
Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

PHYSICS-INFORMED KOOPMAN NETWORK FOR TIME-
SERIES PREDICTION OF DYNAMICAL SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Koopman operator theory is receiving increased attention due to its promise to
linearize nonlinear dynamics. Neural networks that are developed to represent
Koopman operators have shown great success thanks to their ability to approx-
imate arbitrarily complex functions. However, despite their great potential, they
typically require large training data-sets either from measurements of a real system
or from high-fidelity simulations. In this work, we propose a novel architecture
inspired by physics-informed neural networks, which leverage automatic differen-
tiation to impose the underlying physical laws via soft penalty constraints during
model training. We demonstrate that it not only reduces the need of large train-
ing data-sets, but also maintains high effectiveness in approximating Koopman
eigenfunctions.

1 INTRODUCTION

Nonlinear dynamical systems give rise to a rich diversity of complex phenomena such as the ones
arise in climate science Lorenz (1956), neuroscience Brunton et al. (2016), ecology Clark & Luis
(2020), finance Mann & Kutz (2016), and epidemiology Proctor & Eckhoff (2015). In 1931, Koop-
man introduced the operator-theoretic perspective of dynamical systems , complementing the tra-
ditional geometric perspectives Mezic (2020). In this framework, a Koopman operator is defined
which acts on observation functions (observables) in an appropriate function space. Under the ac-
tion of this operator, the evolution of the observables are linear although the function space may be
infinite-dimensional. As a consequence, approximating the Koopman operator and seeking its eigen-
functions become a key to linearize the nonlinear dynamics Mezic (1994); Mezić (2005); Brunton
et al. (2021).

While there are various conventional methods to approximate Koopman operator spectra, e.g. DMD
method Rowley et al. (2009) and its variants, or data-driven autoencoder-based methods, e.g.
Takeishi et al. (2017); Morton et al. (2018); Lusch et al. (2018); Gin et al. (2021), they all face
various challenges. DMD-based methods, for instance, require an a priori, judicious selection of the
observables with no guarantee that these observables span an invariant Koopman subspace Kutz et al.
(2016). Conversely, neural-network-based methods need to acquire a large enough data-set, which
pose a challenge, e.g. in terms of computational cost or experimental complexities. In this work,
we propose physics-informed Koopman networks (PIKNs) which assimilates the knowledge of the
dynamical system and autoencoder-based Koopman networks. We demonstrate doing so reduce the
need for large training data-sets and it enables the model to better predict beyond the training hori-
zon. It should be noted that our contribution is the addition of physics-informed loss, which can be
combined with any state-of-the-art data-driven approximation of the Koopman operator.

2 METHOD

2.1 KOOPMAN OPERATOR THEORY

For an autonomous ordinary differential equation of d
dtx(t) = f(x(t)), with x ∈ X ⊆ Rn, we

define the time-t flow map operator Ft : X → X as

x(t0 + t) = Ft(x(t0)) (1)

1

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

In Koopman framework, an alternative description for dynamical systems is in terms of evolution
of functions of possible measurements g : X → C, which belongs to a set of functions G(X) of
significantly higher dimension than X . The family of Koopman operators Kt : G(X) → G(X),
parameterized by t are given by

Ktg(x) = g(Ft(x)) (2)
It can be shown Kt, which in general an infinite dimensional, is linear. Constructing finite-
dimensional representations of Koopman operator remains an open question, and is in the scope
of this work. If f is sufficiently smooth, one can also define the infinitesimal generator L of the
Koopman operator family as

Lg := lim
t→0

Ktg − g

t
= lim

t→0

g ◦ Ft − g

t
(3)

From the definition, we can easily see

Lg(x(t)) = lim
τ→0

g(x(t+ τ))− g(x(t))

τ
=

d

dt
g(x(t)) (4)

The generator L is sometimes referred to as the Lie operator. On the other hand, we also have
d

dt
g(x(t)) = ∇g · d

dt
x(t) = ∇g · f(x(t)) (5)

Therefore, we conclude
Lg = ∇g · f (6)

Equation 6 will be the key for the implementation of PIKN.

It is straightforward to show that Koopman eigenfunctions φ(x) that satisfies Ktφ(x) = λtφ(x) for
λt ̸= 0 are also eigenfunctions of the Lie operator, which we denote as ϕi. It can be shown that

g(x) =

M∑
k=1

ckφk(x) =⇒ Ktg(x) =

M∑
k=1

ckλ
t
kφk(x) (7)

This also implies span{φk}Mk=1 is an invariant subspace under the Koopman operator Kt and can
be viewed as the new coordinates on which the dynamics evolve linearly.

Since our ultimate goal is to study nonlinear dynamical systems using linear theory, we do not
need to restrict ourselves to Equation 7. Following Lusch et al. (2018); Gin et al. (2021), we can
generalize it as

g(x) = ψ(φ1(x), φ2(x), . . . , φM (x);ω)w�
Ktg(x) = ψ(λt1φ1(x), λ

t
2φ2(x), . . . , λ

t
MφM (x);ω)

(8)

where ψ is an arbitrary transformation parameterized by ω.

2.2 PHYSICS-INFORMED KOOPMAN NETWORK

In physical sciences, data is scarce while governing equations are available in literature. In physics-
informed Koopman networks (PIKNs), we aim to leverage such knowledge of the dynamics, e.g., of
Equation 6, to enforce the linearity constraint. The basic idea is to train the network by minimizing
the quantity ∥∇φk(x) · f − µkφk(x)∥. More generally, a squared matrix L is used to approximate
the Lie operator L, which in turn is related to the Koopman operator, and we minimize ∥Lϕ(x) −
∇ϕ(x) · f∥. Finding the eigenvalue and eigenfunction pairs of the Lie operator corresponds to
performing eigendecomposition to the matrix L.

We can seamlessly integrate information from measurement data Xdata :=
{x(t0),x(t1), · · · ,x(tp)}, and the knowledge (collocation points) x̄ := {x̄(t0), x̄(t1), · · · , x̄(tp)}
such that the loss function is

J =
1

N

N∑
i=1

(ω1∥Lϕ(x̄i)−∇ϕ(x̄i) · f(x̄i)∥2 + ω2∥x̄i − ψ(zi)∥2)+

1

p

p∑
j=0

(ω3∥eL∆tjϕ(x(t0))− ϕ(x(tj))∥2 + ω4∥x(tj)− ψ(z(tj))∥2)
(9)

For detailed description of each term, please see Appendix A.1-A.2.

2

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Figure 1: PIKN for autoencoder with linear (left column) and nonlinear (right column) decoder. The
first row shows the eigenpairs (red dots are the collocation points); the second row shows a 10000-
step forward prediction; the third row visualizes the mean absolute error over 1000 trajectories.

3 EXPERIMENTS

3.1 SIMPLE NONLINEAR SYSTEM WITH DISCRETE SPECTRUM

First, we consider a simple nonlinear system with a discrete eigenvalue spectrum:

ẋ1 = µx1, ẋ2 = λ(x2 − x21) (10)

For λ < µ < 0, this example is serves as a benchmark for Koopman related algorithms because
it provides explicitly defined three-dimensional Koopman invariant subspace with µ, 2µ, λ] and
ϕ(x) = [x1, x

2
1, x2 − bx21] as Koopman eigenvalues and corresponsing eigenfunction, respectively

and b = λ
λ−2µ . As shown in Fig 1, PIKN is able to find three-dimensional Koopman invariant sub-

space. Note that these networks are trained in a purely physics-informed manner, indicating there is
no need for simulation data. Refer tp Appendix A.3.1 for more details on experiments.

3.2 NONLINEAR PENDULUM WITH NO FRICTION

We then study the nonlinear pendulum which exhibits a continuous eigenvalue spectrum with in-
creasing energy:

ẍ(t) = − sin (x) ⇒
{
ẋ1 = x2

ẋ2 = − sin (x1)
(11)

Since this example is broadly tested among most of alternative architectures, we use it to benchmark
our method.For more setup details, refer to Appendix A.3.2.

All physics-informed counterparts perform better than the original architectures, with PiFBDAE-
cont to be the best of all.

3.3 HEAT EQUATION

We finally consider the one-dimensional heat equation, as an exmplar for PDEs:

ut = uxx, x ∈ (−π, π) (12)

with periodic boundary conditions. Using Fourier transform, it can be shown that discrete-time
eigenvalues are µk = −k2, k = 0,±1,±2, To approximately represent the trajectories u and
the collocations ut, we discretize the spatial domain with n = 64 equally spaced grids. Therefore,
we expect our network to at least mimic a discrete Fourier transform and its inverse transform,
identifying the right eigenvalues after training. More specifically, we compare the results obtained
from the networks that is purely physics-informed, purely data-driven and a mixture of both which
we call it hybrid model. We use sums of harmonic functions with random coefficients as collocations

3

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Model Train Time Test MSE

DAE-disc-latent4 299.714s± 0.386s 0.019± 0.037
PiDAE-disc-latent4 300.419s± 0.524s 0.018± 0.033
DAE-disc-latent16 686.447s± 15.906s 0.057± 0.051

PiDAE-disc-latent16 695.323s± 2.196s 0.056± 0.049
DAE-cont 350.918s± 1.101s 0.006± 0.010

PiDAE-cont 350.578s± 1.702s 0.001± 0.002
FBDAE-cont 353.453s± 3.005s 0.003± 0.005

PiFBDAE-cont 350.975s± 1.279s 0.000± 0.001

Table 1: Train time vs prediction on unseen data-sets for different architectures. Methods starts with
’Pi’ represents ’physics-informed’ are therefore our methods. The number after latent represents
the latent dimension of that architecture, for example, DAE-disc-latent2 means a DAE with a 2× 2
matrix L. DAE-discTakeishi et al. (2017); Morton et al. (2018), DAE-contLusch et al. (2018) and
FBDAE-cont Azencot et al. (2020).

Figure 2: The eigenvalues (with negative real part) of the matrix L from different neural networks
are plotted along with the exact, discrete-time eigenvalues of the heat equation at the bottom. The
top row shows the coefficients of the linear transformation corresponding to the selected eigenvalues.

for which the analytic spacial derivatives are available. More details of the experimental setup can
be found in the Appendix A.3.3. As shown in Fig 2, the transformation coefficients collide with
the frequencies of the corresponding Fourier modes. The phase difference is expected because
Discrete Fourier transformation is not unique for diagonalization of the heat equation. The networks
nearly identify all the correct eigenvalues of the heat equation, however, the purely physics-informed
network fails to discover the low-frequency modes. On the contrary, the purely data-driven network
misses the high-frequency modes; the hybrid model presents the most satisfying accuracy among
all.

4 DISCUSSION AND CONCLUSION

In this work, we presented an effective deep learning framework for identifying Koopman eigenvalue
and eigenfunction pairs for nonlinear dynamics. In order to validate our method, we carefully went
through three examples. In first example, we found the Koopman eigendecomposition only using the
knowledge of the system (no data). In second example, we demonstrated adding physics informed
loss can improve various autoencoder-based methods. In third example, we show the strength of a
hybrid method for a PDE with known solution for the Koopman operator.

4

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

REFERENCES

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent koopman autoencoders. In International Conference on Machine Learning,
pp. 475–485. PMLR, 2020.

Bingni W Brunton, Lise A Johnson, Jeffrey G Ojemann, and J Nathan Kutz. Extracting spatial–
temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition.
Journal of neuroscience methods, 258:1–15, 2016.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

TJ Clark and Angela D Luis. Nonlinear population dynamics are ubiquitous in animals. Nature
ecology & evolution, 4(1):75–81, 2020.

Craig Gin, Bethany Lusch, Steven L Brunton, and J Nathan Kutz. Deep learning models for global
coordinate transformations that linearise pdes. European Journal of Applied Mathematics, 32(3):
515–539, 2021.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode decom-
position: data-driven modeling of complex systems. SIAM, 2016.

Edward N Lorenz. Empirical orthogonal functions and statistical weather prediction, volume 1.
Massachusetts Institute of Technology, Department of Meteorology Cambridge, 1956.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1–10, 2018.

Suryanarayana Maddu, Dominik Sturm, Christian L Müller, and Ivo F Sbalzarini. Inverse dirichlet
weighting enables reliable training of physics informed neural networks. Machine Learning:
Science and Technology, 2021.

Jordan Mann and J Nathan Kutz. Dynamic mode decomposition for financial trading strategies.
Quantitative Finance, 16(11):1643–1655, 2016.

Igor Mezic. On the geometrical and statistical properties of dynamical systems: theory and appli-
cations. PhD thesis, California Institute of Technology, 1994.

Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Non-
linear Dynamics, 41(1):309–325, 2005.

Igor Mezic. Koopman operator, geometry, and learning. arXiv preprint arXiv:2010.05377, 2020.

Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynami-
cal modeling and control of unsteady fluid flows. Advances in Neural Information Processing
Systems, 31, 2018.

Joshua L Proctor and Philip A Eckhoff. Discovering dynamic patterns from infectious disease data
using dynamic mode decomposition. International health, 7(2):139–145, 2015.

Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spec-
tral analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces
for dynamic mode decomposition. Advances in Neural Information Processing Systems, 30, 2017.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio,
Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, et al. Neuralpde: Au-
tomating physics-informed neural networks (pinns) with error approximations. arXiv preprint
arXiv:2107.09443, 2021.

5

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

A APPENDIX

A.1 DETAILS OF PIKN TRAINING

In physical sciences, data is scarce while governing equations are available in literature. In physics-
informed Koopman networks (PIKNs), we aim to leverage such knowledge of the dynamics, e.g., of
Equation 6, to enforce the linearity constraint. The basic idea is to train the network by minimizing
the quantity ∥∇φk(x) · f − µkφk(x)∥, ∀k = 1, 2, 3, · · · ,M . More generally, a squared matrix L
is used to approximate the Lie operator L, which in turn is related to the Koopman operator, and we
minimize ∥Lϕ(x)−∇ϕ(x) · f∥. Finding the eigenvalue and eigenfunction pairs of the Lie operator
corresponds to performing eigendecomposition to the matrix L.

A.1.1 FOR ODE

We first consider an ordinary differential equation. We start from sampling a set of collocation points
X := {x1,x2, · · · ,xN}. This set of collocation points does not need to come from any trajectories
of the dynamics but they can be sampled randomly, avoiding a bulk of simulations or measurement
data collections.

The objective of the network is to identify a few key coordinates z = ϕ(x) spannned by a set of
Koopman eigenfunctions φk(x) : Rn → R, k = 1, 2, · · · ,M along with a dynamical system
ż = Lz. Objective function is

Jlinear =
1

N

N∑
i=1

(ω1∥Lϕ(xi)−∇ϕ(xi) · f(xi)∥2+

ω2∥xi − Czi∥2)

(13)

if the decoder is linear (where C represents the reconstruction coefficients), or for generic decoder

Jnonlinear =
1

N

N∑
i=1

(ω1∥Lϕ(xi)−∇ϕ(xi) · f(xi)∥2+

ω2∥xi − ψ(zi)∥2)

(14)

Here, ω1 and ω2 are the weights for each loss term. The first term encourages linear dynamics within
the latent space and the second term makes it a valid auto-encoder. One can further diagonalize
L such that the diagonal elements approximate the Koopman eigenvalues and the corresponding
outputs of the encoder approximate the Koopman eigenfunctions, respectively. But this constraint
is not necessary as it is equivalent to performing eigendecomposition of a general-structured L after
training. Once trained, it can be used for state predictions beyond the time horizon used in training.

A.1.2 FOR PDE

For application to partial differential equations of the form

ut = f(u,ux, . . .) (15)

similar to ODEs, the goal is to seek coordinates v = ϕ(u) that has linear evolution v̇ = Lv and
can be used to reconstruct the original measurements û = ψ(v). The main difference is, however,
the input and output of the network are functions of spatio-temporal variables u(x, t) instead of the
temporal variables x(t) as in the ODE cases. Therefore, we need to sample a set of ”collocation
points” in an appropriate function space where ut can be cheaply evaluated. We provide examples
of such suitable function families in the following chapters.

A.2 DATA INTEGRATION

Like PINNs, we can seamlessly integrate information from measurement data. Suppose we have
snapshots of measurements Xdata := {x(t0),x(t1), · · · ,x(tp)} for an ODE system or Udata :=

6

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

{u(x, t0),u(x, t1), · · · ,u(x, tp)} for a PDE, by adding extra loss terms

Jdata =
1

p

p∑
j=0

(ω3∥eL∆tjϕ(x(t0))− ϕ(x(tj))∥2+

ω4∥x(tj)− ψ(z(tj))∥2) (for ODE)

Jdata =
1

p

p∑
j=0

(ω3∥eL∆tjϕ(u(x, t0))− ϕ(u(x, tj))∥2+

ω4∥u(x, tj)− ψ(v(u(x, tj)))∥2) (for PDE)

(16)

we can penalize the network predictions that do not match the real measurements, where ∆tj =
tj − t0, ∀j = 1, 2, · · · , p. Again, the first term is the linearity loss and the second term is the
reconstruction loss. It should be noted that Eq. 16 is consistent with previous literature Takeishi
et al. (2017); Morton et al. (2018); Lusch et al. (2018) on using autoencoders to find approximation
of Koopman eigenfunctions and can be seen as a baseline on how physics-informed loss improve
the performance of PIKN, although we use several other data-driven models in section 3.2.

A.3 EXPERIMENTAL SETUPS

For all networks in the experiments, L is set to a zero matrix initially and all other parameters are
randomly initialized using the default initializer of Pytorch. The exponential linear unit (ELU) is
used as the nonlinear activation function, unless stated otherwise, as we expect the transformations
in PIKN to be relatively smooth.

A.3.1 SIMPLE NONLINEAR SYSTEM WITH DISCRETE SPECTRUM

In this example, we have trained two different types of PIKN: a PIKN with a linear decoder and
a PIKN with a nonlinear decoder. In both experiments, 1000 collocation points were uniformly
sampled from [−1, 1] × [−1, 1] for training, an Adam optimizer with a learning rate of 1e − 4
has been applied. The total number of training epochs is set to 50000 and the weights in the loss
function are set to ω1 = ω2 = 1. The encoder part of both architectures are the same: a 2-layer
fully-connected neural network with hidden layer containing 50 neurons. The major differences
between the two architectures are as follows:

• The linear decoder is simply a linear layer without a bias term whereas the nonlinear de-
coder is symmetric to the encoder: a 2-layer fully-connected neural network with hidden
width 50.

• For the PIKN with a linear decoder, we have a three-dimensional latent space whereas for
the PIKN with a nonlinear decoder, it is two-dimensional.

A.3.2 NONLINEAR PENDULUM

In this example, we implement three different types of architectures from existing literature and
benchmark against their physics-informed counterparts (our methods). The first type of architecture
assumes a discrete eigenvalue spectrum of Koopman operator (DAE-disc) and has different versions
of implementations Takeishi et al. (2017); Morton et al. (2018). The main difference is on how
we obtain the matrix L of the linear dynamics. We follow the latter and treat L as a trainable
parameter in Pytorch. We also experiment with different latent dimensions (2, 4, 8, 16) to study the
effects. The second type of architecture is proposed by Lusch et al. (2018) which uses an auxiliary
network to parameterize the continuous spectrum (DAE-cont), the matrix L varies according to the
inputs which effectively captures the frequency shifts. The third type further improves upon it by
considering the inverse dynamics (FBDAE-cont). The consistency between forward and backward
dynamics is enforced by an extra loss term Azencot et al. (2020). In our implementations, decoder
is linear, encoder is a 3-layer fully connected neural network with hidden width 20 and the auxiliary
network is a 4-layer fully connected network with hidden width 10.

For training, 1000 collocation points and 20 initial conditions are uniformly sampled from [−1, 1]×
[−1, 1]. The initial conditions are further used to generate sequence of snapshots with a temporal

7

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

PIKN(linear decoder) PIKN(nonlinear decoder)

Experiment 1 µ1 = −0.10000689, µ2 = −0.19914131,
µ3 = −0.9996788

µ1 = −0.09756267,
µ2 = −0.99973810

Experiment 2 µ1 = −0.10009335, µ2 = −0.19947967,
µ3 = −1.0004123

µ1 = −0.09644943,
µ2 = −0.99867420

Experiment 3 µ1 = −0.10005733, µ2 = −0.19892442,
µ3 = −1.0003881

µ1 = −0.09592330,
µ2 = −0.99915651

Experiment 4 µ1 = −0.10008135, µ2 = −0.20019206,
µ3 = −0.9986593

µ1 = −0.09784412,
µ2 = −1.00298023

Experiment 5 µ1 = −0.09990316, µ2 = −0.20018657,
µ3 = −0.9991975

µ1 = −0.09837312,
µ2 = −1.00187280

Experiment 6 µ1 = −0.09997816, µ2 = −0.19966313,
µ3 = −1.0005931

µ1 = −0.09764695,
µ2 = −1.00517617

Experiment 7 µ1 = −0.10009032, µ2 = −0.19991782,
µ3 = −1.0000535

µ1 = −0.09866422,
µ2 = −0.99622254

Experiment 8 µ1 = −0.09998395, µ2 = −0.19948480,
µ3 = −0.9996783

µ1 = −0.09856838,
µ2 = −1.00204348

Experiment 9 µ1 = −0.09996726, µ2 = −0.19905518,
µ3 = −1.0005406

µ1 = −0.09929386,
µ2 = −0.99679565

Experiment 10 µ1 = −0.10004932, µ2 = −0.19994377,
µ3 = −0.9993069

µ1 = −0.09756234,
µ2 = −1.00279380

summary
µ1 = −0.10± 6.22e− 04,
µ2 = −0.20± 4.37e− 04,
µ3 = −1.00± 5.99e− 05

µ1 = −0.10± 2.74e− 03,
µ2 = −1.00± 9.68e− 04

Table 2: Eigenvalues identified by PIKNs at all training runs. The first column represents the PIKN
with a linear decoder and the second column is the one with a nonlinear decoder.

gap ∆t = 0.1 for 10 steps. An Adam optimizer with a learning rate of 1e− 3 has been applied. The
total number of training epochs is set to 20000.

For testing, another 10 initial conditions are sampled from [−1, 1]× [−1, 1] and snapshots are gen-
erated with a temporal gap ∆t = 0.001 for 1000 steps. The smaller ∆t ensures a more accurate
forward-stepping with time-varying matrix L in the latter two types of architectures.

A.3.3 HEAT EQUATION

In the PIKN architecture for Heat equation, encoder and decoder are both linear and the latent
dimension is set to 64, the same as the number of spatial grids. Number of training epochs is 100000
and an Adam optimizer has been applied for the training algorithm. In this set of experiments,
we use an adaptive learning rate: initially set to 0.01, it keeps decreasing by a factor of 0.5 if no
improvements are made over the recent 5000 epochs, until it hits the minimal value of 0.000001.
With the network architecture and training parameters fixed, we train it in three different ways.
Namely, we set different values for the weights ω1, ω2, ω3, ω4 in the loss function, leading to three
different training regimes:

• ω1 = 0.0001, ω2 = 1, ω3 = 0, ω4 = 0: the network is purely physics-informed.

• ω1 = 0, ω2 = 0, ω3 = 1, ω4 = 1: this corresponds to a purely data-driven learning.

• ω1 = 0.0001, ω2 = 1, ω3 = 1, ω4 = 1: this represents the scenario where we train a
physics-informed network with data integration. For simplicity, we call it hybrid training.

Notice that the value of ω1 is set on a different order compared to other weights, it is because this
loss term involves calculation of numerical derivatives which usually has a greater amplitude. This is
a well-known issue for physics-informed neural network and has been thoroughly studied. Adaptive
re-weighting schemes were proposed to fix it Wang et al. (2021); Maddu et al. (2021); Zubov et al.
(2021). In our case, however, we find that choosing a fixed, small value ω1 = 0.0001 is sufficient

8

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

(#collocations,
#snapshots) µ = −0.1 λ = −1 eigenvalues=(-1, -0.1)

(0, 1000) – – (−0.962± 0.118,−0.096± 0.282)
(250, 750) −0.099± 0.002 −0.980± 0.033 (−0.974± 0.043,−0.099± 0.001)
(500, 500) −0.099± 0.000 −0.991± 0.005 (−0.985± 0.010,−0.099± 0.001)
(750, 250) −0.099± 0.003 −0.972± 0.043 (−0.951± 0.073,−0.096± 0.010)

Table 3: Networks are trained with different combinations of data-sets shown in the first column.
The first row represents data-driven training and others are hybrid PIKN. The identified system
parameters µ and λ and eigenvalues of Koopman operator are shown, respectively, in second, third,
and fourth column.

for achieving a fast convergence1.
For the physics-informed learning, we create 1000 trial functions {u(1), u(2), . . . , u(1000)} for train-
ing purpose. Each trial function u(j) is a superposition of the Fourier modes that satisfy the periodic
boundary conditions. In our case, this amounts to using sin (kx) and cos (kx) for k = 0, 1, 2, . . .
as basis functions. The value of k is restricted to be no greater than 32 due to the choice of our grid
spatial resolution. The spatial derivatives of the trail functions {u(1)xx , u

(2)
xx , . . . , u

(1000)
xx } are calcu-

lated using numerical spectral method.
In the data-driven regime, we use simulation data obtained from a solver based on spectral method.
We run the simulation with 1000 different initial states. For each run, the initial state of u is obtained
through the same procedure as we obtain the trial functions u(k). Then we sample snapshots of the
state u with a temporal gap ∆t = 0.01 for 5 steps (i.e. p = 5).
For the hybrid training regime, both of the above two data-sets are used. However, to study the
effects of the amount of simulation data, we conduct 10, 50, 100, 500, 1000 simulation runs in 5
separate groups of experiments.

A.3.4 HARDWARE

All experiments were computed on a slurm-allocation that had 2 CPUs of an Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 16 GB of memory, and one Tesla K80 GPU.
The experiments were implemented using Python 3.9.12 and PyTorch 1.11.0 that was
using the GPU for compute.

A.4 ADDITIONAL DISCUSSIONS

A.4.1 POTENTIAL PITFALLS OF USING NONLINEAR TRANSFORMATIONS

For the example of ODE with discrete spectrum, we have run the training algorithm for 10 times
for both architectures and the results are robust in the sense that the identified eigenvalues are all
centered around the real ones we derived analytically, which are presented in Table 2. One can see
our PIKNs faithfully recover the desired Koopman eigenvalues. The one with the linear decoding
provides slightly more robust results, indicating the benefits of adding more known constraints.
We notice that, however, the PIKN with nonlinear decoder doesn’t always identify the eigenvalue
µ1 = −0.1. If we significantly change the initialization of the network parameters, sometimes other
values emerge. This indicates other transformations exist to linearize the dynamics and reconstruct
the state variables. As an example, one can easily check φβ

µ = xβ1 for all β ∈ N are all valid
Koopman eigenfunctions associated with eigenvalues µβ and can be used for reconstruction. The
lesson here is that by using a nonlinear decoder, we not only increase the flexibility of the Koopman
operator theory framework, but also dramatically increase the searching space, which may lead to
different learning outcomes.

9

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

A.4.2 UNKNOWN PARAMETERS IN PHYSICAL SYSTEMS

In this experiment, we demonstrate another advantage of PIKN in comparison to data-driven only
approaches. We demonstrate that PIKN can leverage partial knowledge of physics, e.g. when some
parameters of the system are unknown and even estimate those missing parameters. To illustrate
this, we consider the dynamics of the form of Eq. 10 but we let µ and λ to be unknown parameters,
which can be treated as trainable parameters with random initialization. We use different combina-
tions of training data-sets and each model is trained for 10 times with different random initializations
for the unknown parameters. The difference of data-sets is related to the combination of snapshots
(obtained by simulator) versus collocation points (sampled from appropriate function space with no
requirement of simulation). The results are shown in Table 3: all hybrid models successfully iden-
tified Koopman eigenvalues with higher accuracy than the data-driven model (first row). Note that,
the data driven model does not involve a parameter estimation procedure and thus does not provide
any knowledge of the physical parameters. On the other hand, the hybrid models are able to solve
for the unknown parameters µ and λ correctly by filling gaps in the knowledge of physics with data,
effectively operating as a simple model-discovery tool. The experiment shows that incorporating a
physics-informed loss is beneficial even when only partial knowledge of physics is accessible to the
practitioner.

A.4.3 ALTERNATIVE APPROACH TO ENFORCE LINEARITY

In fact, minimizing ∥Lϕ(x)−∇ϕ(x) · f(x)∥ is not the only way to enforce linearity. Take ODE as
an example, the decoder reads

x̂(t) = ψ(z(t)) (17)
This implies

dx̂

dt
= ∇ψ(z) · (Lz) (18)

Therefore, minimizing ∥∇ψ(z) · (Lz) − f(x̂)∥ is an alternative way to enforce linearity. This al-
ternative approach is also consistent with ’future state prediction’ loss in the work of Lusch et al.
(2018). The difference between these two ways is whether the linear constraint is applied to the
encoder or decoder. In practice, however, we find using either form of the linearity loss or use both
of them all work well and does not lead to significantly different results.

1Another way to get around this is to learn the pseudo-inverse of L instead. Then the loss term reads
∥ϕ(xi) − L†∇ϕ(xi) · f(xi)∥. In that case ω1 and ω2 can be both set to 1 because the two loss terms are
approximately on the same scale.

10

	Introduction
	Method
	Koopman operator theory
	Physics-informed Koopman network

	Experiments
	Simple nonlinear system with discrete spectrum
	Nonlinear pendulum with no friction
	Heat equation

	Discussion and Conclusion
	Appendix
	Details of PIKN training
	For ODE
	For PDE

	Data integration
	Experimental setups
	Simple nonlinear system with discrete spectrum
	Nonlinear pendulum
	Heat equation
	Hardware

	Additional discussions
	Potential pitfalls of using nonlinear transformations
	Unknown parameters in physical systems
	Alternative approach to enforce linearity

