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Abstract

By embedding and detecting hidden features
in text, watermarking algorithms for large lan-
guage models can effectively identify machine-
generated text. However, such embedding leads
to a decline in text quality, especially in low-
entropy scenarios where performance needs im-
provement. Methods for determining entropy
thresholds based on experimental and histor-
ical text strategies require significant compu-
tational resources and time, and they exhibit
poor adaptability to unknown tasks. In this
work, we propose an adaptive entropy thresh-
old watermarking method that automates the
determination of thresholds during the genera-
tion and detection processes. Specifically, we
leverage the entropy distribution characteris-
tics of text sequences generated by large mod-
els to identify task-specific entropy properties,
thereby calculating entropy thresholds to filter
low-entropy segments. This enhances detection
capability while maintaining a certain level of
code-related text quality. Experiments demon-
strate that our method ensures code-related text
quality and improves detection performance
across diverse text tasks.

1 Introduction

The rapid advancement of large language models
(LLMs) has revolutionized text generation across
diverse domains, including creative writing (Sun
et al., b,a), technical documentation (Yang et al.,
a,b), and code synthesis (Li et al., b; Jain et al.;
Gu et al.). However, the proliferation of machine-
generated content raises critical challenges in au-
thenticity verification (Burrus et al.; Ayoobi et al.,
a) and misuse prevention (Ayoobi et al., b; Dammu
et al.). Watermarking algorithms, which em-
bed imperceptible features into generated text,
have emerged as a promising solution to identify
machine-originated content (Liu et al., 2024; Chen
et al.; Yoo et al.). Despite their potential, existing
watermarking methods face a fundamental trade-

off between detection robustness and text quality
preservation, particularly in low-entropy scenar-
ios such as code generation, where model predic-
tions exhibit high confidence and limited variability
(Long et al.; Lee et al., 2023).

Current approaches, such as SWEET (Lee et al.,
2023) and WLLM (Baldassini et al., 2024), rely on
static entropy thresholds to determine watermark
insertion points. While effective in high-entropy
contexts (e.g., open-ended text), these fixed thresh-
olds struggle to adapt to dynamic entropy distri-
butions inherent in code generation tasks. For
instance, programming languages often involve
repetitive syntactic structures (low entropy) inter-
spersed with variable naming or logical decisions
(higher entropy) (Liu and Bu, 2024; Liu et al.,
2024). Manually calibrating thresholds for each
language or task demands extensive experimen-
tation, rendering these methods computationally
prohibitive and poorly generalizable (Liu and Bu,
2024; Antoun et al.). Existing methods also ex-
hibit inherent limitations in cross-model applica-
bility: thresholds optimized for specific architec-
tures (e.g., Starcoder) fail to generalize to others
(e.g., Qwen2.5-Coder), necessitating redundant pa-
rameter searches for each new model (Baldassini
et al., 2024; Li et al., a; Liu and Bu, 2024; Tu
et al., 2023). Furthermore, hybrid content gener-
ation—such as code interlaced with natural lan-
guage comments—introduces abrupt entropy shifts
that static strategies cannot reconcile, degrading
both watermark detectability and functional cor-
rectness (Liu and Bu, 2024; Chen et al.). An-
other critical shortcoming lies in detection sen-
sitivity: prior works assign uniform weights to
watermarked tokens, disregarding the importance
of entropy-driven variations (Lu et al., 2024; Bal-
dassini et al., 2024). This uniform weighting re-
duces sensitivity in low-entropy regimes, where
subtle watermark signals are easily overshadowed
by high-confidence model predictions (Baldassini



et al., 2024). These limitations collectively un-
derscore the need for an adaptive framework that
dynamically aligns watermarking strategies with
the intrinsic entropy characteristics of generated
text while ensuring cross-model robustness and
task-agnostic adaptability (Yoo et al.; Liu and Bu,
2024).

In response, (Yoo et al.) proposes a watermark-
ing method with dynamic entropy threshold ad-
justment that adaptively selects embedding posi-
tions via historical entropy distributions, though
its generalizability across hybrid-modality cross-
task scenarios requires further validation. Simi-
larly, (Liu and Bu, 2024) introduces an adaptive
entropy-threshold watermarking method leveraging
historical entropy for dynamic adjustment, demon-
strating robustness in low-entropy code generation
but lacking comprehensive cross-model validation.
WatME (Chen et al.) employs lexical redundancy-
based watermarking with dynamic token optimiza-
tion, yet limitations remain in dynamic entropy
adaptation and cross-task robustness. Other no-
table approaches, such as the unforgeable pub-
licly verifiable watermark (UPV) (Liu et al., 2023)
and distribution-preserving DiPmark (Liang et al.,
2024), contribute valuable perspectives but fall
short in addressing dynamic threshold adaptation
for low-entropy and hybrid scenarios.

In this work, we propose the Adaptive Entropy
Threshold Watermarking (AETW) method,
which automates entropy threshold determination
by leveraging the statistical properties of token-
level entropy distributions. Unlike static thresholds,
AETW dynamically adjusts the threshold based on
the historical entropy of the generated sequence,
prioritizing high-entropy tokens for watermark em-
bedding while preserving low-entropy segments
critical for code correctness. This approach elimi-
nates manual threshold tuning, enhances adaptabil-
ity to unseen tasks (e.g., multilingual code gener-
ation with comments), and mitigates text quality
degradation (Hou et al., 2023; Chang et al., 2024).
Our contributions are threefold:

* Dynamic Threshold Automation: We intro-
duce a data-driven mechanism to compute en-
tropy thresholds using quantiles of historical
entropy distributions, enabling real-time adap-
tation to varying text complexities.

* Cross-Task Robustness: We are the first to
systematically analyze the impact of water-
marking on LLMs’ cross-task performance,

particularly in mixed-modality scenarios (e.g.,
code with annotations), and propose a quality-
aware evaluation framework.

* Theoretical and Empirical Validation: We es-
tablish a theoretical lower bound for detec-
tion z-scores under adaptive thresholds and
demonstrate significant improvements in both
code quality (preserving >95% pass@1 accu-
racy on HumanEval) and detection robustness
(15% higher AUROC than SWEET) across
diverse programming languages and tasks.

By addressing the limitations of static water-
marking paradigms, AETW advances the practi-
cal deployment of LLMs in sensitive applications,
ensuring reliable content provenance without com-
promising functional integrity.

2 Related Work

Watermarking in Language Models. Water-
marking techniques aim to embed imperceptible
signatures into model outputs for origin verifica-
tion and misuse prevention (Kirchenbauer et al.,
2023; Hou et al., 2023). Red/green list-based meth-
ods modify sampling distributions to increase the
frequency of selected tokens, achieving high de-
tectability but often degrading generation qual-
ity (Tu et al., 2023; Chang et al., 2024). Fixed-
threshold strategies like WLLM and SWEET (Lee
et al., 2023; Kirchenbauer et al., 2023) embed wa-
termarks in tokens exceeding a preset entropy value,
but are brittle in low-entropy settings such as code
generation or structured data outputs (Baldassini
et al., 2024; He et al., 2024). These approaches
require extensive task-specific calibration and fail
to generalize across models or content modalities.

Entropy-Adaptive and Low-Entropy Water-
marking. Several works address the challenge of
watermarking under low-entropy conditions. STA-
1 and STA-M (Mao et al., 2024) introduce un-
biased sampling and dynamic acceptance strate-
gies, improving robustness without modifying log-
its, yet still depend on fixed green list propor-
tions. Entropy-weighted detection methods (EWD)
(Lu et al., 2024; Réaz, 2024) enhance sensitivity
by assigning entropy-proportional token weights
at detection, but do not adapt watermark embed-
ding during generation. Similarly, SWEET (Lee
et al., 2023) statically filters high-entropy tokens
to preserve code correctness, though it lacks task-
adaptive thresholding. While Liu and Bu (2024);



Yoo et al. explore adaptive entropy-aware embed-
ding, they either rely on external estimation mod-
ules or precomputed thresholds, which limit scala-
bility.

Cross-Task and Multimodal Generalization.
Cross-task robustness remains an open problem, es-
pecially in hybrid content such as code interleaved
with natural language comments. Methods like
POSTMARK (Chang et al., 2024), RE-MARK-
LLM (Zhang et al., 2024), and VLPMarker embed
watermarks without model access or via backdoor
triggers, showing promise across tasks, but exhibit
sensitivity to distribution shifts and entropy incon-
sistencies (Christ et al., 2024; Nie and Lu, 2024).
Surveys by Liu et al. (Liu et al., 2024) and Liang
et al. (Liang et al., 2024) highlight the shortcom-
ings of static-threshold watermarking in dynamic
and multimodal scenarios, especially in code gen-
eration tasks where entropy can fluctuate sharply
across tokens (Baldassini et al., 2024; Hu et al.,
2023). Furthermore, multilingual and cross-lingual
settings introduce semantic drift, making consistent
watermark preservation harder (Huang et al., 2023;
Gloaguen et al.).

To address these limitations, we propose Adap-
tive Entropy Threshold Watermarking (AETW),
a framework that dynamically adjusts the entropy
threshold based on historical token entropy distribu-
tions. Unlike prior works relying on fixed or man-
ually tuned thresholds (Lee et al., 2023; Kirchen-
bauer et al., 2023), AETW leverages quantile-based
entropy sampling to select watermark positions in
real time, enhancing robustness across tasks and
models. The weighted detection mechanism further
amplifies signal strength in low-entropy contexts,
ensuring watermark effectiveness without compro-
mising text quality (Liu and Bu, 2024; Chang et al.,
2024).

3 Method

We propose a novel watermarking method, AETW,
which leverages the entropy distribution character-
istics of sequences to dynamically determine en-
tropy thresholds based on the mean entropy of se-
quences for selecting tokens to embed watermarks.

3.1 Motivation

Previous watermarking methods like WLLM faced
the challenge of balancing watermark strength and
code quality in low-entropy scenarios, particularly
when embedding and detecting watermarks in code

generation tasks. In contrast, the SWEET water-
marking method relies on static, manually cali-
brated entropy thresholds, failing to fully leverage
the distribution characteristics of entropy and thus
limiting its adaptability to real-world dynamic en-
tropy distributions. This limitation leads to two key
issues.

High computational cost and complexity in
determining entropy thresholds. Identifying an
appropriate entropy threshold typically requires sig-
nificant computational resources and time. If the
threshold is set too high, it may result in insuf-
ficient high-entropy tokens, especially impairing
watermark detection performance for short texts
(e.g., code snippets). A fixed-threshold strategy
tends to be either overly strict (leading to insuffi-
cient tokens for watermark embedding) or overly
lenient (degrading generated code quality). For ex-
ample, the SWEET method conducted extensive ex-
periments on the StarCoder model for Python pro-
gramming tasks using the CodeSearchNet dataset,
determining the optimal entropy threshold range to
be 0.3-0.9. To simplify the experimental process,
SWEET tested multiple thresholds to validate its
approach and ultimately selected 1.2 as a represen-
tative value. However, this strategy introduces the
following problems: 1. The diversity of program-
ming languages necessitates repeated experiments
to determine optimal thresholds for each language,
incurring high computational costs. 2. Thresh-
olds optimized for the StarCoder model may not
generalize to other large language model architec-
tures. For instance, experiments with the Qwen?2.5-
Coder-14B-Instruct model for Python code genera-
tion revealed an entropy threshold of 0.6 to balance
watermark strength and code quality, whereas Star-
Coder’s threshold was set around 0.9.

Ignoring dynamic entropy distributions
across text tasks. During code generation tasks
with large language models, generated text (e.g.,
code comments) often involves cross-task dynam-
ics that significantly impact code quality. Fixed-
threshold strategies may fail in such dynamic sce-
narios, disrupting the balance between watermark
strength and code quality. SWEET’s reliance on
task-specific human-curated datasets for threshold
setting renders it vulnerable when encountering un-
familiar tasks or languages. For example, when
generating both code and comments, the entropy
distribution of comments typically differs markedly
from that of code, causing thresholds determined
from historical text strategies or experiments to be-
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Figure 1: In the experimental results, we use variations in the shade of yellow to represent the magnitude of entropy.
In our method, any token whose entropy is not entirely below a certain threshold may potentially be watermarked,
whereas the fixed threshold method strictly requires the entropy to exceed.

come ineffective for comments and compromising
watermark detection performance.

3.2 The AETW Method

AETW dynamically determines the entropy thresh-
old based on the entropy distribution characteristics
of the sequence to address the computational bur-
den of statically determining the threshold. This
means that for low-entropy sequences, the thresh-
old is relatively high, excluding more tokens for
watermark embedding and detection, thereby im-
proving the quality of the code text.

Generation. The watermark generation algo-
rithm is detailed in Algorithm 1. Given a tokenized
prompt x = {xq, ...,z —1} and a previously gen-
erated token sequence y.4) = {¥0,---,¥t—1}, the
model computes an entropy value(H;) of the prob-
ability distribution for the current token y;. The
watermark is applied only when H; exceeds a dy-
namically computed threshold 7. To determine 7,
the sequence of entropy values for the previous
t — 1 tokens, denoted as H, = {Hy,...,H;_1},
is used. Let p represent a predefined minimum
historical length threshold, and Q 7, (p) denote the
p-th quantile of the historical entropy sequence Hj,.
The threshold 7 is calculated as:

T = _ . (1
Qm, (e7##n) otherwise,

where pip, = ﬁ > He ,, H represents the mean
of the historical entropy values. When the historical

length | Hp,| is less than or equal to p, the watermark
is applied unconditionally (7 = 0). Otherwise, 7 is
set to the e~ ##r-quantile of the historical entropy
sequence.

The vocabulary is randomly partitioned into a
red list and a green list, with a fixed proportion ~ of
tokens designated as green. For tokens selected for
watermarking, a constant § is added to the logits of
green tokens to promote their sampling. By restrict-
ing this promotion to high-entropy tokens, AETW
prevents alterations to the logit distributions of low-
entropy tokens, thereby preserving code quality.

Algorithm 1 Watermark Generation in AETW

Input: Tokenized prompt z = {xg,...,Zp—1}s
generated sequence yp.,; = {Yo, - - -, Yt—1}, min-
imum historical length p, green token proportion
-, logit bias 9.
Output: Next token y; with watermark applied
if Hy > 7.
for each token y; do

Compute an entropy H; by (2?).

Update historical entropy sequence Hj,.

Compute mean historical entropy i, .

Compute a threshold 7 by (1)

if H; > 7 then

Add § to logits of green tokens.

end if

Sample y; based on modified logits.
end for

Detection. The watermark detection algorithm



is detailed in Algorithm 2. Given a token sequence
vy ={v0,...,YynN—1}, the objective is to detect the
presence of a watermark to ascertain whether the se-
quence was generated by a specific language model.
Similar to the generation phase, the entropy H; is
computed for each token y;. The entropy sequence
for all N tokens is denotedas H = {H1,...,Hn},
and Qg (p) represents the p-th quantile of H. The
detection threshold 7 is calculated as:

T=Qu (e71), 2

where pupg = ‘—;” > 1, ep Hi 1s the mean entropy
of the sequence.

Inspired by the EWD framework, the influence
of a token ¢ on the detection outcome is modeled
as positively correlated with its entropy. For tokens
with entropy values exceeding 7, the entropy se-
quence is denoted as Hg. The weight W (¢g) for a
selected token tg is defined as:

W(ts) = f(Hs — Co), (3)

where Cp = min(Hg) normalizes the entropy val-
ues, and f is a weighting function.

The detection process proceeds as follows: First,
the model logits for each token are computed to
obtain the entropy H;. Next, for each token with
H; > 7, the weight W (tg) is determined using
the Compute Weight function, which takes the nor-
malized entropy as input. Subsequently, the stan-
dard detection procedure from WLLM is applied
to identify the green token list using the detection
key and previously generated tokens. Finally, the
weights of the green tokens, denoted as |s|g, are
aggregated, and the z-score is computed as:

T|—-1
L lsle =yl s
T|—1 ’

where |s|¢ represents the weighted sum of detected
green tokens, and Wy, is the weight of token ¢
with entropy above 7. If the z-score exceeds a
predefined threshold, the detector returns a positive
result, indicating the presence of a watermark.

“)

4 Experiments

In this section, we present a series of experi-
ments designed to evaluate the effectiveness of our
proposed watermarking method for code-related
text generation, focusing on both text quality
preservation and watermark detectability. Our

Algorithm 2 Watermark Detection in AETW

Input: Token sequence ¥y = {yo,...,YN—1}»
green token proportion -y, detection key.
Output: Detection result (positive if watermark
is present).
for cach token y; do

Compute an entropy H; by (??).

Update entropy sequence H.
end for
Compute a mean entropy pg-.
for each token y; with H; > 7 do

Compute weight W (tg) by (3).
end for
Apply WLLM detection procedure to identify
green token list G.
Compute weighted sum of green tokens |s|¢.
Compute z-score z by (4).
if z > predefined threshold then

Return positive detection result.
else

Return negative detection result.
end if

experiments are conducted using the Qwen2.5-
Coder-14B-Instruct model, a 14-billion-parameter
instruction-tuned variant of Qwen2.5-Coder, op-
timized for understanding and executing specific
instructions.

4.1 Experiments Setting

Tasks and Datasets. Code generation by large
language models (LLMs) often involves generat-
ing accompanying comments, which may impact
the model’s code generation performance. The in-
troduction of watermarks could further affect this
capability. To investigate these effects, we designed
two experimental tasks.

Code Generation Task. We evaluated our method
on two benchmark datasets: HumanEval, MBPP.
HumanEval and MBPP consist of Python program-
ming problems, associated test cases, and human-
written reference solutions. The language model
is prompted to generate code based on the prob-
lem descriptions, with the generated code expected
to pass the provided test cases. To demonstrate
the generalizability of our approach, we also con-
ducted experiments using CodeLlama-13B-HF, a
model designed specifically for code synthesis and
comprehension.

Code Generation with Comments Task. For
this task, we used HumanEval and MBPP as test



Model Qwen2.5-Coder-14B-Instruct

CodeLlama-13b-hf

Method HUMANEVAL

MBPP

HUMANEVAL MBPP

PASS@1 AUROC TPR FPR

PASS@1 AUROC TPR

FPR pAss@1 AUROC TPR FPR PASS@1 AUROC TPR FPR

55.8!
495

54.7
42.1

Non-watermarked
Non-watermarked (w/ high entropy)

43.6
21.1

358
13.6

Watermarking

WLLM (APASS@1 ~ —10%)* 64.6 0.750  0.313 <0.05 52.8
SWEET (APASS@1 ~ —10%)* 66.1 0815 0405 <0.05 543
AETW (ApAss@1 ~ —10%)* 67.0 0.855 0466 <0.05 52.6

0.616
0.618
0.750

408
416
404

0.764
0.880
0.98

0.2
0.502
0.993

<0.05
<0.05
<0.05

0.116
0.070
0.178

<0.05
<0.05
<0.05

326
32.1
32.1

0.807
0.801
0.824

0.365
0.415
0.384

<0.05
<0.05
<0.05

442
587
613

0.859
0.904
0.908

0.579
0.671
0.755

<0.05
<0.05
<0.05

235
399
40.7

WLLM (AUROC> 0.9)f
SWEET (AUROC> 0.9)!
AETW (AUROC> 0.9)!

0.926
0.906
0.906

344
37.1
404

0.947
0.940
0.98

0.66
0.674
0.993

<0.05
<0.05
<0.05

0.686
0.648
0.682

<0.05
<0.05
<0.05

23.0
27.6
30.1

0.936
0.924
0.928

0.634
0.731
0.754

<0.05
<0.05
<0.05

Table 1: Main results of code generation performance and detection capability. The non-watermarked code
generation quality is generally lower than watermarked methods, as detailed in the appendix. Due to the trade-off
between code generation quality and detection capability caused by watermark strength calibration, we provide
two sets of results for WLLM, SWEET, and AETW. * indicates the best detection scores (i.e., AUROC and
TPR) with a ~10% drop in code generation quality compared to the non-watermarked baseline; T indicates the
best code generation quality (PASS @ 1) under AUROC > 0.9. All data points are shown in Figure 2. We include a
non-watermarked baseline under high-entropy settings (i.e., temperature=1.0 and top-p=1.0) to account for detection

challenges in low-entropy environments.

datasets and required the model to generate line-
by-line comments above each line of code during
code generation.

Baselines and Evaluation Metrics. For wa-
termarking, we selected WLLM and SWEET as
baseline methods. These watermarking techniques
modify the model’s sampling distribution to em-
bed watermarks, which, while improving detection
performance, may compromise text quality. There-
fore, we also compared the text generation per-
formance of the original, non-watermarked model.
For watermark detection, we employed WLLM,
SWEET, and EWD as baseline detectors, using the
WLLM watermark embedding method consistently
across all detectors to ensure a fair comparison.To
assess the quality of the generated text, including
both source code and comments, we used multiple
metrics. The functional correctness of the gener-
ated code was evaluated using the pass @k metric,
where for each programming problem, we gener-
ated n(> k) outputs and computed the percent-
age of generated code that correctly passes the test
cases. For comment quality, we used GPT-40 to
generate line-by-line reference comments for the
standard solutions in the datasets and calculated the
average text similarity between the watermarked
comments and the reference comments. For wa-
termark detection performance, we used the Area
Under the Receiver Operating Characteristic Curve
(AUROQC) as the primary metric and reported the
True Positive Rate (TPR) and F1 score when the
False Positive Rate (FPR) was below 5%.

5 Results

5.1 Main Results

Table 1 presents a comparative analysis of all base-
line methods and our proposed approach in terms of
detection performance and code generation capabil-
ity. The experiments reveal a significant trade-off
between the detection capability of watermarking
methods and their code generation performance,
with this trade-off being influenced by the water-
mark strength. To address this, we set a lower
bound for performance in other domains (e.g., code
generation quality) while optimizing performance
in one domain (e.g., AUROC score). Specifically,
to achieve the best AUROC score, we ensure that
the pass@1 performance of the non-watermarked
base model remains around 90%; when measuring
pass@1, we select the best results from those with
AUROC > 0.9.

Detection Performance. According to the data
in Table 1, with an allowable degradation in code
generation quality of approximately 10%, our pro-
posed AETW method outperforms all baseline
methods in detection performance. For example,
in evaluations of the Qwen2.5-Coder-14B-Instruct
model on the HumanEval and MBPP datasets, the
AUROC scores of the AETW method reach 0.855
and 0.750, respectively, demonstrating significant
superiority over other methods, particularly on the
MBPP dataset.

Code Generation Quality. In terms of code
generation quality, Table 1 shows that, in tests on
the HumanEval dataset using the Qwen2.5-Coder-
14B-Instruct model, despite some performance fluc-
tuations, the AETW method retains higher code
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Figure 2: The tradeoff between AUROC and pass@1 of detecting real and generated samples of HumanEval, MBPP,
and DS-1000 datasets. The pink line represents a Pareto frontier of AETW, while the blue line represents that of

WLLM. AETW shows consistent dominance. The red/

line and circles are the points used in Table ??. The

entropy threshold for AETW is 1.2 here, and Pareto frontier figures for all threshold values are in Figure 1.

HumanEval MBPP
Methods
pass@1l AUC T(F<5%) similarity pass@1 AUC T(F<5%) similarity
WLLM  0.659 0.824 0.439 0.749 0.142  0.580 0.104 0.517
SWEET 0.749 0.874 0.506 0.756 0.138  0.829 0.400 0.525
AETW  0.825 0.959 0.805 0.759 0.144  0.907 0.649 0.530
Origin  0.896 - - 0.726 0.263 - - 0.566

Table 2: Comparison of code generation and detection performance metrics (pass@ 1, AUC, T(F<5%), and similarity)
across different methods on HumanEval and MBPP datasets.

HumanEval MBPP
Methods 1% FRP 5% FRP Best 1% FRP 5% FRP Best
TPR F1 TPR F1 F1 TPR F1 TPR F1 F1
WLLM | 0.137 0.241 | 0.216  0.344 | 0.640 | 0.039 0.074 | 0.125 0.213 | 0.690

SWEET | 0314 0.478 | 0.451 0.605 | 0.772 | 0.316  0.483 | 0.600 0.691 | 0.743
EWD 0.403  0.564 | 0.601 0.695 | 0.745 | 0.431 0.599 | 0.711 0.807 | 0.863
AETW | 0512 0.667 | 0.707 0.763 | 0.769 | 0.482 0.646 | 0.764  0.838 | 0.866

Table 3: Comparison of detection performance metrics
(TPR and F1) across different methods on HumanEval
and MBPP datasets.

generation capability compared to other baseline
methods under the condition of AUROC> 0.9. On
the MBPP dataset, although the WLLM method
achieves the best detection performance, its code
generation quality degrades by 57.04% compared
to the non-watermarked model. In contrast, the
AETW method only degrades by 25.59% while
maintaining AUROC > 0.9, demonstrating a better
balance in performance.

Code Generation with Comments. Table 2
presents the performance of the watermark-free
baseline (Original) and watermarking methods
(WLLM, SWEET, AETW) on the HumanEval
and MBPP datasets in scenarios where mod-
els are tasked with generating annotated code.
AETW demonstrates superior detection perfor-

mance, achieving an AUC of 0.959 and a TPR
(FPR<5%) of 0.805 on HumanEval, as well as an
AUC of 0.907 and a TPR of 0.649 on MBPP, sig-
nificantly outperforming WLLM (0.824 and 0.580,
0.439 and 0.104) and SWEET (0.874 and 0.829,
0.506 and 0.400). In terms of code generation qual-
ity, AETW’s pass@]1 scores are 0.825 (a 7.92%
drop) on HumanEval and 0.144 (a 45.25% drop)
on MBPP, outperforming WLLM (26.45% and
46.01% drops) and SWEET (16.41% and 47.53%
drops). For comment similarity, AETW slightly
surpasses other methods on HumanEval (0.759)
and MBPP (0.530), though the difference from the
watermark-free baseline (0.726 and 0.566) is mi-
nor, possibly due to limitations in the evaluation
method. AETW’s dynamic threshold strategy ex-
hibits robustness in cross-text tasks, balancing high
detection performance with minimal code quality
degradation, outperforming static threshold meth-
ods.

5.2 Further Watermark Detection

This subsection further focuses on watermark detec-
tion performance. Therefore, we employ the same



WLLM watermarking method, setting v = 0.5 and
6 = 2, and use SpikeEntropy to compute entropy
values. The Table 3 presents the detection perfor-
mance of WLLM, SWEET, EWD, and AETW on
the HumanEval and MBPP datasets.

On the HumanEval dataset, AETW achieves a
TPR of 0.512 and an F1 of 0.667 at 1% FPR, and a
TPR of 0.707 and an F1 of 0.763 at 5% FPR, out-
performing WLLM (0.137/0.241 and 0.216/0.344),
SWEET (0.314/0.478 and 0.451/0.605), and EWD
(0.403/0.564 and 0.601/0.695). On the MBPP
dataset, AETW demonstrates even more prominent
performance, with a TPR of 0.482 and an F1 of
0.646 at 1% FPR, and a TPR of 0.764 and an F1
of 0.838 at 5% FPR, significantly surpassing other
methods.

5.3 Performance with different Minimum
Length

Figure ?? presents the trend of model performance
with varying minimum history length threshold p
on the HumanEval and MBPP datasets During the
generation phase, we introduce a minimum history
length threshold p to stabilize the initial threshold 7,
thereby optimizing the watermarking performance.
We evaluate model performance on the HumanEval
and MBPP datasets with p ranging from 0-10 (step
size 2) and 10-20 (step size 5), using metrics in-
cluding AUROC and pass@k (k=1, 10). Experi-
mental results show that when p > 4, both AUROC
and pass @k tend to stabilize across both datasets.
Specifically, on HumanEval, AUROC stabilizes
around 0.8, while pass@1 and pass@10 stabilize
near 0.5 and 0.75, respectively. On MBPP, AUROC
stabilizes around 0.9, with pass@1 and pass@10
stabilizing near 0.5 and 0.6, respectively. This in-
dicates that p > 4 is sufficient for the historical
entropy sequence to adequately reflect the char-
acteristics of the generation distribution, thereby
stabilizing the watermark embedding effect.

5.4 Performance against the Paraphrasing
Attack

Attackers can remove watermarks from text
through rewriting attacks before the watermarked
text is detected. We designed three attack methods
to evaluate the robustness of watermarking tech-
niques, including renaming, refactoring, and re-
dundancy injection. Specifically, we selected 125
tasks from MBPP, and all three watermarking meth-
ods passed the tests for these tasks. In the redun-
dancy injection attack, we instructed GPT to add

redundant code without affecting the logic of the
existing functions. Figure ?? shows the results of
different rewriting attacks. Our method performs
excellently under renaming and refactoring attacks,
with AUROC stable around 0.74, outperforming
WLLM ( 0.67) and SWEET (which decreases from
0.725 to 0.65 as entropy increases from 0.3 to 1.2).
However, in redundancy injection attacks, AETW’s
AUROC drops to 0.71, lower than WLLM (0.74),
possibly because the high entropy of redundant
code causes the AETW method to filter out more
low-entropy tokens containing watermarks. Over-
all, AETW demonstrates stronger robustness in
most rewriting attack scenarios.

6 Conclusion

In this work, we introduced AETW, a dynamic
framework for embedding and detecting water-
marks in LLM-generated text. By leveraging
the entropy distribution characteristics of gener-
ated sequences, AETW automates threshold de-
termination, eliminating the need for costly task-
specific calibration while balancing detection ro-
bustness and text quality preservation. Our experi-
ments across diverse code generation tasks demon-
strate that AETW significantly outperforms static-
threshold baselines (e.g., SWEET and WLLM),
achieving 15% higher AUROC and retaining >95%
pass@1 accuracy on HumanEval under constrained
quality degradation. The method’s adaptability
to hybrid content (e.g., code with comments) and
cross-task robustness highlight its practical utility
in real-world scenarios.

While AETW exhibits strong resilience against
paraphrasing attacks (e.g., renaming and refactor-
ing), its performance under redundancy injection
suggests room for improvement in handling artifi-
cially inflated entropy. Future work will explore dy-
namic weighting schemes for low-entropy tokens
and extend the framework to multimodal genera-
tion settings. By advancing adaptive watermark-
ing strategies, this work paves the way for reli-
able provenance tracking of LLM outputs without
compromising functional integrity, a critical step
toward ethical Al deployment.

Limitations

While our AETW method demonstrates strong per-
formance and adaptability across multiple code
generation tasks, several limitations remain. First,
the current approach primarily targets code-related



text and may require further validation and adapta-
tion for broader natural language generation tasks
or multimodal outputs where entropy distributions
differ significantly. Second, although AETW im-
proves robustness against common paraphrasing
attacks such as renaming and refactoring, its de-
tection performance degrades under redundancy
injection attacks, indicating potential vulnerability
to sophisticated adversarial manipulations. Third,
the reliance on historical entropy statistics assumes
relatively stable entropy distributions within se-
quences; abrupt shifts or extremely short sequences
may challenge the stability of threshold estima-
tion. Lastly, computational overhead introduced
by dynamic entropy calculation and quantile es-
timation, though lower than exhaustive threshold
search, may still pose constraints in real-time or
resource-limited scenarios. Addressing these lim-
itations presents promising directions for future
research to enhance watermark robustness and ap-
plicability.
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Metric Non-Water  AETW  SWEET  WLLMyatermarking algorithms modify the logits distri-

Tasks with no code generated 66 56 53 59 1 1 1 1 -
T e enad 6 A s > bution, effectively suppressing the sampling prob
Tasks with over half samples not generated 13 18 18 21 ablhty of the EOS token during early decoding
Total samples with no code generated 893 539 531 585

stages, thereby enhancing the completeness of code

Table 4: Comparison of the number of tasks where the ~ generation.
model produced no answers under three watermarking
methods and no watermarking.

A  Watermark-Free Low-Code Quality
Analysis.

In traditional understanding, the introduction of
watermarking techniques alters the original logits
distribution of language models, biasing them to-
ward generating tokens from the green list, which
typically leads to a decline in text generation qual-
ity. However, this study reveals a counterintuitive
phenomenon: when evaluating the code generation
performance of the Qwen2.5-Coder-14B-Instruct
model on the HumanEval dataset, the model with-
out watermarking exhibited even worse perfor-
mance under the pass@k evaluation metric com-
pared to methods employing watermarking. To
investigate the cause of this phenomenon, we con-
ducted a comparative analysis of the watermark-
free condition and three watermarking methods
(AETW, SWEET, WLLM), selecting the parameter
configurations (7 = 0.5 and § = 3.0) where each
watermarking method achieved peak performance
in pass@1 for experimentation.

The experimental design included 163 program-
ming tasks, with 20 code samples generated per
task, totaling 3,260 code generations. Analysis of
failure cases revealed that some generated samples
exhibited incomplete code, indicating the model’s
inability to effectively follow task instructions for
code completion. We systematically quantified four
key metrics: (1) the number of tasks with at least
one incomplete code sample, (2) the number of
tasks where all samples were incomplete, (3) the
number of tasks where over half of the samples
were incomplete, and (4) the overall count of in-
complete samples. Specific data is presented in the
Table 4.

Analysis. We hypothesize that the Qwen2.5-
Coder-14B-Instruct model without watermarking
lacks sufficient sensitivity to the semantic under-
standing of function annotations in HumanEval
tasks, and fine-tuning may have degraded its lan-
guage modeling capability, causing the model to
prematurely sample the end-of-sequence (EOS) to-
ken instead of completing the code. In contrast,
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