategy ex- 494

hibits robustness in cross-text tasks, balancing high 495

detection performance with minimal code quality 496

degradation, outperforming static threshold meth- 497

ods. 498

5.2 Further Watermark Detection 499

This subsection further focuses on watermark detec- 500

tion performance. Therefore, we employ the same 501

7

WLLM watermarking method, setting γ = 0.5 and502

δ = 2, and use SpikeEntropy to compute entropy503

values. The Table 3 presents the detection perfor-504

mance of WLLM, SWEET, EWD, and AETW on505

the HumanEval and MBPP datasets.506

On the HumanEval dataset, AETW achieves a507

TPR of 0.512 and an F1 of 0.667 at 1% FPR, and a508

TPR of 0.707 and an F1 of 0.763 at 5% FPR, out-509

performing WLLM (0.137/0.241 and 0.216/0.344),510

SWEET (0.314/0.478 and 0.451/0.605), and EWD511

(0.403/0.564 and 0.601/0.695). On the MBPP512

dataset, AETW demonstrates even more prominent513

performance, with a TPR of 0.482 and an F1 of514

0.646 at 1% FPR, and a TPR of 0.764 and an F1515

of 0.838 at 5% FPR, significantly surpassing other516

methods.517

5.3 Performance with different Minimum518

Length519

Figure ?? presents the trend of model performance520

with varying minimum history length threshold ρ521

on the HumanEval and MBPP datasets During the522

generation phase, we introduce a minimum history523

length threshold ρ to stabilize the initial threshold τ ,524

thereby optimizing the watermarking performance.525

We evaluate model performance on the HumanEval526

and MBPP datasets with ρ ranging from 0-10 (step527

size 2) and 10-20 (step size 5), using metrics in-528

cluding AUROC and pass@k (k=1, 10). Experi-529

mental results show that when ρ ≥ 4, both AUROC530

and pass@k tend to stabilize across both datasets.531

Specifically, on HumanEval, AUROC stabilizes532

around 0.8, while pass@1 and pass@10 stabilize533

near 0.5 and 0.75, respectively. On MBPP, AUROC534

stabilizes around 0.9, with pass@1 and pass@10535

stabilizing near 0.5 and 0.6, respectively. This in-536

dicates that ρ ≥ 4 is sufficient for the historical537

entropy sequence to adequately reflect the char-538

acteristics of the generation distribution, thereby539

stabilizing the watermark embedding effect.540

5.4 Performance against the Paraphrasing541

Attack542

Attackers can remove watermarks from text543

through rewriting attacks before the watermarked544

text is detected. We designed three attack methods545

to evaluate the robustness of watermarking tech-546

niques, including renaming, refactoring, and re-547

dundancy injection. Specifically, we selected 125548

tasks from MBPP, and all three watermarking meth-549

ods passed the tests for these tasks. In the redun-550

dancy injection attack, we instructed GPT to add551

redundant code without affecting the logic of the 552

existing functions. Figure ?? shows the results of 553

different rewriting attacks. Our method performs 554

excellently under renaming and refactoring attacks, 555

with AUROC stable around 0.74, outperforming 556

WLLM (0.67) and SWEET (which decreases from 557

0.725 to 0.65 as entropy increases from 0.3 to 1.2). 558

However, in redundancy injection attacks, AETW’s 559

AUROC drops to 0.71, lower than WLLM (0.74), 560

possibly because the high entropy of redundant 561

code causes the AETW method to filter out more 562

low-entropy tokens containing watermarks. Over- 563

all, AETW demonstrates stronger robustness in 564

most rewriting attack scenarios. 565

6 Conclusion 566

In this work, we introduced AETW, a dynamic 567

framework for embedding and detecting water- 568

marks in LLM-generated text. By leveraging 569

the entropy distribution characteristics of gener- 570

ated sequences, AETW automates threshold de- 571

termination, eliminating the need for costly task- 572

specific calibration while balancing detection ro- 573

bustness and text quality preservation. Our experi- 574

ments across diverse code generation tasks demon- 575

strate that AETW significantly outperforms static- 576

threshold baselines (e.g., SWEET and WLLM), 577

achieving 15% higher AUROC and retaining >95% 578

pass@1 accuracy on HumanEval under constrained 579

quality degradation. The method’s adaptability 580

to hybrid content (e.g., code with comments) and 581

cross-task robustness highlight its practical utility 582

in real-world scenarios. 583

While AETW exhibits strong resilience against 584

paraphrasing attacks (e.g., renaming and refactor- 585

ing), its performance under redundancy injection 586

suggests room for improvement in handling artifi- 587

cially inflated entropy. Future work will explore dy- 588

namic weighting schemes for low-entropy tokens 589

and extend the framework to multimodal genera- 590

tion settings. By advancing adaptive watermark- 591

ing strategies, this work paves the way for reli- 592

able provenance tracking of LLM outputs without 593

compromising functional integrity, a critical step 594

toward ethical AI deployment. 595

Limitations 596

While our AETW method demonstrates strong per- 597

formance and adaptability across multiple code 598

generation tasks, several limitations remain. First, 599

the current approach primarily targets code-related 600

8

text and may require further validation and adapta-601

tion for broader natural language generation tasks602

or multimodal outputs where entropy distributions603

differ significantly. Second, although AETW im-604

proves robustness against common paraphrasing605

attacks such as renaming and refactoring, its de-606

tection performance degrades under redundancy607

injection attacks, indicating potential vulnerability608

to sophisticated adversarial manipulations. Third,609

the reliance on historical entropy statistics assumes610

relatively stable entropy distributions within se-611

quences; abrupt shifts or extremely short sequences612

may challenge the stability of threshold estima-613

tion. Lastly, computational overhead introduced614

by dynamic entropy calculation and quantile es-615

timation, though lower than exhaustive threshold616

search, may still pose constraints in real-time or617

resource-limited scenarios. Addressing these lim-618

itations presents promising directions for future619

research to enhance watermark robustness and ap-620

plicability.621

References622

Wissam Antoun, Benoît Sagot, and Djamé Seddah.623
From text to source: Results in detecting large624
language model-generated content. arXiv preprint625
arXiv:2309.13322.626

Navid Ayoobi, Lily Knab, Wen Cheng, David Pantoja,627
Hamidreza Alikhani, Sylvain Flamant, Jin Kim, and628
Arjun Mukherjee. a. Esperanto: Evaluating synthe-629
sized phrases to enhance robustness in ai detection for630
text origination. arXiv preprint arXiv:2409.14285.631

Navid Ayoobi, Sadat Shahriar, and Arjun Mukherjee.632
b. The looming threat of fake and llm-generated633
linkedin profiles: Challenges and opportunities for634
detection and prevention. In Proceedings of the 34th635
ACM Conference on Hypertext and Social Media,636
pages 1–10.637

Folco Bertini Baldassini, Huy H Nguyen, Ching-Chung638
Chang, and Isao Echizen. 2024. Cross-attention wa-639
termarking of large language models. In ICASSP640
2024-2024 IEEE International Conference on Acous-641
tics, Speech and Signal Processing (ICASSP), pages642
4625–4629. IEEE.643

Olivia Burrus, Amanda Curtis, and Laura Herman. Un-644
masking ai: Informing authenticity decisions by la-645
beling ai-generated content. Interactions, 31(4):38–646
42.647

Yapei Chang, Kalpesh Krishna, Amir Houmansadr,648
John Wieting, and Mohit Iyyer. 2024. Postmark: A649
robust blackbox watermark for large language mod-650
els. arXiv preprint arXiv:2406.14517.651

Liang Chen, Yatao Bian, Yang Deng, Deng Cai, Shuaiyi 652
Li, Peilin Zhao, and Kam-Fai Wong. Watme: To- 653
wards lossless watermarking through lexical redun- 654
dancy. arXiv preprint arXiv:2311.09832. 655

Miranda Christ, Sam Gunn, and Or Zamir. 2024. Un- 656
detectable watermarks for language models. In The 657
Thirty Seventh Annual Conference on Learning The- 658
ory, pages 1125–1139. PMLR. 659

Preetam Prabhu Srikar Dammu, Himanshu Naidu, 660
Mouly Dewan, YoungMin Kim, Tanya Roosta, Aman 661
Chadha, and Chirag Shah. Claimver: Explain- 662
able claim-level verification and evidence attribution 663
of text through knowledge graphs. arXiv preprint 664
arXiv:2403.09724. 665

Thibaud Gloaguen, Nikola Jovanović, Robin Staab, 666
and Martin Vechev. Towards watermarking of open- 667
source llms. arXiv preprint arXiv:2502.10525. 668

Alex Gu, Baptiste Rozière, Hugh Leather, Ar- 669
mando Solar-Lezama, Gabriel Synnaeve, and Sida I 670
Wang. Cruxeval: A benchmark for code reason- 671
ing, understanding and execution. arXiv preprint 672
arXiv:2401.03065. 673

Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, 674
and Guang Cheng. 2024. Watermarking generative 675
tabular data. arXiv preprint arXiv:2405.14018. 676

Abe Bohan Hou, Jingyu Zhang, Tianxing He, 677
Yichen Wang, Yung-Sung Chuang, Hongwei Wang, 678
Lingfeng Shen, Benjamin Van Durme, Daniel 679
Khashabi, and Yulia Tsvetkov. 2023. Semstamp: A 680
semantic watermark with paraphrastic robustness for 681
text generation. arXiv preprint arXiv:2310.03991. 682

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, 683
Hongyang Zhang, and Heng Huang. 2023. Unbiased 684
watermark for large language models. arXiv preprint 685
arXiv:2310.10669. 686

Baihe Huang, Hanlin Zhu, Banghua Zhu, Kannan Ram- 687
chandran, Michael I Jordan, Jason D Lee, and Jiantao 688
Jiao. 2023. Towards optimal statistical watermarking. 689
arXiv preprint arXiv:2312.07930. 690

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fan- 691
jia Yan, Tianjun Zhang, Sida Wang, Armando 692
Solar-Lezama, Koushik Sen, and Ion Stoica. Live- 693
codebench: Holistic and contamination free eval- 694
uation of large language models for code. arXiv 695
preprint arXiv:2403.07974. 696

John Kirchenbauer, Jonas Geiping, Yuxin Wen, 697
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023. 698
A watermark for large language models. In Inter- 699
national Conference on Machine Learning, pages 700
17061–17084. PMLR. 701

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, 702
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee 703
Kim. 2023. Who wrote this code? watermarking for 704
code generation. arXiv preprint arXiv:2305.15060. 705

9

Boquan Li, Mengdi Zhang, Peixin Zhang, Jun Sun,706
Xingmei Wang, and Zirui Fu. a. Acw: Enhancing707
traceability of ai-generated codes based on water-708
marking. arXiv preprint arXiv:2402.07518.709

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas710
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc711
Marone, Christopher Akiki, Jia Li, Jenny Chim, and712
1 others. b. Starcoder: may the source be with you!713
arXiv preprint arXiv:2305.06161.714

Yuqing Liang, Jiancheng Xiao, Wensheng Gan, and715
Philip S Yu. 2024. Watermarking techniques for716
large language models: A survey. arXiv preprint717
arXiv:2409.00089.718

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie719
Wen, Irwin King, and S Yu Philip. 2023. An unforge-720
able publicly verifiable watermark for large language721
models. In The Twelfth International Conference on722
Learning Representations.723

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming724
Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong,725
and Philip Yu. 2024. A survey of text watermarking726
in the era of large language models. ACM Computing727
Surveys, 57(2):1–36.728

Yepeng Liu and Yuheng Bu. 2024. Adaptive text wa-729
termark for large language models. arXiv preprint730
arXiv:2401.13927.731

Carol Xuan Long, Dor Tsur, Claudio Mayrink Ver-732
dun, Hsiang Hsu, Haim H Permuter, and Flavio Cal-733
mon. Optimized couplings for watermarking large734
language models. In The 1st Workshop on GenAI735
Watermarking.736

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin737
King. 2024. An entropy-based text watermarking738
detection method. arXiv preprint arXiv:2403.13485.739

Minjia Mao, Dongjun Wei, Zeyu Chen, Xiao Fang, and740
Michael Chau. 2024. A watermark for low-entropy741
and unbiased generation in large language models.742
arXiv preprint arXiv:2405.14604.743

Hewang Nie and Songfeng Lu. 2024. Securing ip in744
edge ai: neural network watermarking for multimodal745
models. Applied Intelligence, 54(21):10455–10472.746

Tim Räz. 2024. Authorship and the politics and ethics of747
llm watermarks. arXiv preprint arXiv:2403.06593.748

Yuqian Sun, Hanyi Wang, Pok Man Chan, Morteza749
Tabibi, Yan Zhang, Huan Lu, Yuheng Chen,750
Chang Hee Lee, and Ali Asadipour. a. Fictional751
worlds, real connections: developing community sto-752
rytelling social chatbots through llms. arXiv preprint753
arXiv:2309.11478.754

Yuqian Sun, Phoebe J Wang, John Joon Young755
Chung, Melissa Roemmele, Taewook Kim, and Max756
Kreminski. b. Drama llama: An llm-powered sto-757
rylets framework for authorable responsiveness in in-758
teractive narrative. arXiv preprint arXiv:2501.09099.759

Shangqing Tu, Yuliang Sun, Yushi Bai, Jifan Yu, Lei 760
Hou, and Juanzi Li. 2023. Waterbench: Towards 761
holistic evaluation of watermarks for large language 762
models. arXiv preprint arXiv:2311.07138. 763

Chengran Yang, Jiakun Liu, Bowen Xu, Christoph 764
Treude, Yunbo Lyu, Junda He, Ming Li, and David 765
Lo. a. Apidocbooster: An extract-then-abstract 766
framework leveraging large language models for 767
augmenting api documentation. arXiv preprint 768
arXiv:2312.10934. 769

Chengran Yang, Bowen Xu, Jiakun Liu, and David Lo. b. 770
Techsumbot: A stack overflow answer summarization 771
tool for technical query. In 2023 IEEE/ACM 45th 772
International Conference on Software Engineering: 773
Companion Proceedings (ICSE-Companion), pages 774
132–135. IEEE. 775

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. Ad- 776
vancing beyond identification: Multi-bit water- 777
mark for large language models. arXiv preprint 778
arXiv:2308.00221. 779

Ruisi Zhang, Shehzeen Samarah Hussain, Paarth 780
Neekhara, and Farinaz Koushanfar. 2024. 781
{REMARK-LLM}: A robust and efficient 782
watermarking framework for generative large lan- 783
guage models. In 33rd USENIX Security Symposium 784
(USENIX Security 24), pages 1813–1830. 785

10

Metric Non-Water AETW SWEET WLLM

Tasks with no code generated 66 56 53 59
Tasks with all samples not generated 29 8 10 7
Tasks with over half samples not generated 13 18 18 21
Total samples with no code generated 893 539 531 585

Table 4: Comparison of the number of tasks where the
model produced no answers under three watermarking
methods and no watermarking.

A Watermark-Free Low-Code Quality786

Analysis.787

In traditional understanding, the introduction of788

watermarking techniques alters the original logits789

distribution of language models, biasing them to-790

ward generating tokens from the green list, which791

typically leads to a decline in text generation qual-792

ity. However, this study reveals a counterintuitive793

phenomenon: when evaluating the code generation794

performance of the Qwen2.5-Coder-14B-Instruct795

model on the HumanEval dataset, the model with-796

out watermarking exhibited even worse perfor-797

mance under the pass@k evaluation metric com-798

pared to methods employing watermarking. To799

investigate the cause of this phenomenon, we con-800

ducted a comparative analysis of the watermark-801

free condition and three watermarking methods802

(AETW, SWEET, WLLM), selecting the parameter803

configurations (γ = 0.5 and δ = 3.0) where each804

watermarking method achieved peak performance805

in pass@1 for experimentation.806

The experimental design included 163 program-807

ming tasks, with 20 code samples generated per808

task, totaling 3,260 code generations. Analysis of809

failure cases revealed that some generated samples810

exhibited incomplete code, indicating the model’s811

inability to effectively follow task instructions for812

code completion. We systematically quantified four813

key metrics: (1) the number of tasks with at least814

one incomplete code sample, (2) the number of815

tasks where all samples were incomplete, (3) the816

number of tasks where over half of the samples817

were incomplete, and (4) the overall count of in-818

complete samples. Specific data is presented in the819

Table 4.820

Analysis. We hypothesize that the Qwen2.5-821

Coder-14B-Instruct model without watermarking822

lacks sufficient sensitivity to the semantic under-823

standing of function annotations in HumanEval824

tasks, and fine-tuning may have degraded its lan-825

guage modeling capability, causing the model to826

prematurely sample the end-of-sequence (EOS) to-827

ken instead of completing the code. In contrast,828

watermarking algorithms modify the logits distri- 829

bution, effectively suppressing the sampling prob- 830

ability of the EOS token during early decoding 831

stages, thereby enhancing the completeness of code 832

generation. 833

11

	Introduction
	Related Work
	Method
	Motivation
	The AETW Method

	Experiments
	Experiments Setting

	Results
	Main Results
	Further Watermark Detection
	Performance with different Minimum Length
	Performance against the Paraphrasing Attack

	Conclusion
	Watermark-Free Low-Code Quality Analysis.

