
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BRIDGING THE TRAINING-INFERENCE GAP IN LLMS
BY LEVERAGING SELF-GENERATED TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models are often trained to maximize the likelihood of the next token
given past tokens in the training dataset. However, during inference time, they
are utilized differently, generating text sequentially and auto-regressively by using
previously generated tokens as input to predict the next one. Marginal differences
in predictions at each step can cascade over successive steps, resulting in different
distributions from what the models were trained for and potentially leading to
unpredictable behavior. This paper proposes two simple approaches based on model
own generation to address this discrepancy between the training and inference
time. Our first approach is Batch-Scheduled Sampling, where, during training,
we stochastically choose between the ground-truth token from the dataset and the
model’s own generated token as input to predict the next token. This is done in an
offline manner, modifying the context window by interleaving ground-truth tokens
with those generated by the model. Our second approach is Reference-Answer-
based Correction, where we explicitly incorporate a self-correction capability into
the model during training. This enables the model to effectively self-correct the
gaps between the generated sequences and the ground truth data without relying on
an external oracle model. By incorporating our proposed strategies during training,
we have observed an overall improvement in performance compared to baseline
methods, as demonstrated by our extensive experiments using summarization,
general question-answering, and math question-answering tasks.

1 INTRODUCTION

The common approach to training auto-regressive models is known as teacher forcing (Williams &
Zipser, 1989). In this method, the ground truth token from the previous time step is utilized as the
input for the model at the current time step. This technique allows the model to learn relationships
between tokens more effectively, facilitating faster convergence during the training process. While
this training technique has been widely adopted in previous works (Cho et al., 2014; Gregor et al.,
2014; Bahdanau et al., 2015; Vinyals et al., 2015; Parmar et al., 2018; Fakoor et al., 2017; 2018; 2020;
Esser et al., 2020; Chang et al., 2022; Li et al., 2024; Liu et al., 2024), it can also lead to overfitting
and undesirable behavior (Bengio et al., 2015; Bachmann & Nagarajan, 2024). In particular, when
a model is solely trained on the provided ground-truth tokens, it may fail to behave reliably when
encountering its own generations later, which can include unseen tokens. This occurs because, during
inference, the model must rely solely on its own previous generations/predictions rather than the
actual ground truth; hence, any small error can propagate through subsequent time steps, resulting
in compounding errors and, therefore, unpredictable behavior. This issue is commonly known as
exposure bias (Bengio et al., 2015; Ranzato et al., 2015; Schmidt, 2019; He et al., 2019).

Current transformer-based (Vaswani et al., 2017) methods for aligning large language models (LLMs)
with human preferences, such as Reinforcement Learning from Human Feedback (RLHF), are also
auto-regressive models (Ziegler et al., 2020; Ouyang et al., 2022; OpenAI, 2023; Gemini-Team,
2024). Supervised Fine-Tuning (SFT) is employed to fine-tune the pre-trained model using human
demonstrations (utilizing teacher forcing) as the initial step of this alignment method. This fine-tuned
model is then further refined using reinforcement learning through a reward model that serves as a
proxy for human preferences (Ouyang et al., 2022). Since SFT is used as a standalone alignment
method and also serves as the initialization for other steps in RLHF, such as the RL step that
exclusively uses its own generations, having an SFT model that can utilize its own generations during

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

training to develop tolerance for the shift between ground-truth data and its own generations seems
both necessary and increasingly important. Therefore, it is important to develop an SFT model that
is not solely trained on ground-truth data, which is more prone to overfitting and, consequently, to
training-inference discrepancies, but also incorporates its own self-generated data during training to
closely align with what it encounters during inference.

To bridge the discrepancies between how the model is trained and how it is used during inference, we
propose two approaches that both leverage the model’s own generations to address this issue. First, we
train the model in a manner akin to how samples are generated during inference. Specifically, instead
of relying solely on ground-truth tokens during training (teacher forcing), we expose the model to its
own generations, adopting the scheduled sampling (Bengio et al., 2015) for LLMs but in an offline
and batch manner, particularly during SFT training. While scheduled sampling and its variants have
been popular with smaller models, especially recurrent-based ones (Lamb et al., 2016; Goyal et al.,
2017; Li et al., 2020), they have not been widely adopted for LLMs due to their complexity and the
practical challenges of incorporating them during training. We propose an offline and batch version
of scheduled sampling called Batch-scheduled Sampling (BASH), which is more practical and can be
easily adopted during SFT training. Despite its effectiveness, one of the main problems with BASH
is that the model’s own generated tokens at each time step can deviate from the ground-truth tokens.
When interleaved with ground-truth tokens, the resulting sequence can differ significantly from the
ground truth, complicating training and ultimately leading to slower training time, which negatively
impacts results. To address this, we introduce Reference-Answer-based Correction (RAC), where we
explicitly incorporate a self-correction capability into the model. This approach resembles Dataset
Aggregation (Ross et al., 2011) in imitation learning but employs a self-supervised objective without
relying on an external oracle model.

To evaluate the effectiveness of our proposed approaches, we provide a comprehensive empirical
comparison and ablation study of our method across a range of standard benchmark tasks, such as
summarization (Stiennon et al., 2020) and general (Ding et al., 2023) and math question-answering
tasks (Cobbe et al., 2021; Hendrycks et al., 2021). This evaluation is conducted in settings where we
have access only to the human demonstrations data, which is primarily applicable to the SFT stage.
Our results, based on win rates against the reference for the summarization task and length-controlled
win rates (Dubois et al., 2024a) on the AlpacaEval 2.0 benchmark (Dubois et al., 2024b) for QA
tasks, clearly demonstrate that our proposed approaches are effective in improving performance.
Additionally, we demonstrate that initializing a model trained using our approach, followed by
fine-tuning with preference data through a direct preference alignment method (Rafailov et al., 2024),
leads to better results compared to initializing with a standard SFT model.

2 BACKGROUND

Given a pre-trained auto-regressive language model parameterized by ω, our objective is to fine-tune
this model using human demonstration (a.k.a. expert) data1 to ensure that it generates text aligned
with the demonstration data. Consider a dataset D = {(xi, yi)}Ni=1 where xi and yi represent a
query/prompt and its corresponding continuation, respectively. Each example is a sequence of tokens
xi = (x1

i , . . . , x
T
i) and yi = (y1i , . . . , x

L
i), where T and L indicate the lengths of the prompt and

continuation, respectively2.

To fine-tune this auto-regressive model with D, we employ a maximum-likelihood objective, defined
as follows:

JSFT(θ) =
1

|D|
∑

(x,y)∈D

L∑
j=0

log pθ(y
j | x, y<j) (1)

where θ is the model parameters initialized from ω, y<j = (y0, y1, . . . yj−1), y0 shows the beginning-
of-sentence token, L denotes length of the continuation sequence y, and x = (x1, . . . , xT) indicates
a prompt of length T . To maintain consistency with current literature, we refer to this method as
SFT (Ouyang et al., 2022).

1Note that demonstration data does not always need to come from humans, as it can also be synthetically
generated from another model.

2To simplify notation, we drop the subscript i from equations whenever it clears from the context.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 AUTO-REGRESSIVE GENERATION

After the model is trained, we use it to perform conditional auto-regressive generation by specifying a
prefix sequence x1:T (i.e. a prompt/query) and sampling the remaining sequence z (i.e. continuation)
one token at the time, using the prefix and the previously generated tokens as a context:

zk ∼ pθ(·|x, z<k), k = 0, · · · ,K (2)
where the current context looks as follows:

zT+k+1
context = (x1, . . . , xT︸ ︷︷ ︸

prompt

, z0, z1, . . . , zk︸ ︷︷ ︸
generated tokens so far

)

This process is repeated until the stopping condition is met (i.e., the maximum sequence length is
reached or the end-of-sentence token is generated). Throughout the remainder of this paper, whenever
generation is mentioned, we will utilize the auto-regressive approach explained above.

3 METHODS

The objective function in Eq. (1) is known as teacher-forcing (Williams & Zipser, 1989) learning
method for auto-regressive models, where it utilizes the ground-truth token from the previous time
step as input to the model at the current time step. This can help the model learn more quickly,
but it can also lead to overfitting. In particular, models trained exclusively on ground-truth data
might exhibit inconsistent and undesirable behavior when faced with their own generated tokens
during inference, especially if the generated token was not seen during training. Motivated by these
challenges and to bridge the gap between training and inference, we propose two approaches in
the following sections to address the shortcomings of the teacher-forcing method, making training
resemble inference as closely as possible.

3.1 BATCH-SCHEDULED SAMPLING

Scheduled sampling. To align the model’s behavior during training with how it functions during
inference, and to account for its auto-regressive nature, we update Eq. (1) so that it consumes its own
generated tokens in addition to the ground truth tokens during training, but in a controlled manner.
To achieve this, the scheduled sampling (SCS) method from Bengio et al. (2015) can be utilized. The
goal of the scheduled sampling method is to stochastically include the model’s generated tokens in an
online manner during training:

JSCS(θ) =
1

|D|
∑

(x,y)∈D

L∑
j=0

log pθ(y
j | x, g<j) (3)

where g<j is a mixture of ground truth tokens and the model’s own generations. To construct g, we
first sample zj from the model output given the previous context g<j input: zj ∼ pθ(·|x, g<j). Then,
gj is created by randomly selecting either zj or yj as the token with probability β:

gj =

{
zj with prob. β
yj otherwise

(4)

Here, β represents the mixing factor: when it equals 0, g is exactly the same as y. However, when β
equals 1, g becomes completely different from y, as every token is auto-regressively generated by the
model, and the ground truth continuation tokens are completely discarded. Notice that, the context
g<j in JSCS(θ) is a function of the current parameter θ, though we do not propagate the gradient
through it in the standard SCS.
Remark 1 (Scheduled sampling is not scalable). While SCS (and its variants) has proven effective
with small models (Bengio et al., 2015; Lamb et al., 2016; Goyal et al., 2017; Li et al., 2020),
particularly recurrent-based networks, its computational complexity outweighs its benefits for LLMs.
This is why it has not been widely adopted for training large models. Specifically, because LLMs
require distributed training across many GPUs, switching between training and inference modes
per tokens would not only significantly slow down the training but also lead to significant GPU
under-utilization and memory related issues.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Batch-scheduled Sampling (BASH)
Input: Pre-trained model ω, training datatset D.

1: Initialize θ ← ω
2: for k = 1, 2, . . . ,K1 do
3: Sample mini-batch B = {(x, y)} ∼ D
4: ∇θJSFT(θ)← ∇θ

1
|B|

∑
(x,y)∈B

∑
j log pθ(y

j | x, y<j)

5: θ ← θ − α∇θJSFT(θ)
6: end for
7: for iteration 1, 2, . . . ,H do
8: Construct dataset Ds in offline manner as explained in Sec. 3.1
9: for k = 1, 2, . . . ,K2 do

10: Sample mini-batch B = {(x, y, ŷ)} ∼ Ds

11: ∇θJSFT(θ)← ∇θ
1
|B|

∑
(x,y)∈B

∑
j log pθ(y

j | x, y<j)

12: ∇θJBASH(θ)← ∇θ
1
|B|

∑
(x,y,ŷ)∈B

∑
j log pθ(y

j | x, ŷ<j)

13: θ ← θ − α
(
∇θJSFT(θ) +∇θJBASH(θ)

)
14: end for
15: end for
Output: θ.

Mihaylova & Martins (2019) also highlighted the difficulty of applying scheduled sampling to
transformer-based models and proposed structural changes to the transformer through a two-pass
decoding strategy. In the first pass, model predictions are generated without accumulating gradients,
and in the second pass, the generated data is mixed with the ground truth to update the model.
Although this approach shows promise in some tasks, it has not been applied to LLMs. This is due to
the required structural changes to the model’s architecture and the discussed scalability challenges.

Batch-scheduled Sampling. To mitigate the limitations discussed in SCS for large models, we
propose a simple yet effective offline approach. A new dataset, Ds = {(xi, yi, ŷi)}Mi=1, is created
offline between training iterations by current model3. While xi remains identical to the original
dataset D, ŷi represents a “mixed” continuation constructed by stochastically combining ground truth
tokens with generated ones from the model, as described in the previous section (see Eq. (4)). It is
important to emphasize that the offline and batch nature of BASH minimizes the cost of switching
between training and inference times by creating Ds only between each iteration of training. In
contrast, SCS switches between training and inference modes at every gradient step, resulting in
significant slowdowns in training time and practical challenges related to distributed training4:

JBASH(θ) =
1

|Ds|
∑

(x,y,ŷ)∈Ds

L∑
j=0

log pθ(y
j | x, ŷ<j) (5)

In practice, to balance optimizing the objective function using generated data and ground-truth data,
we combine Eq. (1) and Eq. (5) (i.e. J = Jsft(θ) + JBASH(θ)), where the only difference is training
data. Moreover, to minimize discrepancies between the current model and the one used for generation,
this procedure can be repeated across different training iterations using the updated model from the
most recent iteration. It is important to note that since the model can generate random tokens at the
beginning of training, which complicates the training process, we start by first optimizing Eq. (1)
alone. After a few iterations, we then begin including BASH. These steps are detailed in Algorithm 1.

It is worth noting that our method offers a distinct advantage over existing approaches, as it does not
necessitate any modifications to the model structure, unlike methods such as Mihaylova & Martins
(2019). Moreover, our method is scalable and can be applied to LLMs as shown in our experiments.

3If we drop ŷi from Ds = {(xi, yi, ŷi)}, we retrieve the original D. Practically, this is useful during training,
as Ds can also function as the original D (when ŷi is dropped), eliminating the need for separate data loaders to
train both SFT and BASH.

4See https://huggingface.co/docs/transformers/en/performance to learn about the
challenges of distributed training.

4

https://huggingface.co/docs/transformers/en/performance

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: How does RAC correct mistakes in model-generated responses? In this example, SFT model
makes a mistake in calculating 3 ∗ $160, 000 + $2, 000, as shown in yellow. However, RAC corrects the error
by replacing the wrong token, 4, with the correct token, 2. This is achieved by forcing the model to fit z̄ that
differ from the original generated response (highlighted in purple), enabling it to self-correct. This example is
based on the GSM8K dataset (Cobbe et al., 2021).

Remark 2 (Parameter β should be chosen to be small). Depending on the value of β, there may
be a distribution mismatch between the ground truth sequences y and the mixed ones g. This gap
can become larger as the value of β approaches 1, as g increasingly differs from y, not just in terms
of a few tokens, but at the sequence level. Also, since scheduled sampling can result in a biased
estimator (Huszár, 2015; Lamb et al., 2016), the training can get more harder, as the model needs
to learn to fit the ground truth data with the altered continuations which are far from each others.
Therefore, it is important to keep the value of β small to avoid making the optimization problem
harder to solve 5.

3.2 REFERENCE-ANSWER-BASED CORRECTION

One of the main problems with scheduled sampling, which mixes ground truth tokens yj and the
model’s own generations zj , is that the resulting sequence g can diverge significantly from the
ground truth sequence y. This means that the generated sequence g not only differs in individual
tokens but also conveys a context and meaning that deviate substantially from y. Importantly,
since the scheduled sampling approach (both online and offline) results in a biased estimator (see
Remark 2), such significant discrepancies between the ground truth and generated sequences can
further complicate training and ultimately lead to slower training/convergence time. To give the
model ability to recover in such scenarios, we propose Reference-Answer-based Correction (RAC),
where we explicitly incorporate a self-correction capability into the model.

To build RAC, we first construct a dataset Dr = {(xi, yi, zi, z̄i)}Ni=1 in an offline manner. Here, z
denotes a sequence of model’s own generated tokens (see Eq. (2)) and z̄ denotes a new target/label
sequence, also composed of the model’s own generated tokens, which is constructed by greedy
sampling from model θ at each time step:

z̄j = argmax
z

pθ(z|f(x, y), z<j)

where f is a prompt template6. The reason for constructing z̄j in this way is to enable the model
to leverage its self-correction capability by incorporating the ground-truth answer y into the input
context. Hence, the maximum-likelihood objective for RAC can be written as follows:

JRAC0
(θ) =

1

|Dr|
∑

(x,y,z,z̄)∈Dr

L∑
j=0

log pθ(z̄
j | x, z<j), (6)

In RAC, the model attempts to maximize the likelihood of correction label z̄j conditioned on the
original prompt x and its own generated tokens z. This contrasts with BASH, where ŷ is used instead
of z, and the target token is always yj , i.e., pθ(yj | x, ŷ<j). It is important to note that z̄j is generated

5In our experiments in this paper, we select β to be equal to 0.2.
6One example for prompt template f(x, y) is “I will give you a question and a reference response. You need

to give a new response based on the reference response. Question: x. Reference response: y”. See Appendix B.1
for the actual templates used in experiments

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Reference-Answer-based Correction (RAC)
Input: Pre-trained model ω, training dataset D.

1: Initialize θ ← ω
2: for k = 1, 2, . . . ,K1 do
3: Sample mini-batch B = {(x, y)} ∼ D
4: ∇θJSFT(θ)← ∇θ

1
|B|

∑
(x,y)∈B

∑
j log pθ(y

j | x, y<j)

5: θ ← θ − α∇θJSFT(θ)
6: end for
7: for iteration 1, 2, . . . ,H do
8: Dr ← ∅
9: for i = 1, 2, · · · , N do

10: Generate model’s response zi by zji ∼ pθ(·|xi, z
<j
i), j = 1, 2, . . .

11: Generate RAC label z̄i by z̄ji = argmaxz pθ(z|f(xi, yi), z
<j
i), j = 1, 2, . . .

12: Dr ← Dr ∪ {(xi, yi, zi, z̄i)}
13: end for
14: for k = 1, 2, . . . ,K2 do
15: Sample mini-batch B = {(x, y, z, z̄)} ∼ Dr

16: ∇θJSFT(θ)← ∇θ
1
|B|

∑
(x,y)∈B

∑
j log pθ(y

j | x, y<j)

17: ∇θJRAC(θ)← ∇θ
1
|B|

∑
(x,z,z̄)∈B

∑
j 1(z̄

j ̸= zj) log pθ(z̄
j | x, z<j)

18: θ ← θ − α
(
∇θJSFT(θ) +∇θJRAC(θ)

)
19: end for
20: end for
Output: θ.

using greedy sampling, conditioned on f(x, y) and z. Conditioning on f(x, y) rather than just x
allows for additional context and guidance during the generation process.

One issue that arises in Eq. (6) is when z̄j becomes identical to the generated token zj . When this
occurs, it can lead to model collapse (Shumailov et al., 2024), as the model is likely to only learn
trivial solutions. To mitigate this issue, we mask out such tokens and rewrite the objective function as
follows:

JRAC(θ) =
1

|Dr|
∑

(x,z,z̄)∈Dr

L∑
j=0

1(z̄j ̸= zj) log pθ(z̄
j | x, z<j), (7)

Similar to BASH’s algorithm, we combine Eq. (1) and Eq. (7) by first optimizing Eq. (1) alone for
several iterations to avoid relying on model generation at the start of training. After this initial phase,
we then include RAC objective function and jointly optimize with SFT, i.e. J = Jsft(θ) + JRAC(θ).
These steps are detailed in Algorithm 2. Fig. 1 shows an example of how the self-correction capability
of RAC helps in producing correct results.

4 EXPERIMENTS

In this section, we present a comprehensive empirical comparison of our proposed methods across a
range of standard benchmark tasks, including summarization and question answering (QA). These
results show that the effectiveness and robustness of our approaches across different settings. See
also Appendix B.2 for a description of our experiments and Appendix B.3 for more ablation studies.

4.1 EXPERIMENT SETUPS

Benchmark Tasks and Evaluation Metrics

For summarization task, we use OpenAI TL;DR dataset (Stiennon et al., 2020), which includes
posts from Reddit forum and their corresponding summaries from human labelers. We evaluate
performance by calculating the win rate against the reference summary and reporting Rouge F1
scores (Lin, 2004) on its test set.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For general QA task, we use the Ultrachat-200K dataset, a high-quality 200K subset of the Ultrachat
corpus (Ding et al., 2023), which contains approximately 1.4 million general QA dialogues generated
by ChatGPT (3.5) Turbo API. We evaluate performance using the length-controlled (LC) win
rate (Dubois et al., 2024a) on the AlpacaEval 2.0 benchmark (Dubois et al., 2024b).

For math QA task, we also compare the language model’s ability in mathematical calculation and
reasoning. To do this, we use two commonly used math QA datasets: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021), and evaluate the accuracy on their respective test sets.

Baselines Methods

Considering the setting of this paper, which applies in cases where access is limited only to human
demonstration data, we compare our methods against existing approaches that also rely exclusively on
demonstration data: SFT (Ouyang et al., 2022), NEFTune (Jain et al., 2023), and SPIN (Chen et al.,
2024). These methods represent a strong set of supervised approaches based on demonstration data.
NEFTune introduces noise to input token embeddings to improve the model’s robustness, and SPIN
utilizes self-replay to ensure that the generated outputs remain indistinguishable from the reference
demonstrations.

Training Details

We use Pythia-1B as the pre-trained model for the summarization experiments and Mistral-7B-v0.1
for the general QA and math QA experiments. Additionally, we use Mistral-7B-sft-beta as the SFT
model for the general QA task, as it is a fine-tuned version of Mistral-7B-v0.1. Therefore, we report
its performance as SFT model and use it to fine-tune SPIN and our methods. For the summarization
and math QA tasks, following SPIN (Chen et al., 2024), we first perform SFT on the pre-trained
models and then train SPIN, BASH, and RAC on top of them. See Appendix B.2 for more details on
the baselines and our methods.

4.2 MAIN RESULTS

4.2.1 SUMMARIZATION TASK

For this task, we train SFT and NEFTune for two epochs, starting from the Pythia-1B base model,
and then continue fine-tuning SFT model with SPIN, BASH, and RAC for one more epoch, as no
noticeable improvements were observed beyond that point. We compare their performance based on
the win rate of the generated outputs against the reference responses on the test set, evaluated by the
GPT-4 Turbo model. The evaluation prompt template is provided in Appendix B.1. To ensure more
comprehensive results, we repeat the training with three different random seeds and report the win
rates along with the Rouge F1 scores (Lin, 2004) in Table 1.

Table 1: Comparison of the performance (higher is better) of our methods against others on the summa-
rization task. We train each method using three different seeds and report the average win rate across them in
addition to Rouge scores. The gray denotes the standard deviations.

win rate (%) Rouge 1 Rouge 2 Rouge L

SFT 27.03±0.38 31.69 11.02 24.53
NEFTune 27.21±0.40 31.97 11.16 24.73
SPIN 21.07±1.31 30.46 10.09 22.55
BASH (ours) 28.12±0.43 32.00 11.27 24.89
RAC (ours) 28.02±0.39 32.01 11.20 24.80

As Table 1 shows, although our methods outperform the others, the improvement is not particularly
significant. This could be attributed to the nature of the summarization task, where the prompts and
queries are quite long, but the generated responses are very brief. Since our method operates directly
on the response space, the relatively short length of the responses means that there is less to correct
during the generation steps. Despite the inherent limitations of the task, our method still improves the
base models, demonstrating its applicability across different tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of the performance (higher is better) of our methods against others in the General
QA task using the length-controlled win rate on the AlpacaEval 2.0 benchmark. These results shows that
our method consistently stands out, maintaining its effectiveness across different generation strategies.

Temperature=0.7 (%) Greedy (%)
Generation 1 Generation 2 Generation 3 Average

SFT 7.90 8.45 7.74 8.03±0.30 7.06

NEFTune 7.60 6.99 7.56 7.38±0.28 6.64

SPIN iter-1 8.76 9.27 9.41 9.15±0.28 8.66
iter-2 8.44 8.89 8.17 8.50±0.30 7.64

BASH (ours) iter-1 8.77 8.56 8.48 8.60±0.12 7.31
iter-2 8.73 9.38 9.10 9.07±0.27 8.42

RAC (ours) iter-1 9.95 9.15 9.49 9.53±0.33 9.04
iter-2 10.68 10.54 9.89 10.37±0.34 9.41

4.2.2 GENERAL QA TASK

Following SPIN (Ouyang et al., 2022), we randomly sample 50K prompts from the full training set
to generate offline datasets Ds and Dr for our methods and then use these datasets to train our BASH
and RAC as explained in Sec. 3.

To provide a comprehensive view of the results, we use the length-controlled win rate on AlpacaEval
2.0 as our evaluation metric, which compares the generated outputs against those from GPT-4,
following the standard AlpacaEval prompt template. For each method, we evaluate performance
using two types of generation: 1) Sampling-based generation with a temperature of 0.7, aligning
with the default settings of the Mistral-7B model and its derivative, Zephyr-7B-Beta (Tunstall et al.,
2023), on AlpacaEval. Given the inherent randomness in single generation evaluations, we repeat the
generation three times and report the average evaluation for each generation. 2) Greedy generation,
which selects the next token by choosing the one with the highest probability.

As shown in Table 2, our RAC achieves the highest win rate in both sampling-based and greedy
generation settings. Additionally, BASH also demonstrates consistent improvements compared to
other methods, except for SPIN. It is important to note that our methods show nearly monotonic
improvements and consistent behavior across different iterations, unlike methods such as SPIN 7.
This consistency highlights the applicability of our approach beyond a single iteration, suggesting
that it can be effectively utilized with larger models and in more iterations, resulting in consistent
improvements over time.

4.2.3 MATH QA TASK

In this setting, we train SFT and NEFTune for two epochs, starting from the Mistral-7B-v0.1 base
model, and then continue fine-tuning SFT model with SPIN, BASH, and RAC for one more epoch.
We prompt the model to generate answers in the GSM8K and MATH test sets with query template
attached in Appendix B.1. We then calculate the strict match accuracy of the generated answers
with the ground truth. We use sampling-based generation with a temperature of 0.1, repeating the
generation three times, and report the average accuracy in Table 3. As the results show, BASH and
RAC outperform other methods on both GSM8K and MATH benchmarks. These results further
demonstrate the effectiveness of our methods across diverse set of tasks.

4.2.4 ALIGNMENT WITH PREFERENCE DATA

In this experiment, we further demonstrate that our model can serve as a more effective initialization
than standard SFT throughout the alignment pipeline. Specifically, we show that using our method

7We observe a decrease in the LC win rate of SPIN in the second iteration, primarily due to a significant
increase in generation length while the content remains similar. Since the length-controlled win rate accounts for
output length, this results in a performance drop. Similarly, the win rate for greedy generation is lower than for
random sampling at a temperature of 0.7, as greedy generation tends to be more verbose.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison of the test accuracy (higher is better) of our methods against baseline algorithms
on GSM8K and MATH tasks, averaged across three different generations used for evaluation.

GSM8K MATH

SFT 56.76±0.09 13.11±0.12
NEFTune 55.85±0.38 12.13±0.03
SPIN 46.31±0.97 6.85±0.08
BASH (ours) 60.22±0.31 14.59±0.09
RAC (ours) 59.41±0.73 13.75±0.17

to initialize a model, followed by fine-tuning with preference data via DPO (Rafailov et al., 2024),
leads to better results than initializing with a standard SFT model. For this, we closely follow the
settings of the zephyr-7b-beta model (Tunstall et al., 2023) and use the preprocessed UltraFeedback
dataset (Cui et al., 2024) as the preference data. The results of this experiment, presented in Table 4,
illustrate the importance of our approach in enabling downstream alignment methods to achieve
improved performance when initialized with our method instead of standard methods like SFT.

Table 4: Comparison of the performance (higher is better) of DPO initialized with our methods versus
others on the AlpacaEval 2.0 benchmark. These results clearly demonstrate the effectiveness of our method
and provide further evidence of its applicability throughout the alignment pipeline.

Temperature=0.7 (%) Greedy (%)
Generation 1 Generation 2 Generation 3 Average

SFT + DPO 14.17 14.74 13.28 14.06±0.60 14.22
BASH + DPO 14.66 13.34 13.61 13.87±0.57 14.39
RAC + DPO 16.40 15.21 15.95 15.85±0.49 15.35

5 CONCLUSION

In this paper, we propose principled methods to bridge the gap between training and inference time in
LLMs by leveraging self-generated tokens. Specifically, this gap arises from the training strategy
where the model uses the ground truth token from the previous time step as the input for the model at
the current time step. While this strategy is effective during training, the model must rely on its own
predictions as input for subsequent steps during inference. This reliance on its own predictions can
lead to error accumulation and degraded performance, particularly when the generated sequences
deviate from the conditions encountered during training. Scheduled sampling has emerged as an
alternative approach, where the model is gradually exposed to its own generated tokens during
training, thus more closely simulating the conditions of inference. Despite its effectiveness, especially
with smaller models and particularly in recurrent models, this approach has not been successfully
adopted in training LLMs due to the computational and practical complexities of incorporating
it into the training process. However, our proposed methods are specifically tailored for LLMs
without requiring structural changes to the model. Specifically, our approaches, BASH and RAC,
incorporate the model’s own generations in an offline manner, allowing training that closely mirrors
the inference process. Moreover, RAC also builds in self-correction capability during training, which
becomes critical when the model’s own generations deviate significantly from the ground truth. These
methods can be easily integrated into the training of LLMs without requiring changes to the training
process or model architectures, which was not the case with previous methods. Through a series
of comprehensive experiments, we demonstrate that our method outperforms existing approaches
in both summarization and question answering (QA) tasks. The results indicate that by aligning
the training process with the conditions of inference, we can enhance the model’s performance and
reliability, ultimately leading to more accurate and contextually appropriate results.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 2296–2318. PMLR, 21–27 Jul 2024.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. International Conference on Learning Representations, 28, 2015.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems, 28,
2015.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2022.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine Learning, 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024a.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems, 36,
2024b.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2020.

Rasool Fakoor, Abdel rahman Mohamed, Margaret Mitchell, Sing Bing Kang, and Pushmeet Kohli.
Memory-augmented attention modelling for videos. arXiv:1611.02261, 2017.

Rasool Fakoor, Xiaodong He, Ivan Tashev, and Shuayb Zarar. Constrained convolutional-recurrent
networks to improve speech quality with low impact on recognition accuracy. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3011–3015,
2018.

Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, and Alexander J. Smola. Trade: Transformers for
density estimation. arXiv preprint arXiv:2004.02441, 2020.

Rasool Fakoor, Jonas Mueller, Zachary C. Lipton, Pratik Chaudhari, and Alexander J. Smola. Time-
varying propensity score to bridge the gap between the past and present. In ICLR, 2024.

Gemini-Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Differentiable scheduled sampling for credit
assignment. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 366–371, 2017.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive
networks. In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32, ICML’14, pp. II–1242–II–1250, 2014.

Tianxing He, Jingzhao Zhang, Zhiming Zhou, and James Glass. Quantifying exposure bias for neural
language generation. 2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood, adversary?,
2015.

Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, et al. Neftune: Noisy
embeddings improve instruction finetuning. arXiv preprint arXiv:2310.05914, 2023.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 29, 2016.

Jianqiao Li, Chunyuan Li, Guoyin Wang, Hao Fu, Yuhchen Lin, Liqun Chen, Yizhe Zhang, Chenyang
Tao, Ruiyi Zhang, Wenlin Wang, Dinghan Shen, Qian Yang, and Lawrence Carin. Improving
text generation with student-forcing optimal transport. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156, November 2020.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, and Rasool Fakoor.
Tail: Task-specific adapters for imitation learning with large pretrained models. In International
Conference on Learning Representations (ICLR 2024), 2024.

Tsvetomila Mihaylova and André F. T. Martins. Scheduled sampling for transformers. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research
Workshop, pp. 351–356, July 2019.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer, 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Florian Schmidt. Generalization in generation: A closer look at exposure bias. arXiv preprint
arXiv:1910.00292, 2019.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 631(8022):755–759, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator, 2015.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, 1989.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.

A APPENDIX

B EXPERIMENT DETAILS

B.1 PROMPT TEMPLATES

RAC prompt template f(x, y) in summarization task. In experiment of summarization task, x
is the original post and y is the reference summary from the TL;DR dataset. we will use the below
template to generate RAC label.

[POST]: x
[REFERENCE SUMMARY]: y
Re-write a new summary of the post and cover the main content in the reference summary.
TL;DR:

RAC prompt template f(x, y) in general QA and math QA task. In experiment of QA tasks, x is
query and y is reference answer from the datasets. We will use the below template to generate RAC
label. 〈/s〉is the special token indicating the end of sentence.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

〈|system|〉
You are a helpful assistant to answer user’s question. Your will be given both a question and ref-
erence response. You need to give a new response to the question and contain the main content in
the reference response.〈/s〉
〈|user|〉
x
Answer this question based on the following reference response: y〈/s〉
〈|assistant|〉

Evaluation prompt template in summarization task. We use the below template to evaluate the
win rate of generated summary against the reference summary with CoT. We also randomly shuffle
the order between generated and reference summary to reduce the evaluation bias. In experiment, we
will replace {post} by the post from test set and replace {summary A}, {summary B} by the shuffled
generated and reference summaries.

Which of the following summaries does a better job of summarizing the most important points in
the given forum post, without including unimportant or irrelevant details? Judge based on accuracy,
coverage, and coherence.
[post]
{post}
[summary A]
{summary A}
[summary B]
{summary B}
Instructions:
FIRST provide a one-sentence comparison of the two summaries, explaining which you prefer and
why. SECOND, on a new line, state only A or B to indicate your choice. Your response should
use the format:
Comparison: one-sentence comparison and explanation
Preferred: A or B

Evaluation prompt template in math QA task. We use the template below to test the accuracy of
the generated answer. Unlike other benchmarks, we use zero-shot (i.e., no QA examples are provided
before query) and CoT (Wei et al., 2022) to prompt the language model to generate answers. In the
experiment, we will replace {query} by the questions from the test set.

〈|system|〉
〈/s〉
〈|user|〉
{query}
Let’s think step by step.〈/s〉
〈|assistant|〉

B.2 HYPERPARAMETERS AND MORE EXPERIMENT SETTINGS

More implementation details.

We implement baselines and our methods based on two codebases: summarize-from-feedback8

(for summarization task) and Alignment-Handbook9 (for general QA and math QA tasks), which
use DeepSpeed ZeRO (Rajbhandari et al., 2020) for higher training efficiency and less computa-
tion overhead. In summarization task, we generate the response from the fine-tuned model with
temperature=0.01 for win rate evaluation following the codebase used.

We train SFT models for summarization and math QA tasks from the corresponding base pretrained
models. In particular, we do not pack data during SFT training, which is introduced in the T5
model (Raffel et al., 2020) and is a default option in alignment-handbook repository. For NEFTune,
we adopt the noise scale α = 5 in experiment. For SPIN, we use the official implementation10 and

8We implement algorithms based on OpenAI summarize-from-feedback and its clean-up version.
9See link of alignment-handbook.

10See link of SPIN.

13

https://github.com/openai/summarize-from-feedback
https://github.com/vwxyzjn/summarize_from_feedback_details
https://github.com/huggingface/alignment-handbook
https://github.com/uclaml/SPIN

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

follow all training settings to generate data and fine-tune based on the SFT model in general QA
and math QA tasks. The only difference is that we adopt Mistral-7B-sft-beta as the base model. In
summarization task, we implement SPIN ourselves to be compatible with the summarization code
repository. We also search the hyperparameter β of SPIN among [0.1, 0.5, 1.0, 5.0] and report the
highest win rate. Note that the enumeration starts from 0 in the SPIN paper, while ours starts from 1.
Therefore, iteration 0 in the SPIN paper corresponds to iteration 1 in our paper.

Hyperparameters.

We attach the hyperparameters used in the experiment in table 5.

Table 5: Hyper-parameters used for experiments.

Summarization General QA Math QA

base pretrained model pythia-1B Mistral-7B-v0.1 Mistral-7B-v0.1
precision bfloat16 bfloat16 bfloat16
optimizer AdamW AdamW AdamW
learning rate 3× 10−6 5× 10−6 5× 10−6

learning rate warmup steps no warmup 10% 10%
learning scheduler cosine cosine cosine
global batch size 512 512 512
SFT training epoch 2 / 1
training iteration (BASH&RAC) 1 2 1
training epochs in each iteration (BASH&RAC) 1 [1, 2] 1
mixture coefficient β in BASH generation 0.2 0.2 0.2

B.3 MORE EXPERIMENT RESULTS

Qualitative Analysis Visualization. To illustrate how our methods address the training-inference gap
in autoregressive model training, we evaluate the discrepancy between model-generated responses
and reference responses on the UltraChat dataset. We begin by selecting two queries from both the
training and test sets and then use models fine-tuned with different methods to generate 256 responses
by sampling with a temperature of 0.7. To measure the deviation of the generated responses from
the reference responses, we first utilize Sentence Transformer to extract the embeddings for each
response. We then compute the distance between the embeddings of each generated response and its
corresponding reference response, which we refer to as sentence distance. The distribution of these
distances is visualized in Fig. 2. As shown in these plots, BASH and RAC reduce the discrepancy
between the generated responses and the reference ones, except for the question with very open
answers such as “write a story” in test example 2, indicating that our approach effectively narrows
the gap between training and inference time.

Queries used in Fig. 2 for embedding distance computation.

Query of training example 1:

What factors influenced the decision to build the Panama Canal, and how did it transform global
trade and transportation?

Query of training example 2:

What are the risks associated with IoT devices, and how can they be mitigated?

Query of test example 1:

How did the fall of the Soviet Union impact the economies of Eastern Europe?

Query of test example 2:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 2: Visualization of the embedding distance between generated and reference responses. The left
two figures are based on queries from the training set of the UltraChat-200K dataset, while the right two figures
are from the test set. Corresponding queries for each figure are summarized at the bottom, with full queries
available in Appendix B.3. We generate 256 responses from models and compute their embedding distances to
the reference responses. Each violin plot includes an inner box plot that displays the maximum, third quartile,
median (indicated by a white line), first quartile, and minimum distances, while the shape of the violin represents
the estimated probability density of the embedding distance.

Using vivid imagery and descriptive language, write a compelling short story about a time traveler
who finds themselves transported to the year 2077. Explore the world of the future, including
advanced technology, cultural and societal changes, and environmental shifts. Consider adding a
twist or unexpected turn to the plot to keep your audience engaged. Your story should be between
500-1000 words in length and should captivate the reader from beginning to end.

The performance comparison with different dataset sizes.

In this experiment, we compare our methods with baselines on training datasets with different sizes
in the summarization task. Specifically, we randomly choose a subset of training data with proportion
10%, 20%, 50%, 100%. Then we keep all other settings the same and train the model for the same
steps as the full dataset training. For example, when training on the 20% data, we will train for 10
epochs for SFT and 5 epochs for BASH or RAC (note that for the full data setting, we train 2 epochs
for SFT and 1 epoch for BASH or RAC). We still report the win rate against the reference summary
on the whole test set using the same evaluation prompt.

Figure 3: The win rates of summarization task with different dataset sizes. Each results are averaged over
three seeds. In each seed, the subset of trainig data is different and we train model on the different subset for
SFT, BASH and RAC. The win rate is evaluated on the whole test set.

The final results are reported in Fig. 3. We observe no notable performance drop when the dataset
size exceeds 20%. When the dataset size becomes smaller, teacher-forcing-style SFT training suffers
from the data insufficiency, leading to a more severe distribution shift between (Fakoor et al., 2024)
training and inference. In this case, our methods can mitigate this issue and exhibit a relatively
smaller win rate decrease compared to SFT.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The performance of SFT training for more steps.

We train the SFT fine-tuned model by SFT for more steps as an ablation. We also compare its LC win
rate on AlpacaEval 2.0 with our methods in Fig. 4. More SFT training steps improve the performance
of model on general QA task. However, there is a performance drop at the third epoch. On the
contrary, our methods ensure a monotonic increase in LC win rate and can consistently outperform
the SFT baseline in each iteration.

Figure 4: The AlpacaEval 2.0 LC win rates comparison of our methods and SFT. Each results are averaged
over three generations. We leverage SFT on the UltraChat dataset to continue to train the existing SFT model
and compare its performance with our methods. In the figure, the epoch 1 corresponds to the first iteration and
epoch 2&3 correspond to second iteration for BASH and RAC. In the beginning of each iteration, we will offline
generate BASH sequences or RAC labels by current model.

The performance of training without combining the SFT loss.

Table 6: LC win rate comparison w.o. combining the SFT loss. We evaluate the average of three sampled
generation with temperature=0.7. The gray denotes the standard deviation of three evaluations.

with SFT loss w.o. SFT loss

SFT 8.03±0.30
BASH 8.06±0.46 9.07±0.27
RAC 3.24±0.48 10.37±0.34

As shown in Table 6, there will be a large performance drop if we do not include the SFT loss in train-
ing. One potential reason is that the learning objective of BASH or RAC is a biased estimator (Lamb
et al., 2016) of the expert language model, which can be viewed as the underlying model of SFT
dataset D. During training, the language model is enforced to fit the labels conditioned on a student
input distribution significantly shifts from the one in the SFT objective in Eq. (1). Therefore, we
include SFT loss, an unbiased behavioral cloning objective, to train the LM to imitate the underlying
expert model of the dataset.

The performance comparison between Scheduled sampling (SCS) and Batch-scheduled sam-
pling (BASH).

Table 7: Comparison of win rate on the summarization task. We compare the performance

win rate (%) Rouge 1 Rouge 2 Rouge L

SFT 27.03±0.38 31.69 11.02 24.53
SCS 28.24±0.46 32.03 11.22 24.95
BASH 28.12±0.43 32.00 11.27 24.89

Table 7 shows that scheduled sampling (SCS) achieves a win rate similar to BASHas expected.
However, BASHis much more computationally efficient than SCS, which is crucial in the practical
implementation of LLM training. To provide further perspective on the effectiveness of our approach,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

we conduct experiments comparing the computational overhead of SCS and BASH using 1B and 7B
models.

Table 8: Computation overhead comparison between SCS and BASHwith pythia-1B model on the
summarization task. We compare the performance on an 8xA6000 (48G) machine. For fair comparison, we
set the local batch size as 16 and gradient accumulation step as 4 for all experiments. In this case, the global
batch size is 16 ∗ 4 ∗ 8 = 512. The computation time of SCS includes both (online) data generation and model
training.

SCS BASH (offline data generation) BASH (training)

Computation time for 1 global batch ∼20.8s ∼0.9s ∼4.4s
Memory usage of each GPU ∼35GB ∼17GB ∼28GB

Table 9: Computation overhead comparison between SCS and BASHwith Mistral-7B model on the
general QA task. We compare the performance on an 8xA6000 (48G) machine. For fair comparison, we set the
local batch size as 8 and gradient accumulation step as 8 for all experiments. In this case, the global batch size is
8 ∗ 8 ∗ 8 = 512. The computation time of SCS includes both (online) data generation and model training.

SCS BASH (offline data generation) BASH (training)

Computation time for 1 global batch ¿3600s ∼370s ∼75s
Memory usage of each GPU ∼46GB ∼22GB ∼36GB

As these results show, BASH requires significantly less GPU memory and computation time than
SCS, making it more practical in LLM training.

B.4 MORE ANALYSIS OF RAC

In this section, we first demonstrate how the RAC correction mechanism operates, followed by an
example illustrating its failure case.

In Fig. 5, we present an example from GSM8K training set to illustrate how RAC leverages in-context
learning to corrects the error in model-generated response by appending the reference response in the
query.

Figure 5: How does RAC correct mistakes in model-generated responses? In this example, SFT model
incorrectly calculates Peter’s age in the initial step, deriving it as 60/2 = 30. However, the model fine-tuned
with RAC produces the correct result. Specifically, the SFT model’s incorrect calculation leads to an age of
30, while the ground truth is 34. To address this error, RAC labels the next token after ”Peter will be 60/2” as
”+” instead of ”=”, guiding the model towards the correct computation. After training with RAC, the model
successfully calculates Peter’s age accurately, resulting in the correct answer.

We also present a failure case of RAC correction. Despite being augmented by the reference answer,
RAC is primarily trained on a self-generated reasoning trajectory and may struggle to identify
complex reasoning errors in the model-generated response. In Fig. 6, the RAC model attempts to
correct the final answer directly; however, the token-wise correction is inconsistent with the context
of the preceding tokens and fails to address the underlying errors in the generated response.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: An example of RAC failure. Given the reference answer, RAC model labels the next token of
80 ∗ 20 ∗ 8 = as 8 to match the ground-truth answer 800. However, such correction is not consistent with the
previous context. Meanwhile, RAC correction fails to find the deeper reasoning error that the entire fence is not
80 long, 20 high or 8 deep and does not correct it when the generated answer multiplies them together.

18

	Introduction
	Background
	Auto-regressive Generation

	Methods
	Batch-scheduled Sampling
	Reference-Answer-based Correction

	Experiments
	Experiment Setups
	Main results
	Summarization Task
	General QA task
	Math QA task
	Alignment with preference data

	Conclusion
	Appendix
	Experiment Details
	Prompt Templates
	Hyperparameters and More Experiment Settings
	More Experiment Results
	More analysis of RAC

