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Abstract

Zero-shot learning in prompted vision-language models, the practice of crafting
prompts to build classifiers without an explicit training process, has achieved
performance in many settings. This success presents a seemingly surprising obser-
vation: these methods suffer relatively little from overfitting, i.e., when a prompt
is manually engineered to achieve low error on a given training set (thus render-
ing the method no longer actually zero-shot), the approach still performs well on
held-out test data. In this paper, we show that we can explain such performance
remarkably well via recourse to classical PAC-Bayes bounds. Specifically, we show
that the discrete nature of prompts, combined with a PAC-Bayes prior given by a
language model, results in generalization bounds that are remarkably tight by the
standards of the literature: for instance, the generalization bound of an ImageNet
classifier is often within a few percentage points of the true test error. We can
even greedily search over the prompt space, improving upon training performance
while retaining the same bound. Furthermore, the resulting bound is remarkably
suitable for model selection: the models with the best bound typically also have the
best test performance. This work thus provides a substantial justification for the
widespread practice of “prompt engineering,” even if it seems that such methods
could potentially overfit the training data.

1 Introduction

Generalization bounds provide statistical guarantees on the average-case performance of the output
of a learning algorithm. However, Zhang et al. [2021] highlighted that classical approaches for
deriving generalization bounds are insufficient for explaining the generalization ability of deep
learning, spurring a flurry of new approaches for deriving tighter generalization bounds for deep
neural networks [Bartlett et al., 2017, Dziugaite and Roy, 2017, Neyshabur et al., 2017b]. In the
recent literature on generalization bounds for neural networks, a large focus has been on developing
data-dependent bounds, or bounds that take into consideration of the data distribution in addition
to the hypothesis space. Some of the best data-dependent bounds are based on the PAC-Bayes
framework [McAllester, 1999] and are derived by bounding the KL divergence between a prior over
the hypothesis space and the posterior yielded by the learning algorithm. PAC-Bayes bounds have
led to the first non-vacuous generalization bounds for deep learning [Dziugaite and Roy, 2017], but
they are still too loose to be practically useful. In fact, as Lotfi et al. [2022] have recently argued,
many PAC-Bayes bounds with data-dependent priors, while non-vacuous, can be best described as
validation bounds — i.e., the use of data-dependent priors effectively leverages held-out data in a
manner similar to cross-validation, which undermines their ability to explain generalization.

Nonetheless, despite the lack of a clear theoretical basis, modern machine learning models are
becoming increasingly large [Kaplan et al., 2020, Dosovitskiy et al., 2020]. One prevailing paradigm
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Table 1: Comparison with existing state-of-the-art generalization bounds for test error on different
datasets. We report both data-independent and data-dependent bounds (⋆ indicates data-dependent
prior and − indicates that the bounds are not available). Our bounds are significantly tighter than the
existing PAC-Bayes bounds in the literature, often only within a few percents of the actual test error.

Dataset Zhou et al. [2019] Dziugaite et al. [2021] Lotfi et al. [2022] Ours

CIFAR-10 − 0.230⋆ 0.582 / 0.166⋆ 0.059
CIFAR-100 − − 0.946 / 0.444⋆ 0.251
ImageNet 0.965 − 0.930 / 0.409⋆ 0.312

is to use pretrained foundation models such as CLIP [Radford et al., 2021] or ALIGN [Jia et al., 2021]
as feature extractors and provide weak supervision for a downstream target task via prompts, which
are text descriptions of the desired tasks that are often significantly easier to obtain compared to full
model weights or even a generic linear classifier over the last layer. The versatility and performance
of prompting pretrained models have led to the rise of prompt engineering, an emergent paradigm
in machine learning where the users carefully design the task specification in text or even learn
the prompts in a data-driven fashion [Lester et al., 2021]. Despite its empirical success, little is
understood of how and why prompting these pretrained models work, and in particular why the
method seems to suffer little from overfitting: manually tuning or even greedily optimizing prompts
on a given training set often performs nearly as well on the corresponding test set.

In this paper, we demonstrate that rather simple analysis tools in fact capture this behavior surprisingly
well. In particular, we show that traditional PAC-Bayes bounds [McAllester, 1999], when applied
to the discrete hypothesis class defined by prompts (and specifically with a prior given by a large
language model), are often remarkably tight, even for large-scale domains: for example, we achieve
an generalization bound of 31% error for a full ImageNet classifier, which is within 6% of the
actual observed test error. This represents a vast improvement over traditional deep-learning-based
bounds, where achieving any non-vacuous bound on domains like ImageNet typically requires a
great deal of effort; see, for instance, Table 1 for a comparison of our bounds with other approaches,
especially the variants that do not use data-dependent priors (as our prompt-based bounds do not). To
summarize, we find that, unlike conventional deep learning models, prompting pretrained models
does not suffer from the issues surrounding generalization bounds [Zhang et al., 2021], and one can
readily derive a strong theoretical guarantee for using prompts via well-studied techniques. Overall,
these findings suggest that, despite a large amount of automatic or manual tuning, prompt engineering
is potentially a principled approach for using these pretrained models that does not suffer the same
lack of theoretical grounding as conventional deep learning models.

2 Related Works

Prompt Engineering. With the advent of large pretrained models, prompting developed as a
surprising yet effective method to harness the abilities of these large models with limited labeled
data [Brown et al., 2020, Le Scao and Rush, 2021, Liu et al., 2023]. The flexibility of prompting has
enabled a wide range of new capabilities unavailable to previous machine learning models, leading to
a significant effort to document successful prompting methods [Bach et al., 2022] in both classification
and text-to-image generation. One downside of prompting is that the performance varies greatly
depending on how the prompt is phrased. To address this issue, methods have been proposed to learn
“optimal" prompts given labeled data, which empirically performs well and is parameter efficient
[Lester et al., 2021, Li and Liang, 2021, Gao et al., 2021, Zhou et al., 2022a,b]. One drawback to
these data-driven approaches is that they learn “soft" prompts or embedding vectors that are not
interpretable and can overfit. As such, another class of methods proposes gradient-based methods to
learn interpretable prompts [Wen et al., 2023]. This work studies the theoretical guarantees of the
practice of prompt engineering, that is, why these methods seem to work without any overfitting.

Prompt engineering has been extended to computer vision through CLIP (Contrastive Language-
Image Pretraining) [Radford et al., 2021]. CLIP employs a neural network architecture combining
natural language processing and computer vision to comprehend images and their corresponding text
descriptions. It undergoes pretraining using a vast dataset of image and text pairs with a contrastive
learning objective, enabling the model to differentiate between diverse image and text combinations.
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This broad training allows CLIP to grasp various concepts and relationships between images and
language. Unlike traditional computer vision models that rely on fixed labels for image classification,
CLIP can perform multiple tasks based on natural language instructions. Examples include object
recognition, image caption generation [Tewel et al., 2021], and zero-shot image classification using
textual descriptions even for unseen labels.

Generalization bounds. Generalization bounds are upper bounds on the generalization gap of
a model. Deriving such bounds for deep learning has been difficult, and most are usually vacu-
ous [Zhang et al., 2021, Jiang et al., 2019, Dziugaite et al., 2020]. They also may suffer from
fundamental limitations [Nagarajan and Kolter, 2019b]. The core component of a generalization
bound is a complexity measure, a quantity that relates to some aspect of generalization. A complex-
ity measure may depend on the properties of the trained model, optimizer, and possibly training
data, as long as it does not have access to a validation set. The most classic bounds such as VC-
dimension [Vapnik, 1971] are often related to some form of parameter counting which is often too
pessimistic for deep neural networks. Norm-based bounds usually rely on the margin and some norms
of the model weights [Langford and Caruana, 2001, Bartlett et al., 2017, Neyshabur et al., 2015,
2017b], but these bounds have been ineffective at studying generalization of deep learning [Nagarajan
and Kolter, 2019a]. Another main class is the PAC-Bayes bounds McAllester [1999] which have
been much more successful in deep learning due to the flexibility of prior [Neyshabur et al., 2017a,
Dziugaite and Roy, 2017, Zhou et al., 2019, Lotfi et al., 2022] although these bounds are still much
looser than the actual generalization error. Our approach also belongs to the PAC-Bayes family, but
we apply the PAC-Bayes bounds to the distribution of discrete tokens rather than the parameter of
the neural networks with a language model as the prior. This allows us to derive significantly tighter
bounds compared to applying the PAC-Bayes bounds with less informative priors.

3 Preliminaries

Notations. Let X ∈ Rd be a set of inputs and Y = [K] be a label set, and there exists a probability
distribution D on (X×Y) which is unknown. Let our data (X1, Y1), . . . , (Xn, Yn) be drawn i.i.d from
D, and consider a predictor f : X → Y and a fixed set of predictors indexed by the parameter set Θ.
We use fθ to denote the classifier indexed by θ. We consider the 0–1 loss given by ℓ(y′, y) = 1{y ̸=
y′}. The generalization error (risk) of a predictor is defined as R(θ) = E(X,Y )∼P [ℓ(fθ(X), Y )]

and the empirical risk r(θ) = 1
n

∑n
i=1 ℓ(fθ(Xi), Yi) satisfies ES [r(θ)] = R(θ) for a sample S =

[(X1, Y1) , . . . , (Xn, Yn)]. An estimator is a function θ̂ :
⋃∞

n=1(X × Y)n → Θ.

Vision-language models. CLIP consists of two encoders gimg and gtxt. Given an image X ∈ X , the
image encoder gimg : X → Rd maps an image X to a d-dimension real-valued embedding. Given
a text T ∈ T , the image encoder gtxt : T → Rd maps a sentence Z to a d-dimension real-valued
embedding. Given a batch of images {Xi}Bi=1 and their corresponding texts {Ti}Bi=1, the training
objective maximizes the cosine similarity of the embeddings of the matching image and text pair
and minimize the cosine similarity of image and text pairs that do not correspond to each other. The
primary task we consider in this work is image classification via pretrained vision-language models.
Here, we employ natural language by finding a class prompt, θk, for each class. For a K-class
classification problem with θ = (θ1, θ2, . . . , θK) ∈ Θ = T K , the zero-shot classifier using class
prompts and CLIP is:

fθ(X) = argmax
k∈[K]

〈
gtxt(θ

k), gimg(X)
〉

(1)

PAC-Bayes framework. We often are interested in the generalization ability of a predictor and we
can quantify this by upper bounds on the population loss (true risk). In general, we are concerned with
the generalization gap which is the difference between the true risk and the empirical risk. Various
generalization bounds can depend on the implicit bias of the learning algorithm [Neyshabur et al.,
2014], the training data S , or the data-generating distribution D. Classic VC bounds [Vapnik, 1971]
do not depend on either. Distribution-dependent bounds are expressed in terms of quantities related
to the data-generating distribution while data-dependent bounds are expressed in terms of empirical
quantities that can be computed directly from data and can be used for self-certification [Pérez-Ortiz
et al., 2021]. The PAC-Bayes framework defines a hierarchy over hypotheses in our hypothesis class
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Θ that takes the form of a prior distribution P over Θ. That is, we assign a probability P (θ) ≥ 0
for each θ ∈ Θ and refer to P (θ) as the prior score of θ. The learning process defines a posterior
probability over Θ, which we denote by Q. In the context of supervised learning, we can think of
Q as defining a prediction rule as follows: Given an instance X , we randomly pick a hypothesis θ
according to Q and predict fθ(X). Remarkably, it was shown that the generalization gap can be
upper bounded by the KL-divergence between P and Q [McAllester, 1999].

4 Prompt Search

A key observation we make is that designing a prompt is analogous to finding a set of weights in
regular machine learning models, where the hypothesis space is the space of texts/tokens. The goal
is to find class prompts that maximize the training accuracy without finetuning the parameters of
the model. This process can be formulated as a discrete optimization over the space of tokens, V .
Suppose that we are looking for class prompts of length L, then we will be searching for K · L
tokens over the space of |V|K·L. This search is exponential in the length of the prompt, which can be
intractable for even small token spaces. To circumvent this problem, we generate the prompts in a
sequential manner; that is, we increment the prompts by selecting the token that maximizes the search
criterion, J , on the training dataset from a set of candidate tokens, V̂ . The search criterion is the
objective being optimized, and candidate tokens are permissible tokens that can be used to extend the
current class prompts. At every step of the search, we keep the class prompts fixed except for all but
one class. The prompt for each class k is a sequence of l < L tokens v ∈ V , θk≤l = (v1, v2, . . . , vl),
and the next token for θk is obtained via:

vl+1 = argmax
v∈V̂(θ)

J
(
v, θk≤l, θ

¬k
)
. (2)

θ¬k denotes the class prompts for all classes except for the kth class. The pseudocode for this process
is outlined in detail in Algorithm 1. Using ⊕ to denote concatenation, the simplest instantiation of
search is a greedy search, where we use:

V̂greedy(θ) = V, Jgreedy
(
v, θk≤l, θ

¬k
)
= −r

(
(. . . , θk−1, θk≤l ⊕ v, θk+1, . . . )

)
. (3)

In other words, we always search over all the tokens in the inner loop to maximize the training accuracy.
This simplest greedy search can be seen as an instantiation of empirical risk minimization [Vapnik,
1991, ERM] since its only objective is to minimize the training error.

There are several drawbacks to this simple algorithm, the chief of which is that we need to search over
V exhaustively in the inner loop (line 6). This can be expensive since it consists of all the tokens the
vision-language model uses (e.g., CLIP has about 50000 tokens). Instead, we could search over only
a subset of V . To reduce this search space, we use a language model (LM) to induce a distribution
over the next tokens conditioned on θk and only evaluate the tokens with high probabilities:

pnext(vl+1 | θk≤l) = pLM
(
vl+1 | θk≤l = [v0, v1, . . . , vl]

)
. (4)

Since CLIP was trained with natural language supervision, it is likely that a reasonable next token can
be captured by an autoregressive LM, which is trained to model the probability of the next token. We
then take the top N candidates and only evaluate the accuracy of these candidates. Conveniently, this
can be seen as constraining the complexity of the prompt as the language model provides a structured
prior over the set of tokens. We observe that using a language model to propose likely tokens incurs
minimal performance loss, suggesting that language models indeed are good prior for searching for
class prompts on image classification tasks. Furthermore, we can use predefined strings to further
constrain the space of hypothesis by starting with an initial prompt such as “This is an image of”
instead of using an empty string. These provide additional structure to the generated prompts.

This procedure can be further augmented to optimize the PAC-Bayes bound via structural risk
minimization [Vapnik and Chervonenkis, 1974, SRM] similar to the approach of Dziugaite and
Roy [2017], namely, we will take the hypothesis complexity (e.g., KL-divergence) into account as
we search for the next token for each prompt. We use the KL-divergence directly in the objective
optimization without sacrificing the quality of the solution. Once again, we do this optimization in a
sequential manner via Greedy:

V̂LM(θ) = TopN
(
pnext(vl+1 | θk≤l)

)
, (5)

JLM(v, θk≤l, θ
¬k) = −r

(
(. . . , θk−1, θk≤l ⊕ v, θk+1, . . . )

)
+ β pnext(v | θk≤l), (6)
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Algorithm 1 Sequential Prompt Search (Greedy)

1: θ ← [initial_prompt]×K
2: for l = 0 to L− 1 do
3: class_order← randomly sampled order of class indices
4: for k in class_order do
5: criteria← −∞
6: for v in V̂(θ) do ▷ This step is vectorized in practice.
7: score←J (v, θk≤l, θ

¬k) ▷ Evaluate the score of v.
8: if score > criteria then ▷ Keep the prompt with best performance.
9: criteria← score ▷ Update the current best score.

10: θkl+1 ← v ▷ Update θk with the better token.
11: end if
12: end for
13: end for
14: end for
15: Return θ

where β is a hyperparameter that controls the strength of the regularization and TopN(·) is the set
of tokens with N highest values of pnext(vl+1 | θk≤l). The number of tokens to search over is also
a hyperparameter that can be adjusted according to the computational constraints. We refer to this
version of search as regularized greedy.

5 Generalization Guarantees for Prompts

As alluded to earlier, deriving generalization bound is closely connected to assigning hypotheses prior
probabilities (that is, before seeing the training data) of them being good hypothesis [Shalev-Shwartz
and Ben-David, 2014]. The most naive approach is to assign a uniform probability, 1

|Θ| , to each
hypothesis. With a uniform prior, we recover the well-known uniform convergence bound:
Theorem 5.1 (Shalev-Shwartz and Ben-David [2014]). For every δ > 0, with probability 1− δ over
the training set of size n, for any hypothesis θ ∈ Θ, the following holds

R(θ) ≤ r(θ) +

√
log |Θ|+ log( 1δ )

2n
. (7)

Since the space of all prompts is discrete, for a single hypothesis θ̂, we have the following uniform
convergence bound for prompts that depend on the prompt length, the number of classes, and the
number of tokens in the vocabulary:

R(θ̂) ≤ r(θ̂) +

√
LK log |V|+ log( 1δ )

2n
. (8)

However, not all prompts are equally likely to be correct. To obtain a tighter generalization guarantee
on the learned θ̂, we will leverage a classical PAC-Bayes bound to derive an upper bound on the
generalization error of the learned prompts:
Theorem 5.2 (McAllester [1999]). For every δ > 0, prior P over Θ, with probability 1− δ over the
training set of size n, for any posterior Q over Θ, the following holds

Eθ∼Q[R(θ)] ≤ Eθ∼Q[r(θ)] +

√
DKL(Q ∥P ) + log(nδ ) + 2

2n− 1
. (9)

In conventional deep learning, P and Q are often chosen to be isotropic Gaussian distributions [Lang-
ford and Caruana, 2001] so the KL-divergence between the prior and posterior can be easily computed.
We use a language model as the prior over K independent prompts,

P (θ) =

K∏
i=1

L∏
j=1

pLM(θij | θi≤j).
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Table 2: Performance and generalization bounds for prompts produced by Greedy and for handcrafted
prompts on different datasets and using different CLIP architectures. UC represents the uniform
convergence bound. Handcrafted prompts are taken from CLIP and Wise-FT [Wortsman et al., 2022].

Dataset Model Method Train Err Test Err UC PAC-Bayes

CIFAR-10 B-16 Greedy 0.050 0.060 0.201 0.086
L-14 Greedy 0.023 0.028 0.175 0.059
L-14 handcrafted 0.040 0.040 0.192 0.077

CIFAR-100 B-16 Greedy 0.208 0.255 0.688 0.317
L-14 Greedy 0.142 0.180 0.621 0.251
L-14 handcrafted 0.221 0.221 0.699 0.329

fMoW B-16 Greedy 0.598 0.621 0.902 0.667
L-14 Greedy 0.514 0.547 0.819 0.584
L-14 handcrafted 0.725 0.402 0.877 0.795

OfficeHome B-16 Greedy 0.104 0.150 0.879 0.281
L-14 Greedy 0.070 0.115 0.845 0.248
L-14 handcrafted 0.926 0.928 1.700 1.104

ImageNet L-14 handcrafted 0.243 0.256 0.543 0.312
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Figure 1: Test error vs generalization bound on CIFAR-10. We report the uniform convergence bound
(left) and PAC-Bayes bound (middle, right), when evaluated on prompts produced by Greedy (left,
middle) and handcrafted prompts (right). The dashed line is y = x.

Further, we treat the prompts θ̂ found through search or through prompt engineering as a point
mass posterior, Q(θ) = 1{θ = θ̂} =

∏K
i=1

∏L
j=1 1{θij = θ̂ij}. In this case, the KL-divergence is

conveniently equal to the negative log-likelihood of θ̂ under the language model because the posterior
is zero everywhere except for at θ̂:

DKL(Q ∥P ) =
∑
θ∈Θ

Q(θ) log
Q(θ)

P (θ)
= log

1

P (θ̂)
= −

K∑
i=1

L∑
j=1

log pLM

(
θ̂ij | θ̂i≤j

)
. (10)

This bound gives an intuitive interpretation, which is that the generalizing prompts are the ones
that achieve good training performance and are likely under the language model. Having a point-
mass posterior over discrete space also means that we can derandomize the PAC-Bayes bound for
free [Viallard et al., 2021]. Combining these observations, we have the following deterministic upper
bound on the generalization error:

R(θ̂) ≤ r(θ̂) +

√√√√−∑K
i=1

∑L
j=1 log pLM

(
θ̂ij | θ̂i≤j

)
+ log(nδ ) + 2

2n− 1
. (11)

In the next section, we will observe that this bound is surprisingly tight even for complex datasets
such as ImageNet.

6 Experiments

In this section, we evaluate Greedy on CIFAR-10, CIFAR-100, as well as domain generalization
datasets fMoW and OfficeHome. We also evaluate existing well-performing handcrafted prompts

6



0.3 0.4 0.5 0.6 0.7
Bound

0.200

0.225

0.250

0.275

0.300

Te
st

 0
-1

 e
rro

r

CIFAR-100 [Greedy]
Uniform convergence
PAC-Bayes

0.20 0.25 0.30
Test 0-1 error

0.10

0.15

0.20

0.25

Tr
ai

n 
0-

1 
er

ro
r

CIFAR-100 [Greedy]

0.320.340.360.380.400.420.440.460.48
Bound

0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36

Te
st

 0
-1

 e
rro

r

CIFAR-100 [Hand-crafted]
PAC-Bayes

Figure 2: Test error vs generalization bounds on CIFAR-100. We report the uniform convergence
bound and PAC-Bayes bound, when evaluated on prompts produced by Greedy (left). We plot
its train vs. test error (middle). We also report the performance of handcrafted prompts and their
corresponding PAC-Bayes bound (right). The dashed line is y = x.
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Figure 3: Test error vs generalization bounds on fMoW. We report the uniform convergence bound
and PAC-Bayes bound when evaluated on prompts produced by Greedy (left). We plot its train vs.
test error (middle). We also report the performance of handcrafted prompts and their corresponding
PAC-Bayes bound (right). The dashed line is y = x.

taken from CLIP and Wise-FT [Wortsman et al., 2022]. Given these prompts, we compute generaliza-
tion bounds via PAC-Bayes (PAC-Bayes) and via uniform convergence (UC). The PAC-Bayes bounds
are computed using LLaMA-7B [Touvron et al., 2023] as the prior. For Greedy, We search using
the CLIP vocabulary of 49 408 tokens and measure the generalization bounds for 100 realizations of
Greedy with each corresponding to a fixed prompt length l ∈ {1, . . . , 10} and split portion of the
dataset s ∈ {0.1, . . . , 1.0}. We extract features from the ViT-B/16 and ViT-L/14 CLIP models and
normalize them to have a unit norm. While generalization bounds on CIFAR-10 and CIFAR-100 have
been well studied in the literature, much less is known about datasets closer to what is obtainable in
practice like fMoW [Christie et al., 2018] and OfficeHome [Venkateswara et al., 2017].

0.10 0.15 0.20 0.25 0.30
Bound

0.05

0.10

0.15

0.20

0.25

Te
st

 0
-1

 e
rro

r

CIFAR-10
ERM
SRM

1 2 3
standard deviation

0.05

0.10

0.15

CIFAR-10
Train 0-1 error
Test 0-1 error

Figure 5: Test error vs the PAC-Bayes generalization
bound on CIFAR-10 when using SRM (i.e., directly pe-
nalizing the PAC-Bayes bound). (left). We also report
the train and test performance when the CLIP vocabu-
lary is pruned using the language model. (right). These
yield prompts with tighter bound at the cost of slightly
higher error.

Baselines We compare our generaliza-
tion bounds against the state-of-the-art
generalization bounds for deep learning
CIFAR-10, CIFAR-100, and ImageNet. In
particular, we compare to the works of
Lotfi et al. [2022] and Zhou et al. [2019]
which represent the latest progress in PAC-
Bayes bounds for deep learning. As shown
in Table 1, we achieve much tighter bounds
than the existing state-of-the-art across all
reported datasets. We remark that our ap-
proach is also data-independent, while still
achieving a tighter bound than the data-
dependent results from the work of Lotfi
et al. [2022].

Structural risk minimization with the
PAC-Bayes bound PAC-Bayes is related to SRM [Vapnik and Chervonenkis, 1974], where one
tries to optimize both the goodness of fit and complexity of the model. We consider using structural
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Figure 4: Test error vs generalization bounds on OfficeHome. We report the uniform convergence
bound and PAC-Bayes bound when evaluated on prompts produced by Greedy (left). We plot its
train vs. test error (middle). We also report the performance of handcrafted prompts and their
corresponding PAC-Bayes bound (right). The handcrafted prompts perform poorly for this task so
the resulting bound for them is vacuous. The dashed line is y = x.
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Figure 7: We show the generalization of Greedy with randomly labeled data on CIFAR-10(left).
We also report the performance of Greedy when search is done with 1% - 9% of the labeled data
(middle), and when search is done with 1% - 9% of the tokens in the CLIP vocabulary (right). We fix
the prompt length to be 5.

risk minimization, where our complexity term is exactly the KL divergence term in Equation 10. As
such, our Greedy search now jointly maximizes train accuracy and minimizes this KL divergence
term when adding new tokens to each class prompt. We observe that this naturally leads to slightly
tighter bounds for prompts yielded by Greedy on CIFAR-10 (Figure 5), while slightly degrading the
accuracy of the prompt.
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Figure 6: The train and test accuracy on CIFAR-10 and
CIFAR-100, FmoW and OfficeHome with different prompt
lengths for greedy search. Although the generalization gap
does increase with prompt length, it can be seen that there is
very little overfitting even at the longest lengths.

Effects of prompt length Another
key quantity of the hypothesis class
determined by prompt engineering is
the prompt length. We also analyze
how the length of class prompts im-
pacts the performance of Greedy (Fig-
ure 6). We note that at a certain
length, the train accuracy plateaus,
which denotes that a relatively small
prompt length suffices for strong per-
formance.

Fitting random labels Since the
prompts form a much smaller hypoth-
esis, we hypothesize that the learned
prompts are more robust to noise
in the data. Zhang et al. [2021]
showed that conventional deep neu-
ral networks can fit both random la-
bels and random data, arguing that
these models have much higher ca-
pacity than what traditional statistical
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learning theory can deal with. To demonstrate that prompt engineering does not overfit, we experi-
ment with running Greedy on training data with a certain proportion of randomly flipped training
labels. We observe that training accuracy significantly drops as we flip these training labels (Figure 7),
supporting that the hypothesis space of prompts does not overfit to random noise in the training
dataset. As such, this supports that prompt engineering defines a hypothesis class with rather low
complexity that is able to achieve high performance on complex tasks for which the pretrained
vision-language model is well-suited.

Fitting with small data We also run experiments to evaluate the effectiveness of Greedy in limited
labeled data settings. Again, the hypothesis class defined by discrete prompts is rather simple
and should have a relatively small sample complexity. As such, we believe that this would yield
comparatively stronger performance than more complex models with few labeled examples per class.
In Figure 7, we report the train and test accuracy of Greedy as we vary the amount of training data
(between 1%–10% of the full data) we use in computing the search objective. We observe less than
2% increase in error with 1% of the vocabulary. We include plots for even smaller data sizes in the
Appendix A.

Pruning the hypothesis space The runtime of Greedy is dominated by inference time of the CLIP
text encoder, as it extracts the embedding for each new candidate token. We can reduce the runtime
by pruning the search space and restricting it to a smaller vocabulary. To understand the sensitivity of
Greedy to the vocabulary size, we randomly sample a small subset of the vocabulary and run Greedy
on this subset. We observe that the performance of Greedy is not sensitive to the vocabulary size
(Figure 7). In addition to regularizing the search objective with the KL term directly, another way to
constrain the hypothesis space is to prune the vocabulary using the language model. We experiment
with conditioning the language model on the class names and then selecting tokens from the language
model’s vocabulary with the lowest log-likelihood. In Figure 5 we report the performance and
generalization of Greedy when the set of tokens in search is restricted to within k standard-deviation
from the minimum log-likelihood. While the vocabulary size of LLaMA-7b is 32 000 tokens, the
number of tokens within 3, 2, 1 standard deviations from the minimum log-likelihood token are 6894,
1361, 185 respectively. We observe this implicitly prunes the hypotheses to contain those with good
generalization at small cost to the train and test error while also reducing the runtime of the algorithm.
One may wish to use a vocabulary that encodes prior knowledge about the data or domain or has
desirable properties. Further results using a vocabulary of English words in Appendix A show that
we can learn somewhat interpretable prompts.

7 Conclusion and Limitations

In this paper, we study the generalization properties of engineered prompts on image recognition
tasks. We observe the surprising fact: prompt engineering does not seem to overfit, performing well
on the test distribution. We provide a principled approach to analyze this generalization behavior by
framing discrete prompts as a relatively small hypothesis class, onto which we can naturally apply
classical PAC-Bayes bounds using a LLM prior. This results in the tightest bounds yet observed
across multiple complex datasets, including CIFAR-10, CIFAR-100, and ImageNet. As a whole, this
supports the use of prompt-engineering or simple greedy searches over potential class prompts as a
high-performing and well-generalizing classifier.

From a broader perspective, it is worth emphasizing to what degree the PAC-Bayes generalization
bounds here can really “explain” or allow us to “understand” prompt engineering. Obviously, despite
the ability to produce highly non-vacuous bounds, the bounds rely on the fact that pretrained vision-
language models already contain some hypothesis class that will perform well on the training set (for
whatever the desired task is). This, in turn, naturally relies on the generalization performance of the
underlying model itself, which our bounds of course do not address (naturally, as they depend only
on the prompt, the bounds do not provide any linkage between e.g. CLIP’s train/test performance).
But what our bounds do address is the fact that when given these performant models, manual prompt
engineering (even when “overfitting” to a test set) often exhibits surprisingly strong generalization
behavior. Given the prevalence of prompt engineering in modern ML, we believe that this provides
an important perspective on this widespread practice.
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Supplementary Material for
Understanding prompt engineering does not require rethinking generalization

A Additional Results

Pruning the hypothesis space In addition to the result on CIFAR-10 in Figure 7, we report the
performance of greedy on CIFAR-100 when a random subset of the CLIP vocabulary is used in
Figure 8. We observe less than 2% increase in error with 1% of the vocabulary. This provides
further evidence of the robustness of Greedy to the vocabulary size. Random sampling, while easy to
implement, prunes hypotheses that may have desirable properties. As such, we report the performance
of greedy on CIFAR-100 when the vocabulary is pruned using the language model, and observe that
Greedy is able to recover prompts with better generalization (See Figure 9).
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Figure 8: We show the generalization of Greedy when search is done with 1% - 9% of the tokens
sampled randomly from the CLIP vocabulary on CIFAR-10 (left), and CIFAR-100 (right). We fix the
prompt length to be 5.
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Figure 9: We show the generalization of Greedy when search is done with subsets of the tokens
sampled from the language model as described in the text on CIFAR-10(left), and CIFAR-100(right).
We fix the prompt length to be 5.

Fitting random labels In addition to the result on CIFAR-10 in Figure 7, we report results on fitting
to randomly labelled data for CIFAR-100, FmoW, and OfficeHome in in Figure 10, and observe
consistently that Greedy does not fit random labels. This provides evidence that contrasts the current
literature on the ability for neural networks to easily fit random labels.

Fitting with small data In Figure 11 we report results on fitting to small sample sizes on both
CIFAR-10 and CIFAR-100. We consider random subsets between 1% – 10% of the data and
between 0.1% – 1%. We observe that Greedy is able learn even with small sample sizes with good
generalization that degrades as the sizes decrease.

Learning with a different vocabulary The Greedy algorithm is agnostic to the set of tokens
used in the search procedure. In practice, one may use a vocabulary that encodes prior knowledge
about the data or domain. Additionally, certain properties like intepretability may be desired. We
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Figure 10: We show the generalization of Greedy with randomly labeled data on CIFAR-10, CIFAR-
100, FmoW, and OfficeHome. We fix the prompt length to be 5.
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Figure 11: We show the generalization of Greedy when search is done with 1% - 9% of the data
sampled randomly on CIFAR-10 (left), and CIFAR-100 (second-left). We also show the generalization
of Greedy when search is done with 0.1% - 0.9% of the data sampled randomly on CIFAR-10 (second-
right), and CIFAR-100 (right). We fix the prompt length to be 5.

report results on searching with the language model’s vocabulary (See Figure 12. We do not observe
significant degradation in performance. We also report results on penalizing the search criteria using
the bound (i.e SRM) with different β values (See Figure 13). We observe that Greedy is able to
recover prompts with better generalization as the penalty increases at a small cost to accuracy. We
run Greedy on a vocabulary of English words obtained from the english-words2 package. We show
the prompts learned on CIFAR-10 in Figure 14.
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Figure 12: We show the generalization of Greedy with the Llama-7b vocabulary on CIFAR-10 (left)
and CIFAR-100 (right).

B Experimental Details

Hyperparameters We report the hyper-parameters used in CLIP, LLaMA-7b, and the Greedy
algorithm in Table 3.

2https://github.com/mwiens91/english-words-py
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Figure 13: We show the generalization of Greedy with the LLaMA-7b vocabulary on CIFAR-10
with different values of penalty β with the SRM objective.

Figure 14: We show the learned prompts using a full-word vocabulary of English words on CIFAR-10.
This achieves 3.3% test error with the L-14 base model.

Table 3: Hyperparameters used in CLIP, LLaMA-7b and Greedy.

Hyperparameter Value

Batch size 100
CLIP Vocabulary size 49,408
LLaMA-7B Vocabulary size 32,000
Temperature 1.0
Bound δ 0.99
SRM β 1.0

Compute All experiments were run on cluster with 10 Quadro RTX 8000 GPUs with each experi-
ment running on one GPU at a time.
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