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Abstract001

Large Language Models (LLMs) have exhib-002
ited strong mathematical reasoning prowess,003
tackling tasks ranging from basic arithmetic to004
advanced competition-level problems. How-005
ever, frequently occurring subtle yet critical er-006
rors, such as miscalculations or incorrect substi-007
tutions, limit the LLMs’ full potential. Existing008
studies to improve mathematical ability typi-009
cally involve applying preference learning to010
step-wise solution pairs. Although these meth-011
ods leverage samples of varying granularity to012
mitigate reasoning errors, they overlook crit-013
ical subtle errors. In this work, we propose014
a novel preference learning framework called015
eRror-Injected Self-Editing (RISE), which in-016
jects predefined subtle errors into pivotal tokens017
in reasoning or computation steps to construct018
hard pairs for error mitigation. In detail, RISE019
uses the LLM itself to edit a small number of020
tokens in the solution, injecting designed sub-021
tle errors. Then, pairs composed of self-edited022
solutions and their corresponding correct ones,023
along with pairs of correct and incorrect so-024
lutions obtained through sampling, are used025
together for subtle error-aware DPO training.026
Compared with other preference learning meth-027
ods, RISE further refines the training objec-028
tive without requiring fine-grained sampling or029
preference annotation. Extensive experiments030
validate the effectiveness of RISE, with prefer-031
ence learning on Qwen2-7B-Instruct yielding032
notable improvements of 3.0% on GSM8K and033
7.9% on MATH with only 4.5K training sam-034
ples. Moreover, the effect of error mitigation035
extends from mathematical reasoning to logical036
reasoning and code generation.037

1 Introduction038

Advanced mathematical reasoning is a critical capa-039

bility for Large Language Models (LLMs) and has040

attracted increasing research attention (Yue et al.,041

2024; Gou et al., 2024; Yu et al., 2024). Recently,042

a growing body of research has been attempting043
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Figure 1: Error distribution for results of Qwen2-7B.

to enhance the mathematical reasoning capability 044

of LLMs via preference optimization (Lai et al., 045

2024; Chen et al., 2024; Setlur et al., 2024a). By 046

constructing fine-grained preference pairs, they re- 047

duced the likelihood of generating an incorrect rea- 048

soning step by comparing it with the preferred one 049

(Rafailov et al., 2023). These studies predomi- 050

nantly centered on rectifying those inter-step errors. 051

In other words, they aim to reduce the likelihood 052

of generating a step that is not logically consistent 053

with the previous ones. 054

In our work, we argue that, in addition to the 055

inter-step errors, current LLMs also greatly suf- 056

fer from the inner-step subtle errors, which have 057

been largely disregarded in the literature. As our 058

analysis reveals, in numerous scenarios, LLMs can 059

generally generate a next reasoning step that seems 060

logically valid on the surface. However, they fre- 061

quently struggle to complete this step accurately, 062

revealing some subtle errors within the step. These 063

inner-step errors, such as miscalculations, incorrect 064

substitutions, and omission of calculation terms, 065

account for approximately 75% of the total errors 066

as shown in Figure 1. 067

To address this issue, we propose a novel pref- 068

erence learning framework called eRrror-Injected 069

Self-Editing (RISE). This framework is founded on 070

two key insights. First, we aim to inject errors into 071
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a small number of tokens within the correct output072

while preserving the overall structure. Such error-073

injected samples, with limited differences from the074

correct solutions, can be regarded as hard negatives075

for preference learning (Liu et al., 2024). Second,076

we can leverage the LLM itself to inject predefined077

errors using appropriate prompts. Compared to ran-078

domly sampled pairs, pairs based on injected errors079

are more controllable, allowing preference learning080

to focus on designed, targeted subtle errors.081

The key idea of RISE is to prompt the LLM to082

inject errors into correct solutions and construct083

hard pairs targeting predefined subtle errors for084

preference learning. To be specific, we first ap-085

ply an LLM to generate several multi-step solu-086

tions and construct a full-solution pair composed087

of one correct solution and one incorrect solution.088

Then, we choose the correct one and edit each step089

of the solution to inject subtle errors. The same090

model is used for error-injected editing, as it can091

better identify tokens that are both error-prone and092

critical for accurate reasoning. We design several093

types of subtle errors and modify a few tokens094

to introduce these errors. The edited steps and095

the corresponding correct steps are constructed as096

self-edited pairs. Finally, we conduct subtle error-097

aware DPO training on both self-edited pairs and098

full-solution pairs. Inspired by Pal et al. (2024), a099

negative log-likelihood loss is introduced to stabi-100

lize the training, as the self-edited pairs are highly101

similar, which can easily reduce the likelihood of102

the correct solutions.103

We evaluate our framework on two LLM se-104

ries: Qwen2 and Llama-3.1. Our method RISE-105

QWEN2-7B achieves a 3.0% accuracy gain on106

GSM8K and 7.9% on MATH, and RISE-LLAMA-107

3.1-8B achieves 3.9% and 2.7%, respectively. De-108

tailed error analysis shows that RISE helps the109

LLM further avoid predefined subtle errors. More-110

over, our method successfully generalizes reason-111

ing preferences derived from mathematical tasks to112

other reasoning domains, such as logical reasoning113

and code generation.114

In summary, our contributions are as follows:115

• We introduce RISE, a novel preference learn-116

ing framework that injects subtle errors into117

key tokens within reasoning or computation118

steps to create hard pairs for error mitigation.119

• We develop a subtle error-aware DPO training120

method that improves the stability of prefer-121

ence learning for near-identical sample pairs 122

using an adaptive log-likelihood loss. 123

• Extensive experiments demonstrate the effec- 124

tiveness and robustness of RISE in improving 125

mathematical reasoning. Additionally, RISE 126

extends reasoning capabilities to logical rea- 127

soning and code generation. 128

2 Method 129

In this section, we introduce the RISE framework, 130

which constructs hard negative preference pairs 131

through error-injected self-editing and enhances 132

mathematical reasoning with subtle error-aware 133

DPO training. As shown in Figure 2, our method 134

starts with sampling K multi-step solutions from 135

the original model. One correct solution and one 136

incorrect solution are chosen as a full-solution pair 137

based on the correctness of the final answer. Next, 138

we use the same model to edit each step of the 139

correct one, injecting subtle errors into a small 140

number of tokens (§2.1). The edited steps and 141

the correct steps are collected as self-edited pairs. 142

Finally, the combination of the self-edited pairs 143

and full-solution pairs is employed for subtle error- 144

aware DPO training (§2.2). 145

We adopt an instruction-tuned model in our ex- 146

periments, since it can be used to sample a solution 147

and self-edit it with appropriate prompts. Given a 148

mathematical problem x ∈ Draw, we first prompt 149

the model M to sample a multi-step solution set 150

{ŷ} following (Lai et al., 2024). To ensure that 151

the sampled solution strictly follows an explicit 152

Chain-of-Thought (CoT) structure, we prepend the 153

model’s generated solution with the prefix “Let’s 154

think step by step. Step 1:”. This prefix ensures 155

that each step of the solution begins with a “Step” 156

marker. We select the solution with the output 157

answer that matches the reference answer as the 158

correct one for subsequent editing. The correct 159

and the other incorrect are used to construct a full- 160

solution pair set D±
Full. The correct solution can be 161

denoted as ŷ+ =
⊕n

i=1 ŷ
+
i , where ŷ+i is the i-th 162

step and n represents the total number of steps. 163

2.1 Dataset Construction via Error-injected 164

Self-editing 165

To create hard preference pairs, we employ an edit- 166

ing approach to modify certain tokens in the cor- 167

rect solution to introduce predefined errors. We 168

focus on the error injection of each step in one 169
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Math QA

If Jenine can sharpen a pencil 5 times before it becomes unusable and 
she needs to sharpen a pencil every 1.5 hours of use, how many more 
pencils does she need to purchase in order to write for 105 hours, 
considering she already has ten pencils and each new pencil costs $2?

Solution
Sampling

Self-edited Pairs

+

Subtle Error-aware
DPO training

Error-injected
Self-Editing

Step 1: Determine how long one pencil lasts for Jenine.

… then one pencil lasts her (5 \times 1.5 =   9  ) hours.

Step 2: Calculate how many hours   one pencil can provide in total.
… ten pencils will last (10 \times 7.5 = 75) hours.

Step 3: Determine how many more hours Jenine needs to write.

… so she needs (105   + 75 =   180 ) more hours of pencil use.

Collect
Let's think step by step.

Step 1: Determine how long one pencil lasts for Jenine.

… then one pencil lasts her (5 \times 1.5 =    7.5 ) hours.

Step 2: Calculate how many hours   ten pencils can provide in total.
… ten pencils will last (10 \times 7.5 = 75) hours.

Step 3: Determine how many more hours Jenine needs to write.

… so she needs (105   - 75 =   30 ) more hours of pencil use.
…

The answer is: 4

Original Model DPO-tuned Model

𝑦!" 𝑦!#

𝑦" 𝑦#

Full Solution Pairs

𝐾 solutions

Figure 2: Preference learning framework augmented by error-injected self-editing. Each mathematical problem is
sent to the original model to sample K solutions, with correct and incorrect solutions in rectangles with blue and
red borders. For one correct solution, we inject errors into each step of the solution and collect self-edited pairs.
We also select an incorrect solution paired with the above correct one as full-solution pairs. Both sampling and
self-editing are performed by the same model.

REPLACE a numerical value or a series of related values. REPLACE a calculation symbol (e.g., +-*/, etc.).

SWAP two calculation terms in substruction or division.

14 times * 120 ounces/time = 1680 ounces

1660

1680 ounces - 360 ounces = 1320 ounces

+ 2040

DELETE an intermediate calculation terms.

Annual earnings from teaching: 20 * 35 * 50 = $35,000

delete

Remaining miles = (3 miles * 4 dogs) - 8
miles = 4 miles

-4

Error-injected Self-editing Prompt

Question:
{question}

Initial Answer:
{answer}

Current Step:
{step}

Replace a numerical value or a series of related values 
in the current step to make a wrong calculation. Do not 
state that errors have been made.

1,000

Figure 3: Error-injected self-editing prompt and some error injection examples. We display three error-injected
self-editing operations: “REPLACE”, “SWAP”, and “DELETE”.

solution. Compared with previous step-wise pref-170

erence learning (Lai et al., 2024), our approach171

further refines the objective of preference learning172

by specifically targeting a few error tokens, enhanc-173

ing the ability of LLMs to avoid subtle errors.174

Error Types. As we aim to optimize the model175

to avoid subtle errors, the main types of errors we176

concentrate on are as follows: (1) Numerical cal-177

culation errors; (2) Numerical or symbolic substi-178

tution errors; (3) Omission of calculation terms.179

These errors frequently occur in most solutions and180

typically involve only a small amount of tokens.181

We also include two relatively less frequent errors:182

(4) Errors in the calculation order and (5) Errors in183

the use of calculation symbols. We extract and sum-184

marize these errors from the solutions generated by185

the models in our experiments.186

Self-editing. We design appropriate prompts and187

utilize the model itself to edit the generated cor-188

rect step ŷ+i . As most of the steps in the correct189

solutions are accurate (Lu et al., 2024b), we use all190

the steps from the correct ones without applying 191

any additional filtering. Since solutions to math- 192

ematical problems are highly error-sensitive, any 193

modification of numerical values, symbols, or other 194

mathematical elements disrupts the original correct 195

procedure. Thus, even small language models can 196

be prompted to almost certainly inject errors. The 197

error-injected step ŷ−i is generated using an edit 198

prompt shown on the left of Figure 3. This edit 199

prompt contains the problem x, the concatenation 200

of previous steps ŷ<i, the correct step ŷi, and the 201

edit type e. We mainly use three types of editing op- 202

erations: “REPLACE”, “SWAP”, and “DELETE” 203

(Mallinson et al., 2022). Some error injection ex- 204

amples are shown on the right of Figure 3. For each 205

step, only around ten tokens will be modified. We 206

collect the error-injected steps and the correct steps 207

to construct a paired edited set D±
0 = {(ŷ+i , ŷ

−
i )}. 208

These edited pairs are then filtered through Leven- 209

shtein distance-based similarity as follows: 210

D±
Edit={(ŷ+i , ŷ

−
i ) |LD(ŷ+i , ŷ

−
i )<α,∈D±

0 }, (1) 211
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where LD represents the function to calculate Lev-212

enshtein distance and α denotes the filter threshold.213

The filtered pairs D±
Edit are used for subsequent214

subtle error-aware DPO training.215

2.2 Subtle Error-aware DPO Training216

Given all self-edited pairs and full-solution pairs,217

we apply DPO to optimize the model (Rafailov218

et al., 2023). Specifically, we first randomly choose219

N pairs from all self-edited pairs for each problem220

and combine them with the full-solution pair, which221

will be N+1 pairs in total as the training set. To222

effectively learn subtle errors in each step, we adopt223

the step-wise DPO loss (Lai et al., 2024) for the224

self-edited pairs as it can focus on fine-grained225

preference learning, and general DPO loss for the226

full-solution pairs. Two losses are defined as:227

LDPO-Edit =

− E
(ŷ+

i ,ŷ−
i )∼D±

Edit
[log σ(β log

πθ(ŷ
+
i |x; ŷ

+
<i)

πM (ŷ+
i |x; ŷ

+
<i)

− β log
πθ(ŷ

−
i |x; ŷ<i)

πM (ŷ−
i |x; ŷ<i)

)].

LDPO-Full =

− E
(ŷ+,ŷ−)∼D±

Full
[log σ(β log

πθ(ŷ
+|x)

πM (ŷ+|x)

− β log
πθ(ŷ

−|x)
πM (ŷ−|x) )],

(2)228

where πθ is the policy model and πM is the refer-229

ence model. To mitigate the risk of optimization230

failure caused by the high similarity between paired231

samples (Pal et al., 2024), we additionally intro-232

duce a negative log-likelihood loss for the correct233

samples. This loss can help prevent the collapse234

of the probability of generating correct samples235

and is defined as LNLL. We present our subtle236

error-aware DPO loss that contains the above two237

objectives as follows:238

L = LDPO-Edit + LDPO-Full + λ1[r<0]LNLL,

r = log
πθ(ŷ

+
i |x; ŷ

+
<i)

πM (ŷ+
i |x; ŷ

+
<i)

or log
πθ(ŷ

+|x)
πM (ŷ+|x)

(3)239

where λ is the weight to control the balance of240

two objectives, r signals when to apply the NLL241

loss. We design indicator r to represent whether242

the generation probability of the policy model is243

lower than that of the reference model. We outline244

the full algorithm of RISE in Algorithm 1.245

3 Experiments246

3.1 Experimental Setup247

Evaluation Datasets. We evaluate our frame-248

work on three in-domain datasets, GSM8k (Cobbe249

Algorithm 1 Preference Learning via Error-
injected Self-editing

Input: Draw: mathematical problems; M : original model;
E : edit prompt set; K: number of sampling attempts; N :
number of self-edited pairs;
Initialize the subtle error-aware DPO training dataset
D±

M ← {}
for x ∈ Draw do

Sample K solutions {ŷ} ∼ PM (· | x).
Randomly select one correct solution ŷ+ and one incor-
rect solution ŷ−.
Define ŷ+ = ŷ+

1 ⊕ ŷ+
2 ⊕ · · · ⊕ ŷ+

n , where n denotes
the number of steps in the solution.
Initialize self-edited pair set D±

Edit ← {}.
for i = 1 to n do

Randomly select an edit type e← E .
Edit the step using the same model ŷ−

i ∼
PM (· | e,x, ŷ+

<i, ŷ
+
i ), where ŷ+

<i represents the
concatenation of steps before ŷ+

i .
D±

Edit ← D
±
Edit ∪ {(ŷ

+
i , ŷ−

i )} if LD(ŷ+
i , ŷ−

i ) < α,
where LD is the function to calculate edit distance.

end for
Randomly select N pairs {(ŷ+

j , ŷ−
j )}Nj=1 ← D±

Edit

D±
M ← D

±
M ∪ {(ŷ

+, ŷ−), (ŷ+
1 , ŷ−

1 ), . . . (ŷ+
N , ŷ−

N )}
end for
Optimize the subtle error-aware DPO loss in Equation 3 on
D±

M with PM as the reference policy.

et al., 2021), MATH (Hendrycks et al., 2021) and 250

AQuA (Ling et al., 2017), along with three out- 251

of-domain datasets, SVAMP (Patel et al., 2021), 252

AIME24 (MAA, 2024), and Odyssey-MATH (Net- 253

mind.AI, 2024). These six datasets span a broad 254

spectrum of mathematical problems, ranging from 255

basic arithmetic to advanced competition-level 256

problems. The problems in these datasets, includ- 257

ing tabular, free-form, and multiple-choice formats, 258

ensure a robust evaluation of the model’s mathe- 259

matical reasoning ability. The detail of all datasets 260

is described in Table 6 in the Appendix A. 261

Baselines. Our framework is compared with sev- 262

eral LLMs performing well in mathematical rea- 263

soning. Two closed-source state-of-the-art LLMs: 264

GPT-4o (OpenAI, 2024) and Claude-3.5-Sonnet 265

(Anthropic, 2024). Three open-sourced general 266

instruction-tuned LLMs: Mistral-7B-Instruct-v0.3 267

(Jiang et al., 2023), Qwen2 series (Yang et al., 268

2024a), and Llama-3.1 series (Meta AI, 2024). Five 269

mathematically enhanced LLMs: DeepSeekMath- 270

RL (Shao et al., 2024), Llemma (Azerbayev et al., 271

2024), ToRA (Gou et al., 2024), MAmmoTH (Yue 272

et al., 2024), and MathGenieLM (Lu et al., 2024a). 273

Four additional LLMs under step-wise DPO opti- 274

mization are also included: Step-DPO series (Lai 275

et al., 2024), SVPO (Chen et al., 2024), MCTS- 276

DPO (Xie et al., 2024), and SCDPO (Lu et al., 277
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Model Size GSM8K MATH AQuA SVAMP†

Closed-source Models

GPT-4o - 96.0 78.1 82.2 94.3
Claude-3.5-Sonnet - 94.9 68.5 77.5 92.9

Open-source Models

Mistral-7B-Instruct-v0.3 7B 57.5 15.1 20.4 69.7
Qwen2-7B-Instruct 7B 85.4 52.2 66.5 89.3
Llama-3.1-8B-Instruct 8B 84.0 48.3 55.9 85.7
DeepSeekMath-RL 7B 87.7 52.7 59.0 88.4
Llemma 7B 36.4 18.0 - -
MAmmoTH 7B 53.6 31.5 44.5 67.7
ToRA 7B 68.8 40.1 23.6 68.2
MathGenieLM 7B 80.5 45.1 - 83.3
Qwen2-7B-Step-DPO 7B 88.5 55.8 63.0 88.7
SVPO 7B 81.7 59.5 - -
MCTS-DPO 7B 81.8 34.7 - -
SCDPO 7B 80.1 47.7 48.4 83.2

RISE-QWEN2-7B 7B 88.4
(+3.0)

59.9
(+7.9)

69.7
(+3.2)

91.6
(+2.3)

RISE-LLAMA-3.1-8B 8B 87.9
(+3.9)

51.0
(+2.7)

61.4
(+5.5)

87.5
(+1.8)

Qwen2-72B-Instruct 72B 93.1 68.8 78.3 93.1
Llama-3.1-70B-Instruct 70B 94.9 65.0 77.1 93.0
MAmmoTH 70B 76.9 41.8 65.0 82.4
ToRA 70B 84.3 49.7 41.3 82.7
MathGenieLM 70B 88.4 51.2 - 87.7
Qwen2-72B-Step-DPO 72B 94.0 70.8 77.5 93.5

RISE-QWEN2-72B 72B 94.0
(+0.9)

69.8
(+1.0)

79.1
(+0.8)

93.8
(+0.7)

RISE-LLAMA-3.1-70B 70B 95.2
(+0.3)

66.4
(+1.4)

78.7
(+1.6)

93.5
(+0.5)

Table 1: Comparison results on commonly used mathe-
matical datasets. † denotes out-of-domain datasets.

2024b). We display results with the same Chain-of-278

Thought (CoT) prompts.279

Training Details. We adopt mathematical prob-280

lems used by Lai et al. (2024) for preference learn-281

ing. The training dataset contains around 9K prob-282

lems with corresponding correct step-by-step solu-283

tions. We discard these solutions and use only the284

problems to construct our training set. The prob-285

lems are mainly from MetaMath (Yu et al., 2024)286

and AQuA (Ling et al., 2017). Details are presented287

in Table 7. We select two LLM series, Qwen2288

(Yang et al., 2024a) and Llama-3.1 (Meta AI, 2024)289

as our base LLMs. We apply the instruction-tuned290

version of these models to sample solutions and291

meanwhile edit each step of the solution. The num-292

ber of sampling attempts is set to 5, and the number293

of self-edited pairs is set to 1 for the Qwen2 series294

and 3 for the Llama-3.1 series. Implementation295

details are presented in the Appendix B.296

3.2 Main Results297

We report the main results on different mathemati-298

cal datasets shown in Table 1 and Table 2. The for-299

mer is from commonly used mathematical datasets300

published earlier, consisting of three in-domain and301

one out-of-domain datasets. The latter is from the302

Model Size AIME24† Odyssey-MATH†

Closed-source Models

GPT-4o - 3/30 52.9
Claude-3.5-Sonnet - 4/30 48.0

Open-source Models

ToRA 70B 0/30 26.8
MAmmoTH 70B 0/30 15.7
Qwen2-72B-Instruct 72B 4/30 45.7
Llama-3.1-70B-Instruct 70B 7/30 60.4
Qwen2-72B-Step-DPO 72B 4/30 50.1

RISE-QWEN2-72B 72B 4/30
(+0/30)

49.4
(+3.7)

RISE-LLAMA-3.1-70B 70B 7/30
(+0/30)

60.0
(−0.4)

Table 2: Comparison results on recent competition-level
datasets. † denotes out-of-domain datasets.

recent competition-level datasets and both datasets 303

are out-of-domain. Overall, we can see that RISE 304

outperforms the SOTA model at different scales. 305

These results highlight the potential of our frame- 306

work to help the general LLM to be a mathematical 307

generalist. On several datasets, RISE-QWEN2- 308

72B and RISE-LLAMA-3.1-70B even outperform 309

some closed-source LLMs. 310

Table 1 presents the results on the GSM8K, 311

MATH, AQuA, and SVAMP datasets. Our frame- 312

work enables the LLM to achieve noticeable im- 313

provements in mathematical reasoning compared to 314

the corresponding backbone. Especially on MATH 315

and AQuA, RISE-QWEN2-7B obtains 7.9% and 316

2.7% accuracy gain, and RISE-LLAMA-3.1-8B 317

obtains 3.2% and 5.5%. RISE-QWEN2-7B out- 318

performs other popular mathematical LLMs on all 319

four datasets. Additionally, RISE performs better 320

than the SOTA step-wise preference learning frame- 321

works. Compared to Step-DPO, which shares the 322

same backbone LLM and requires GPT-4-based 323

annotations, RISE obtains better results without 324

annotations. In detail, it achieves 4.1% higher ac- 325

curacy on MATH, 6.7% higher on AQuA, and 2.9% 326

higher on SVAMP. We scale our experiments on 327

70B/72B models and also observe around 1.0% 328

accuracy gain on MATH and AQuA. 329

Table 2 displays the results for two com- 330

plex, competition-level mathematical problems, 331

AIME24 and Odyssey-MATH. We observe that 332

both ToRA and MAmmoTH, even with 70B param- 333

eters, fail to solve any of the problems in AIME24, 334

highlighting the difficulty of these problems. Our 335

framework activates the mathematical potential of 336

Qwen2-72B-Instruct and delivers 3.7% accuracy 337

gains on the Odyssey-MATH dataset. Since the 338
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Method GSM8K MATH

Qwen2-7B-Instruct 85.4 52.2

RISE-QWEN2-7B 88.4 59.9
- w/o self-edited pairs 88.3 58.2
- w/o full-solution pairs 88.0 58.1
- w/o NLL loss 88.2 59.4

Llama-3.1-8B-Instruct 84.0 48.3

RISE-LLAMA-3.1-8B 87.9 51.0
- w/o self-edited pairs 86.8 49.9
- w/o full-solution pairs 86.6 50.3
- w/o NLL loss 87.4 50.7

Table 3: Ablation study on Qwen2 and Llama-3.1.

problems in the AIME dataset are highly complex339

and the model’s answering failure is not due to340

subtle errors, RISE is unable to further improve ac-341

curacy. The failure of RISE-LLAMA-3.1-70B on342

Odyssey-MATH may be due to the fact that Llama-343

3.1-70B-Instruct is already fine-tuned on diverse,344

complex mathematical datasets, with its accuracy345

increasing from 36.4% in Llama-3.0 to 60.4% in346

Llama-3.1 (Netmind.AI, 2024). Preference learn-347

ing on our relatively simple datasets may harm348

its original reasoning performance. Overall, the re-349

sults on both in-domain and out-of-domain datasets350

demonstrate that our framework can help general351

LLMs consistently improve their mathematical rea-352

soning abilities by avoiding subtle errors. We also353

apply RISE on other open-source LLMs, and the354

results are shown in Appendix C.355

3.3 Ablation Study356

We demonstrate the effectiveness of our framework357

through different training settings as detailed be-358

low: (1) w/o self-edited pairs, which removes359

the supplemented edited pairs and trains the model360

with full-solution pairs. (2) w/o full-solution pairs,361

which trains the model with the edited pairs only.362

(3) w/o NLL loss, which removes the loss used for363

stabilizing training. Table 3 shows the results of364

different settings.365

From the table, we can observe that either self-366

edited pairs or full-solution pairs are effective for367

preference learning to improve mathematical rea-368

soning. Both types of pairs achieve similar results369

on the GSM8K and MATH datasets. Moreover,370

the combination of these two types of pairs can371

raise the accuracy to a new peak. Compared with372

standard DPO training (w/o self-edited pairs), our373

framework outperforms by 1.8% on the MATH374

dataset with Qwen2-7B-Instruct; and by 1.1% on375
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Figure 4: Error analysis across three Qwen2-7B-based
models. We display the number of different types of er-
rors when addressing the MATH dataset, where “Others”
represents those fall outside the scope of consideration.

GSM8K and 1.2% on MATH with Llama-3.1-8B- 376

Instruct. Besides, the NLL loss helps improve ac- 377

curacy by about 0.3%. 378

3.4 Subtle Error Analysis 379

To analyze the effect of our framework on spe- 380

cific error mitigation, we counted the number of 381

errors generated by different models on the MATH 382

dataset. In detail, given the problem, the generated 383

solution, and the reference answer, we prompt GPT- 384

4o to detect the first error in any solution and output 385

the error type in the final. To verify GPT-4o’s ac- 386

curacy in detecting errors, we manually selected 387

50 random samples and checked for consistency in 388

the identified errors. 46 (92%) of the samples were 389

accurately detected with their error types, which 390

is acceptable for conducting the complete analysis. 391

We display the number of different errors made by 392

the Qwen2-7B series in Figure 4. We observe that 393

numerical calculation errors account for approx- 394

imately 60% of the total errors and subtle errors 395

we defined for 75%. Compared with the standard 396

DPO, our framework additionally reduces the num- 397

ber of predefined errors. Especially for numeric or 398

symbolic substitution errors and omission of cal- 399

culation terms, RISE reduces the number of errors, 400

whereas standard DPO does not achieve this. In 401

addition, other errors, mainly misunderstanding of 402

problems or concepts, increase due to preference 403

learning, but RISE still performs slightly better. 404

3.5 Impact on General Reasoning Capabilities 405

To thoroughly analyze changes in LLMs’ reason- 406

ing capabilities, we evaluate RISE-tuned models on 407

out-of-domain tasks such as logical reasoning and 408

code generation. We select one logical reasoning 409

benchmark, ZebraLogic, and two code generation 410

benchmarks, MBPP and HumanEval for analysis. 411

For ZebraLogic, we display Puzzle Accucary and 412
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Method Puzzle Cell MBPP Humaneval

Qwen2-7B-Instruct 8.1 21.5 42.2 43.9
- DPO 8.1 20.8 42.0 45.1
- RISE 8.4 23.2 42.4 47.5

Llama-3.1-8B-Instruct 12.1 13.5 52.0 60.3
- DPO 12.5 8.8 52.4 65.2
- RISE 12.8 12.0 53.2 67.6

Table 4: Evaluation results on different out-of-domain
tasks. “Puzzle” and “Cell” are abbreviations of Puzzle
Accuracy and Cell Accuracy.
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Figure 5: Effect of different numbers of self-edited pairs.
“All” indicates the use of all self-edited pairs.

Cell Accucary, and for MBPP and HumanEval, we413

display pass@1 accuracy. The models optimized414

with mathematical datasets (i.e., RISE-QWEN2-415

7B and RISE-LLAMA-3.1-8B) are used for evalu-416

ation. Table 4 presents the performance of mathe-417

matically RISE-tuned models on these two tasks.418

We can observe that, for the Qwen2-7B-Instruct419

and Llama-3.1-8B-Instruct models, RISE helps420

achieve accuracy increases in logical reasoning and421

code generation even without training on in-domain422

datasets. Moreover, RISE demonstrates superior423

performance compared to DPO, as DPO strug-424

gles to generalize reasoning capabilities to chal-425

lenging out-of-domain tasks. Specifically, RISE-426

QWEN2-7B outperforms Qwen2-7B-Instruct in427

terms of Cell Accuracy and pass@1 accuracy on428

HumanEval, with improvements of 2.8% and 3.6%,429

respectively. RISE-LLAMA-3.1-8B achieves bet-430

ter pass@1 accuracy than Llama-3.1-8B-Instruct431

on MBPP and HumanEval, with improvements of432

1.2% and 7.3%, respectively. We also apply RISE433

on preference learning specifically for code genera-434

tion, and the results demonstrate the effectiveness435

of RISE as shown in Appendix G.436

3.6 Effect of Self-edited Pairs437

Self-edited pairs are essential for fine-grained pref-438

erence learning, particularly in mitigating subtle er-439

rors. To comprehensively explore the effect of self-440

edited pairs, we conduct experiments optimizing441

the model using different numbers of self-edited442

pairs (i.e., N in Sec. 2.2). Figure 5 shows the re-443

Combinations GSM8K MATH

Random 88.4 59.9
Cal. Errors Dominate 88.2 59.0
Subst. Errors Dominate 88.1 58.6
Omission Dominates 87.8 58.7

Table 5: Effect of different error injection combinations
for RISE-QWEN2-7B. “Cal. Errors” denotes numerical
calculation errors, and “Subst. Errors” denote numeric
or symbolic substitution errors.

sults for N = 1, 2, 3, 4, and “All” self-edited pairs. 444

For RISE-QWEN2-7B, the accuracies on GSM8K 445

and MATH both decrease with more self-edited 446

pairs. For RISE-LLAMA-3.1-8B, the accuracies 447

reach a relative peak when using three self-edited 448

pairs for each problem. This figure indicates that 449

using more self-edited pairs is not always the better 450

option, considering both the accuracy and the train- 451

ing cost of using additional samples. Additionally, 452

RISE-LLAMA-3.1-8B prefers more self-edited 453

pairs, which is consistent with the characteristics 454

of Llama-3.1-8B-Instruct, as its full solutions con- 455

tain around three more steps than those of Qwen2- 456

7B-Instruct. More step-wise self-edited pairs help 457

RISE-LLAMA-3.1-8B further avoid subtle errors. 458

3.7 Effect of Sampling Attempts 459

We further explore the effect of sampling attempts, 460

which directly determine the number of problems 461

involved in preference learning. Figure 6 shows 462

a positive correlation between sampling attempts 463

and the number of problems with paired correct- 464

incorrect solutions. Although more problems are 465

involved in preference learning, the final results 466

show that pairs corresponding to a larger number 467

of problems actually reduce learning performance. 468

It may be because more sampling attempts yield 469

more samples of “extreme” problems. For these 470

problems, the LLM tends to consistently answer 471

either correctly or incorrectly. Training the LLM 472

with these samples may not only be futile but could 473

also lead to performance degradation. We observe 474

this phenomenon on both RISE-QWEN2-7B and 475

RISE-LLAMA-3.1-8B. 476

3.8 Effect of Different Error-Injection 477

Combinations 478

We investigate the impact of different combinations 479

of injected errors on the model’s mathematical per- 480

formance. Three types of errors that occur most 481

frequently in solutions generated by our method 482

are selected for analysis. Since not all samples 483
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Figure 6: Effect of different numbers of sampling attempts. We sample multi-step solutions for a total of around 9K
problems. The left figure shows the number of problems involved in training under different sampling attempts.

are applicable to these three types of errors, we484

focus on one primary error type (i.e., “Dominate”),485

supplemented by a small number of other errors.486

For example, some samples do not contain numeri-487

cal values or calculation symbols, and thus cannot488

be injected with calculation errors. The compari-489

son results are shown in Table 5. We can observe490

that all these combinations contribute to prefer-491

ence learning and a random combination yields the492

best performance. It indicates that samples with493

diverse predefined errors are more likely to help494

the LLM learn to avoid subtle errors. Addition-495

ally, we explore the prompt generalization with496

different prompts, including arbitrary prompts and497

self-instruct prompts in Appendix F. The results498

show that RISE adapts to different prompt tem-499

plates without relying on prompt engineering.500

4 Related Work501

4.1 LLM for Mathematical Reasoning502

LLMs have shown remarkable proficiency in math-503

ematical reasoning, excelling in tasks ranging from504

basic arithmetic questions to complex mathemati-505

cal Olympiad problems (Team et al., 2023; Jiang506

et al., 2024; Dubey et al., 2024; OpenAI, 2024;507

Huang et al., 2024). Various approaches have508

been investigated to enhance the mathematical509

reasoning capabilities of LLMs. Methods such510

as Llemma (Azerbayev et al., 2024), Deepseek-511

Math (Shao et al., 2024), and Qwen2.5-Math (Yang512

et al., 2024b) have focused on collecting vast513

amounts of math-related data for continued pre-514

training. Recent efforts have also focused on de-515

signing more efficient fine-tuning datasets to stim-516

ulate the mathematical capabilities, such as MAm-517

moTH (Yue et al., 2024), MetaMath (Yu et al.,518

2024) and DART-Math (Tong et al., 2024). Ad-519

ditionally, some works attempted to enhance rea-520

soning by incorporating external tools (Gou et al.,521

2024; Wang et al., 2024a; Liao et al., 2024).522

4.2 Step-wise Preference Learning 523

In addition to pre-training and instruction fine- 524

tuning, step-wise preference learning—particularly 525

methods related to Proximal Policy Optimiza- 526

tion (PPO)—has been widely explored to enhance 527

the mathematical capabilities of LLMs (Lightman 528

et al., 2024; Luo et al., 2023; Shao et al., 2024). 529

However, the final performance is highly depen- 530

dent on the quality of the process-supervised re- 531

ward model (PRM) (Uesato et al., 2022; Wang 532

et al., 2024b), and the training process of PPO or 533

its variants is notably complex. Recently, Direct 534

Preference Optimization (DPO) (Rafailov et al., 535

2023) simplified this process by directly leverag- 536

ing pair-wise data for preference learning. Many 537

works extend DPO, enabling it to perform step- 538

wise preference learning to improve the model’s 539

multi-step mathematical reasoning ability (Lu et al., 540

2024b; Xie et al., 2024; Setlur et al., 2024b; Lai 541

et al., 2024). To the best of our knowledge, we 542

are the first to tackle subtle errors in mathematical 543

reasoning via error-aware preference learning. 544

5 Conclusion 545

In this work, we propose a novel preference learn- 546

ing framework called eRror-Injected Self-Editing 547

(RISE), which constructs hard pairs through self- 548

editing to mitigate predefined critical subtle errors. 549

Compared to other fine-grained preference learning 550

methods, RISE further refines the training objec- 551

tive to target error tokens, without requiring LLM- 552

based or estimation-based annotations. To avoid 553

optimization failure caused by near-identical sam- 554

ples in pairs, we introduce an adaptive negative 555

log-likelihood loss to stabilize training. The ef- 556

fectiveness of RISE is demonstrated in two LLM 557

series, Qwen2 and Llama-3.1. Results across var- 558

ious mathematical datasets, as well as in logical 559

reasoning and code generation, indicate that RISE 560

unlocks the LLM’s potential for general reasoning. 561
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Limitations562

While our framework outperforms various base-563

line approaches in multiple reasoning tasks, there564

is still room for improvement. Our method has565

not yet been validated on knowledge-based rea-566

soning tasks, such as those in law, medicine, and567

finance. These types of reasoning tasks require ex-568

ternal knowledge for reasoning enhancement, and569

issues like hallucinations and dishonesty, which570

commonly arise when utilizing knowledge, are sim-571

ilar to the subtle but critical errors found in math-572

ematical reasoning. Additionally, more types of573

subtle errors need to be further considered.574
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A Evaluation Settings806

We apply all the baseline models and our RISE807

series model to generate solutions by greedy de-808

coding (i.e., the temperature is set to 0). The809

vLLM framework with the 0.5.4 version is used810

to speed up decoding. For the GSM8K and811

MATH datasets, we use the evaluation script pro-812

vided by the DeepSeek-Math project 1. For other813

datasets, we use the evaluation agent provided by814

the odyssey-math 2.815

Detailed evaluation dataset information is shown816

in Table 6.817

B Implementation Details818

We train 7B/8B models for 4 epochs with a global819

batch size of 96. The parameter β is set to 0.4.820

For 70B/72B models, we train for 2 epochs with821

a global batch size of 64. The parameter β is set822

to 0.5, and we use DeepSpeed ZeRO3 with CPU823

offload to reduce computational memory usage.824

The learning rate for all model training is set to825

5e-7, and the parameter λ is set to 0.05. We use826

Pytorch with the 2.4.0 version, Transformers with827

the 4.44.2 version, and deepspeed with the 0.14.4828

version.829

1https://github.com/deepseek-ai/DeepSeek-Math
2https://github.com/protagolabs/odyssey-math

Detailed training dataset information is shown 830

in Table 7. 831

C Validation on More Open-Source 832

Models 833

To further validate the effectiveness of the RISE 834

framework, we implement additional experiments 835

on Ministral-8B-Instruct and Qwen2.5-7B-Instruct, 836

as these models are the most recent and well- 837

regarded for their performance in various reason- 838

ing tasks. For Ministral-8B-Instruct, we sample 839

5 times and collect 7743 pairs of chosen and re- 840

jected samples, including a total of 3872 problems. 841

For Qwen2.5-7B-Instruct, we sample 10 times and 842

collect 5496 pairs of chosen and rejected samples, 843

including a total of 2748 problems. The results are 844

shown in the Table 8 and Table 9. 845

D Validation on Another Training 846

Dataset 847

To evaluate our framework on a broader set of 848

datasets, we have implemented additional experi- 849

ments using other mathematical datasets, includ- 850

ing problems from the original training sets of the 851

GSM8K Cobbe et al. (2021) and MATH Hendrycks 852

et al. (2021) datasets. We collect 15K problems 853

like DART-math Tong et al. (2024) to conduct RISE 854

training. The results on Qwen2-7B-Instruct indi- 855

cate that our RISE framework achieves better per- 856

formance than the general DPO method. 857

E Effect of Hyperparameter 858

We compare different values of the hyperparameter 859

α. The results of RISE-QWEN2-7B are shown in 860

Table 11. 861

We can observe that an excessively large α may 862

reduce the model’s generalization ability, which 863

in turn results in lower accuracy on GSM8K and 864

MATH. 865

F Effect of Prompt Design 866

To reduce reliance on manual prompt engineering 867

and demonstrate the flexibility of prompts used in 868

RISE, we use the self-instruct method to generate 869

a variety of prompt templates (10 templates for 870

each type of error) and conduct self-editing with 871

a random choice of the generated prompts. Some 872

examples of prompt templates are shown in Table 873

15 and Table 16. 874
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Eval Datasets # Samples In-Domain? Answer Form

GSM8K (Cobbe et al., 2021) 1319 YES Open-formed
MATH (Hendrycks et al., 2021) 5000 YES Open-formed
AQuA (Ling et al., 2017) 254 YES Multi-choice
SVAMP (Patel et al., 2021) 1000 NO Open-formed
AIME24 (MAA, 2024) 30 NO Open-formed
odyssey-math (Netmind.AI, 2024) 387 NO Open-formed

Table 6: Evaluation Datasets.

Training Datasets # Samples

GSM8K (Cobbe et al., 2021) 1568
MATH (Hendrycks et al., 2021) 129
MetaMath (Yu et al., 2024)
- rewriting from GSM8K 1387
- rewriting from MATH 953
AQuA (Ling et al., 2017) 4851

Total 8888

Table 7: Training Datasets.

Method GSM8K MATH

Ministral-8B-Instruct 86.35 53.62
DPO-Ministral-8B 86.95 54.18
RISE-MINISTRAL-8B 88.62 54.86

Table 8: Results on Ministral-8B-Instruct.

With a random selection of prompt templates,875

our RISE can still help improve mathematical rea-876

soning capability and outperform the general DPO877

method, as shown in Table 12. Compared with the878

results of the manual prompts used in our paper,879

the results of self-instruct prompts show a better880

accuracy on GSM8K but a slightly worse accuracy881

on MATH.882

Besides, to further illustrate that our approach883

has the potential to be generalized to more diverse884

errors, we implement another experiment with a885

more universal prompt template. The prompt tem-886

plate is “Edit the current step to introduce an error.887

Do not state that errors have been made.” This888

prompt doesn’t indicate any error types and lever-889

ages the LLM itself to randomly introduce an error,890

which can capture broader spectrum error types.891

More importantly, this prompt can introduce arbi-892

trary errors and even unexposed errors. The results893

on Qwen2-7B-Instruct with these self-edited sam-894

ples are shown in Table 13.895

Method GSM8K MATH

Qwen2.5-7B-Instruct 91.81 74.36
DPO-Qwen2.5-7B 92.49 75.00
RISE-QWEN2.5-7B 92.95 75.06

Table 9: Results on Qwen2.5-8B-Instruct.

Method GSM8K MATH

Qwen2-7B-Instruct 85.4 52.2
- DPO 87.7 57.5
- RISE 88.6 58.5

Table 10: Results on another mathematical training
dataset.

G Application to Code Generation 896

To validate the effectiveness of our RISE frame- 897

work on other reasoning tasks, we apply RISE to 898

code generation. Following Xu et al. (2024), we 899

adopt the LeetCode dataset3 to conduct training. 900

The dataset includes around 2K leetcode tasks in 901

the medium and hard levels. For the Qwen2-7B- 902

Instruct model, we sample 50 times and obtain 873 903

pairs of chosen and rejected full-solution samples 904

for training. Then, we edit each chosen sample with 905

the prompt “Edit the current step to introduce an er- 906

ror. Do not state that errors have been made.” This 907

prompt can introduce arbitrary errors and can be 908

easily adapted to other domains, such as code gen- 909

eration. Finally, we collect 1473 samples for RISE 910

training. The results are shown in Table 14. We can 911

observe that our RISE performs better than the gen- 912

eral DPO method, achieving a 0.8% improvement 913

on the MBPP test set and a 1.3% improvement on 914

the Humaneval test set. 915

3https://huggingface.co/datasets/greengerong/leetcode
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α 0.01 0.05 0.1 0.2

GSM8K 88.5 88.4 87.9 87.7
MATH 59.3 59.9 59.6 59.3

Table 11: Results of RISE-Qwen2-7B with different
hyperparameter α.

Method GSM8K MATH

RISE-prompt-manual 88.4 59.9
RISE-prompt-self-instruct 88.6 59.3

Table 12: Results with the self-instruct prompts.

H Case Study916

H.1 Case Study on Qwen2-7B series models917

Table 17 and Table 18 shows a generated solution918

by RISE-QWEN2-7B and Qwen2-7B-Instruct. We919

can observe that the solution by Qwen2-7B-Instruct920

makes a mistake with calculation symbols, where921

the symbols in the red box should all be converted.922

RISE-QWEN2-7B successfully avoid this subtle923

error.924

H.2 Case Study on Llama-3.1-8B series925

models926

Table 19 and Table 20 shows a generated solu-927

tion by RISE-LLAMA-3.1-8B and Llama-3.1-8B-928

Instruct. We can observe that the solution by Llama-929

3.1-8B-Instruct makes a mistake with numeraical930

substitution, where the numerator should be
√
2931

rather than 2
√
2. RISE-LLAMA-3.1-8B success-932

fully avoid this subtle error.933

I Edit Prompt Set934

We show prompts for the aforementioned five types935

of subtle errors in Table 21, Table 22, Table 23,936

Table 24, and Table 25.937

Method GSM8K MATH

RISE-prompt-manual 88.4 59.9
RISE-prompt-arbitrary 88.3 59.7

Table 13: Results with the arbitrary prompts.

Method MBPP Humaneval

Qwen2-7B-Instruct 42.2 43.9
- DPO 43.4 46.3
- RISE 44.2 47.6

Table 14: Results on code generation.

REPLACE a numerical value

(1) Change a number in this step so that the
calculation becomes incorrect, without indi-
cating that a mistake has been introduced. (2)
Alter the numerical value in this stage to pro-
duce an incorrect result, but avoid mentioning
the error.
(3) Modify a number in the current calculation
to lead to a wrong outcome, without revealing
the inaccuracy.
(4) Adjust one of the values in this step to
ensure the calculation is wrong, without point-
ing out the error.
(5) Replace a number in the calculation with
an incorrect one, but do not mention that any-
thing is wrong.
(6) Change a figure at this point to cause an er-
roneous result, without disclosing that you’ve
made a mistake.
(7) Introduce a wrong number in this calcula-
tion step, but refrain from stating that an error
has occurred.
(8) Modify a numerical value here so that the
result is incorrect, without drawing attention
to the mistake.
(9) Adjust the number in this step to generate
an inaccurate result, without acknowledging
the error.
(10) Introduce an incorrect value in this calcu-
lation, but avoid mentioning that the outcome
is wrong.

Table 15: Prompts generated by the self-instruct
method.
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SWAP two calculation terms

(1) Switch the positions of two terms in the
current calculation step to lead to an incorrect
result, without explicitly acknowledging the
mistake.
(2) Rearrange two terms in the present step in
a way that causes an error, but avoid mention-
ing that a mistake has occurred.
(3) Alter the order of two terms in the current
calculation to produce an incorrect outcome,
without pointing out the error.
(4) Exchange the positions of two terms in this
step to intentionally create a miscalculation,
and don’t indicate that anything is wrong.
(5) Adjust the placement of two terms in
the ongoing calculation to introduce an error,
without drawing attention to the fact.
(6) Swap the order of two terms in the current
process to result in a wrong answer, but refrain
from noting the mistake.
(7) Change the arrangement of two terms in
the current step in a way that leads to an incor-
rect result, without signaling any error.
(8) Interchange two terms in the current calcu-
lation step to produce a mistake, while keep-
ing the error implicit.
(9) Shift the positions of two terms in the cal-
culation to create a wrong result, without stat-
ing that something is incorrect.
(10) Modify the sequence of two terms in
this step, causing an incorrect calculation, but
don’t mention the flaw.

Table 16: Prompts generated by the self-instruct
method.
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Problem 1:
What is the maximum value of 4(x+ 7)(2− x), over all real numbers x?
Reference Answer:
81

RISE-QWEN2-7B:
To find the maximum value of the function f(x) = 4(x+ 7)(2− x), we can start by expanding the function and
then completing the square or using calculus to find the critical points.
### Step 1: Expand the function

f(x) = 4(x+ 7)(2− x)

= 4(2x− x2 + 14− 7x)

= 4(−x2 − 5x+ 14)

= −4x2 − 20x+ 56

### Step 2: Find the critical points To find the maximum value, we can use calculus. We’ll find the derivative of
f(x) and set it to zero to find critical points.

f ′(x) =
d

dx
(−4x2 − 20x+ 56)

= −8x− 20

Setting the derivative equal to zero to find critical points:

−8x− 20 = 0

8x = −20

x = −20

8
= −5

2

### Step 3: Determine the nature of the critical point To determine if this point is a maximum, we can use the
second derivative test or simply recognize that since the coefficient of x2 in the original function is negative, the
parabola opens downwards, indicating that the critical point is indeed a maximum.
### Step 4: Find the maximum value Substitute x = − 5

2
back into the original function to find the maximum value:

f

(
−5

2

)
= −4

(
−5

2

)2

− 20

(
−5

2

)
+ 56

= −4
(
25

4

)
+ 50 + 56

= −25 + 50 + 56

= 81

Therefore, the maximum value of 4(x+ 7)(2− x) over all real numbers x is 81 .

Table 17: An example of the generated solution by RISE-QWEN2-7B.
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Problem 1:
What is the maximum value of 4(x+ 7)(2− x), over all real numbers x?
Reference Answer:
81

Qwen2-7B-Instruct:
To find the maximum value of the function f(x) = 4(x+ 7)(2− x), we can start by expanding the function and
then completing the square or using calculus to find the critical points.
First, let’s expand the function:

f(x) = 4(x+ 7)(2− x) = 4( x2 + 7x− 2x− 14 ) = 4(x2 + 5x− 14)

f(x) = 4x2 + 20x− 56

Now, to find the maximum value, we can use calculus. We’ll find the derivative of f(x) with respect to x and set it
equal to zero to find the critical points.

f ′(x) =
d

dx
(4x2 + 20x− 56) = 8x+ 20

Setting the derivative equal to zero to find the critical point:

8x+ 20 = 0

8x = −20

x = −20

8
= −5

2

Now, we need to determine if this critical point corresponds to a maximum. We can do this by checking the second
derivative or by considering the nature of the parabola (since the coefficient of x2 is positive, the parabola opens
upwards, indicating that the critical point is a minimum, but we are looking for the maximum value of the function).
However, since we are looking for the maximum value of the function, and we’ve found that the function is a
parabola opening upwards, the maximum value will occur at the endpoints of the domain or at the vertex of the
parabola. Since the function is defined for all real numbers, we need to consider the behavior of the function as x
approaches positive and negative infinity.
Given the function is a parabola opening upwards, the maximum value will occur at the vertex. We’ve already found
the x-coordinate of the vertex to be x = − 5

2
. To find the maximum value, we substitute this x-value back into the

original function:

f

(
−5

2

)
= 4

(
−5

2

)2

+ 20

(
−5

2

)
− 56

= 4

(
25

4

)
− 50− 56

= 25− 50− 56

= −81

Therefore, the maximum value of 4(x+ 7)(2− x) over all real numbers x is −81.
The answer is −81 .

Table 18: An example of the generated solution by the general LLM Qwen2-7B-Instruct. The subtle error is put in a
red box.
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Problem 2:

If we write
√
2 + 1√

2
+
√
3 + 1√

3
in the form

a
√
2 + b

√
3

c
such that a, b, and c are positive integers and c is as

small as possible, then what is a+ b+ c?
Reference Answer:
23

RISE-LLAMA-3.1-8B:
To solve this problem, we need to rationalize the given expression and then simplify it.
Step 1: Rationalize the expression

√
2 + 1√

2
+
√
3 + 1√

3
.

To rationalize 1√
2

and 1√
3

, we multiply each fraction by its conjugate over itself to eliminate the square root in the
denominator.
1√
2
= 1√

2
×

√
2√
2
=

√
2

2

1√
3
= 1√

3
×

√
3√
3
=

√
3

3

Step 2: Substitute the rationalized fractions back into the original expression.√
2 +

√
2

2
+
√
3 +

√
3
3

Step 3: Combine like terms.√
2 +

√
2

2
= 2

√
2+

√
2

2
= 3

√
2

2√
3 +

√
3

3
= 3

√
3+

√
3

3
= 4

√
3

3

So the expression becomes 3
√

2
2

+ 4
√
3

3
.

Step 4: To combine these two fractions into one fraction with a common denominator, we need to find the least
common multiple (LCM) of 2 and 3, which is 6.
3
√

2
2

= 3
√
2×3

2×3
= 9

√
2

6
4
√

3
3

= 4
√
3×2

3×2
= 8

√
3

6
Step 5: Combine the two fractions.
9
√

2
6

+ 8
√
3

6
= 9

√
2+8

√
3

6

Now we have the expression in the desired form
a
√
2 + b

√
3

c
.

Step 6: Identify the values of a, b, and c.
a = 9, b = 8, and c = 6.
Step 7: Calculate the sum of a, b, and c.
a+ b+ c = 9 + 8 + 6 = 23
The final answer is: 23

Table 19: An example of the generated solution by RISE-LLAMA-3.1-8B.
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Problem 2:

If we write
√
2 + 1√

2
+
√
3 + 1√

3
in the form

a
√
2 + b

√
3

c
such that a, b, and c are positive integers and c is as

small as possible, then what is a+ b+ c?
Reference Answer:
23

Llama-3.1-8B-Instruct:
To simplify the given expression, we can start by rationalizing the denominators of the fractions.√
2 + 1√

2
+
√
3 + 1√

3

First, we rationalize the denominators of the fractions by multiplying each fraction by the conjugate of its denomina-
tor over itself.√
2 + 1√

2
+
√
3 + 1√

3
=
√
2 +

√
2
2

+
√
3 +

√
3

3

Now, we can combine like terms.
√
2 +

√
2

2
+
√
3 +

√
3

3
= 4

√
2

2
+

2
√
2

2
+ 3

√
3

3
+

√
3

3

Combine the like terms.
4
√
2

2
+ 2

√
2

2
+ 3

√
3

3
+

√
3

3
= 6

√
2

2
+ 4

√
3

3
Simplify the fractions.
6
√

2
2

+ 4
√
3

3
= 3
√
2 + 4

√
3

3

To get a common denominator, we multiply the first term by 3
3

.
3
√
2 + 4

√
3

3
= 9

√
2

3
+ 4

√
3

3
Now we can combine the fractions.
9
√
2

3
+ 4

√
3

3
= 9

√
2+4

√
3

3

Now we have the expression in the desired form
a
√
2 + b

√
3

c
, where a = 9, b = 4, and c = 3.

Therefore, a+ b+ c = 9 + 4 + 3 = 16.
The final answer is: 16

Table 20: An example of the generated solution by the general LLM Llama-3.1-8B-Instruct. The subtle error is put
in a red box.
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Prompt for Numerical Calculation Errors:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a numerical value or a series of related values in
the current step to make a wrong calculation. Do not
state that errors have been made.

Table 21: The prompt for injecting Numerical Calcula-
tion Errors.

Prompt for Numeric or Symbolic Substitution Er-
rors:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a value or symbol in the current step to make a
wrong substitution. Do not state that errors have been
made.

Table 22: The prompt for injecting Numeric or Sym-
bolic Substitution Errors

Prompt for Omission of Calculation Terms:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Delete a calculation term in the current step to make a
wrong calculation. Do not state that errors have been
made.

Table 23: The prompt for injecting Omission of Calcu-
lation Terms.

Prompt for Errors in the Calculation Order:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Swap two calculation terms in the current step to make
a wrong calculation. Do not state that errors have been
made.

Table 24: The prompt for injecting Errors in the Calcu-
lation Order.

Prompt for Errors in the Use of Calculation Symbols:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a calculation symbol (e.g., +-*/, etc.) in the current
step to make a wrong calculation.

Table 25: The prompt for injecting Errors in the Use of
Calculation Symbols.
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