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Abstract
Learning unknown dynamics under environmen-
tal (or external) constraints is fundamental to
many fields (e.g., modern robotics), particularly
challenging when constraint information is only
locally available and uncertain. Existing ap-
proaches requiring global constraints or using
probabilistic filtering fail to fully exploit the geo-
metric structure inherent in local measurements
(by using, e.g., sensors) and constraints. This
paper presents a geometric framework unifying
measurements, constraints, and dynamics learn-
ing through a fiber bundle structure over the state
space. This naturally induced geometric struc-
ture enables measurement-aware Control Barrier
Functions that adapt to local sensing (or measure-
ment) conditions. By integrating Neural ODEs,
our framework learns continuous-time dynam-
ics while preserving geometric constraints, with
theoretical guarantees of learning convergence
and constraint satisfaction dependent on sensing
quality. The geometric framework not only en-
ables efficient dynamics learning but also sug-
gests promising directions for integration with re-
inforcement learning approaches. Extensive sim-
ulations demonstrate significant improvements in
both learning efficiency and constraint satisfac-
tion over traditional methods, especially under
limited and uncertain sensing conditions.

1. Introduction
Learning unknown dynamics under measurement con-
straints is fundamental to many applications, from manipu-
lators with force sensing to autonomous vehicles with range
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detection. Control barrier functions (CBFs) (Ames et al.,
2016) have emerged as a powerful tool for ensuring con-
straint satisfaction. However, the classical CBF framework
treats measurements as external observations rather than
integral components of the system’s geometric structure,
limiting the ability to fully exploit measurement informa-
tion for both constraint verification and dynamics learning.

The fundamental challenge lies in the geometric relation-
ship between state space, measurements, and constraint
manifolds. Traditional approaches often require complete
knowledge of constraints, making them impractical when
only local sensors’ measurements are available. Consider a
robotic arm with force sensors or a drone with range detec-
tors - even local measurements contain sufficient geometric
information about both constraints and underlying dynam-
ics, suggesting global knowledge may be unnecessary if we
properly exploit this local structure.

Our key insight is that measurement uncertainty naturally
induces a fiber bundle structure that unifies measurements,
dynamics, and constraints. This geometric perspective re-
veals how measurements and dynamics are fundamentally
intertwined through the bundle’s connection, enabling Neu-
ral ODEs (Chen et al., 2018) to learn continuous-time dy-
namics that naturally respect the system’s physical behavior.
By leveraging this structure, our approach provides a new
paradigm for machine learning to understand environmen-
tal dynamics - instead of treating measurements as simple
inputs, we exploit their inherent geometric information to
guide the learning process. The framework allows control
strategies to automatically adapt based on measurement
quality - becoming more conservative in regions of high
uncertainty while allowing more aggressive behavior where
measurements are reliable.

The main contributions of this work are: 1) Proposes a
novel geometric framework that unifies measurement un-
certainty, system dynamics, and constraints within a fiber
bundle structure, providing principled information for Neu-
ral ODEs while maintaining safety guarantees. 2) Introduces
adaptive measurement-aware safety certificates (mCBFs, de-
fined in Section 3.6) that automatically adjust conservative
margins based on local measurement quality. 3) Demon-
strates enhanced generalization capabilities across different
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scenarios without requiring global information through ex-
perimental validation.

The practical significance lies in learning safely from lo-
cal measurements without complete constraint knowledge.
By working directly with the bundle structure induced by
measurements, we prove that Neural ODEs trained within
this framework naturally preserve physical constraints while
learning continuous-time dynamics. This geometric ap-
proach provides machine learning algorithms with a struc-
tured way to understand system dynamics through the lens
of measurement geometry, leading to more efficient and
interpretable learning. Moreover, this framework offers im-
portant insights for reinforcement learning by providing a
principled way to handle partial observations and measure-
ment uncertainties in the learning process. Experimental
results demonstrate the effectiveness in real-world appli-
cations, where the learned dynamics model successfully
captures both the control-to-trajectory relationships and con-
straint requirements under measurement uncertainties. Our
implementation is publicly available at https://gith
ub.com/ContinuumCoder/Measurement-Induc
ed-Bundle-for-Learning-Dynamics/.

2. Related Work
2.1. Safety-Critical Control and Learning

Our work builds upon fundamental theoretical advances in
differential geometry and control theory. The fiber bundle
framework we employ originates from Ehresmann’s sem-
inal work (Ehresmann, 1950) on geometric connections,
later developed by (Kobayashi & Nomizu, 1996) for con-
trol applications. Early work in safety-critical control fo-
cused on analytical safety certificates through Control Bar-
rier Functions (CBFs). (Ames et al., 2019) introduced the
foundational CBF framework providing formal guarantees
for constraint satisfaction in known dynamical systems, ex-
tended by (Jankovic, 2018; Daş & Murray, 2022; Choi et al.,
2021) to handle bounded disturbances through robust CBFs.
Learning-based approaches emerged to address model un-
certainty while maintaining safety guarantees. (Cheng et al.,
2019) proposed Neural CBFs that learn safety certificates
directly from data, while (Taylor et al., 2020) developed the
SafeLearn framework combining Gaussian processes with
CBFs for safe exploration. However, these methods treat
measurements as perfect observations rather than uncertain
quantities, limiting their real-world applicability.

2.2. Geometric Learning and Bundle Theory

Geometric structure preservation in learning control has
seen significant development, building on (Marsden & We-
instein, 1974)’s theoretical foundation for geometric me-
chanics and symmetry reduction. (Ratliff et al., 2018) intro-

duced Riemannian Motion Policies respecting the underly-
ing manifold structure, while (Chen et al., 2018) proposed
Neural ODEs that opened new possibilities for learning dy-
namics with geometric properties. The bundle-theoretic
perspective was pioneered by (Lewis, 1998) establishing
connections between mechanical systems and principal bun-
dles, with (Montgomery, 1993) developing gauge-theoretic
approaches to mechanical control. Building on this founda-
tion, (Bronstein et al., 2017; Cohen et al., 2019) advanced
geometric methods for learning on manifolds, and (Hansen-
Estruch et al., 2021) developed frameworks for control on
Lie groups. However, these approaches typically require
global geometric information and struggle with local mea-
surement uncertainty.

2.3. Measurement-Aware Control

The geometric treatment of measurement uncertainty draws
inspiration from (Hsu, 2002) on stochastic differential ge-
ometry and (Diaconis et al., 1988) on geometric filtering
theory. Early approaches like (Kalman, 1960) developed
robust control using filtering-based state estimation, while
(Berkenkamp et al., 2017) proposed learning control un-
der measurement noise. Recent advances by (Wu et al.,
2015) introduced geometric numerical integration methods
for uncertainty quantification, while (Boumal, 2023) devel-
oped comprehensive tools for optimization and estimation
on manifolds. However, these works often treat measure-
ment uncertainty as an external disturbance rather than an
intrinsic geometric property of the system. Our framework
addresses these limitations by unifying measurements, con-
straints, and learning objectives through the natural fiber
bundle structure induced by the measurement process, en-
abling more efficient learning while maintaining rigorous
safety guarantees.

3. Theoretical Foundations and System
Modeling

Through fiber bundle structures and measurement-adapted
barrier functions, this work establishes a geometric frame-
work that unifies the challenge of maintaining safety guaran-
tees while adapting to uncertainties in both system dynamics
and measurements in safe learning control.

3.1. System Model and Measurement Structure

Let TxM denote the tangent space at point x ∈ M, which
is the vector space of all tangent vectors at x, and TM =⋃

x∈M TxM be the tangent bundle. Let T ∗
xM denote the

cotangent space at x and T ∗M =
⋃

x∈M T ∗
xM represents

the cotangent bundle.

Consider a controlled dynamical system with state x ∈
M on a smooth manifold M and control input u ∈ U ⊆
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Rm. The system evolution and measurement process are
described by

ẋ = f(x, u) + g(x)w, x(0) = x0

y = h(x) + v
(1)

where f : M×U → TM represents the nominal dynam-
ics, g : M → T ∗M characterizes model uncertainty, and
h : M → Y is the measurement map. The process noise w
and sub-Gaussian measurement noise v are bounded with
|w| ≤ δw and |v| ≤ δv , respectively.

The measurement space Y ⊆ Rk carries a natural metric
structure induced by the Euclidean norm: dY(y1, y2) =√∑k

i=1(y1,i − y2,i)2. This metric quantifies the uncer-
tainty in measurement space and plays a crucial role in
safety analysis.

3.2. Fiber Bundle Framework

The relationship between states and their measurements
induces a natural fiber bundle structure π : E → M where
E = M×Y is the total space. For each state x ∈ M, the
fiber π−1(x) characterizes the set of possible measurements:

π−1(x) = {(x, y) ∈ E : y = h(x) + v, ∥v∥ ≤ δv} (2)

This bundle is equipped with a connection ∇ that describes
the geometric relationship between system trajectories and
measurement evolution:

∇XY = π−1
∗ (∇π∗X(π∗Y )) +K(x)

(
y − h(x)

)
(3)

where ∇XY represents the covariant derivative of the vector
field Y ∈ X(E) along the vector field X ∈ X(E) (here, X(E)
denotes the space of smooth vector field on E), π∗ refers
to the pushforward map of the projection π, K : M →
L(Y, TM) is the measurement feedback gain operator that
couples state and measurement dynamics. Here, L(Y, TM)
denotes the space of bounded linear operators from Y to
TM.

3.3. Bundle-Based Safety Certificates

Safety constraints are formalized through a smooth bundle
map Φ: E → R over the fiber bundle π : E → M satisfying
three fundamental properties:

1. Φ(x, h(x)) > 0 for all x ∈ S0

2. The bundle derivative dΦ(X) > 0 for all X ∈ A(E),
where dΦ(X) := ⟨∇EΦ, X⟩

3. Φ(x, y) ≥ γ(∥y − h(x)∥) for some γ ∈ K∞
(4)

Here, S0 denotes the nominal safe set, A(E) is the space of
admissible vectors on the total space E , ∇E is the covariant
derivative on E , and γ is a class K∞ function that captures
the degradation of safety guarantees with measurement un-
certainty.

3.4. Uncertainty Propagation

The propagation of uncertainties through the bundle struc-
ture follows from the differential geometry of the fiber bun-
dle. The key relationships are:

dπ∗(Xf ) = f(x, u)

dπ∗(Xg) = g(x)w

dy = dh(x) + dv

(5)

where dπ∗ represents the pushforward of the vector fields
Xf , Xg along the projection π. These relationships induce
an uncertainty tube Tε(x, t) around nominal trajectories:

Tε(x, t) = {y : dY(y, h(ϕt(x))) ≤ ε(t)} (6)

where ϕt denotes the flow of the nominal system and ε(t)
characterizes the growth of uncertainty over time.

3.5. Compatible Group Actions

The system often exhibits symmetries that can be exploited
for, for example, dimensional reduction. These symmetries
are captured by compatible Lie group actions. Let G be a
Lie group acting on both M and Y through smooth maps.
Then,

ΨM : G×M → M
ΨY : G× Y → Y

(7)

The compatibility conditions for these actions are

f(ΨM(g, x), u) = dΨM(g, ·)f(x, u)
h(ΨM(g, x)) = ΨY(g, h(x))

(8)

for all g ∈ G, where dΨM(g, ·) represents the differential of
the map ΨM(g, ·) with respect to the state. These conditions
ensure that the symmetries respect both the dynamics and
measurements.

3.6. Measurement-Adapted Control Barrier Functions

The cornerstone of our safety framework is the concept of
measurement-adapted Control Barrier Functions (mCBFs).
A smooth function b : E → R qualifies as an mCBF if it
satisfies

1. b(x, y) ≥ 0 =⇒ x ∈ S0

2. inf
u∈U

[
Lfb+ (Lgb)w + α(b)

]
≥ 0

3. |b(x, y1)− b(x, y2)| ≤ LbdY(y1, y2)

(9)

where Lf and Lg denote the Lie derivatives along vector
fields f and g respectively, α is a class K∞ function, and
Lb > 0 is the Lipschitz constant of b with respect to mea-
surements (recall that S0 denotes the nominal safe set).
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3.7. Safety Guarantees

The culmination of this geometric framework is captured in
the following fundamental theorem:

Theorem 3.1. Given an mCBF b satisfying the preceding
conditions, if b(x(0), y(0)) ≥ 0, then for any admissible
noise sequences w(·), v(·):

P(x(t) ∈ S0 for all t ≥ 0) ≥ 1− exp(−c/δ2v) (10)

where c > 0 is a constant depending on system parameters.

Proof Sketch. The proof proceeds through three key steps.
First, we establish that the bundle connection preserves
safety certificates along fibers, utilizing the compatibility
conditions between the connection and barrier function. Sec-
ond, we demonstrate that uncertainty propagation remains
bounded within the tube Tε, leveraging the Lipschitz prop-
erties of the system dynamics. Finally, we show that the
Lipschitz condition on b ensures controlled variation of
safety certificates under measurement uncertainty, leading
to the probabilistic bound (1− exp(−c/δv)). The technical
proof is provided in Appendix A.

The geometric framework developed in this section estab-
lishes three key theoretical advances. First, the fiber bundle
structure provides a natural setting for handling measure-
ment uncertainty, enabling precise tracking of error prop-
agation through system dynamics. Second, the compati-
ble group actions facilitate systematic dimension reduction
while preserving safety properties through quotient space
dynamics. Third, the measurement-adapted Control Bar-
rier Functions yield robust safety guarantees that degrade
gracefully with measurement noise, thanks to their Lipschitz
continuity properties.

This theoretical foundation directly enables practical learn-
ing algorithms that maintain safety under realistic sensing
conditions, as we will demonstrate in the subsequent sec-
tion.

4. Learning Framework under Measurement
Uncertainties

Building on the geometric foundations, we now develop a
learning framework that actively incorporates measurement
uncertainty. The key idea is to learn both the dynamics and
safety certificates on the bundle E .

4.1. Bundle-Valued Learning Operators

Define the bundle-valued learning operator L : C∞(E) →
Γ(TE):

L(Φ)(x, y) = ∇EΦ(x, y) + λR(x, y) (11)

where C∞(E) denotes the space of smooth functions de-
fined on the total space E , Γ(TE) stands for the space of
sections of the tangent bundle TE , L(Φ)(x, y) represents
the operator L acting on Φ, evaluated at the point (x, y),
∇E is the connection defined on E , and R provides a reg-
ularization function preserving the fiber structure of the
bundle.

The learning dynamics on the bundle take the form

˙̂
f = −L1(f̂ − f)

Φ̇ = −L2(Φ− Φ∗)
(12)

where L1,L2 are compatible bundle-valued operators. f̂
denotes the learned estimate of the true system dynamics
f , while Φ∗ represents the optimal barrier function that
ensures safety guarantees, both serving as target values in
the learning dynamics governed by bundle-valued operators.

4.2. Measurement-Adapted Safety Certificates

Let Φ0 : E → R denote the nominal safety certificate that
characterizes system safety under ideal measurements. The
safety certificate Φ: E → R adapts to measurement uncer-
tainty through:

Φ(x, y) = Φ0(x, y)− α(∥y − h(x)∥)
LfΦ+ (LgΦ)w ≥ −β(Φ) along solutions

(13)

where Φ0 is the nominal certificate, α ∈ K∞, and β is a
class K function.

4.3. Uncertainty-Aware Learning Algorithm

The learning process incorporates measurement uncertainty
through:

θ̇ = −Λ∇θT (f̂θ,D)

T (f̂ ,D) =

N∑
i=1

∥f̂(xi, ui)− ẋi∥2Σ−1
i

(14)

where Σi captures measurement uncertainty in data point i.
The learning rate matrix Λ guides parameter updates, while
| · |2

Σ−1
i

denotes the uncertainty-weighted norm using the

inverse covariance matrix Σ−1
i , and D contains N triplets

of state, input, and state derivative measurements.

4.4. Safety-Constrained Policy Updates

Let Θ ∈ Rd denote the parameters of a policy πΘ : M → U
that maps state to control inputs. The policy update law
preserves safety through:

Θ̇ = ΠS [−∇ΘJ(Θ)]

S = {Θ : Φ(x, y) ≥ 0 for all (x, y) ∈ E}
(15)
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where ΠS denotes projection onto the safe policy set S,
and J(Θ) = Ex0[

∑∞
t=0 γ

tc(xt,Θ(xt))] represents the ex-
pected discounted cumulative cost under policy Θ, with
immediate cost c(x,Θ(x)), discount factor γ ∈ (0, 1), and
initial state distribution x0.

4.5. Convergence and Safety Guarantees

Building on Theorem 3.1, we establish the convergence
properties of our learning framework:

Theorem 4.1. Under the proposed learning dynamics, we
have

∥f̂ − f∥E ≤ c1 exp(−λ1t) + c2δv

P(x(t) ∈ S0) ≥ 1− exp(−c3/δ
2
v)

(16)

where c1, c2, c3, λ1 > 0 are constants.

A detailed proof of Theorem 4.1 is in Appendix B. The first
inequality shows exponential convergence of the learned
dynamics with a residual error bounded by measurement
uncertainty, while the second preserves the safety guarantees
during learning.

5. Experimental Design
We design a comprehensive experimental framework to
evaluate our proposed method against state-of-the-art ap-
proaches, focusing on three interconnected research direc-
tions: Learning-based safety control, geometric structure
learning, and safe control under uncertainty. The experi-
ments are constructed to highlight key methodological differ-
ences while ensuring fair comparison through standardized
implementations and evaluation protocols.

5.1. Baseline Methods

For detailed discussions on comparisons with mainstream
advanced manifold learning methods, we refer readers to
Appendix F. While direct numerical comparisons with re-
cent geometric deep learning approaches may seem natural,
there are several fundamental differences that make such
direct benchmarking potentially misleading. We evaluate
our method against state-of-the-art approaches spanning
different technical directions in safe learning control. Our
baseline selection aims to comprehensively compare with
methods that address various aspects of our proposed frame-
work:

Learning-based Safety Certification: We implement
Neural-CBF (Liu et al., 2023), BayesSafe (Berkenkamp
et al., 2023), and StructCBF (Taylor et al., 2020) as fun-
damental approaches using neural networks and Bayesian
optimization for safety certification. Recent advances like
SafetyNet (Vitelli et al., 2022) and SafeTrack (Li et al.,
2024) enhance these guarantees through adaptive barriers

and system-level guards, though they still lack explicit han-
dling of measurement uncertainty. Physics-Informed and
Geometric Methods: To evaluate our physical consistency,
we compare against PNDS (Djeumou et al., 2022) and
GEM (Hansen-Estruch et al., 2021), which encode physical
laws through specialized neural architectures. We also in-
clude GeoPath (Zhang et al., 2015) that leverages geometric
principles for control design, though without addressing
measurement uncertainty. Robust and Adaptive Control:
Several approaches address system robustness through dif-
ferent theoretical frameworks. RobustSafe (Gurriet et al.,
2020) provides safety-critical control using fixed uncertainty
bounds, while DataFilter (Wabersich et al., 2023) leverages
data-driven safety filters for handling uncertainties, and
AdaptSafe (Taylor & Ames, 2020) introduces measurement-
dependent barrier functions. Uncertainty-Aware Predic-
tive Control: For handling uncertain dynamics, GPMPC
(Bonzanini et al., 2021) and ALMPC (Saviolo et al., 2023)
employ Gaussian processes and active learning for uncer-
tainty quantification. SafeRL (Cheng et al., 2019) com-
bines reinforcement learning with barrier functions, demon-
strating strong performance in handling model uncertainty
through probabilistic frameworks, though these methods
lack formal geometric safety certificates.

5.2. Experimental Tasks

We implement three tasks in a simulation environment built
on Genesis physics engine (Xian et al., 2023). The first
task examines a soft-body worm robot (0.1m per segment)
navigating through obstacles to reach a target, using a fixed-
step forward Euler integrator (dt = 5e-4s). The worm is
modeled using the Material Point Method (MPM) with the
neo-Hookean material model. Let x ∈ R3 denote the posi-
tion field and ρ the material density, the dynamics follow:

ρẍ = ∇ ·P+ b (17)

where P is the first Piola-Kirchhoff stress tensor and b
represents body forces. For neo-Hookean materials:

P = µ(F− F−T ) + λ log(J)F−T (18)

Here F is the deformation gradient, J = det(F), and
material parameters µ, λ are unknown. The control
input consists of four muscle actuation signals u =
[uuf , uuh, ulf , ulh]

⊤ ∈ [0, 1]4, where subscripts indicate
upper-fore, upper-hind, lower-fore, and lower-hind muscle
groups respectively. The system must maintain safe dis-
tances from obstacles through constraints hi(x) = ∥x −
xobs,i∥2 − rsafe ≥ 0 for all obstacles i = 1, . . . , Nobs. Six
visual sensors (two on head/tail, four on sides) provide local
measurements yi = [x−xobs, ∥x−xobs∥2]⊤+vi with un-
certainty bound ∥vi∥ ≤ α∥x−xi∥ increasing with distance
from sensor location xi.
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The second task involves a 7-DOF Franka arm performing
obstacle-aware manipulation, integrated with dt = 1e-2s. Let
q ∈ R7 denote the joint angles and M(q) the inertia matrix,
the system dynamics with control input τ follow:

M(q)q̈+C(q, q̇)q̇+ g(q) + f(q̇) = τ (19)

where C(q, q̇) represents Coriolis terms, g(q) gravity, f(q̇)
joint friction, and τ control torques. The system operates un-
der joint limits hq(q) = qmax−|q| ≥ 0 and obstacle avoid-
ance constraints ho(q) = ∥pee(q) − pobs∥2 − dsafe ≥ 0,
where pee(q) and pobs denote the end-effector and obstacle
positions, respectively.

The third task features a quadrotor drone navigating through
3D space, integrated with dt = 2e-3(sec). Let p ∈ R3 denote
position, v ∈ R3 velocity, R ∈ SO(3) orientation, and
ω ∈ R3 angular velocity, the dynamics are described by

ṗ
v̇

Ṙ
ω̇

 =


v

1
mRf − ge3 −D(v)

R[ω]×
J−1(τ − ω × Jω)

 (20)

where m is mass, g unknown gravity, D(v) unknown aero-
dynamic drag, J inertia matrix, and [·]× the skew-symmetric
matrix operator. The control input f is generated through
four rotor speeds ωi, with unknown thrust coefficient kf .
The quadrotor must maintain safe distances from obstacles
through constraints hi(p) = ∥p − pobs,i∥2 − dsafe ≥ 0.
Four visual sensors provide depth measurements yi =
∥p− pobs,i∥2 + vi in front, back, left and right directions,
with uncertainty bound |vi| ≤ γ∥p− pobs,i∥2 proportional
to depth. Here α, β, γ are unknown uncertainty scaling
factors.

Figure 1. Illustration of three experimental tasks from left to right:
A soft-bodied worm robot navigating through obstacles using peri-
staltic motion, a 7-DOF Franka robotic arm performing obstacle-
aware joint motion, and a quadrotor drone executing 3D navigation.
Blue spheres indicate initial positions, yellow arrows represent
motion trajectories, green spheres mark target positions, and red
objects denote obstacles.

For all three tasks, the workspace is configured as a 2m × 2m
× 2m arena with randomly placed obstacles. The obstacles’
positions are sampled uniformly within the workspace while
maintaining minimum separation distances. Initial and goal

states are sampled to ensure feasible paths exist while pro-
viding sufficient challenge for evaluating the learning and
control performance.

5.3. Implementation Details

All experiments are implemented in Python using PyTorch,
with Soft Actor-Critic (SAC) as our base reinforcement
learning framework. For fair comparisons, we maintain
the original implementations for model-based baselines
(GPMPC, RobustSafe, ALMPC) and learning-based base-
lines (Neural-CBF, SafetyNet, DataFilter). Our neural ar-
chitectures use three hidden layers (128-64-32 units) with
ReLU activations, while barrier functions add a tanh activa-
tion in the output layer for boundedness. All networks are
trained with Adam optimizer using mixed precision train-
ing on an NVIDIA RTX 3090 GPU. Detailed implemen-
tation specifications, including hyperparameters, network
architectures, and optimization techniques, are provided in
Appendix C.

For the soft worm task, uncertainties include MPM material
parameters (µ, λ variations of ±10%), actuation response
(±5% muscle force scaling), and sensor noise proportional
to distance (0.5-2% of measured distance). The Franka
arm experiments incorporate joint friction variations (±8%),
payload changes (0-200g), and measurement uncertainties
in joint angles (±0.02 rad) and end-effector pose (±2cm).
The quadrotor tests feature mass variations (±5%), aerody-
namic disturbances (up to 0.2N), and depth measurement
noise scaling with distance (1-3% of measured depth).

5.4. Evaluation Metrics and Protocol

We evaluate both motion quality and safety performance
using comprehensive metrics including success rate (SR),
path efficiency measures, safety margins, and control quality
indicators. Detailed definitions and calculations of these
metrics are provided in Appendix C.1. All experiments are
conducted in a 2m × 2m × 2m workspace with randomly
generated start/goal positions and obstacle placements. We
test the worm robot (500 trials), Franka arm (400 trials), and
quadrotor (300 trials) under various task scenarios. Com-
plete experimental settings and success criteria are detailed
in Appendix C.2.

6. Results and Analysis
We evaluate our method across three robotic control tasks to
demonstrate generalization of safety constraints under novel
obstacle configurations with local observations. Table 1
presents the quantitative results.

While learning-based safety approaches achieve limited
success rates (82%-86%) with fixed barrier functions that
cannot adapt to new configurations, and physics-informed
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methods maintain geometric properties but achieve only
73%-76% success in dynamic environments, our method’s
measurement-induced bundle structure enables 96.3% suc-
cess rate. Traditional uncertainty-aware MPC methods
achieve high constraint satisfaction (99.7%) but produce
overly conservative trajectories (26-27m vs our 18.5m), lack-
ing our geometric framework for measurement uncertainty.

The key advantage of our approach lies in the unified ge-
ometric treatment of measurement uncertainty and safety
constraints. Unlike recent adaptive methods that handle un-
certainty estimation and safety certification separately (88%-
89% success), our framework enables simultaneous adap-
tation of safety bounds and uncertainty estimation through
the fiber bundle structure. This fundamental integration
of measurement uncertainty into the geometric safety con-
straints allows our method to achieve superior performance
(96.3% success, 18.5m paths with 99.3% constraint satis-
faction) while maintaining robust safety guarantees across
novel environments.

6.1. Performance Convergence Analysis

Figure 2 showcases the training convergence trends of our
proposed method in comparison with selected baseline ap-
proaches across three distinct tasks: Soft Worm Peristaltic
Navigation, Franka Arm Joint Motion, and Quadrotor Pro-
peller Control. Across all tasks, our method demonstrates a
significantly faster convergence rate, reaching optimal per-
formance metrics within fewer training episodes than the
baseline methods. Additionally, the shaded regions repre-
senting standard deviation are noticeably narrower for our
method, indicating reduced performance variance and en-
hanced stability during training. In the Soft Worm Peristaltic
Navigation task, our approach achieves higher average re-
turns more swiftly, highlighting its efficiency in simpler
navigation scenarios. For the more complex Franka Arm
Joint Motion and Quadrotor Propeller Control tasks, our
method not only converges rapidly but also maintains higher
final performance levels with minimal fluctuations, under-
scoring its robustness and reliability in handling intricate
control dynamics.

6.2. Noise Robustness Performance Experiment

Our approach demonstrates remarkable stability across all
noise levels (σ=0.1-0.3) for all three tasks. The averaged
success rates stay above 91% with minimal variance, while
baseline methods like Neural-CBF and SafetyNet show sig-
nificant degradation under higher noise conditions (Fig-
ure 3). This robust performance demonstrates how the
measurement-induced bundle structure naturally handles
uncertainties in different scenarios, validating that our ge-
ometric safety certificates effectively preserve constraints
regardless of the underlying task complexity.

7. Ablation Study
To validate our design choices and understand the inter-
play between different components, we conduct compre-
hensive ablation studies focusing on three key architectural
elements: (1) measurement-induced bundle structure, (2)
measurement-aware CBFs (mCBFs), and (3) Lie group sym-
metry.

For each ablation variant, we perform 10 independent runs
on each of the three experimental tasks (soft robot naviga-
tion, Franka arm manipulation, and quadrotor control). The
success rate (SR) represents the percentage of successful
task completions averaged across all runs and tasks. Table 2
presents the comparative results.

Further ablation experiments examining the impact of differ-
ent measurement uncertainty patterns (e.g., Gaussian noise,
bias, delays) and bundle structure variations (e.g., fixed vs.
adaptive dimension) are presented in Appendix E.

The measurement-induced bundle structure provides a geo-
metric framework for handling system uncertainties, leading
to more efficient trajectories and improved success rates.
Without this structure, the success rate drops significantly
from 96.3% to 62.7%, while path length and control magni-
tude increase substantially, indicating degraded performance
and efficiency.

Removing mCBFs reduces our framework to its underlying
Neural ODE architecture, which focuses solely on learn-
ing dynamics without safety constraints. This leads to the
most severe performance degradation, with the success rate
dropping to 45.7%. The dramatic reduction in constraint
satisfaction rate (from 99.3% to 72.8%) demonstrates that
while Neural ODEs can effectively learn system dynam-
ics, they struggle to maintain safety constraints without
the geometric safety certificates provided by mCBFs. The
substantially increased path length (48.2m vs 18.5m) and
control magnitude (0.85 vs 0.17) further suggest that pure
dynamics learning leads to inefficient and potentially unsafe
trajectories.

The Lie group symmetry enables dimension reduction and
invariant control synthesis, which is particularly beneficial
in tasks involving rotational and translational symmetries.
Its removal shows relatively mild performance degradation
(success rate of 85.7%), suggesting its role as a complemen-
tary enhancement to the core geometric framework rather
than a critical component.

8. Conclusion
This paper presents a novel geometric framework that unifies
measurements, constraints, and dynamics learning through
a fiber bundle structure. Our framework provides funda-
mental insights into how dynamical systems can learn and
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Method SR (%) PL (m) GRS FSE MMC (m) AMC (m) CSR (%) ACM CS
Ours 96.3 18.5±0.7 383±18 0.05±0.01 0.24±0.03 0.26±0.03 99.3 0.17±0.02 0.03±0.004
Neural-CBF 84.0 22.3±0.8 425±19 0.12±0.02 0.23±0.04 0.22±0.03 98.7 0.25±0.03 0.02±0.005
SafeLearn 82.3 23.8±0.9 428±21 0.13±0.02 0.22±0.04 0.21±0.03 98.3 0.26±0.03 0.04±0.006
SafetyNet 86.7 22.1±0.7 420±18 0.11±0.02 0.25±0.03 0.23±0.02 98.7 0.24±0.02 0.03±0.005
SafeTrack 85.3 22.4±0.8 423±19 0.12±0.02 0.24±0.03 0.22±0.03 98.7 0.25±0.03 0.03±0.005
StructCBF 75.7 24.1±1.0 435±22 0.15±0.03 0.27±0.03 0.25±0.02 97.7 0.28±0.04 0.05±0.007
PNDS 73.3 24.4±1.1 438±23 0.16±0.03 0.26±0.04 0.24±0.03 97.3 0.29±0.04 0.05±0.008
GeoPath 74.0 24.2±1.0 436±22 0.15±0.03 0.26±0.03 0.24±0.03 97.7 0.28±0.04 0.05±0.007
GEM 76.3 24.0±0.9 433±21 0.14±0.02 0.25±0.03 0.23±0.03 98.0 0.27±0.03 0.04±0.006
GPMPC 67.7 26.9±0.9 452±20 0.18±0.02 0.23±0.04 0.22±0.03 99.7 0.26±0.03 0.04±0.006
ALMPC 71.7 26.2±0.7 442±18 0.16±0.02 0.25±0.03 0.23±0.02 99.0 0.24±0.02 0.03±0.005
SafeRL 70.3 26.4±0.8 444±19 0.17±0.02 0.24±0.03 0.22±0.02 98.7 0.25±0.03 0.04±0.006
RobustSafe 70.0 26.5±0.8 446±19 0.17±0.02 0.24±0.03 0.23±0.02 98.7 0.25±0.03 0.03±0.005
AdaptSafe 88.3 21.8±0.6 417±17 0.10±0.01 0.25±0.03 0.24±0.02 99.3 0.22±0.02 0.03±0.004
DataFilter 89.7 21.7±0.6 415±16 0.10±0.01 0.26±0.03 0.24±0.02 99.3 0.20±0.02 0.02±0.004

Table 1. Average performance comparison across soft robot navigation, Franka arm manipulation, and quadrotor propeller control tasks.
SR: Success Rate, PL: Path Length, GRS: Steps to Complete, FSE: Final State Error, MMC: Minimum Safety Distance, AMC: Average
Safety Margin, CSR: Constraint Satisfaction Rate, ACM: Average Control Magnitude, CS: Control Smoothness.

Figure 2. Training convergence trends. From left to right are soft worm navigation, Franka robotic arm manipulation, and quadrotor
control tasks. Each subplot shows the average return and standard deviation range across 10 trials.

Figure 3. Average success rates across three tasks under differ-
ent noise levels. Comparison between our method, Neural-CBF,
SafetyNet, GPMPC and DataFilter. Error bars indicate standard
deviation across 10 runs.

adapt under environmental constraints through local obser-
vations, bridging the gap between theoretical control guar-
antees and modern robotics (or even practical embodied
intelligence). The measurement-induced bundle structure
naturally captures how autonomous agents perceive and in-

Metrics Full Model w/o Bundle w/o mCBF w/o Lie Group
SR (%) 96.3 62.7 45.7 85.7
PL (m) 18.5±0.7 35.3±3.9 48.2±5.1 22.5±1.5
GRS 383±18 712±82 935±108 465±32
FSE 0.05±0.01 0.15±0.03 0.21±0.04 0.08±0.02
MMC (m) 0.24±0.03 0.18±0.04 0.15±0.05 0.22±0.03
AMC (m) 0.26±0.03 0.20±0.03 0.17±0.04 0.24±0.02
CSR (%) 99.3±0.2 88.2±2.4 72.8±3.6 96.7±1.0
ACM 0.17±0.02 0.51±0.12 0.85±0.18 0.26±0.05
CS 0.03±0.004 0.07±0.008 0.09±0.010 0.04±0.005

Table 2. Ablation study results across three experimental tasks.

teract with their environment through local sensing, while
the measurement-aware Control Barrier Functions enable
adaptive safety certificates that emerge from direct environ-
mental interactions rather than prescribed global knowledge.

Limitations and Future Work Despite these advances,
our current implementation has limitations in handling
highly stochastic dynamics and complex environmental un-
certainties. Future work could explore richer representations
of environment-agent interactions and investigate more so-
phisticated uncertainty quantification methods for embodied
learning. Additionally, the framework could be extended to
better understand how local observations can build towards

8
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a global understanding of environmental constraints and dy-
namics, potentially offering new perspectives on embodied
intelligence and adaptive control. These results establish
a promising direction for understanding physical systems
learning through environmental interaction, offering insights
into, for example, both dynamical systems theory and em-
bodied intelligence principles.
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improve human-robot interaction safety in manufacturing,
healthcare, and service robotics. This enhanced safety mech-
anism is particularly valuable as autonomous systems be-
come more prevalent in daily life.

The geometric approach introduced here provides new theo-
retical insights into the relationship between measurement
uncertainty and safety guarantees, contributing to the fun-
damental understanding of safe learning systems. Further-
more, by better handling measurement uncertainties, our
approach can reduce the need for expensive high-precision
sensors, potentially making advanced robotic systems more
accessible and cost-effective. This democratization of tech-
nology could accelerate innovation and adoption of safe
autonomous systems across various industries.

While any advancement in autonomous systems technology
warrants careful consideration of its deployment context, our
framework is designed with robust safety guarantees that
help ensure responsible implementation. The theoretical
foundations and practical demonstrations provided in this
work establish clear guidelines for appropriate use cases
and system limitations. We are committed to open-source
release of our implementation to promote transparency and
reproducibility, maintaining comprehensive documentation
about system capabilities and intended applications.

Through thoughtful deployment and continued refinement
of safety mechanisms, we believe this work will contribute
positively to the development of more reliable and accessible

autonomous systems, ultimately benefiting society through
improved safety, efficiency, and technological accessibility.
The framework’s emphasis on measurement-aware safety
could serve as a foundation for future developments in safe
autonomy, potentially influencing standards and best prac-
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Probabilités de Saint-Flour XV–XVII, 1985–87, pp. 277–
425. Springer, 1988.

Djeumou, F., Neary, C., Goubault, E., Putot, S., and Topcu,
U. Neural networks with physics-informed architec-
tures and constraints for dynamical systems modeling.
In Learning for Dynamics and Control Conference, pp.
263–277. PMLR, 2022.

Ehresmann, C. Les connexions infinitésimales dans un
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A. Proof of Theorem 3.1
Proof. We provide a complete proof through six main steps:

Step 1: Preliminaries and Assumptions

First, recall the measurement-adapted Control Barrier Function (mCBF) conditions for the safe set S0 = {x ∈ M : h0(x) ≥
0}. A function b : E → R is an mCBF if

(i) b(x, h(x)) > 0 =⇒ x ∈ S0 (safety implication)

(ii) ∃α ∈ K∞ such that infu∈U ḃ+ α(b) ≥ 0 (invariance condition)

(iii) ∥∇yb(x, y)∥ ≤ Lb for some Lb > 0 (Lipschitz measurement sensitivity)

Consider the system dynamics
ẋ = f(x, u) + g(x)w

y = h(x) + v
(21)

with admissible noise sequences satisfying:

∥w(t)∥ ≤ δw, ∀t ≥ 0 (bounded process noise)

P(∥v(t)∥ > η) ≤ exp(−η2/(2δ2v)) (sub-Gaussian measurement noise)
(22)

Step 2: Forward Invariance Under Perfect Measurements

Lemma A.1 (Nominal Safety). Given b(x(0), h(x(0))) ≥ b0 > 0, under perfect measurements (v ≡ 0), there exists
bmin > 0 such that

b(x(t), h(x(t))) ≥ bmin, ∀t ≥ 0 (23)

Proof of Lemma A.1. By the mCBF condition (ii), one has

ḃ ≥ −α(b) (24)

The Comparison Lemma implies
b(x(t), h(x(t))) ≥ β(b0, t) (25)

where β is a class KL function. Take bmin = inft≥0 β(b0, t) > 0.

Step 3: Uncertainty Propagation Analysis

Define the uncertainty tube:
Tε = {(x, y) ∈ E : ∥y − h(x)∥ ≤ ε} (26)

Lemma A.2 (State Uncertainty). Assume that x(0)− x̂(0) = 0. For any trajectory with ∥w(t)∥ ≤ δw:

∥x(t)− x̂(t)∥ ≤ γw(δw) (27)

where x̂(t) is the nominal trajectory and γw ∈ K∞.

Proof of Lemma A.2. By Lipschitz continuity of f and g, we have

∥ẋ− ˙̂x∥ ≤ Lf∥x− x̂∥+ Lgδw (28)

Gronwall’s inequality yields

∥x(t)− x̂(t)∥ ≤ Lgδw
Lf

(eLf t − 1) ≜ γw(δw) (29)
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Step 4: Local Safety Certification

Lemma A.3 (Safety Margin). At any time t, the safety margin satisfies:

b(x(t), y(t)) ≥ bmin − Lb∥v(t)∥ − γb(δw) (30)

where γb ∈ K∞ depends on system parameters.

Proof of Lemma A.3. Decompose the safety margin:

b(x(t), y(t)) = b(x(t), h(x(t))) +
[
b(x(t), y(t))− b(x(t), h(x(t)))

]
≥ bmin − Lb∥v(t)∥ − Lbγw(δw)

(31)

under the condition (iii), where γb(δw) := Lbγw(δw).

Step 5: Temporal Correlation Analysis

Define the safety violation event at time t:
At = {b(x(t), y(t)) < 0} (32)

Lemma A.4 (Temporal Correlation). For any times t, t′:

P(At ∩At′) ≤ exp
(
−min{c1|t− t′|, c2/δ2v}

)
(33)

where c1, c2 > 0 are system-dependent constants.

Proof of Lemma A.4. By the Gaussian tail bound and temporal decorrelation of noise:

P(At ∩At′) ≤ P(∥v(t)∥ > ηt, ∥v(t′)∥ > ηt′)

≤ exp
(
−min{c1|t− t′|, c2/δ2v}

) (34)

where ηt = (bmin − γb(δw))/Lb.

Step 6: Global Safety Guarantees

For any partition [0,∞) =
⋃∞

k=0[k∆t, (k + 1)∆t):

P(∃t ≥ 0 : x(t) /∈ S0)

= P(∃t ≥ 0 : b(x(t), y(t)) < 0)

≤
∞∑
k=0

P(Ak∆t)

k−1∏
j=0

(1− ρj)

≤
∞∑
k=0

exp(−c2/δ
2
v)
(
1− exp(−c1∆t)

)k

< exp(−c/δ2v)

(35)

where ρj represents the probability that x(t) stays within the safety set in the j-th interval, c = c2 and ∆t is chosen such
that c1∆t ≥ c2/δ

2
v .

Therefore, we have
P
(
x(t) ∈ S0, ∀t ≥ 0

)
≥ 1− exp(−c/δ2v) (36)

This completes the proof.
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B. Proof of Theorem 4.1
Proof. We prove this theorem in two parts:

1) First, we prove the convergence bound of learning dynamics: ∥f̂ − f∥E ≤ c1 exp(−λ1t) + c2δv .

Consider the Lyapunov function candidate:

V (t) =
1

2
∥f̂ − f∥2E (37)

where ∥ · ∥E denotes the norm induced by the metric on the fiber bundle E . Taking the derivative along the learning
trajectories:

V̇ (t) = ⟨f̂ − f,
˙̂
f⟩E

= −⟨f̂ − f,L1(f̂ − f)⟩E
≤ −λmin(L1)∥f̂ − f∥2E + ∥f̂ − f∥Eδv

(38)

where λmin(L1) is the minimum eigenvalue of the operator L1 (assume that all of its eigenvalues are real).

Applying Young’s inequality yields:

∥f̂ − f∥E · δv ≤ λmin(L1)

2
∥f̂ − f∥2E +

δ2v
2λmin(L1)

(39)

Therefore,

V̇ (t) ≤ −λmin(L1)

2
V (t) +

δ2v
2λmin(L1)

(40)

By the comparison principle, we obtain

V (t) ≤ V (0) exp(−λmin(L1)t/2) +
δ2v

λ2
min(L1)

(41)

Taking the square root and setting appropriate constants yields the first conclusion.

2) Next, we prove the probabilistic safety guarantee: P(x(t) ∈ S0) ≥ 1− exp(−c3/δ
2
v).

Consider the measurement-adapted safety certificate b : E → R, which by definition satisfies:

b(x, y) ≥ 0 =⇒ x ∈ S0 (42)

For any trajectory (x(t), y(t)), define the event: At (see (32) for its definition).

Using the Lipschitz condition of mCBF and measurement noise bounds:

P(At) ≤ P(∥y(t)− h(x(t))∥ > b(x(t), h(x(t)))/Lb)

≤ exp(−b2(x(t), h(x(t)))/(2L2
bδ

2
v))

(43)

where Lb is the Lipschitz constant of the safety certificate with respect to measurements.

By the properties of mCBF, there exists a constant bmin > 0 such that:

b(x(t), h(x(t))) ≥ bmin (44)

Setting c3 = b2min/(2L
2
b) yields the second inequality.

Thus, we complete the proof of the theorem.
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C. Additional Experimental Details
C.1. Performance Metrics Details

We establish an evaluation framework with the following metrics:

The primary task completion metric is the success rate SR = Nsuccess
Ntotal

×100%, which measures the percentage of trials reaching

the goal state without constraint violations. Motion efficiency is characterized through the path length PL =
∫ T

0
∥ẋ(t)∥dt,

the number of steps required GRS = min{t : ∥x(t)− xgoal∥ ≤ ϵ}, and the final state error FSE = ∥x(T )− xgoal∥.

For safety evaluation, we examine both instantaneous and aggregate constraint satisfaction across a discrete time horizon
t ∈ {1, . . . , T}. The minimum margin to constraints MMC = mint h(x(t)) captures the worst-case safety margin, while the
average margin AMC = 1

T

∑T
t=1 h(x(t)) reflects the overall safety buffer maintained throughout the motion. The constraint

satisfaction rate CSR = 1
T

∑T
t=1 I(h(x(t)) ≥ 0), where I(·) is the indicator function, provides a statistical measure of

safety performance.

The control quality is assessed through both magnitude and smoothness metrics. The average control magnitude ACM =
1
T

∑T
t=1 ∥u(t)∥ measures resource efficiency, while control smoothness CS = 1

T

∑T
t=1 ∥u(t+ 1)− u(t)∥ quantifies the

continuity of the generated motion.

C.2. Evaluation Protocol Details

For the worm robot (0.1m length), the initial position is randomly sampled within a 0.4m × 0.4m region near the workspace
origin, while the target position is sampled from a similar-sized region at a distance of 0.6-0.8m. A red spherical obstacle
(radius 0.07m) is randomly placed between the start and goal positions. We generate 500 random trajectories, with success
requiring reaching within 5cm of the target while maintaining minimum 3cm obstacle clearance.

The Franka arm experiments consist of 400 point-to-point movements. Initial and target end-effector positions are randomly
sampled from the reachable workspace. A red cubic obstacle (0.1m × 0.1m × 0.1m) is randomly positioned at mid-height
(z=0.3±0.1m) between start and goal positions. Task completion requires the end-effector reaching within 2cm of the target
position while maintaining 5cm minimum obstacle clearance.

For the quadrotor, we test 300 navigation episodes. The start position is sampled near ground level (z=0.1±0.05m), while
goal positions are generated at varying heights (z=0.5-0.7m) within a 0.5m radius. A red spherical obstacle (radius 0.07m)
is randomly placed along potential flight paths. Success criteria include reaching within 10cm/5◦ of goal pose while
maintaining 15cm safety margins.

C.3. Hardware and Software Configuration

Our experiments are conducted on a workstation equipped with an Intel Xeon CPU, NVIDIA RTX 3090 GPU (24GB
GDDR6X), and 64GB DDR4 RAM. The software stack consists of Python 3.9 and PyTorch 1.12.0, supported by CUDA
11.7 and cuDNN 8.5 for GPU acceleration. To ensure reproducibility, we fix random seeds to 42 across all experiments,
controlling for randomness in PyTorch, NumPy, and environment initializations.

C.4. Reinforcement Learning Framework

Our SAC implementation follows the standard architecture with carefully tuned hyperparameters. The framework uses a
discount factor γ of 0.99 and a soft update coefficient τ of 0.005. The target entropy is set to the negative dimension of the
action space, following common practice. All policy components (actor, critic, and entropy networks) use a learning rate of
3× 10−4. The replay buffer maintains 1× 106 transitions, allowing for sufficient exploration while preventing overfitting to
recent experiences.

C.5. Baseline Implementations

For model-based baselines, we implement GPMPC using GPyTorch with RBF kernels (length scale 1.0), which provides
efficient Gaussian Process computations on GPU. RobustSafe employs tube MPC with a prediction horizon of 20 steps and
0.05s sampling time, balancing computational efficiency with prediction accuracy. ALMPC utilizes the CasADi framework
with IPOPT solver, configured for a maximum of 100 iterations per optimization step. Learning-based baselines maintain
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their original architectures while adopting our standardized training process for fair comparisons.

C.6. Neural Network Details

The neural network architecture consists of three hidden layers with 128, 64, and 32 units respectively, using ReLU
activations throughout. Layer normalization is applied after each hidden layer to stabilize training. For barrier functions, we
add a tanh activation in the output layer to ensure the boundedness of safety certificates. We enable mixed precision training
to leverage the RTX 3090’s Tensor Cores, and implement CUDA graph optimization for static computational graphs to
maximize throughput.

C.7. Training Process

The training process employs the Adam optimizer with β1 = 0.9 and β2 = 0.999, coupled with a cosine annealing learning
rate schedule starting at 5× 10−4. We use a batch size of 256 to fully utilize the GPU memory while maintaining stable
gradients. Gradient clipping with a maximum norm of 1.0 prevents extreme parameter updates. Early stopping with a
patience of 20 epochs prevents overfitting, and we maintain a 20% validation split for monitoring training progress.

The training time varies across methods, with our approach requiring approximately 5 hours, Neural-CBF 4 hours, and
GPMPC 3 hours on the RTX 3090. Other baselines range from 3 to 7 hours depending on their computational complexity. To
ensure statistical significance, we repeat all experiments 10 times with different random seeds, reporting mean performance
metrics with standard deviations.

D. Additional Experiments on Broader Domains
D.1. Motivation and Dataset Analysis

To validate the broader applicability of our measurement-induced bundle structure framework, we first investigate three
representative domains: building automation through the ASHRAE Building Operations Dataset, chemical process control
using historical Industrial Batch Records (IBR), and power system management data from Regional Transmission Orga-
nizations (RTO). These sources provide valuable insights into real-world measurement uncertainty patterns and system
behaviors. Our analysis focuses on measurement characteristics that significantly impact safety-critical control decisions.

The building automation data reveals patterns in HVAC sensor networks, particularly regarding temperature and humidity
measurement uncertainties across multiple zones. The IBR data demonstrates characteristic measurement delays and noise
patterns in reaction vessel monitoring, especially for temperature and concentration measurements. The RTO data shows
how grid frequency measurements are affected by network topology and communication infrastructure.

D.2. Environment Design Philosophy

Based on these domain insights, we design three simulation environments that preserve essential measurement uncertainty
characteristics while enabling active control evaluation. Our design philosophy emphasizes fundamental physical principles
and measurement challenges common in these domains, rather than replicating specific industrial configurations. This
approach allows systematic evaluation of our framework’s capability to handle different types of measurement uncertainties
while maintaining safety guarantees.

D.3. Simulation Environment Details

The Building Climate Control environment models a three-zone building with simplified thermal dynamics. The state vector
x = [T1, T2, T3, H1, H2, H3]

T includes temperatures and humidity levels of each zone. The temperature dynamics follow
Ṫi =

∑
j∈Ni

kij(Tj − Ti) + α(Tamb − Ti) + βui, where Ni represents adjacent zones, kij are heat transfer coefficients,
and ui is the control input. Humidity follows similar mass transfer principles. Measurements include additive Gaussian
noise v ∼ N (0,Σ) and drift d(t) = λt. Safety constraints maintain temperature between 20°C and 26°C and humidity
between 30% and 70% during occupied periods.

The Batch Reaction Control environment implements a single-vessel exothermic reaction. The state x = [T,CA, CB ]
T

represents temperature and concentrations, following dynamics Ṫ = − kc

mcp
(T − Tc) +

∆H
cp

r(T,CA) for temperature

and ĊA = Fin

V (CA0 − CA) − r(T,CA) for reactant concentration, where r(T,CA) = k0e
−Ea/RTCA is the reaction
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rate. Control inputs are composed of cooling temperature Tc and feed rate Fin. Measurements include Gaussian noise
with a standard deviation of 0.3°C for temperature and 0.02 mol/L for concentration, plus a 5-second delay modeled as
ẏ = 1

τ (h(x)− y) + v. Safety constraints maintain temperature below 85°C and ensure minimum product quality.

The Grid Frequency Control environment represents a four-node power network where each node’s state includes frequency
deviation ∆fi and power imbalance ∆Pi. The frequency dynamics follow the simplified swing equation ∆̇fi =

1
2Hi

(∆Pi−
Di∆fi −

∑
j∈Ni

Bij(∆θi − ∆θj)), where Hi is inertia constant and Di is damping. Control actions adjust power
generation rates within ±50 kW/s. Frequency measurements include noise v ∼ N (0, 0.012) Hz and 100ms delay, expressed
as yi(t) = ∆fi(t− τd) + vi(t). Safety requirements maintain frequency deviations within ±0.5 Hz.

These environments employ basic numerical integration with 0.1-second time steps. The simplified dynamics capture
fundamental behaviors while maintaining essential characteristics of measurement-based safety control: state estimation
under uncertainty, coupled dynamics between subsystems, and constraint satisfaction with imperfect information. This basic
implementation provides clear validation of our framework’s core capabilities while ensuring the reproducibility of results.

D.4. Experimental Setup

Each environment runs for 1000 episodes with randomized initial conditions and disturbance patterns. We implement the
environments using Python with standard numerical libraries. The sampling rates are set according to domain characteristics:
1-minute intervals for building control, 30-second intervals for batch reactions, and 20ms intervals for grid frequency control.

Performance evaluation uses consistent metrics across all domains: Success Rate (SR) measures task completion while
maintaining safety constraints, Constraint Satisfaction Rate (CSR) tracks the percentage of time safety constraints are
satisfied, Average Control Magnitude (ACM) measures control effort, and Control Smoothness (CS) evaluates control
stability. All experiments are repeated 10 times with different random seeds to ensure statistical significance.

D.5. Results and Analysis

Table 3 presents the comparative performance results across different domains and methods.

Table 3. Cross-Domain Performance Comparison
Domain Method SR (%) CSR (%) ACM CS
Building Ours 95.3±1.1 99.4±0.2 0.14±0.02 0.02±0.003
Control Neural-CBF 83.6±1.8 97.6±0.4 0.22±0.03 0.04±0.005

GPMPC 79.2±2.0 98.8±0.3 0.25±0.03 0.05±0.006
Batch Ours 94.1±1.2 99.1±0.3 0.15±0.02 0.03±0.004
Reaction Neural-CBF 82.3±1.9 97.2±0.5 0.23±0.03 0.05±0.006

GPMPC 78.5±2.1 98.5±0.4 0.27±0.04 0.06±0.007
Grid Ours 93.8±1.3 98.9±0.3 0.16±0.02 0.03±0.004
Frequency Neural-CBF 81.9±1.8 96.8±0.5 0.24±0.03 0.05±0.006

GPMPC 77.6±2.2 98.3±0.4 0.28±0.04 0.06±0.007

The results demonstrate consistent superior performance of our method across all domains. In building control, our approach
achieves a 95.3% success rate while maintaining tight comfort constraints, significantly outperforming baseline methods.
The high constraint satisfaction rate (99.4%) indicates robust handling of sensor drift and inter-zone coupling uncertainties.

For batch reaction control, our method shows strong performance with a 94.1% success rate despite challenging measurement
delays and process uncertainties. The framework effectively balances product quality constraints with operational safety
bounds, requiring lower control effort (ACM = 0.15) compared to baseline approaches.

In grid frequency control, the method maintains reliable performance (93.8% success rate) while handling both commu-
nication delays and measurement uncertainties. The framework’s ability to adapt to measurement quality variations is
particularly evident in the high constraint satisfaction rate (98.9%) achieved with smooth control actions (CS = 0.03).
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D.6. Discussion

These results validate our framework’s effectiveness across fundamentally different physical domains with varying uncer-
tainty characteristics. The consistent performance advantages over baseline methods suggest that the measurement-induced
bundle structure provides a general approach for handling diverse measurement uncertainties in safety-critical control
applications.

Particularly noteworthy is the framework’s ability to maintain high performance across different temporal scales and physical
processes. This adaptability, combined with the framework’s capability to handle both systematic and random measurement
uncertainties, demonstrates its potential for broad application in real-world control systems.

The lower control magnitudes and higher smoothness metrics achieved by our method indicate more efficient control
strategies that better account for measurement uncertainty characteristics. This efficiency likely stems from the framework’s
geometric treatment of measurement uncertainty, which enables more informed decisions about when and how to apply
control actions based on measurement quality.

The results also highlight the framework’s ability to balance multiple competing objectives: maintaining safety constraints,
achieving control objectives, and minimizing control effort. This balance is achieved consistently across domains with
different physical characteristics and measurement challenges, suggesting the fundamental soundness of our geometric
approach to uncertainty handling.

E. Further Ablation Studies
To provide deeper insights into our framework’s behavior, we conduct comprehensive ablation experiments from three
perspectives: measurement uncertainty characteristics, bundle structure variations, and comparison with alternative geometric
representations. These experiments systematically evaluate how different components contribute to the framework’s overall
performance and robustness.

E.1. Impact of Measurement Uncertainty Patterns

We first investigate how different measurement uncertainty patterns affect system performance. Beyond the standard
Gaussian noise assumption, we examine various uncertainty types commonly encountered in practical applications. Table 4
presents the comparative results across different uncertainty patterns while maintaining consistent control parameters.

Table 4. Performance Under Different Measurement Uncertainty Patterns

Uncertainty Type SR (%) CSR (%) ACM CS

Gaussian (σ=0.1) 95.2±1.1 99.1±0.2 0.17±0.02 0.03±0.004
Gaussian (σ=0.3) 92.8±1.3 98.5±0.3 0.19±0.02 0.04±0.005
Fixed Bias (0.2) 93.5±1.2 98.7±0.3 0.18±0.02 0.03±0.004
Time-Varying Bias 91.9±1.4 98.2±0.3 0.20±0.03 0.04±0.005
50ms Delay 94.1±1.2 98.9±0.2 0.18±0.02 0.03±0.004
100ms Delay 92.3±1.3 98.4±0.3 0.19±0.02 0.04±0.005
Sensor Failure 89.7±1.5 97.8±0.4 0.22±0.03 0.05±0.006

The results reveal that our framework maintains robust performance across various uncertainty patterns, with success rates
consistently above 89%. While performance slightly degrades with increasing noise magnitude, the degradation is gradual
and predictable. Notably, the framework shows particular resilience to measurement delays up to 50ms, maintaining a 94.1%
success rate with minimal impact on control smoothness.

E.2. Bundle Structure Variations

We next examine how different design choices in the bundle structure affect system performance. We implement and
evaluate four variations of the bundle structure: fixed dimension, adaptive dimension, simple connection, and complex
connection. Table 5 summarizes the comparative performance metrics.

The adaptive dimension variant demonstrates superior performance across all metrics, achieving a 94.8% success rate and
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Table 5. Performance Comparison of Bundle Structure Variations

Bundle Variation SR (%) PL (m) GRS MMC (m) CSR (%) ACM

Fixed Dimension 92.1±1.3 20.3±0.8 412±19 0.23±0.03 98.5±0.3 0.19±0.02
Adaptive Dimension 94.8±1.1 19.1±0.7 395±17 0.24±0.03 99.1±0.2 0.18±0.02
Simple Connection 90.5±1.4 21.2±0.9 428±20 0.22±0.03 98.1±0.3 0.20±0.03
Complex Connection 93.7±1.2 19.8±0.8 405±18 0.24±0.03 98.8±0.2 0.18±0.02

reduced path length of 19.1m. This improvement can be attributed to its ability to adjust the bundle structure based on local
measurement quality and system state. The complex connection variant also shows strong performance, particularly in
maintaining higher safety margins (MMC = 0.24m) compared to simpler alternatives.

E.3. Necessity of Fiber Bundle Structure

To demonstrate why fiber bundle structure is essential for unifying measurements and safety constraints, we conduct
systematic ablation experiments focusing on the geometric framework’s key components and their interactions with
measurement uncertainty.

Table 6. Comparison of Geometric Representations for Measurement Uncertainty

Geometric Structure SR (%) PL (m) GRS MMC (m) CSR (%) ACM

Fiber Bundle (Ours) 96.3±1.1 18.5±0.7 383±18 0.24±0.03 99.3±0.2 0.17±0.02
Product Manifold 87.5±1.4 25.3±0.9 472±21 0.16±0.03 94.2±0.3 0.28±0.03
Vector Bundle 89.8±1.3 23.2±0.8 445±20 0.18±0.03 95.8±0.3 0.25±0.03
Principal Bundle 90.4±1.2 22.4±0.8 428±19 0.19±0.03 96.1±0.3 0.23±0.02

The fiber bundle structure fundamentally differs from alternative representations in its intrinsic separation between base
space dynamics and measurement uncertainties in fiber directions. This geometric decoupling enables precise uncertainty
propagation while maintaining the underlying dynamical structure, leading to significantly improved success rates (96.3% vs
87.5-90.4%) and constraint satisfaction (99.3% vs 94.2-96.1%). Unlike product manifolds that treat state and measurement
spaces as independent entities, or vector bundles that lack natural parallel transport, fiber bundles provide canonical
vertical-horizontal decomposition that directly captures measurement-state relationships.

The superior performance results from two key theoretical properties: First, the fiber bundle’s connection form automatically
adapts safety constraints based on local measurement quality, enabling tighter safety bounds (MMC 0.24m vs 0.16-0.19m)
without conservative over-approximation. Second, the bundle projection naturally maintains consistency between local
measurement-space behaviors and global state-space trajectories, resulting in significantly shorter paths (18.5m vs 22.4-
25.3m) and more efficient control actions (ACM 0.17 vs 0.23-0.28). These geometric advantages make fiber bundles not just
a mathematical convenience but a necessary structure for properly unifying uncertain measurements with safety-critical
control.

F. Discussion on Comparisons with Recent Methods
While direct numerical comparisons with recent geometric deep learning approaches may be natural, there are several
fundamental differences that make such direct benchmarking potentially misleading. Here we elaborate on why our fiber
bundle framework occupies a distinct theoretical niche and requires different evaluation criteria.

First, recent geometric deep learning methods like equivariant networks and manifold learning primarily focus on repre-
sentation learning and feature extraction while preserving geometric structures. For example, SE(3)-equivariant networks
ensure rotational and translational invariance in learned features, and Riemannian VAEs learn manifold embeddings of
data. In contrast, our framework explicitly models the geometric relationship between states and measurements, with safety
guarantees as a primary objective rather than just geometric feature learning.

The safety-critical nature of our framework introduces fundamentally different requirements. While geometric deep learning
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methods optimize for statistical performance metrics (e.g., reconstruction error, classification accuracy), our method must
provide deterministic safety guarantees under measurement uncertainty. This fundamental difference in objectives - statistical
performance versus provable safety - makes direct performance comparisons less meaningful.

Consider a concrete example: an equivariant network might learn excellent state representations for robot manipulation, but it
cannot inherently guarantee safety constraints under sensor noise. Our fiber bundle framework, through its explicit modeling
of measurement uncertainty via fibers π−1(x) and safety map Φ : E → R, provides these guarantees by construction. The
trade-off between control performance and safety margins is explicitly encoded in our geometric structure.

Moreover, our framework’s treatment of measurement uncertainty is fundamentally different. While existing methods
might handle uncertainty through probabilistic embeddings or uncertainty quantification in learned features, our approach
captures the intrinsic geometric relationship between measurements and states through the bundle structure. This allows us
to maintain safety guarantees even when measurements degrade - a crucial requirement for real-world robotic systems that
cannot be addressed solely through improved representation learning.

The computational objectives also differ significantly. Geometric deep learning methods typically optimize end-to-end
performance on specific tasks, while our framework must solve constrained optimization problems that maintain safety
invariants:

min
u∈U

∥u− unom∥

subject to Lf̂b(x, y) + α(b(x, y)) ≥ 0
(45)

where b(x, y) is the measurement-aware barrier function. This fundamental difference in problem formulation means that
standard benchmarking metrics may not capture the essential safety-critical concerns of our approach.

A more meaningful evaluation framework should instead focus on several key aspects of safety-critical control under
uncertainty. The system’s ability to maintain robust safety guarantees as measurement uncertainty varies, which demonstrates
the fundamental reliability of our geometric approach. This includes testing performance under different noise levels, sensor
failures, and measurement degradation scenarios.

The framework’s flexibility in incorporating diverse safety constraints while preserving its geometric structure is another
crucial evaluation criterion. This involves demonstrating how different types of safety requirements - from simple collision
avoidance to complex multi-objective constraints - can be naturally encoded within the fiber bundle structure while
maintaining theoretical guarantees.

Computational efficiency in safety-constrained control synthesis represents another key evaluation dimension. The framework
must demonstrate real-time performance in generating safe control inputs, particularly important for high-dimensional
robotic systems operating in dynamic environments. This includes analyzing computational scaling with system complexity
and the efficiency of our geometric optimization approaches.

Finally, the framework’s generalization capabilities across different robotic platforms and sensor configurations provide a
crucial measure of its practical utility. This involves demonstrating how the same geometric principles can be applied to
diverse robotic systems - from manipulators to mobile robots - while maintaining safety guarantees under different sensing
modalities and control architectures.

These evaluation criteria better reflect the unique contributions of our fiber bundle framework, focusing on its core strengths
in providing geometric safety guarantees under uncertainty rather than attempting direct comparisons with methods designed
for different objectives. This approach allows us to properly assess the framework’s effectiveness in bridging the gap
between theoretical safety guarantees and practical robotic implementation.

G. Geometric Interpretation and Physical Insights
The fiber bundle framework provides a natural geometric structure for unifying measurement uncertainty with safety-critical
control. The fundamental geometric objects consist of a base manifold M representing the true state space (e.g., robot
configurations), a total space E combining states with measurements, and fibers π−1(x) above each state containing all
possible corresponding measurements. The bundle projection π : E → M maps measurements to their underlying states,
while the connection form ω describes how uncertainty propagates through the system.
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For concrete intuition, consider a drone equipped with depth sensors. The fiber above each position p ∈ R3 contains the set
of possible depth measurements {y = h(p)+ v : ∥v∥ ≤ δ}, where h represents the ideal measurement model and v captures
bounded uncertainty. The horizontal lift of trajectories maintains consistency between dynamics-predicted positions in the
base space and actual sensor measurements in the fiber space, while respecting safety constraints through Φ: E → R.

This geometric structure directly captures the physical reality of robotic systems. The state-dependent measurement quality
is naturally represented through varying fiber dimensions and geometry across the state space. For instance, in robotic
manipulation, joint angle sensing accuracy often depends on the arm configuration q ∈ Q, captured by the fiber structure
variation over the configuration manifold. The connection form ω ensures consistent propagation of these measurement
uncertainties while respecting the underlying physical dynamics.

The bundle structure preserves key physical properties: mechanical energy conservation through the symplectic structure,
and sensor-state correlations through the horizontal distribution. This enables measurement-consistent dynamics learning
via constrained neural ODEs:

˙̂
f = −L1(f̂ − f) + λRfiber(∇Φ) (46)

The measurement-aware control barrier functions (mCBFs) automatically adapt safety margins based on measurement
confidence:

b(x, y) = b0(x, h(x))− Lb∥y − h(x)∥ (47)

A key strength of this geometric approach lies in its coordinate independence and preservation of physical symmetries. The
intrinsic nature of the bundle structure means the framework applies equally well across different robot representations while
automatically preserving important physical invariants like SE(3) symmetry. This enables broad generalization across
diverse robotic systems and tasks without requiring task-specific modifications to the underlying mathematical framework.

The fiber bundle structure provides robust safety guarantees through its geometric mechanisms. The bundle projection
ensures safety constraints are satisfied for all possible measurements within each fiber, while the connection form enables
consistent propagation of these constraints as the system evolves. This geometric approach to safety is fundamentally
different from traditional methods using uncertainty ellipsoids or tubes, as it captures the intrinsic coupling between
measurements and dynamics that naturally arise in physical systems.

While the framework requires sufficient smoothness of the underlying manifold M and bounded measurement uncertainty,
these requirements align well with numerous practical dynamics (for example, robotic systems). The geometric decom-
position into horizontal and vertical components often leads to efficient computations despite the additional dimensions
introduced by the bundle structure. Future extensions could enable learning optimal fiber structures from data or handling
coupled uncertainties in multi-agent systems while maintaining the core geometric principles that provide rigorous safety
guarantees.

This geometric perspective offers both theoretical guarantees and practical insights for implementing robust safety-critical
control under uncertainty. By providing a unified treatment of measurement uncertainty that respects physical constraints
and symmetries, the framework bridges the gap between theoretical safety guarantees and practical implementation. The
natural handling of both physical constraints and measurement uncertainty through intrinsic geometric structures makes it
particularly valuable for real-world applications where ensuring safety under imperfect sensing is crucial.
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