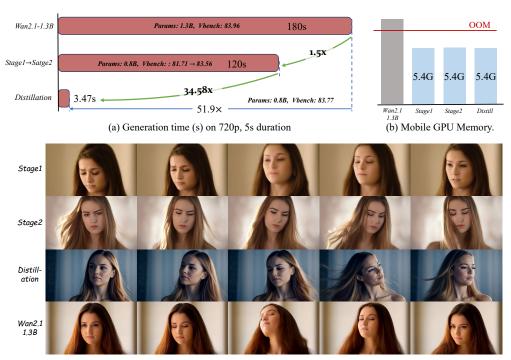
LIGHTNING VIDEO: BUILDING COMPACT DIFFUSION TRANSFORMERS FOR HIGH-FIDELITY ON-DEVICE VIDEO GENERATION

Anonymous authors

Paper under double-blind review



(c) Comparison of generated videos. Prompt: A person is shaking head

Figure 1: Our method generates high-quality videos on mobile devices efficiently. Our Lightning Video, a 0.8B compact diffusion transformer for video generation, achieves performance comparable to state-of-the-art open-sourced models. We report 720p, 5s duration video generation time on a single NVIDIA A800 GPU in (a), report its running time and memory usage on iPhone 16 Pro Max in (b) and compare the video generated by our model in different training stages in (c).

ABSTRACT

Recent advances in Diffusion Transformers (DiTs) have enabled the generation of highly realistic video content, but state-of-the-art models often require billions of parameters, making them impractical for deployment on resource-constrained edge devices, such as smartphones. In this work, we introduce a systematic approach to designing lightweight yet powerful video DiTs tailored for edge scenarios. Our framework centers on three key components: (1) a Taylor-expansion-based pruning initialization that allows flexible model rescaling and rapid capability recovery with limited data; (2) a staged, data-efficient training protocol that couples this initialization with curated datasets and targeted optimization schedules; and (3) a distribution-matching distillation strategy that substantially reduces inference steps while preserving generation quality. We present **Lightning Video**, a 0.8B-parameter model that achieves competitive performance against billion-scale baselines while supporting native execution on edge devices (e.g., iPhone 16 Pro). These results demonstrate the feasibility of delivering high-quality video generation directly on end-user devices, opening new opportunities for practical mobile and creative applications.

1 Introduction

Recent advances in video generation (Henschel et al., 2025; Hong et al., 2022; Kong et al., 2024; Lin et al., 2024; Wan et al., 2025; Wang et al., 2025; Zheng et al., 2024; Ma et al., 2025; Gao et al., 2025; Brooks et al., 2024; Kuaishou) have demonstrated remarkable capabilities, producing movie-quality clips that are both realistic and rich in detail. Among existing approaches, diffusion transformers (DiTs) (Peebles & Xie, 2023) have emerged as the dominant paradigm, delivering state-of-the-art performance in terms of aesthetic quality, visual fidelity, and long-range temporal coherence. While such models highlight the potential of generative modeling for digital content creation, communication, and immersive media, their deployment on edge devices remains an open challenge. Native execution on smartphones and tablets would bring clear benefits—including low-latency generation, enhanced privacy, personalization, and ubiquitous accessibility—similar to the impact achieved by recent progress in on-device large language models. In the streaming era, enabling video generation directly on end-user devices could empower creative applications for a wide range of users.

However, existing state-of-the-art video models rely on billions of parameters and computationally expensive sampling schedules, making them infeasible for mobile deployment without aggressive quantization. Prior research on mobile visual generation either focuses on optimizing individual components (Zou et al., 2025; Wu et al., 2025b) or relies primarily on U-Net-based network architectures (Wu et al., 2025c; Chen et al., 2025; Yahia et al., 2024; Zhao et al., 2024; Zhang et al., 2024b), however, they typically yield compromised generation quality and diverge from the prevailing diffusion transformer paradigm. This architectural deviation limits their representational power and hinders their ability to leverage widespread advancements such as LoRA-based parameter-efficient adaptation. In contrast, attempts to develop mobile-friendly DiT video generation models remain scarce. Recent efforts (Wu et al., 2025a) adhere to a multi-stage pipeline of pruning, training, and step distillation. While its structural pruning stage induces a significant performance degradation compared to the base model and its training strategies require further improvement. Consequently, its generation performance continues to lag substantially behind that of state-of-the-art systems.

In this work, we present a general methodology for constructing compact yet powerful Diffusion Transformer models for video generation, as shown in Figure 1. Our approach is built on two key ideas. First, we introduce an effective and efficient initialization scheme based on Taylor-expansion pruning with no requirement of backward process and massive data, which enables arbitrary model resizing while retaining expressive capacity and allows rapid recovery of generative ability from minimal data. Second, we design a staged training protocol that leverages priors and modest yet high-quality datasets, yielding fast convergence in compact models without requiring massive-scale data. To further enhance inference efficiency, we conduct a distribution matching distillation post-training that compresses diffusion sampling into only a few steps, making real-time generation feasible on mobile hardware.

With these innovations, we present a 0.8B parameter DiT model that achieves performance comparable to models with 2B–8B parameters, while maintaining quantization-free, on-device execution. This result demonstrates that compact diffusion models, when paired with principled initialization and staged training, can rival the performance of much larger systems at a fraction of the compute cost.

Our contributions can be summarized as follows:

- We propose a unified methodology for building compact Diffusion Transformers tailored for resources-constrained environment applications, such as on-device video generation.
- We introduce a computationally efficient Taylor–expansion–based initialization, supporting flexible model scaling and fast capability recovery.
- We develop a staged training framework that integrates strong priors with high-quality, modest-sized datasets for rapid convergence in small models.
- We conduct a distribution matching distillation method that reduces diffusion sampling steps and improves on-device inference efficiency of the model further. We demonstrate that a 0.8B parameter model achieves results comparable to 2B–8B baselines and release all code, pipelines, and pretrained weights to support open research.

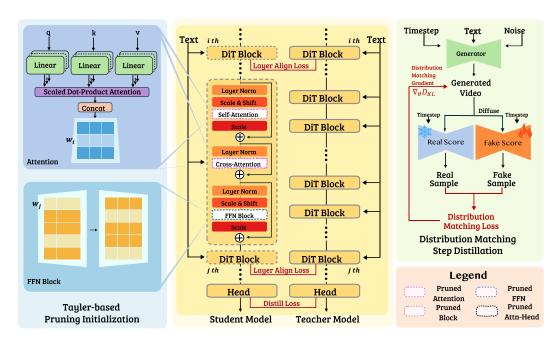


Figure 2: Architecture of Lightning Video and our three stages framework to build the model. The figure demonstrates our pruning initialization, training then step distillation framework to build a compact diffusion transformer.

2 Methods

2.1 Tayler-based Pruning Initialization

Training small yet competitive models often suffers from slow convergence and unstable optimization due to limited parameter capacity. We found that an effective initialization strategy plays a key role in mitigating the training challenges described above. Existing methods (Fang et al., 2023; 2025) either have not proved their effectiveness on the flow matching DiT model or require a costly backwards process to compute the importance scores. We propose a Taylor-based sensitivity analysis method that enables weight initialization through a principled pruning perspective, which only requires model inference and is simple and effective. The procedure is shown on the left side of Figure 2.

Concretely, consider a linear mapping in feed-forward networks (FFN) or in the projection matrices of attention modules in the DiT network, where the transformation can be defined as $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{W}^T + \mathbf{1}\mathbf{b}$. The prediction error with respect to the target output of this linear layer \mathbf{Y} is the difference between the predicted and target outputs, which can be expressed as:

$$\mathbf{E} = \hat{\mathbf{Y}} - \mathbf{Y} \tag{1}$$

where $\mathbf{X} \in \mathbb{R}^{n \times d_{in}}$ is the input feature, $\mathbf{W} \in \mathbb{R}^{d_{out} \times d_{in}}$ and $\mathbf{b} \in \mathbb{R}^{1 \times d_{out}}$ represent the parameter matrix and bias array, respectively, and $\mathbf{1} \in \mathbb{R}^{n \times 1}$ is an all-ones vector for broadcasting the bias. The loss function L is defined as the squared Frobenius norm of the error matrix, which is equivalent to the sum of squared errors and can be computed using the trace operator:

$$L \propto ||\mathbf{E}||_F^2 = \operatorname{tr}(\mathbf{E}^T \mathbf{E}) = \operatorname{tr}\left((\mathbf{X}\mathbf{W}^T + \mathbf{1}\boldsymbol{b} - \mathbf{Y})^T (\mathbf{X}\mathbf{W}^T + \mathbf{1}\boldsymbol{b} - \mathbf{Y})\right)$$
(2)

We only consider the row-wise dimensions of the weight matrix, which correspond to the feed-forward network dimension (ffn_dim) and the number of attention heads. Since these dimensions directly determine the output neurons or filters, their contribution to the loss must be carefully quantified. We therefore formulate the parameter vector as \mathbf{w}_i representing the weights associated with the i-th row of the matrix. To quantify the importance I_i of the i-th row, we approximate the loss variation ΔL induced by pruning this neuron via a second-order Taylor expansion around a stationary point where the gradient vanishes:

$$I_i = \Delta L_i \approx \frac{\partial L}{\partial \boldsymbol{w}_i} \boldsymbol{w}_i + \frac{1}{2} \boldsymbol{w}_i^{\top} \mathbf{H} \boldsymbol{w}_i \approx \boldsymbol{w}_i^{\top} \boldsymbol{x}^{\top} \boldsymbol{x} \boldsymbol{w}_i$$
(3)

where **H** denotes the Hessian block corresponding to the second-order derivatives of the loss with respect to the parameters in the *i*-th row. Since the base model has already converged on the training dataset, we neglect the first-order term where $\partial L/\partial w_i \approx 0$. After evaluating the derivatives in equation 3, we obtain the final expression for the saliency score of the *i*-th row. Moreover, since each row is associated with both weights and a bias term, the pruning rule for the bias b_i follows the same formulation as for w_i , and its saliency score is computed analogously. A step-by-step derivation is provided in Appendix B. In our experiments, we keep the model depth and hidden dimensions unchanged while pruning the attention heads from 12 to 10 and reducing the FFN intermediate dimensions from 8960 to 4480, resulting in a model of 850M parameters.

2.2 Multi-stage Training

To effectively build a compact yet strong video model upon our initialized model with a relatively low training budget, we adopt a two-stage training strategy using high-quality image-video mixed data. In the first stage, we choose Wan2.1-1.3B-T2V (Wan et al., 2025) as the teacher, and the model is jointly optimized with the flow matching loss and distillation objectives, which include output-level and intermediate-layer alignment. In the second stage, we remove the distillation terms and continue optimizing the model only with flow matching, which allows the student to further refine generation quality.

Stage I: Flow Matching with Multi-level Alignment. Flow matching defines a continuous-time generative process by transporting a base distribution $p_0(x)$ (e.g., Gaussian noise) to the target data distribution $p_1(x)$. The key idea is to learn a vector field $v_{\theta}(x,t)$ such that the probability flow ODE: $\frac{dx_t}{dt} = v_{\theta}(x_t,t)$ transports x_t to p_1 at t=1, where $x_t=(1-t)x_0+tx_1$ is the linear interpolation between data and noise and $x_0 \sim p_0$. The flow matching model training objective can be written as:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t \sim \mathcal{U}(0,1), (x_0, x_1)} \left[\left\| v_{\theta}(x_t, t) - \frac{x_1 - x_0}{t} \right\|_2^2 \right], \tag{4}$$

To ensure efficient knowledge transfer from the teacher model f_T to the student f_θ and to accelerate the convergence of the initialized model, we introduce two additional distillation losses. First, we apply an output alignment loss, which encourages the student's output to match that of the teacher at the final layer, defined as:

$$\mathcal{L}_{\text{output}} = \mathbb{E}_{x \sim \mathcal{D}} \left[\| f_{\theta}(x) - f_{T}(x) \|_{2}^{2} \right]. \tag{5}$$

Previous works (Ren et al., 2025; Yu et al., 2024; Jiang et al., 2025) inspire us that aligning intermediate features between teacher and student can further improve training efficiency. Thus, we align selected intermediate representations $\{h_{\theta}^{l}(x)\}$ of the student with their teacher counterparts $\{h_{T}^{l}(x)\}$:

$$\mathcal{L}_{\text{layer-align}} = \sum_{l \in \mathcal{S}} \mathbb{E}_{x \sim \mathcal{D}} \left[\left\| h_{\theta}^{l}(x) - h_{T}^{l}(x) \right\|_{2}^{2} \right], \tag{6}$$

where S denotes the set of aligned layers. Empirically validated, we adopt the L2-norm loss. We find it simple and can further stabilize and improve optimization without introducing additional learnable parameters. As the middle part of Figure 2 shows, the overall objective in Stage I is therefore expressed as:

$$\mathcal{L}_{\text{Stage I}} = \mathcal{L}_{\text{FM}} + \lambda_{\text{output}} \mathcal{L}_{\text{output}} + \lambda_{\text{layer-align}} \mathcal{L}_{\text{layer-align}}, \tag{7}$$

where $\lambda_{\rm out}$ and $\lambda_{\rm laver}$ are weighting coefficients. $\lambda_{\rm out}$ and $\lambda_{\rm laver}$ are set to 1.0 in our experiments.

Stage II: Fine-tuning. Once the student has acquired sufficient knowledge from the teacher, the distillation objectives are removed, and training proceeds only with the flow matching loss:

$$\mathcal{L}_{\text{Stage II}} = \mathcal{L}_{\text{FM}}.$$
 (8)

At this stage, the student model is no longer constrained to overfit the teacher but instead learns to refine its generative capability independently. This design is motivated by our experimental finding that a synergistic stage-gating between alignment and fine-tuning yields superior performance. Specifically, alignment accelerates initial convergence in the first stage, while fine-tuning drives optimal performance gains in the second stage. Detailed analysis can be found in Section 3.3

2.3 DISTRIBUTION MATCHING STEP DISTILLATION

To further reduce the inference cost of our compact video generation model and make it practical for deployment on mobile devices with acceptable latency, we adopt step distillation based on the improved Distribution Matching Distillation framework (Yin et al., 2024b;a). As the right part of Figure 2 presents, let G_{θ} denote the student generator with parameters θ , $z \sim \mathcal{N}(0, I)$ be the input noise, t' is sampled from the student generator schedule, and $z_{t'}$ is retrieved by simulating the denoising process using the student to t'. We denote by $F(\cdot,t)$ the forward diffusion operator that injects noise corresponding to timestep $t \sim \mathcal{U}(0,T)$. Following Yin et al. (2024a), the gradient of distribution matching loss $\mathcal{L}_{\text{Distill}}$ over few steps generator can be written as

$$\nabla_{\theta} \mathcal{L}_{\text{Distill}} = \mathbb{E}_{t,t',z} \left[\left(s_{\text{real}}(F(G_{\theta}(z_{t'}),t),t) - s_{\text{fake}}(F(G_{\theta}(z_{t'}),t),t) \right) \frac{\partial G_{\theta}(z_{t'})}{\partial \theta} \right], \tag{9}$$

where $s_{\rm real}$ and $s_{\rm fake}$ are score functions (Song et al., 2020) estimated respectively from a frozen diffusion model and a learnable critic trained on the student outputs.

In our setting, the distilled student operates with a small number of denoising steps (typically N=4), significantly lowering inference complexity while preserving visual fidelity. The final loss for our distillation stage is therefore where training directly minimizes the distribution discrepancy without auxiliary regression or adversarial objectives. This design allows the compact student model to maintain high-quality synthesis while being deployable on resource-constrained edge devices.

3 EXPERIMENTS

Data construction. For the image dataset, we collected approximately 5M high-quality text-image pairs from Lumina-Image 2.0 (Qin et al., 2025) and Lumina-mGPT 2.0 (Xin et al., 2025), which are leveraged to facilitate joint training across image and video modalities. For the video dataset, we curated 1.5M samples from several publicly available datasets, including Open-Sora-Plan (Lin et al., 2024), OpenHumanVid (Li et al., 2025), OpenVid-1M (Nan et al., 2024), and Panda-10M (Chen et al., 2024b), etc, providing a broad spectrum of human activities and real-world scenarios. In addition, we constructed a supplementary dataset by collecting 3.5M movie clips (segmented into 5-second snippets) and crawling videos from the web. For both the first and second training stages, we adopt a joint image—video training paradigm. The main difference is that, in the second stage, we manually curate a subset of high-quality videos and use them exclusively for fine-tuning. During the distillation stage, only text prompts are provided as input.

Training setup. We use the Wan2.1-1.3B-T2V model (Wan et al., 2025) as our base model for the initialization process, which costs about 5 minutes for inference on a single GPU. The Stage I alignment is conducted on 32 NVIDIA A800 80G GPUs for 10K iterations using the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 1e-4 and beta values of [0.9,0.999]. We gradually reduce the learning rate from 1e-4 to 5e-5 in the Stage II fine-tuning process, which is conducted for 10K iterations on 64 NVIDIA A800 80G GPUs. We set beta values as [0.9,0.95], weight decay as 0, and eps as 1e-15 for better convergence in Stage II. Stage I and Stage II progress use high quality open-sourced as well as internal collected image and video data.

Distillation setup. Following previous works, we collect 300K high quality prompts for distribution matching distillation stage. The distillation experiment is conducted on 32 NVIDIA A800 80G GPUs for 4K iterations. AdamW optimizer is adopted with a learning rate of 1e-6 and beta values of [0.0, 0.999].

Evaluation setup. All evaluation results of our models follow the official procedure of widely-used VBench (Huang et al., 2024). Following CogVideoX (Yang et al., 2024), we use the longer prompt rewritten by GPT-4o (Hurst et al., 2024) from VBench official repository and generate 4 samples for each prompt using different random seeds for all our experiments.

Deployment on iPhone 16 pro max. We deploy our few step model on the iPhone 16 pro max with 8 GB unified memory. We use an INT4 quantized version of the UMT5-xxl-encoder model as the text encoder to avoid OOM on the iPhone. Wan VAE decoding is the main speed bottleneck of

Table 1: **Performance comparison with popular video generation models on VBench.** Our proposed methods (highlighted in green) achieve competitive performance with significantly fewer parameters.* denotes support for running on mobile devices.

Model	Params (B)	Steps	Total score	Quality score	Semantic score	aesthetic quality	motion smoothness	dynamic degree		spatial relationship
Closed-Source Models										
SnapDiT-Server(Wu et al., 2025a)	2.0	-	83.09	84.65	76.86	64.72	_	_	90.57	_
Kling-2407-High(Kuaishou)	-	_	81.85	83.39	75.68	61.21	99.40	46.94	87.24	73.03
SnapDiT-Mobile*(Wu et al., 2025a)	0.9	4	81.45	83.12	74.76	64.16	-	_	92.26	_
SnapGen-V*(Wu et al., 2025c)	0.6	4	81.14	83.47	71.84	62.19	99.29	51.11	92.22	56.20
Pika-1.0(Pika AI)	-	-	80.69	82.92	71.77	62.04	99.50	47.50	88.72	61.03
ModelScope(Modelscope AI)	1.4	50	75.75	78.05	66.54	52.06	95.79	66.39	82.25	33.68
Open-Source Models										
Wan2.1-14B(2503)(Wan et al., 2025)	14	50	86.22	86.67	84.44	_	_	_	-	_
Wan2.1-1.3B(2503)(Wan et al., 2025)	1.3	50	83.96	84.92	80.10	-	_	-	_	_
HunyuanVideo(2412)(Kong et al., 2024)	14	50	83.24	85.09	75.82	60.36	98.99	70.83	86.10	68.68
CogVideoX 1.5(Yang et al., 2024)	5	50	82.17	82.78	79.76	62.79	98.31	50.93	83.42	80.25
Pyramid Flow(Lei et al., 2023)	2.0	20	81.72	84.74	69.62	63.26	99.12	64.63	86.67	59.53
CogVideoX-5B(Yang et al., 2024)	5.0	50	81.61	82.75	77.04	61.98	96.92	70.97	85.23	66.35
T2V-Turbo(Li et al., 2024)	1.6	4	81.01	82.57	74.76	63.04	97.34	49.17	93.96	38.67
Emu3(Wang et al., 2024c)	8.0	-	80.96	84.09	68.43	59.64	98.93	79.27	86.17	68.73
CogVideoX-1.6B(Yang et al., 2024)	1.6	50	80.91	82.18	75.83	60.82	97.73	59.86	87.37	69.90
VideoCrafter-2.0(Chen et al., 2024a)	1.9	50	80.44	82.20	73.42	63.13	97.73	42.50	92.55	35.86
AnimateDiff-V2(Guo et al., 2023)	1.2	25	80.27	82.90	69.75	67.16	97.76	40.83	90.90	34.60
OpenSora V1.2(Zheng et al., 2024)	1.2	30	79.76	81.35	73.39	56.85	98.50	42.39	82.22	68.56
AnimateLCM(Wang et al., 2024b)	1.2	4	79.42	82.36	67.65	67.01	98.16	40.56	91.41	37.14
Ours multi-steps*	0.8	50	83.56	84.66	79.18	66.47	97.53	77.78	93.47	71.33
Ours few-steps*	0.8	4	83.77	85.39	77.29	66.35	98.50	81.94	94.78	74.87

the entire video generation pipeline. (Zou et al., 2025) To accelerate the decoding process, we use TAE-wan2.1, making it 10 times faster compared to the original Wan2.1 VAE. All components are implemented in the Apple-developed *mlx-swift* framework (Hannun et al., 2023), providing a flexible environment for model customization during development.

3.1 QUANTITATIVE EVALUATION

We present comprehensive quantitative comparison between our models and popular academic and commercial video generation models on VBench (Huang et al., 2024), as shown in Table 1. We generate 81-frame horizontal videos at a resolution of 480×832 for our multi-steps and few-steps model, which are saved at 5 seconds(16 FPS) for quantitative evaluation qualitative comparison. The results demonstrate that our method achieves performance comparable to many large-scale models while requiring significantly fewer parameters.

In particular, our few-steps model, with only 0.8B parameters and 3 inference steps, achieves a total score of 83.77, which is on par with or superior to several larger models such as Pika-1.0 (Pika AI) (80.69, parameters not disclosed) and ModelScope (Modelscope AI) (75.75, 1.4B). Moreover, our approach substantially outperforms other lightweight open-source models (e.g., AnimateLCM(Wang et al., 2024b) with 1.2B parameters and 4 steps, scoring 79.42). This highlights the effectiveness of our design in balancing efficiency and quality. Notably, our models also demonstrate strong results across multiple fine-grained metrics. For instance, both variants yield higher scores in object class score (above 93) compared to most competing methods, while maintaining competitive spatial relationship scores.

An additional advantage of our method supports mobile device, as denoted by "*" in Table 1. Compared to other models that can run on mobile devices, such as SnapGen-V(Wu et al., 2025c) and SnapDiT-Mobile(Wu et al., 2025a), our approach achieves superior performance, e.g., total score.

3.2 VISUALIZATION COMPARSION

We compare the generated videos from our multi-steps model and few-steps model with Wan2.1-1.3B-T2V in Fig 3. As shown, our approach achieves higher realism and visual quality, e.g., the cat in (b) and the red panda playing the guitar in (c). The Ours-fewsteps variant demonstrates better shape

Figure 3: Visualization comparison of Ours (Multi-steps), Ours (Few-steps), and Wan 2.1-1.3B.

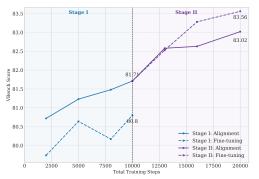


Table 2: **Stage I training loss effectiveness.** VBench (Huang et al., 2024) scores with different loss combinations in distillation training.

Stage I Strategy	МО	SR	AQ	Quality	Semantic	Total
w/o layer-align	61.13	71.99	62.66	82.91	74.36	81.20
w/o image data Full	58.31 65.24	62.56 75.20	61.42 64.07	82.54 82.82	71.85 77.26	80.40 81.71

Figure 4: **Training strategy analysis.** VBench score evolution versus training steps, comparing different training strategies across stages.

Table 3: **Stage II training scheme effectiveness.** VBench (Huang et al., 2024) scores with different strategies in Stage II training.

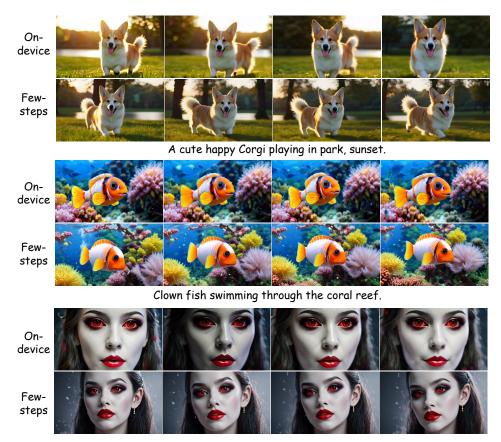
Stage II Strategy	AS	DD	ос	Quality	Semantic	Total
Alignment	22.89	62.50	26.94	83.66	80.50 79.18	83.02
Fine-tuning	23.06	77.78	27.00	84.66		83.56

consistency, such as the bigfoot in (a), whereas Wan2.1-1.3B fails to produce recognizable faces. Furthermore, after the distillation step, we observe a clear improvement in visual fidelity, validating the effectiveness of this stage.

3.3 ABLATION STUDY

We analyze the impact of the Stage I loss and the overall training scheme, and further present and discuss detailed on-device performance results. More results and discussion can be found in Appendix C.

Effect of Training Scheme in Stage I. To better demonstrate the effectiveness of the training losses used in the alignment stage, we calculate the VBench score after removing the layer-wise alignment loss. We also evaluate the influence of the image-video mixed training strategy. All the models are trained for 10K iterations under Stage I setting. As shown in Table 2, incorporating image data leads to notable performance improvements across all aspects. Moreover, the layer-wise alignment loss significantly improves the model's aesthetic quality as well as its overall performance.



Vampire makeup face of beautiful girl, red contact lenses.

Figure 5: Visualization comparing on-device deployment and an A800 GPU server.

Analysis of alignment and fine-tuning training strategy. We analyze the training strategies in Stage I (alignment) and Stage II (fine-tuning) to identify the optimal approach for performance and convergence speed. First, we start from the Stage I alignment checkpoint and compare the two strategies using the same Stage II data, with results presented in Table 3. The table shows that the model trained with the fine-tuning strategy achieves a higher final VBench score (83.56 vs. 83.02) and demonstrates significantly better quality and dynamic degree scores.

We hypothesize that this is due to a conflict between the alignment gradient from the teacher model and the training gradient from the real video data. This conflict likely arises from the domain gap between our training data and the teacher model's pre-training data, which prevents the model from achieving its highest potential performance.

Figure 4 further illustrates this dynamic. In the initial phase, the alignment strategy leverages knowledge distillation, leading to faster initial convergence, while the fine-tuning strategy starts more slowly due to the absence of teacher guidance. However, upon transitioning to Stage II, the unconstrained fine-tuning strategy demonstrates a more effective and sustained performance gain, ultimately surpassing the alignment strategy to reach a higher peak.

Device Performance Analysis. Generating videos in the resolution of 480×832 costs amount of time on device. We decrease the resolution and frames of generated videos in our demo. The detailed performance of our few-steps model on iPhone 16 pro max is reported in Table 4. We generate videos using our few-steps model under on-device setting with TAE-wan2.1 and quantized INT4 text encoder. All videos are generated on mobile device and evaluated on GPU. From Table 4, we observe that our method achieves a multi-fold speedup on mobile devices, though there remains gap (≈ 10 fps) compared to other models such as SnapGen-V(Wu et al., 2025c). This limitation mainly stems from the higher compression ratio of the VAE we adopt ($4\times 8\times 8$), in contrast to SnapGenV's $4\times 16\times 16$ setting. In addition, Fig. 5 presents a visual comparison between on-device and server-side inference, showing that the video quality on mobile devices is nearly indistinguishable from that on the server.

Table 4: On-device deployment performance.

Setting	Resolution	Frames	Infer-Time (s)	Quality	Semantic	Total
Few-steps full	480×832	81	598	85.39	77.29	83.77
Few-steps device	352×624	49	73	85.25	72.53	82.72

4 RELATED WORKS

Video Generation Models. Recent advances in generative modeling have substantially improved text-to-video (T2V) systems. Leading models such as Sora (Brooks et al., 2024), MovieGen (Polyak et al., 2024), and Veo 3 (Google Deepmind) exemplify this shift, integrating high-resolution latent representations, dense captioning modules, and sophisticated cross-frame attention mechanisms to produce temporally coherent, high-fidelity videos with flexible compositionality. In parallel, open-source contributions have accelerated architectural innovation and accessibility. HunyuanVideo (Kong et al., 2024) leverages a 13B-parameter multimodal LLM to enable high-quality generation across diverse prompts. CogVideoX (Yang et al., 2024; Hong et al., 2022) and LTX-Video (HaCohen et al., 2024) adopt unified transformer backbones with improved VAE-based spatial compression to enhance fidelity and efficiency. The Wan2 series (Wan et al., 2025) further extends this line through spatiotemporal VAEs, DiT-based generation blocks, and Mixture-of-Experts routing, supporting efficient synthesis of 480p–720p videos at 24fps on a single GPU and bridging the gap between quality and deployment constraints.

Diffusion Accelerate. To meet the growing demand for real-time and low-latency synthesis, a large body of work compresses diffusion sampling into few- or even one-step generators. These include distillation-based approaches (e.g., Distribution-Matching Distillation (DMD) (Yin et al., 2024c), DMD2 (Yin et al., 2024a)), consistency-based frameworks (Song et al., 2023; Lu & Song, 2024; Wang et al., 2024a), and alternative formulations such as Inductive Moment Matching (Zhou et al., 2025), Shortcut Models (Frans et al., 2024), and MeanFlow (Geng et al., 2025). In parallel, adversarial post-training methods (e.g., LADD (Sauer et al., 2024), APT (Lin et al., 2025)) combine teacher guidance with adversarial objectives for improved one-step generation. These methods are orthogonal to speed-oriented schedulers and pruning strategies. Approaches such as Diff-Pruning Fang et al. (2023) primarily target U-Net-based DDPM pruning, whereas others Fang et al. (2025); Zhang et al. (2024a); Castells et al. (2024) investigate how to preserve or recover model capacity as mush as possible. However, these techniques have been validated only on image generation tasks and neglect the challenges of large-scale, open-domain video generation.

On-Device Video Generation. Simultaneously, on-device video generation has attracted growing attention, driven by the need for privacy, low latency, and interactivity in real-world deployment. Wu et al. (2025a) propose a compression-aware adaptation of Diffusion Transformers, combining lightweight VAEs, tri-level pruning, and adversarial step distillation to achieve real-time synthesis on iPhone 16 Pro Max at over 10 FPS with only four denoising steps. On-device Sora (Kim et al., 2025) adopts a training-free acceleration strategy to optimize model layer and inference process, enabling efficient diffusion inference on iPhone 15 Pro. In parallel, SnapGen-V (Wu et al., 2025c) introduces a lightweight U-Net-based denoising architecture optimized for temporal modeling, achieving generation of 5-second videos within 5 seconds on mobile devices. However, the visual quality of current mobile systems remains limited.

5 CONCLUSION

We introduce a framework for constructing compact yet powerful diffusion transformers for video generation on edge devices. By combining Taylor-expansion-based pruning initialization, a staged data-efficient training protocol, and distribution-matching distillation, our approach enables flexible model size compression, efficient training, and efficient inference while preserving generation quality. The resulting Lightning Video, with only 0.8B parameters, is on par with multi-billion-parameter baselines and executes on mobile hardware without quantization. These results establish the feasibility of high-quality video generation directly on end-user devices, paving the way for practical and accessible mobile creativity.

REFERENCES

- Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as world simulators. 2024. URL https://openai.com/research/video-generation-models-as-world-simulators.
- Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient pruning of latent diffusion models using task-agnostic insights. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 821–830, 2024.
- Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7310–7320, 2024a.
- Jierun Chen, Dongting Hu, Xijie Huang, Huseyin Coskun, Arpit Sahni, Aarush Gupta, Anujraaj Goyal, Dishani Lahiri, Rajesh Singh, Yerlan Idelbayev, et al. Snapgen: Taming high-resolution text-to-image models for mobile devices with efficient architectures and training. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7997–8008, 2025.
- Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao, Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, et al. Panda-70m: Captioning 70m videos with multiple cross-modality teachers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13320–13331, 2024b.
- Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In *Advances in Neural Information Processing Systems*, 2023.
- Gongfan Fang, Kunjun Li, Xinyin Ma, and Xinchao Wang. Tinyfusion: Diffusion transformers learned shallow. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18144–18154, 2025.
- Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut models. *arXiv preprint arXiv:2410.12557*, 2024.
- Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li, Liang Li, Xiaojie Li, et al. Seedance 1.0: Exploring the boundaries of video generation models. *arXiv preprint arXiv:2506.09113*, 2025.
- Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for one-step generative modeling. *arXiv* preprint arXiv:2505.13447, 2025.
- Google Deepmind. Veo3. https://deepmind.google/models/veo/.
- Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.
- Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson, Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov, Yaki Bitterman, Zeev Melumian, and Ofir Bibi. Ltx-video: Realtime video latent diffusion. *arXiv* preprint arXiv:2501.00103, 2024.
- Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. MLX: Efficient and flexible machine learning on apple silicon, 2023. URL https://github.com/ml-explore.
- Roberto Henschel, Levon Khachatryan, Hayk Poghosyan, Daniil Hayrapetyan, Vahram Tadevosyan, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Streamingt2v: Consistent, dynamic, and extendable long video generation from text. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2568–2577, 2025.
- Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

- Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern* Recognition, pp. 21807–21818, 2024.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Dengyang Jiang, Mengmeng Wang, Liuzhuozheng Li, Lei Zhang, Haoyu Wang, Wei Wei, Guang Dai, Yanning Zhang, and Jingdong Wang. No other representation component is needed: Diffusion transformers can provide representation guidance by themselves. *arXiv preprint arXiv:2505.02831*, 2025.
 - Bosung Kim, Kyuhwan Lee, Isu Jeong, Jungmin Cheon, Yeojin Lee, and Seulki Lee. On-device sora: Enabling training-free diffusion-based text-to-video generation for mobile devices. *arXiv* preprint *arXiv*:2502.04363, 2025.
 - Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.
 - Kuaishou. Kling. https://klingai.com.
 - Jiarui Lei, Xiaobo Hu, Yue Wang, and Dong Liu. Pyramidflow: High-resolution defect contrastive localization using pyramid normalizing flow. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14143–14152, 2023.
 - Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen, Mao Ye, Jingdong Wang, et al. Openhumanvid: A large-scale high-quality dataset for enhancing human-centric video generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7752–7762, 2025.
 - Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, Sugato Basu, Wenhu Chen, and William Yang Wang. T2v-turbo: Breaking the quality bottleneck of video consistency model with mixed reward feedback. *Advances in neural information processing systems*, 37:75692–75726, 2024.
 - Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model. *arXiv* preprint arXiv:2412.00131, 2024.
 - Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversarial post-training for one-step video generation. *arXiv preprint arXiv:2501.08316*, 2025.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint* arXiv:1711.05101, 2017.
 - Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models. *arXiv preprint arXiv:2410.11081*, 2024.
 - Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan, Ranchen Ming, Xiaoniu Song, Xing Chen, et al. Step-video-t2v technical report: The practice, challenges, and future of video foundation model. *arXiv preprint arXiv:2502.10248*, 2025.
 - Modelscope AI. Modelscope. https://modelscope.cn/models/iic/ text-to-video-synthesis/summary.
 - Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang, and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. *arXiv* preprint arXiv:2407.02371, 2024.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

Pika AI. Pika. https://pika.art.

- Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation models. *arXiv preprint arXiv:2410.13720*, 2024.
- Qi Qin, Le Zhuo, Yi Xin, Ruoyi Du, Zhen Li, Bin Fu, Yiting Lu, Jiakang Yuan, Xinyue Li, Dongyang Liu, et al. Lumina-image 2.0: A unified and efficient image generative framework. *arXiv preprint arXiv:2503.21758*, 2025.
- Jingjing Ren, Wenbo Li, Zhongdao Wang, Haoze Sun, Bangzhen Liu, Haoyu Chen, Jiaqi Xu, Aoxue Li, Shifeng Zhang, Bin Shao, et al. Turbo2k: Towards ultra-efficient and high-quality 2k video synthesis. *arXiv preprint arXiv:2504.14470*, 2025.
- Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach. Fast high-resolution image synthesis with latent adversarial diffusion distillation. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020.
- Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.
- Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025.
- Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency models. *Advances in neural information processing systems*, 37:83951–84009, 2024a.
- Fu-Yun Wang, Zhaoyang Huang, Weikang Bian, Xiaoyu Shi, Keqiang Sun, Guanglu Song, Yu Liu, and Hongsheng Li. Animatelcm: Computation-efficient personalized style video generation without personalized video data. In *SIGGRAPH Asia 2024 Technical Communications*, pp. 1–5. 2024b.
- Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv preprint arXiv:2409.18869*, 2024c.
- Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded latent diffusion models. *International Journal of Computer Vision*, 133(5):3059–3078, 2025.
- Yushu Wu, Yanyu Li, Anil Kag, Ivan Skorokhodov, Willi Menapace, Ke Ma, Arpit Sahni, Ju Hu, Aliaksandr Siarohin, Dhritiman Sagar, Yanzhi Wang, and Sergey Tulyakov. Taming diffusion transformer for real-time mobile video generation, 2025a. URL https://arxiv.org/abs/2507.13343.
- Yushu Wu, Yanyu Li, Ivan Skorokhodov, Anil Kag, Willi Menapace, Sharath Girish, Aliaksandr Siarohin, Yanzhi Wang, and Sergey Tulyakov. H3ae: High compression, high speed, and high quality autoencoder for video diffusion models. *arXiv* preprint arXiv:2504.10567, 2025b.

- Yushu Wu, Zhixing Zhang, Yanyu Li, Yanwu Xu, Anil Kag, Yang Sui, Huseyin Coskun, Ke Ma, Aleksei Lebedev, Ju Hu, et al. Snapgen-v: Generating a five-second video within five seconds on a mobile device. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2479–2490, 2025c.
 - Yi Xin, Juncheng Yan, Qi Qin, Zhen Li, Dongyang Liu, Shicheng Li, Victor Shea-Jay Huang, Yupeng Zhou, Renrui Zhang, Le Zhuo, et al. Lumina-mgpt 2.0: Stand-alone autoregressive image modeling. *arXiv* preprint arXiv:2507.17801, 2025.
 - Haitam Ben Yahia, Denis Korzhenkov, Ioannis Lelekas, Amir Ghodrati, and Amirhossein Habibian. Mobile video diffusion. *arXiv preprint arXiv:2412.07583*, 2024.
 - Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv* preprint arXiv:2408.06072, 2024.
 - Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and William T Freeman. Improved distribution matching distillation for fast image synthesis. In *NeurIPS*, 2024a.
 - Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024b.
 - Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In *CVPR*, 2024c.
 - Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie. Representation alignment for generation: Training diffusion transformers is easier than you think. *arXiv preprint arXiv:2410.06940*, 2024.
 - Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning and normalized distillation for compressing diffusion models. *arXiv preprint arXiv:2404.11098*, 2024a.
 - Zhixing Zhang, Yanyu Li, Yushu Wu, Anil Kag, Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Junli Cao, Dimitris Metaxas, Sergey Tulyakov, et al. Sf-v: Single forward video generation model. *Advances in Neural Information Processing Systems*, 37:103599–103618, 2024b.
 - Yang Zhao, Yanwu Xu, Zhisheng Xiao, Haolin Jia, and Tingbo Hou. Mobilediffusion: Instant text-to-image generation on mobile devices. In *European Conference on Computer Vision*, pp. 225–242. Springer, 2024.
 - Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. arXiv preprint arXiv:2412.20404, 2024.
 - Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. *arXiv preprint arXiv:2503.07565*, 2025.
 - Ya Zou, Jingfeng Yao, Siyuan Yu, Shuai Zhang, Wenyu Liu, and Xinggang Wang. Turbo-vaed: Fast and stable transfer of video-vaes to mobile devices. *arXiv preprint arXiv:2508.09136*, 2025.

A LLM USAGE

The authors used Large Language Models (LLMs), including ChatGPT, Gemini, and Grok, as editing assistants to polish the writing and identify errors in the paper. All content was initially written by the authors, and LLMs' suggestions were then incorporated during the revision process.

B DETAILED ANALYSIS OF TAYLOR-BASED INITIALIZATION

Here we demonstrate detailed derivation process of result in Equation 3 We start from the squarederror loss of a linear transformation,

$$L = \operatorname{tr}(EE^{\top}), \quad E = XW^{\top} - Y$$

$$= \operatorname{tr}\left[(XW^{\top} - Y)(WX^{\top} - Y^{\top})\right]$$

$$= \operatorname{tr}\left[XW^{\top}WX^{\top} - YWX^{\top} - XW^{\top}Y^{\top} + YY^{\top}\right]$$

$$= \operatorname{tr}\left[X\left(\sum_{i=1}^{c} w_{i}^{\top}w_{i}\right)X^{\top} - YWX^{\top} - XW^{\top}Y^{\top} + YY^{\top}\right]$$

$$= \operatorname{tr}\left[\sum_{i=1}^{c} X(w_{i}^{\top}w_{i})X^{\top} - YWX^{\top} - XW^{\top}Y^{\top} + YY^{\top}\right]$$

$$(10)$$

where $W = [w_1; \dots; w_c]$ stacks row vectors $w_i \in \mathbb{R}^{d_{in}}$. From equation 10, the contribution of each row can be isolated, and the Hessian block associated with w_i is given by

$$\frac{\partial^2 L}{\partial w_i \partial w_i^{\top}} = 2X^{\top} X. \tag{11}$$

To assess the saliency of the *i*-th neuron, we consider pruning it by perturbation $\Delta w_i = -w_i$. Applying a second-order Taylor expansion of the loss around a stationary point (where $\partial L/\partial w_i \approx 0$) yields

$$\Delta L_i \approx \frac{1}{2} \Delta w_i^{\mathsf{T}} \left(\frac{\partial^2 L}{\partial w_i \partial w_i^{\mathsf{T}}} \right) \Delta w_i = \frac{1}{2} \left(-w_i \right)^{\mathsf{T}} \left(2X^{\mathsf{T}} X \right) \left(-w_i \right) = w_i^{\mathsf{T}} X^{\mathsf{T}} X w_i. \tag{12}$$

Thus, the row-wise saliency score used in the main text takes the closed form

$$I_i = \Delta L_i \approx w_i^{\top} X^{\top} X w_i. \tag{13}$$

C More experiment results

C.1 TAYLOR-BASED SENSITIVITY PRUNING INITIALIZATION

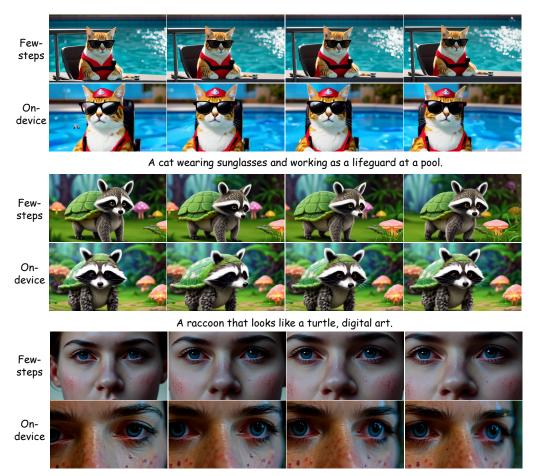
Table 5: Comparison of learnable masked initialization strategy and our taylor-based pruning strategy. We measure VBench (Huang et al., 2024) score of model trained with Stage I setting using learnable masked initialization strategy and our taylor-based pruning strategy. In the results, "MO", "SR", and "AQ" denote the multiple objects, spatial relationship, and aesthetic quality scores, respectively. The best results are highlighted in bold.

# Initialization Strategy	МО	SR	AQ	Quality	Semantic	Total
Learnable masked	52.90	68.06	62.05	82.08	70.98	79.86 81.71
Ours	65.24	75.20	64.07	82.82	77.26	81

We provide additional experimental results to demonstrate the effectiveness of our model initialization methods. Without initialization, the model fails to generate valid videos after distillation or training using our data, as training long video clips from scratch is highly challenging. Furthermore, we

Figure 6: Visualization results of multi-steps and an few-steps model.

compare our Stage I initialization with the learnable masked pruning strategy (Fang et al., 2025), which is very similar to the initialization method in Wu et al. (2025a), and our model under our Stage I



The video begins with a close-up view of a person's face against a blurred, light-colored background, giving it a soft, artistic quality. As the camera zooms in, more details of the person's face become visible, focusing on the eyes and nose area. The eyes are a striking blue color, with defined eyelashes and eyebrows, and the skin shows reddish-brown spots or freckles. The nose is noted to be slightly crooked or asymmetrical. Throughout, the lighting remains natural, casting subtle shadows that accentuate the facial features. The sequence provides an intimate and detailed look at the person's facial features, particularly highlighting the blue eyes and the skin's imperfections.

Figure 7: Visualization results of on-device deployment and an A800 GPU server.

setting. Specifically, we prune the layers and the FFN intermediate dimensions of Wan2.1-1.3B (Wan et al., 2025), resulting in a 22-layer model with approximately 0.8B parameters, which is nearly the same as ours. We train both models for 10K iterations and evaluate them on Vbench (Huang et al., 2024), with the results presented in Table 5. The comparison shows that our initialization strategy achieves superior generation performance under the same recovery budgets.

D More Visualization Results

We present more visualization results of our multi-steps, few-steps model as well as on-device few-steps model. The results is shown in Fig 6 and Fig 7.

E LIMITATIONS

Despite the promising results, our approach still has several limitations. First, the model occasionally struggles with fine-grained details, leading to noticeable distortions in object shapes (e.g., the keyboard in Fig. 8(a)). Second, due to limited training data and computational budget, our method can produce artifacts in human motion, such as limb deformities (e.g., the woman's hand in Fig. 8(b)). Finally,

(b)*A* person is arranging flowers. Figure 8: Visualization of model limitations.

the evaluation is constrained by the lack of open-source implementations for certain baselines (e.g., SnapGen-V(Chen et al., 2025)), making it challenging to ensure strictly fair comparisons under identical settings.