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ABSTRACT

We study the differential privacy (DP) of low-rank adaptation (LoRA) fine-tuning.
Focusing on FA-LoRA (fixed A, trained B), where a single training step is equiv-
alent to applying a random Wishart projection to the gradients, we prove a formal
(¢, )-DP guarantee for LoORA without adding explicit additive noise. The result-
ing privacy parameters depend explicitly on dataset sensitivity and the projection
rank r. Moreover, the low-rank structure reduces memory and computation by
design. To place these results in a broader context, we formalize the underly-
ing projection operation as a general projection mechanism of which LoRA is an
instance. This mechanism is of independent interest as random projections are
ubiquitous in machine learning.

1 INTRODUCTION

Differential Privacy (DP) is widely regarded as the gold standard for protecting training data in
machine learning. Intuitively, DP limits the influence of any single example on the output, making
it difficult to infer whether that example appeared in the training set. The most widely used DP
algorithm in modern ML is DP-SGD, the private counterpart of the workhorse Stochastic Gradient
Descent (SGD).

However, DP-SGD is computationally demanding and often incurs a substantial utility loss, espe-
cially for large models. While it remains one of the few viable choices for training from scratch,
in many practical deployments sensitive data enters primarily during fine-tuning e.g., when an or-
ganization adapts a public pre-trained model on proprietary data. This motivates a simple strategy:
start from a large public pre-trained model and enforce privacy only during fine-tuning. In the non-
private setting, parameter-efficient fine-tuning (PEFT; (Han et al.} [2024)) updates only a small set
of parameters while freezing the base model, substantially reducing memory and compute. This
naturally raises the question: can PEFT similarly reduce the cost of DP fine-tuning?

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a widely used PEFT method that often matches
full-parameter fine-tuning on downstream tasks (Hu et al., 2022 Dettmers et al., 2023). It freezes
the pre-trained weights and inserts randomly initialised trainable low-rank matrices, dramatically
shrinking the number of trainable parameters. Variants include adaptive-rank methods (Zhang et al.,
2023)), quantization-aware tuning for low-bit backbones (Dettmers et al., 2023} |L1 et al., |2023)),
stability/initialization refinements (Hayou et al., [2024; Meng et al.| 2024)), and structural decom-
positions (Liu et al., [2024), each targeting stronger quality under tight compute/memory budgets.
Approaches to privatising LoRA have also been proposed, including DP-LoRA (Liu et al., 2025).

Several LoRA variants (Sun et al.| 2024} |[Hao et al., 2024)) already incorporate substantial random-
ness (e.g., repeated re-initialization of component weight matrices). Yet existing privatisation algo-
rithms largely ignore this inherent randomness in their algorithmic design. At the same time, em-
pirical studies report reduced memorisation under LoRA (Hong et al., 2025) (without any explicit
privatisation) and note training dynamics that close match that of DP-SGD (Malekmohammadi &
Farnadi, 2025). These observations suggest that the built-in randomness may play a central role in
privacy, raising the possibility that LoRA could be provably private by design. To our knowledge,
no prior work establishes a formal DP guarantee for LoRA.
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A formal DP guarantee for LoORA without additive noise offers a practical route through the pri-
vacy—accuracy—compute trilemma: it can lower computational overhead while preserving accuracy
and ensuring privacy. In this work, we show that LoRA is provably differentially private.

Our key observation (see [Section 2) is that certain LoRA variants (e.g. FA-LoRA (Sun et al.| 2024;
Hao et al.| 2024)) with A fixed and only B trained) update parameters as if they applied a random
Wishart projection to the gradient. Leveraging this equivalence, we prove that FA-LoRA is (g, §)-
DP. To place this in a broader context, we formalize the underlying operation as a general projection
mechanism, which multiplies the output by a Wishart-distributed random matrix and establish its
privacy guarantees.

Definition 1 (Projection mechanism). Let S C X" be a dataset collection and f : S — R¥*™ g
query function. For r € N and 0? > 0, the (Wishart) projection mechanism is defined by

Aro2(S) = M f(S), M:=22",
where Z € RY*" has independent columns 2y, e N(0,0%1,) or equivalently, M ~ Wy (c?1y, 7).

We believe this projection-based approach is of independent interest: it departs from the classical
additive-noise mechanisms(e.g. yet yields rigorous privacy guarantees. Random pro-
jections, such as Wishart transforms, are already common in standard ML (e.g., dimensionality
reduction, sketching, randomized preconditioning), and we expect that this mechanism will have
uses beyond LoRA. At this stage we also note that this is different from the common JL transforma-
tion: the expectation of the JL transformation matrix is zero, whereas the expectation of the Wishart
transformation matrix is a low rank identity matrix. Intuitively, JL preserves the norm of a vector
whereas Wishart preserves the angle.

Our Contributions. Our main contributions are twofold. First, we show that LoRA (and FA-LoRA)
is differentially private, with privacy parameters controlled by properties of the data and architecture,
concretely, by the ratio of the largest to smallest singular values of the gradient matrix. Second, to
obtain this result, we introduce and analyse a new DP mechanism: the random Wishart projection
mechanism, and establish its DP guarantees, discuss simple privacy amplification techniques, and
outline applications beyond LoRA.

Organization. In we review DP preliminaries and give a brief overview of why LoRA
is private. establishes privacy and convergence guarantees for the projection mechanism
with vector outputs (m = 1) and presents a simple privacy amplification method. [Section 4]extends
these results to matrix-valued outputs (m > 1) and derives a privacy guarantee for LoRA. Finally,
covers related work, limitations, and open questions.

2 PRELIMINARIES AND MAIN IMPLICATIONS FOR LORA

Before presenting our main results, we recall basic differential privacy (DP) notions and composi-
tion tools we rely on. We then introduce LoRA, explain its equivalence to the projection mecha-

nism (Definition I, and state the per-step privacy guarantee enjoyed by LoRA.

Differential privacy limits how much the output distribution can change when a single data point is
modified.

Definition 2 (Neighboring datasets). Let S, S’ be datasets of same size. We write S ~p S’ if they
differ in exactly one entry, i.e. dg(S,S’) = 1, where dy is the Hamming distance.

Then, differential privacy can be defined as follows.

Definition 3 (Differential privacy). A randomised algorithm A : S — Y is (,0)-DP if for all
measurable E C Y and all S ~g S’,

Pr(A(S) € E) < ¢° Pr(A(S") € E) + 6,
with probability taken over the internal randomness of A.

Differential privacy is commonly enforced by additive perturbations: i.e. by adding noise to the
output of a non-private query f, calibrated to the sensitivity of the underlying query f.
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Algorithm 1 One LoRA step with frozen A

Input: number of layers ¢y,,x, pretrained weight matrices Wy o,..., W,
min(d, m); dataset size N; loss L; step size n; minibatch size B; .
Sample minibatch B C [N] with |B| = B (Poisson rate ¢ = B/N)
for each layer ¢/ = 1,..., 4. do
Sample Ay ~ N(0,1)"*™ and freeze it, Initialize B,E,O) +— 0 eRxr
Wg — WLO
B « BY Ay — Vg, L(W,, B)
end for
return Wy < Wy + B Ay for £ € [lmas).

0 € R¥*m: rank r <

max;

Definition 4 (Sensitivity). For f : S — R, its (5 sensitivity is
— _ ’
A= mua [1£(5) ~ F(5),.

One such example of canonical additive mechanisms is the Gaussian mechanism

Lemma 1 (Gaussian mechanism). Let f : S — R? have sensitivity A. The mechanism
2A2log 2
A(S) = f(9) + 2, Z~N (0, Ezgald)

is (¢,0)-DP.

Restricting the domain of A to a dataset collection D C S yields a DP guarantee conditioned on
D. In practice, this often reduces A and improving utility but comes at the cost of not providing
privacy on datasets outside the collection. Several approaches have been proposed in the literature
to check whether a dataset indeed belongs to a collection D, including the Propose-Test-Release
mechanism (PTR) Dwork & Lei| (2009).

Basic Properties of DP DP mechanisms admit several simple but useful properties, including com-
position and amplification via subsampling, as stated below.

Lemma 2 (Basic composition). If Ay, ..., Ak are each (¢,0)-DP on the same domain and are run
on the same dataset, then the tuple (A, ..., Ak) is (Ke, K§)-DP.
Definition 5 (Poisson subsampling). Given a dataset D = {x1,...,xnN}, include each x; indepen-

dently with probability q € (0,1) to form a subsample S. Equivalently, draw m; ~ Bernoulli(q)
i.i.d. and set S = {x; : m; = 1}. Then |S| ~ Binomial(N, q) and E[|S|] = ¢N.

Lemma 3 (Amplification by subsampling). Let A be (¢,0)-DP. Under Poisson subsampling with
rate q, the composed mechanism A o Sq is (log(1 + g(e® — 1)), ¢d)-DP.

LoRA enjoys inherent privacy Before proceeding to our formal theoretical results, we first mo-
tivate our results using an application. Low-Rank Adaptation (LoRA) (Hu et al.l |[2022) is one of
the most popular parameter-efficient fine-tuning approaches for Large Language Model. LoRA aug-
ments a pretrained weight matrix W, € R?*™ by a low-rank update:

W =W, + BA, BeR¥™ AcR™™ r < min{d,m}.

During fine-tuning, Wy is frozen; only the small factors (B, A) carry trainable degrees of freedom.
This keeps fine-tuning computationally efficient while leaving the base model intact.
lists the basic steps of the algorithm.

They key observation is that if A is initialized Gaussian and then frozen while we update B by
Biy1 = By —n(VwL(Wy))AT,
then after 7" steps, we can write

Wr = Wo—nY_ (VwL(W:)) (AT A). e

t=1
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Thus each step uses a gradient Vyy £(W;) that is right-projected by the random matrix AT A (a
rank-r Wishart). This is exactly the projection mechanism we study. Our main result in
shows that W enjoys (e, §)-DP guarantees where ¢, § depends on dimension of the weight matri-
ces, spectral properties of the gradient matrices, and properties of the dataset collection. While by
itself the privacy parameters are not very satisfactory, we believe that the fact that the very popular
algorithm already enjoys these guarantees, as has been hinted by previous work (Malekmoham-
madi & Farnadil [2025) is already interesting. Additionally, in[Section 4 we also discuss algorithmic
techniques to amplify these privacy guarantees.

3  PROJECTION MECHANISM FOR VECTOR OUTPUTS

In this section, we consider the projection mechanism, defined in for vector-valued
queries f : S — R, This setting is a special case of the more general mechanism that projects
matrices, but its simpler structure lets us give a clear proof sketch and build intuition for how the
mechanism operates. We first establish approximate differential privacy in and then
prove convergence for gradient descent in Lastly we show how to amplify the privacy
of this mechanism by adding small amounts of Gaussian noise.

3.1 PRIVACY GUARANTEE FOR THE VECTOR CASE

Let f : X" — RY satisfy || f(S)|, = 1 for all S (this can always be enforced by scaling the query;
we adopt this normalisation throughout). For a dataset collection D C X™ and query f, define the
minimum alignment
p(D. )= min f(5)" f(5) €[-1.1]. @)

5,8'eD

S~ S’
When the context is clear, we write p := p(D, f) for brevity. Large p means that neighbouring
query outputs are nearly co-directional. In this regime the laws of M f(S) and M f(S’) are harder
to distinguish, leading to tighter (,,0,) guarantees (Figure 1c). Crucially, much like a sensitivity
parameter in additive mechanisms p is a property of D, f fixed by the dataset collection and the
query and is not controlled by the projection mechanism itself. At the end of this subsection we
discuss algorithmic techniques that can increase the effective alignment (Cemma 4)).

To recall, for a given 7, o, the projection mechanism samples a Wishart matrix
T
M= zz =227, where 2z N (0,0%14), Z = [21,- -, 2] € R,
i=1

and releases M f(.S). Here r is the degrees of freedom (equivalently, the rank proxy) of the Wishart
distribution and is an algorithmic choice. Increasing r intuitively requires more random bits, as well
as increases the rank of M, and improves both ¢, and J,, (Figure Tb). Conversely, smaller r can be
attractive in practice due to reduced memory and compute at the cost of privacy. Thus, choosing r
entails a clear trade-off between computational efficiency (smaller r) vs.tighter privacy guarantees
(larger ).

Theorem 1. For a dataset collection D and a query function f with outputs in R, let p > 0 be the
minimum alignment for f, D as defined in|Equation (2)} Then, for any R > (\/&4— Vr)4 t >0, and

n > 0 the projection mechanism with rank r and variance o is (€p,0,)-DP on D, where

i _&( t=p)—pn > extf (VT — A — )2
5,=1 ¢>< (1_p2)(t+n)>P(XT>t+n)+2 p(—c(VR — Vd — /r)?)

d—r—1 R? R3,\/2(1 —
5p§| ! |1og<p+\/1p2 t21>+(p)

2 2t2

Proof sketch of [Theorem 1|Let v = f(S) and v = f(S’) with ||v|| = ||v|| = 1. By|Lemma 15]

on {y cvly > O} the law of M v has density

r—d—1 r 2
pv(y) — v (’UTy) 2 exp (_ ”yH ),

20Ty

4
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r4+d—1
T 2

“r _ d—1__
22 (27w) 2 I'(r/2)

and similarly for p,/(y), where C, 4 = . For any measurable )Y C supp(Mwv) N

supp(Mv’), 2
r—d—1 r
ey, ot e (45
—————- < sup ——
P(Mv' €)) = yey Cnd(,ul—ry)$ exp (_ ﬁﬂ;)

To control the above ratio, we keep y away from the boundary of either support and from excessively
large norms by defining the good set

Ver={y:vly=t Tyt |yl <R}
We define the probability ratio conditioned on the good event as Lax = Supycy, %.
Then, for any ) C supp(Mv),
P(MveY)=P(MveYNr) +P(MveYnYig)
< LinaxP (MY € YN Vi) + P (Mv € Vi g) < LinaxP (Mv' € V) +P (Vi r)

and symmetrically with v, v’ swapped. Bounding L., by decomposing v’ = pv++/1 — p? w with
w L v yields the stated ¢ ,,.

Next, we bound the failure probability of )y r with §,. While the proof for this is slightly
more involved, it starts from the observation that X = v'Muv/c? ~ x? and conditional on
X = x, v'Mv | X = x is distributed as a Gaussian. Using these, we lower bound
Pr(v'Mv' >t | X =x) with the product of the 2 and A tails. Second, the operator-norm
event {|[ M| > R} is controlled by |[M|| = 02 ||G||* where G is a standard Gaussian random ma-
trix. Combining this yields the required bound on 4,,. O

On the dependence of p on n. Intuitively, p captures how stable the direction of the normalised
query is under a record change. For average-like queries, a single replacement contributes an
O (1/n) perturbation to the unnormalised vector, which in turn yields p ~ 1 — O (1/n?). Con-

cretely, let f(S) = 13" g(x;) with ||g(z)|| < L and assume infgep HﬂS)H > ¢o > 0,

T n

for a constant ¢g. Then neighbouring datasets S,.S’ satisfy Hf(S) — f(8")|| < 2L/n, which

implies [|f(S) — f(S)]] < %. Since 1 — u'v = %Hu—vHQ for unit u,v, we obtain
2
p = 1=~ F(I° = 1- 5.

Additional analysis parameters ¢,n, R. The statement of introduces t > 0,7 > 0,
and R > (v/d + /r)%. These are analysis parameters used to obtain a tight yet concise bound;
they are not hyper-parameters of the mechanism. In practice one evaluates the bound numerically
by optimising over these quantities. The slack 1 decouples a x? tail from a (conditional) Gaussian
tail in the proof of d,,, yielding a closed-form expression that is conservative; empirically, the exact
mixed-tail calculation can be smaller (see [Figure Ta). The parameters R and ¢ define the good set
and serve as knobs between J, and €,: increasing ¢ leads to a monotonic decrease in €,, while
simultaneously increasing the bound on §,. The parameter R controls the spectral-concentration
event for the Wishart matrix: larger I? strengthens concentration and decreases d,, but increases €.

2
A practical choice is to take R = (\/E +r+ u) with a small v > 0, which makes the spectral

term in &, negligible once 7 is moderate. Given a target § € (0, 1) and a maximum rank ry.x < d,
one can solve the J,, bound for the largest admissible ¢ and then plug that ¢ into the £, bound, leading
to the following corollary.

Corollary 1. Let p be the minimum alignment as defined in Then for any 0 < r < d,
0 > 2e™°" (for an absolute constant ¢ > 0 from Gaussian spectral concentration), the projection
mechanism is (¢, 0)-DP with

%Sf’?‘(“’““log (p 4+ VT2 (1)) +d32<1p>>’

2 2p2r2

for a universal constant C > 0.
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Figure 1: shows exact J via finite integration vs our bound{lbfshows €, as a function of r, and
shows ¢, as a function of p. In figures [Tb] and ¢, was computed by doing a sweep over all
analysis parameters to find the best parameter with ¢ < 0.1.

When p = 1 we have f(S) = f(S’), so the induced output distributions coincide and the true privacy
loss satisfies €, = 0, which is also reflected in our bound. We note however that his intuition cannot
be observed in our J, bound, an artifact of the conservative decoupling and concentration steps used
in the analysis. See for an illustration of this gap.

Privacy amplification by increasing effective alignment The privacy guarantees for random pro-
jection in can be strengthened by introducing a simple pre-processing strategy. We add
uniform noise from a d-dimensional ball of radius v/2 to f(.S) before applying the projection.
Specifically,

M (f(S) + rj) . 2~ N(0,L)

This improves the effective alignment, especially when the original alignment p is small (or even
negative) and in high-dimensional settings.

Lemma 4. Let v,v' € R? be two unit vectors with with cos Z (v,v') = v'v' > p, z € N(0,1,),
6> 0and~ > =2 % log %, then with probability at least 1 — 6, we have

1+p
cos (Z (v—i—vz,v'—i—w)) >p+s>p,
[E4[P 121l

(1=p)y*—47y/21n §

1+72+27\/% In % ’

where s =

We observe that achieving a fixed target improvement s in alignment requires choosing a larger
and adding more noise when the minimum alignment p is large (i.e., when the original vectors are
already well aligned).

3.2 APPLICATIONS

In this section, we highlight three potential applications of the projection mechanism for the case.
In[Section 4] we highlight our main application to show that LoRA is inherently private.

Projected gradient descent (RP-GD). Analogous to DP-GD, which privatises gradients by addi-
tive noise, we privatise the average gradient direction via the projection mechanism and then take
a descent step with the projected output. Concretely, sample M ~ Wy (02[ ds r) once, and at each
iteration update
W1 = wy — MV L(wy) .

This Randomly Projected Gradient Descent (RP—-GD) algorithm retains directional information
(which is what drives progress for many optimisers) while providing guaranteeing DP. In
[rem 3lwe provide a convergence guarantee and identify regimes in which RP-GD improves upon
DP-GD when the dataset collection exhibits well-aligned gradient sums. For more details see

Gon El

Private Retrival Another possible application is to publish private embeddings for retrieval tasks.
Given a unit-normalised average embedding v, sample M ~ W (021 ds r) and release the y = M.
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The retrieval system maintains its catalogue {u;} C R? unchanged and ranks by standard dot
products (u;,y) = (uj, Mv). Since E[M] = ro?1, (unlike projections like the JL transformation)
and ||[M — ro?1,]|| concentrates for moderate r, these scores approximate a constant multiple of
(uj, v}, preserving top-k ordering up to a small distortion that vanishes as r grows. This is useful for
various modern retrival applications, where the embedding v is computed as an average of multiple
embeddings. The same pattern applies to releasing class/cohort prototypes: compute the cohort
mean, normalise and release y = Mw. In short, any application where the original embedding is
an average embedding and final utility is measured with respect to cosine angle is a good fit for the
projection mechanism.

4 PROJECTION MECHANISM FOR MATRIX OUTPUTS

In this section we consider the projection mechanism applied to f : S — R*™ with matrix-valued
output space (m > 1). We prove a privacy guarantee (Section 4.1) and apply this result to the
popular finetuning algorithm, LoRA, showing that LoRA inherits the same guarantee (Section 2)).

4.1 PRIVACY GUARANTEE

Similar to the vector case, to obtain meaningful privacy guarantees for the projection mecha-
nism, we assume the outputs of the query f on any neighboring datasets S, S’ € D are suffi-
ciently aligned (equation [AT). We also assume that the outputs have rank k& and bounded spectral
norm (equation[AZ). As in the vector-output setting, these assumptions depend only on the dataset
collection and the query function. At the end of this section, we provide algorithmic solutions to
amplify these values.

We formally define the assumptions as follows. For matrix outputs in R?*™ with d > m and
rank(f(S)) < k < min(d, m), we measure alignment by the cosine of the k-th principal angle
between the column spaces of f(S) and f(S’):

pe(f D)= min ok (Us(S)TUs(5"), (A1)
s%s', 8,5'€D
where Uy (S), Uy(S”) have orthonormal columns spanning Col(f(.S)) and Col(f(S")).

To ensure the outputs have rank %k and bounded norm, we impose: there exist constants £ > 0 and
& < oo such that forall S € D,

ok (f(S)) > & and o1(f(9)) <& (A2)
where o;(-) denotes the i-th largest singular value.
Projection mechanism. To recall, the mechanism releases MV where V = f(S) € R¥™ and
M =3"_, 2z with z; 5" A0, I;/r). This is a rank-r Wishart projection.

Theorem 2. For a dataset collection D and a query function f with outputs in R™™ of rank k,
let py be the (column-space) alignment as in equation and let &;,,&1 be as in equation

Further, let A = MaX g, o wep | f(S) = f(S")|ly. Then for any tuning parameters t > 0, and

R > & (Vd++/r)?, the rank-r projection mechanism with M = >"i_, 22 and z; S N(0,Iq/7)
is (¢,9)-DP with

[N

2

+ + 2e

(pe — 1)t )2 ’
— e - F _c< E-ﬁ—ﬁ)
§ < o3 (VE= V= (Vi) /) (MR ++ 2e \/:1 *

(m—nr)k 2&, r(d—r+1) R 32k R?
< —1 1+ = A —1 1+—A ——A
e< 5 log {1+ & + 5 og\ 1+~ T V212

On the dependence of p; on dataset size n ~Similar to the vector case, we can show that the
alignment parameter pj, increases with n. Let f(S) = 23" G(x;) € R¥>™ with ||G(z)]|, <

T n
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L; the sensitivity of f is H f(S) = f(9"] < 2L Under [Equation (A2)|and the rank assumption
of [Theorem 2| let fmax be the largest principal angle between the k-dimensional column spaces of
f(S) and f(S’). Using the sin © theorem for column subspaces, we obtain sin (fax) = [|sin | <

Hf(s)gikf(s)” < % Using pr = 08 Omax and 1 — cos @ < sin? @ for § € [0, 7/2], we have that
pr>1— :112—@. Thus for average-like matrix queries, pr ~ 1 — O (1/n?). In our matrix projection
k

theorem, larger py directly reduces the second term in J.

4.2 APPLICATION TO LORA

As discussed before, a natural application of our privacy guarantee for the low-rank projection mech-
anism is Low-Rank Adaptation (LoRA)(Hu et al.,[2022). Concretely, let Gy = Vi L(W;). [Hao et al.
(2024)) shows that LoRA update with fixed A is

T
Bii1 =B, —nG AT — Wr :Wo—i—BTA:WO—nZGt(ATA).

t=1
Thus LoRA performs gradient descent with the gradient right-projected by the random Wishart
matrix AT A, which is precisely a projection mechanism on a matrix-valued output. Consequently,
LoRA inherits our privacy guarantee automatically. In practice, LoRA is applied across
multiple layers and trained with mini-batches. The privacy guarantee in can be simply
composed over multiple layers and amplified via minibatch subsampling as is common in DP-SGD.

Algorithmic techniques to improve LoRA’s privacy guarantees Analogous to the RP-GD anal-

sis in applying LoRA with a single initialization of A requires Assumption [AT] and
to hold for the cumulative gradient trajectory Zthl G under any neighbouring datasets in the
collection, since early misalignment can be amplified over the course of optimization. A practical
relaxation is to impose these assumptions per step (rather than on the sum) and resample A ev-
ery 7 steps, incurring an additional composition over restarts. We include this resampling trick in

which is in the same spirit as[Hao et al.|(2024).

Algorithm 2 LoRA with resampled A on one layer

Input: pretrained model parameters Wy € R4*™ rank r with 7 < min(d, m), input X € RV>xkxn
loss function £, number of rounds 7" and 7, step size 7, mini-batch size B

fort=0,... T —1do
Initialize B{”) € R?*" and A, € R"** randomly > resample A
forj=1,...7do
Random sample an example 2 € R**™ from the dataset X with probability B/N

Wi « W, + BY™Y 4, (should it be > update model
Yj Wiz > evaluate
ng) <_ Bt(jfl) _ nagg) =y, > update B
end for
Wi =W + BET)At
end for
return Wr

Role of &, and &;. Further, it is also possible to improve the spectral properties of the gradient.
Assumption |A2] requires uniform spectral bounds over D: o (f(S)) > & > 0 and o1(f(5)) <
& < oo forall § € D. Concretely, & can be reduced by enforcing spectral regularisation on
the gradients e.g. using spectral normalization of linear layers, gradient clipping in operator norm,
or whitening that rescales dominant directions. Conversely, ;. can be increased by adding a small
regulariser term to the loss e.g. ridge regulariser injects a AW term into the gradient and lifts smaller
singular values of the gradient, curvature damping adds AI to the gradient to prevent rank collapse;
both of these techniques raise the floor on &;. In our bounds this improves v/#/& in & and reduces

the factor (m — r)k log (1 + %A) in . We leave the exploration of further implications of these
k
techniques to future work.
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5 DISCUSSION AND OPEN QUESTIONS

The main contribution of our work is showing that the random projection mechanism is inherently
differentially private. Using this analysis we are able to show that LoRA also enjoys certain pri-
vacy guarntees. We also show how to improve this privacy guarantee algorithmically, either by
adding a small amount of additive gaussian noise or via algorithmic techniques like regularisation
and smoothening. Our proof relies on new technical tools in analysing the likelihood ratio of more
complex distributions than the classical distributions analyses in Differential Privacy.

However, there are several opportunities for further work. First, the privacy parameter is compli-
cated and hard to tune, additionally it scales with properties of the dataset like the alignment. We
believe techniques like smooth sensitivity, inverse-sensitivity mechanism, and PTR may be help-
ful in overcoming this issue. Second, we describe several algorithmic techniques that can improve
the privacy guarantee and we think it will be interesting to consider their impact on the utility of
the algorithm. Finally, while we list a few applications of the projection mechanism, it would be
interesting to find other applications of this mechanism.

Related works Random projection has been widely exploited in the privacy literature. Some
works—such as [Kenthapadi et al.| (2013)); |[Li & Li (2023)—explore the privacy of JL-style projec-
tions or random sign flipping. However, these approaches typically do not treat the projection’s
randomness as part of the privacy mechanism: they publish the projection matrix and regard its
randomness as public information. Other lines of work use random projection primarily for di-
mensionality reduction, improving the privacy—utility trade-off by removing dimension dependence
from convergence guarantees in many private algorithms (Jiang et al.| 2025} [Kasiviswanathan, 2021}
Li et al.; Sheffet, 2019). By contrast, far fewer works explicitly leverage the inherent randomness of
the projection itself as a source of privacy.

There is also a line of work on privacy amplification via compression. In particular, Jin & Dai
(2025) shows that by compressing the gradient to their signs, SignSGD amplifies privacy guaran-
tees. Perhaps most related to our work, Hao et al.[(2024)); Malekmohammadi & Farnadil (2025) argue
that LoRA can be viewed as gradient compression through low-dimensional random projection and
induces training dynamics resembling DP-SGD for certain architectures. However, to our knowl-
edge, we are the first to provide a formal differential privacy guarantee for compression achieved via
random projection for arbitrary model choice.
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A APPENDIX

A  MATHEMATICAL PRELIMINARIES

Definition 6. Matrices A and B are similar if there exists a matrix W so that
A=WBW™!

Lemma 5. Let A and B be symmetric matrices (of the same dimension). If A and B are similar
matrices, then they have the same eigenvalues.
Proof. Let A and B be similar matrices, this means there exists W so that A = WBW~1 Letx be
an eigenvector of A with X its corresponding eigenvalue. This means

Az =WBW 'z = Az
by right multiplicating with W ~! we see that this is equivalent to

B(W™z) = \(W™'2).

O
Lemma 6. Let A € R™*"™ be a matrix, and Q € R™*™ Q' € R™"*™ orthogonal matrices then A
and A" = QAQ)' have the same singular values.
Proof. Let A’ = QAQ)’, then
ATA =(QTATQT)(QAQ) =QTATAQ'.

By we know A’T A’ and AT A have the same eigenvalues, which finishes the proof. [

Lemma 7 (Corollary 7.3.2 in [Vershynin| (2018)). Let A be an m x n matrix with independent
N(0,1) entries. Then, for t > 0, we have

P [J|A] > vm + v/n+t] < 2exp(—ct?).

Lemma 8. Let A € R™*" has i.i.d. N(0,1) entries withm > r and let 1(A) > ... > 0,.(A) be
its singular value, then for anyt > 0,

Ploy(A) < vVm—vr—t] <e

Lemma 9 (Theorem 3.4.5 (Vershynin, |2018)). Let u be a random vector uniformly distributed on
the unit sphere in R% (or w ~ N(0,1,) and let u = m). Then for any unit vector v € R and
t > 0, we have ,

t<d

P{u,v) >t] <2 2.

Lemma 10 (Perturbation bounds for pseudo-inverse, Theorem 4.1 in (Wedin| [1973)). Let A €
R™*™ of rank r, B € R™*™ of rank s, then

1B = |, < Vamax {|| '], B3} 1B - Al

Lemma 11 (Weyl’s inequality, (Weyl, [1912)). Let A € R™*™ be a perturbation of arbitrary mag-
nitude. Denote X = X + A with singular values 61 > 6o > -+ > &, > 0. Then,

|5’i —O'i| S HA”Q, fori = 1,...,n

11
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Lemma 12. Let W ~ Wisharty(r, I402), then for any g € R% with ||g||, = 1,
Eg"WWTg = otr(r4+d+1)

Proof. We know that for a wishart distribution W,
EW =ro°ly, Cov(Wi;) = n(vy; + vivj;).

Letl = € R, Then,

Eg"WW g =g" (Cov(W) +E(W)EW)") g
=g (047’(Id + llT) + J4rld) g 3)
=or(r+d+1)
O]

Lemma 13 (Strong composition of differential privacy (Dwork & Roth, 2014)). F0r~all g0 >0
and §' > 0, the adaptive composition of k algorithms, each of which is (¢,0)-DP, is (£, 9)-DP where
e—1

€ =1¢ev/2kn(1/8") + ke ¢ and 6=k + 4.

et +1
Lemma 14. For X; and Y; standard bivariate random variables with correlation p > 0

P() XY <0) < (1-p)7?
=1

Proof.
1
E[e?XYi] = (1 — 2pX — (1 — p?)A2) "2 for A € (—1, H) (write out proof as extra lemma)
—p P
“4)
in order to use this identity we will first convert the random variables to positive (exponential)
random variables (multiply with —t for ¢ > 0 and take exponential) and then apply [Equation (4);
P() XiY; < 0) =P(e " 2= X¥i > 1) <Fle~ 2 X1 = [TE(e™X > 1) = (1+2pt—(1—p%)t%) /2
i=1 i=1
where we used the above identity with A\ = —t. Now we want to find ¢ > 0 so that ¢()~"/2 is

minimized, with ¢(t) = 1 4 2pt — (1 — p?)t*. As x — = "/? is decreasing on (0, c0) this is
equivalent to maximizing g(t).

q(t)=2p—2(1—p*)t
q'(t)=-2(1-p* <0

80 t* = 777 maximizes q(t). We remark here that t* = —A, so we need to check if t* € (0, 1%{))
in order to be allowed to use [Equation (4)] Which is indeed true as

p 1
< — <—= <1
1—p%2 1-—p p tr

which is always true. So finally plugging this in we get:
20> (1-=p*)p?

t")=1 —
S N (Y
22 2 2
i (1—p?) i
1
=12
Finally plugging this into the bound we get the wished results. O

12
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B PRIVACY OF PROJECTION MECHANISM ON VECTORS

Theorem 1. For a dataset collection D and a query function f with outputs in R%, let p > 0 be the
minimum alignment for f, D as defined in|Equation (2)} Then, for any R > (\/ng V)2t >0, and

n > 0 the projection mechanism with rank r and variance o is (€p,0,)-DP on D, where

& td=p) —pn 2 ol (VT — A — S
5, =1 ¢>< (l_pQ)(t+n)>P(xr>t+n)+Qep( (VR —Vd— /r)?)

d—r—1 R? R3./2(1 —
€p<|2|10g<p+ 1—p? _1>+2§2p)

Proof. By we know that for i so that v 'y > 0
T \r=d=t llyll®
Cr7dao'(v y) 2 exp | — T

So if we assume y € V; r with

Vg ={Y 0Ty >t,0Ty >t |yl < R}
then for any subset ) € ), g,
r—d—1

P(MveY) JyeyCrac'y) = exp

POMVEY) [ | Crao('Ty) 5 exp (* Iyl ) dy

202v' Ty )
red—1 )
CT’d(UTy)+ exp (_ 2[%"7;)
S Sup - Lmax
= rlly|?
veY Cra(v'Ty) 2 exp (— 2U/yTy)
For arbitrary Y C Support(Mv),
P(MveY)=P(MveYNIr)+P(MveYNVig)
(@)
S Lmax]P)(MUI € y N yt,R) + P(MU S ytc,R) (6)

(b) (¢)
< LinaxP(Mv' € Y) + P(Mv' € Vi g) < LinaxP(Mv' € V) +6

where step (a) follows from [Equation (5)| together with P(A N B) < min(P(A4),P(B)), step (b)
again uses P(A N B) < min(P(A),P(B)), and step (c) follows from [Equation (7)
The same argument holds for the other direction, with P(Mv' € V) < LypaxP(Mv € V) + ¢’ for
any ) where ' = P(Mv' € yg;R).
So it remains to show that max{d, 8’} < d,. For M = Y7, 22z where z/s are i.i.d. N'(0,021,),
letY £ Mo.
P(Y € Vi,r) =P(Mv € Yi.r) =P [T Mv > t,0'" Mv > ¢, | Mv|| < R] (7)

equivalently for Y’ < My

P(Y' € Vir) =P(Mv € Yy p) =P [0 MY > t,0' T MV > ¢,||Mv'|| < R] (8)

As v and v’ are both unit vectors these two events can | Mv'|| < R and ||Mv|| < R are both implied
by |[M|| < R. Soboth P(Y € Y, g) and P(Y’ € Y, r) are lower bounded by

Plo"Mv' >t "M >t |M| <R =P v Mv >t,0" Mv >t |M| < R]
We will first focus on the event

Gi={v Mv >t Mv>t}

13
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(note that {v" Mv' > t,v'T Mv' > t} occurs with the same probability as {v T Mv' > t,0T Mv >
t} due to the randomness being over M and v and v’ both being unit vectors). In order to bound this
let us define

1
T
g; ‘= ;'U Z;
1
hi = ;'U/Tzi

both of these are uni variate standard random normal variables and

- 1 1 O 1

2 T, 32 T, T T
ggi:—zg(v 2;) :—QEvziziv:—Qw Mv
; o2 ¢ o2 4 o
i=1 =1 =1

as well as
. 1 « 1
gT h = Zgzhz — ?ZUTZZ'Z;I—U/ — ? "UTMU/
=1 =1
where g = (g1,...,9r) and h = (hq,..., ;). From now on we will denote X := 5 - v Mv, and

Z := v Mv' for simplicity of notation. As the g; are uni variate standard normal variables we have
X ~ x2. We next would like to partition &; into a part independent and a part dependent on g;: For
this we define the unit vector

v — pu

w = \/1—p27

any unit vector in v+, if [p| = 1.

if [p] <1,

we then see v/ = pv + /1 — p?w, which gives us
1
h; = ;(vazi + V1 —p2w' 2 = pgi + V1 — pe;

where ¢; := w' z; ~ N(0,0?). Therefore

1 T 4
< Z=g" h=) pgi+ 1= g
=1

We then note that we constructed ¢ in such a way that €; L g; as

1
Cov(gi,ei) = Elgies] = v Elziz Jw = v w =0,
g

This now allows us to condition on g; and obtain Z|X = x ~ N (c%p-x, 04 (1— p?)z). We will now
combine all of this to lower bound the probability of the event G := {v" Mv' > t,v" Mv >t}

P(v' Mo >t,0" " Mv>t)=P(X >t/0°,Z >t) =Ex z[1xsi/02 - 1254) = Ex[Lxs/02Ez[1754]X]]

in a next step we will lower bound Ez[1 7| X] by noting that

_ 2
P(Z>t|X =)= (t”m>

EN G
S0
= t— pXo?
Ex[1xsnEz[1z5:|X]] = Ex [1X>rt@ (M)]
L t—opro? . . .
We further observe that f(z) := az\/ﬁ is decreasing in
d t+ po’x
)=
x 2024/1 — p?a3/?

14
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— 2
for p > 0. Hence for p,,0 > 0 we have that ® (m) is increasing in zx, so for any
o —p?)x
x>t
2

- t— px*o 9
PG) > | ———mm | P(x2 > 2"
() (Ug (1_[,2)35*) (03 > 2)
we want to choose z* to maximize this lower bound. Let’s choose it as #* = t /o2 + 1 for any > 0

then
5 (_t/c*(—p)—pn > > 2
P(G:) > @ P(x; > t/o" +n)
t (m — )7+ )
We further define Ex = {z; : [|Y_, zi2/ || < R} and Eg = {z; : |2}_; 2:2] v|| < R}. Then,

y 5 T
Er C Egand P(Eg) > P(ER). As M = ', z;z;] can be decomposed as (%Z) (#Z)

where Z € R*" with i.i.d. entries A/ (0,1), we can write
M| =|zZT| o>
and thus apply with ' = vVR/o — (v/d 4 /r) > 0 to get an upper bound on the bad

event B
P(ER) = B(IMI 2 ) =P (2] 2 VR) < 2ex _c<f V- f> o

Note this gives us the condition R > o2(v/d + /7). Finally using
P(Gi U ER) < P(GY) + P(ER) = 1 —P(Gy) + P(ER)
we get that

2

5[ _t/o?(0—p)—pm ) 2o 402 \f

0, <1 -0 P(x; >t/o°+n)+2exp | —c —Vd-r
(x/(l — ) (t/0? + )

Finally, we derive the upper bound on Ly,ax. For y € G4 U Eg, by[Lemma 15|

r—d—1
2
2 2
Ply) | vy exp | Ml (10)
Q(y) (V) Ty 202y Tv"  202yTw
——
A B
where U = [uy, ..., uq_1] € R with {uy,...,uq_1} is an orthonormal basis of v
Ay _ply+1—pwl Py
vy vy

P
= VIm L

1Y
SHMHM
Mol = (W' y)2
=p+ vlprM = p+V1—p2\eos(Z(v,y)) — 1

A /RQ — t2
<p++y1
We can bound the exponent (part B) by,
2 2
lyll [yl

C 202yTo 202yTw
2, \T

_ ™) (v =)
202yTU’va

- R3\/2(1 - p)
202t2
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All together this gives

=t/ —p)—pn 2 2 oo | o[ VE :
5, <1 CI)<\/(1—p2)(t/02+n)>P(X’“>t/0 +1n) + 2exp ( —Vd - f)

and

20212

L rmdol d 1og<p+ %\/RQ—ﬁ)_'_ 2(1— p)

setting { = ¢/ and R = R/O‘Z, we get the bounds:

st —p)—pn 2 i e e (VE VI SR
5, <1 <I>< (1—p2)(t~+n)>P(Xr>t+))+2 p( <\/}7? Vd f))

and

€ ~
pS 2062

254 _ 254 356, /2(1 —
d log<p+\/7vRJ ta) Rc (I-p)

with the condition # > 0 and R > (v/d + \/7)?, which simplifies to (with renaming the variables
again)

= t—p)—pn 2 2
5p§1<1>< i 2)(t+n)>ﬂp(xr>t+n)+26xp(c(\/ﬁ\/g\/;) >
€p < i ;i log <P+\/7 RQ_tQ) 2,521_@

O

Corollary 1. Let p be the minimum alignment as defined in Then for any 0 < r < d,
0 > 2e~°" (for an absolute constant ¢ > 0 from Gaussian spectral concentration), the projection

mechanism is (¢,,6)-DP with
~(d—r+1 2 d®\/2(1 - p)
< el _ 2 (4 _ Zvave B
_C< 5 log (,0+ V(l—=p (p2 2 1))+ 2212 ;

for a universal constant C > 0.

Proof. With R = (v/d + 2/7)2%, we know by that
- = td—p)—pn 2
0p = 1 —1II(r,t,p) + 2", II(r,t,p) =@ P(x; >t +mn),
(1=p?)(t+n)
we further know that by this choice of R there exists a constant C > 0s.t. R = Cd

d—r+1 Chd®/2(1 =
5p§+log(P+ \/(1—p2)(%‘f—1))+1T2(m.

where C; = C? is also a constant independent of d, r.

We first fix a target § € (0, 1) and we want to choose ¢ in such a way that dp < 5. This is equivalent
to choosing ¢ so that

H(r,t,p) >1—6+2e " =1—(6—2e) =10

By construction g’ < 1, we further ensure that it does not become negative by clipping it at 0. Then
by definition of II(r, ¢, p) we see that choosing ¢ so that the following two conditions are fulfilled

suffices:
0 (I)< t(l—p)—pm ) S5

(1—p?)(t+n)
(i) P(x;>t+mn)>1-4/2
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This is equivalent to

o t(L—p) —pn
i) 6
v ﬁz@( a—ﬁw+m>

(i) &/2>P(x;<t+mn)

we define z := ®~1(§'/2), note that for &’ < 1 we have z < 0 and ¢ := qx%(%)- So the first

condition implies

tg(

2T+ p++/22(1+p) +4n)?
="
4(1-p)
and the second condition implies

3
2 /2
t<qgq—mn whereq~7r|1——+24/—
9r 9r

Our goal is to choose 7 so that we can choose ¢ as O(r) while still fulfilling both bounds. There
exists a sweet spot, as the first condition has a RHS increasing with 7 and the second has a RHS
decreasing with 7. And we need to fulfill ¢ < min{¢;(n),t2(n)}. The best option is to choose 7

where the two meet:
t1(n*) = ta(n”)

Solving this allow us to choose t, ~ pr (up to O(y/r) terms). Which give us that there exists a

constant C' > 0

~(d—r+1 > d3\/2(1 - p)
p§0<:3b4ﬂ+V“—fﬂ£w—U)+zwﬂ-

O

Lemma 15 (PDF of Mv). Let z1, ..., 2z, be i.i.d. N'(0,0%1;) where d > r, M = Y._, z;21, then

forv € R4 with ||v|| = 1 and y € RY such that vy > 0,

2
L T \r=d=1 lyll
P(MU = y) = Or,d,a(v y) ® exp <_ 2020Ty

_ 1

where Cr,d,a = 2720 (r/2)od—r—1 (27 )(d—1)/2
Proof. For

T

_ _ T
Y =Mv= E 2i%; U,

i=1

let
a; = z;rv, u; = (I — va)zi =: P z.

Therefore, we can write z; = vv | z; + I- UUT)zi =wa; + u;, and Y as

r

T T
Y = Zzzz:v = Z(vai + u;)(aw " +u v = Zva? + u;a;,
i=1

i=1 i=1

where a; ~ N(0,02),u; ~ N(0,0%P, ). Further a; and u; are independent as

Cov(a;,u;) = Ela; - u;] = B[z} vP| 2] = B[P 2z} v] = P E[z2] Jv = 0P v = 0.

Let S =Y/, a?, then

SNO_QX?A, Y|S:SiN(SU7028PJ_).

Define U € R*(d=1) ag [ug <+ uq-1] € R4 (d=1) where {u1,...,uq—1} is an orthonormal basis

of v then
U'v=1I,, UU =I-w'=P,.
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LetY, =U'Y, then
S ~ 02xf, Y| |S=s= Y (O o SUTPLU) N (O,O'QSId_l) .
We note the last inequality follows from substituting P; and noticing
Ulv=U"0O)UTv=U"(UUv)=U"T0=0.

Therefore, fory € {y € RY: y v > 0},

PIS=5Y. =y] = P[S = | PV, =y.|5 = 5 a
fson(s) = fs () = m (12
Frapslnls =) = 27)F (o) T exp (—”5’5') 13
reapn v | 1 (14)

fovi(5:90) = Craos 2022y s = S ) i1 () @172

T T
As we can write (12_ ) = (;}T) Y (using point wise multiplication), let Q@ = <£}—|—> One can

easily verify that Q T = Q' and
T (S
Y=0Q <Y ) . (15)

1

By changing the varlables from (S, Yl) to Y with [Equation (15)| we get the probablity density
function for Y when y"v > 0 (s > 0), i.

T 2
P(Y =) = Crao(v'y) 5 exp (—”Uy”)

20Ty
r HUT?JH2 r T, T T r [yl
exp <—2 (s + UTZ/)) = exp <— 50Ty (y' (vo' +UU )y)> = exp <_211Ty> (16)
So we get
Fr(®) = CraocwTy) "= exp (— 20,'51;”%) (17)
O

C PRIVACY OF PROJECTION MECHANISM ON MATRICES

Theorem 2. For a dataset collection D and a query function f with outputs in R*™™ of rank k,
let py, be the (column-space) alignment as in equation [A1} and let &, &1 be as in equation [A2]

Further, let A = MaX g, g wep | f(S) — f(S")|ly. Then for any tuning parameters t > 0, and

R > & (Vd++/r)?, the rank-r projection mechanism with M = S7_, 22 and z; bR N(0,I4/7)
is (€,8)-DP with

o (o — 1)t

T
6§ (\f V= (\[+77)/£k ++2€ < ka + 4+ 2 \/>

7

(m —r)k 26, r(d—r+1) R r3/2/k R3
< - 7 — _ — -
e< 3 log [ 1+ e A+ > log [ 1+ ; A+ NoTE A
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Proof. We first upper bound the likelihood ratio on a good set and then control the complement.
By|Lemma 16| for any measurable ) C R4,

Pr (MV € y) = Afw[v(Y)dY

= Conbra VTV S Iy sty TY)) dy
/ymyt,a " d’ ’+ | |+ exp( 2 r( ))
+Pr(MV € YN Yg)
g/ Conera VTV, ISI55 exp (=L T (STYTY) ) Y + Pr (MV € Vi),
YNV, r 2
where S := V1Y and

Vir={Y eR™": ¢, (V'Y) >t 0, (VY) > ¢, |YV|, < R}.

Let P(Y) = farv(Y) and Q(Y) == farv/(Y). On Yy g, Q(Y) > 0 (. 0, (V'TY) > ¢ > 0) and

PY)
Liyax == sup ——=
YeVi.r Q(Y)
m—r d+1—r
VTV VY| r
+ + Ty T Ty T
- I L fT({VY—VY}YY)
S N I NAgrS) B Vi
— — Part 11
Part I Part IT
Therefore,

Pr(MV €Y) < Lypax Pr(MV' € )) +Pr (MVEJ)ER).

An analogous bound holds with V' and V' swapped.

Part I. Under equation[A2] o,(V), 0, (V') > & > 0and 01(V), 01 (V') < & < oo. Then

VTV N(VTY) N(VTV) = N(VTV)
log V/TV/ Zl V/TV/ Z log <1 + )\i(V/TV/) )

T T
Sklog< VY gvl V/”2> as)
k

2
< klog (1+§;||V—V'||2),
k

where the first inequality follows from Weyl’s inequality (Lemma 11]) and the second from ||V TV —
VIVl < [[VTV = V)2 + [(V = V)TV |l2 < 26[[V = V.

PartII. On Y, p, o, (V'TY) > tand | Y], < R. Hence
vyl o;(V'TY) —o;(VTY)
1 log 1 7i !
o8 iy = Dotos 2y = Do (14 S0

Ty vy T
< rlog <1+ vy -v YHz) (19)

t

V' =V|, Y R
< rlog <1+ I tllgll ||2> < rlog (1+t|v/_v|2).
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Part III. Using Cauchy—Schwarz and a standard pseudoinverse perturbation bound (Cemma 10),
AT Ty T Myt _ Ty T 2
(V) = (v ) YY) < () - )| v

vl —vy,
= o (VTY)o, (V'TY)
VRV VI Y
< =

3/2 p3
< M v —v|
12 2

1Y%
(20)

since [|Y|p < V7 [[Y][; < VrRon Vi k.
Combining Parts I-III yields the stated upper bound on ¢ by substituting A = ||V — V|,.

It remains to bound the bad set probability Pr (V). Let S := V' MV and 5" := V'T MV’ (both
are symmetric), and define the events

Er={\(9) <t}, Ei={\(S")<t}, E:={|MV|,>R}, & ={|[Ml|,>R/&}.
Then &; C & since MV, <|[M|5 V], < & ||M]|,. Hence
Pr (Vig) = Pr(& U& UE;) < Pr(&r) + Pr(&) + Pr(&s).

Bounding &£;. Write M = %f[ﬁT with H € R?*" i.id. standard Gaussian. Let V. = UAW T be
an SVD with A = diag(o1,...,0%,0,...). Then

S=VTMV = 1WAT(UTEI)(UU?[)TAWT,
T

S0 by A (S) = 1o, (ATUT H)?. With G := UT H and the projector P onto the first k
coordinates, ~
UT(ATG) > &0 (PG) = &roy (G),

where G € RF*" is i.i.d. standard Gaussian. Hence, using
~ 2
Pr () < 0) = Pr (0(6) < Vit/e) < o (-3 (VE-vi-1/a) ). @D

Bounding &. Write M = %f[ﬁT setY := VT Hand Z := V'T H. Then
Pr{\(VTMV)>t, A (VTMV') >t} = [1gr(y)>ﬁ E [1UT(Zy)>ﬂ | Y” .
To bound the inner term, we first denote P := V(VTV)'V T and © := (VTV)"'V V', and use
the conditional representation
zyT |y =0TyYy " + 582Gy T,

where S = V'T(I — P)V'"and G € R™*" is distributed i.i.d. normal. So by the triangle inequality
for singular values,

oH(ZYT) 2 ouin(® V) (V) =|[SV2||_IGI, 1Y 2 Guin(Blapancr)r207) = |2 | IGH IV
where
Omin (©|span = inf Oul| > pk-
( |p (Y)) uespan(Y):|lul|=1 || || Pk

Hence, on the event {Y co (YY) >Vt + n},

Pr(o,(ZY7)<t|Y) <Pr (IGllg >

2
_ 1 eeVSm)?—t —
§2exp< 2(\/1_7F)i|y| vm \/;)Jr)v
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USiIlg Umin(®|span(Y)) > Pk>
15172l = $in fmax = V/1 — €08 Omax = /1 — 04(0)? = m7
and the Gaussian spectral-norm tail li Pr(||Glly > vVm + /1T +u) < 2e~4"/2,

Substituting the conditional bound into the expansion gives

E {107,(Y)>\/ZE {laT(Z)>\/Z | Y}}

ZPr(UT(Y) >\/£+77) (1—2exp (-é (Plv(\/fﬂ)z—t_\/fn_\/;)2>>7
.

l—piR
because the inner probability is non-decreasing in o,.(Y) and we restrict to {o,.(Y) > v/t + n}.
Now use the standard smallest—singular—value tail (Lemma 8) for Y = VT H with o4 (V) > &:

Pr (UT(Y) < \/lz-i-n) < exp (—é (\/E— VT — (ﬁ-“?)/&:)i) ,
SO
Pr{\.(VTMV) >t \(VTMV') >t}

RN WA el =
> (1_6_é(\/%—ﬁ—(\/i+ﬁ)/fk)i) 1— 9 2( \/1-P2R vm f)

+

2

pe(Vt+n)? —t

[ v
51 e d(VEVIVERm/G) ] o, ’ ( V1I-piR )

+.

. o 2
Bounding &;. Since M = 1HH ", we have | M|, = 1 HH . Using|Lemma 7, we obtain
2

N 2

Pr (53) = Pr(|Mll, > R/€;) < 2exp <—c (, [& V- \/77)+> . 22)
Putting the three bounds together yields the stated 6.

P(ECUES UES) <P(EFUES) +P(ES) =1 —P(EUE) +P(ES)

1 2
< _Z _ _
< exp ( 5 (\/E Vr (ﬁ+n) /6k)+)
2
1 t 2 ¢
+2exp | —5 <pk(\/+n)2 _\/ﬁ_\/;>
V1-piR N
2
+2exp | —c @_\/ﬁ_\/?
&
+
O
Lemma 16 (PDF of MV when V € R¥™). Let z,...,z, be iid. N(0,15/r) and M =
S zizl. ForV € RIX™ of rank k with r < k < min(m, d), the density of Y = MV is
m—r r—d—1 rTr(STYTY)) .
CrbralVIV]. 2 |S|L2 exp|—-—2), ifS=VTV>0&rank(S)=r,
ro(ry = | G VTV 1815 o (-2 7 5)
0, otherwise
m( r+2d —m)
for Cm,k‘,r,d = = mT

(2m)m(d—k)272 Fm(g)
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Remark 1. For a symmetric matrix A with eigenvalues {\;} define

Al =T ™

Ai>0

Proof of[Lemma 16| Let S = V' MV. Then S ~ %Wishartm(r, VTV). Write z; = Ba; + u;
witha; =V 2, u; =Pz, B=V (VTV)T, P =1- V(VTV)TVT. Then

Y =Y za] =BS+UA,
=1

where U = [u1,...,u,] € R¥>"and A = [a];...;a,] € R™™ with S = AT A. One can check
U L A, and conditionally on S, UA ~ MN ., (0, %Pl, S). Here, MN denotes the matrix normal
distribution.

Let TT; € R%*(?=k) be an orthonormal basis of col(P;) and set Y| := II|Y. Then Y| | S ~
MN (4—)xm (0, 14—, S). The change of variables T(Y) := (S,Y.) = (VTY,II|Y) has Jaco-

bian determinant | Vv | T/Q. Using the Wishart density for S, the matrix-normal density for Y, | S,
and change of variables formula we obtain

Fr @) = Conora VTV ISITF exp (—g (e ((vTV)'8) + T (5TY V1))
Since Y,/ Y, =YY - Y'V(VIV)IVTY =YTY = ST(VTV)ISand S = ST, we have
T ((vTV)'s) =T (8t (vTV)'s) =T (vTV)' (ss1s - 8)) =0,

using SSTS = S. Therefore the exponent simplifies to —% Tr(STY "Y'), as claimed. O

D PRIVACY AMPLIFICATION AND APPLICATIONS

Lemma 4. Let v,v' € R? be two unit vectors with with cos Z (v,v') = v'v' > p, z € N(0,1,),
6> 0and~ > =2 % log %, then with probability at least 1 — 0, we have

14+p
cos <L (v+ i o'+ i )> >p+s>p,
[E21P E41P8

(1=p)y*—47y/2In §

1+72+2'\/\/% In % ’

where s =

Proof. Given two firxed unit norm vectors v and v’ with alignment p := v " v/, we want to show that
Ui=0v+ ﬁ and ¥/ = v + ”Zﬁ are more aligned than v and v" with high probability. Note we
2 2

assume —1 < p < 1 as p = 1 means v = v’ and therefore is a trivial case.

Letu = ﬁ be a uniform vector from the d-dimensional unit Euclidean ball. Then, we can rewrite
2
¥ =v+~yuand ?' = v' + yu and

cos(?,7") = cos <U + 2 vu)
1]l
(v + 7,0’ + )
v+l + yull
4o+ (vu) + (v, w)

> .
T VI wu) T+ (V)
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By |Lemma 9| setting t = /2 In

|00

Therefore, with probability at least 1 —

1/ lnf (v, u) H \/% ?S ’U ,u) _\/ — (23)

Which means with probability at least 1 —

p—s+7°
cos (v + yu,v' + yu —_—

vty ) = 1+ys+~2
where s = 2 % In %. Subtracting p from both sides and simplifies the equation, we complete the
proof. O

E ADDITIONAL RESULTS ON CONVERGENCE GUARANTEE OF RP-GD

In this section, we analyse the convergence guarantee of projection mechanism when applied to
convex optimization problem. We show that under the minimum alignment assumption between the
dataset collection D and the gradient trajectory f, gradient descent with projection mechanism (RP-
GD) achieves a convergence rate comparable to, and in some regimes better than, that of DP-GD for
smooth convex optimization.

For a dataset S = {(z;,y:)}q, let £ : W x (X xY) — Ry bea loss function. Then, let
L: W x Z — Ry be the loss function over the entlre dataset, i.e. £(w;S) = L 3" U(w, (i, ).

The optimization problem is defined in]|

b — =S tw, s, y5) = 24
w argiré%nz W, Tiy Ys) argmlnﬁ(wS) (24)

The most common private approach is DP-GD (equivalently, Noisy-GD when there is no gradient
clipping), which attains a convergence rate of \/&/ (Te) (Abadi et al.}2016; Bassily et al., 2014). At
each step, DP-GD applies the Gaussian mechanism to the gradient and then performs
a gradient-descent update with the noisy gradient. In contrast, we propose Randomly Projected
Gradient Descent (RP-GD): first apply the projection mechanism (Definition 1)) to the gradlent then
take a gradient descent step with the projected output. Spemﬁcally, sample M ~ Wy(o?14,7) once
and update at each time step with the following update function,

W41 = Wy — nMV,C('[Ut) (25)

RP-GD enjoys the following convergence guarantee.

Theorem 3. For a dataset collection D and the query function f(wo,S) = ZI'T:O VL (wg; S), let
the minimum alignment of f on D be p. For any dataset S € D, if d < %7“, r > 16log % and assume
L is convex and [3-smooth, then RP-GD is (¢,,0)-DP where €, = Cr+/1 — p/p for some constant
C independent of d, r, and with probability at least 1 — 20,

. Bllwo — wi

where w¥ = argmin L(w; S) and L = min L(w; S).
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Proof. Convergence: For a dataset S € D, condition on a projection matrix M with A4, (M) > 0

and Apin (M) > 0. We first show that £L(wr) — LE < %ﬂ":wg”?

Let vy = VL(w;). By smoothness of L,

B 2
Llwiir) < L(wr) = o] Moy + 5 | Mo
T Bn? T
< ‘C(wt) — NV Moy + 7)\maxvt M,
W (26)
< L(w) —n (1 - ﬂn;“) v, M,
n.T
< L(wy) — P Mu,
where the last inequality follows by n < 2[3/\% Rearranging,
2
U:M’Ut S 5 (ﬁ(wt) — ﬁ(wt+1)) (27)

Then
2 *
wirr — whllae = (Wi — w§) "M (w1 — w)
= (wy — w§ — nMvt)TMT(wt —wg —nMuoy)
= (wr — )M (w, — ) — 20] MM (w, — w§) + o] Mo,

a2 o) 20T UM D= ) ] M

Wt
Wy
[|wy

By convexity of £,
L(we) = L(wE) < v (wp —w)
Therefore, by convexity and [Equation (27)]
[weer = w31 < llwe = wEllpy-s — 20 (L(we) = L)) + 27 (L(we) = L(wer1)) = 20 (MM = I)(w; — w)

= e = w3l 20 (£003) = L)) + 2 (1= MM = i)
Rearrange,

1
Llwisn) = £0w) < oo (o = whllags = lwees = whllag )+l (MM =) (wo—wi) (30)

where the last part follows by w; = wg + M 25:1 nvg and (MTM — I)M = 0.
As L(w;) is monotonically decreasing (Equation (27)),

Llwr) = £(uf) < 7 3 £lw) — £(w})

T
* 12 1 *
lwr = w§llag- = lweer = whlag + 7 > v (MIM = I)(wo — wg)  .[Equation (0]

< -
277T t=1 i=1

< [wo — wgl| pre < lwo — W || Amax (M)
- 20T - 2T A\pnin (M)
(3D
By initializing wo ~ N(0, I/(dT)), the first term || (MM — Iwy|| = O (7;) with high prob-
ability. (Variance o2 cancels out; CHECK) By [Lemma 8| and [Lemma 7| for some ¢,t’, and for
M = o%Z 77 where Z € R¥" with each entry i.i.d. standard Gaussian

P (M) > 02 (VA + V7 +1)%) = POmax(Z) > VA + V7 +1) <%
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Setting t = \/@, we have
: 2
P | Amax(M) > <\/E+ VT + ,/21og> <g
S
Asr > 3d/4,

2 B 2
P | Amax(M) > o? (2\/?+1/210gi> <P AmaX(M)>02<<1+\§>\/?+,/210g1>

- -
1
<P | Amax(M) > 0° <ﬂ+ﬁ+\/210g§> <<
i (32)
Similarly,
1 1 ? 1 ]
P )\min(M)<02 <2\/17g/210g> <P [ Amin(M) < 0? (f\f\/ﬂog) <g¢
S S
(33)

Condition on these two events, which occur with probability at least 1 — 2¢, we substitute in Ay <
2 2
o? (2\/17 +4/2log %) and Apip > 02 (%\/77 —4/2log %) , which yields the desired result. [

Our bound improves upon DP-GD when the dataset collection has well-aligned gradient sums. In
particular, when the minimum alignment is large (e.g., p = ﬁ), the privacy parameter £ remains
a constant, and RP-GD achieves an O(1/T) convergence rate that is independent of the dimension
d. By contrast, if we fix ¢ = C, then DP-GD converges at rate O(v/d /T). For less aligned datasets,

for example, when 0 < p < 0.5, we obtain ¢ = O(d), and the convergence guarantee of RP-GD is
comparable to that of DP-SGD.

If the minimum-alignment assumption does not hold for the cumulative gradient over 7" steps, we
can relax it by requiring alignment only at the per-step gradient level and resampling a new pro-
jection at each step. This relaxation incurs an additional factor of T in the privacy guarantee due
to composition across steps. Notably, when r < d, this procedure coincides with CompSGD (Ka-
siviswanathan, [2021)), which also achieves nearly dimension-independent convergence guarantees.

Low-rank version also saves space and computation We note that[Equation (25)]is equivalent to
first performing a gradient descent in random projected subspaces using a variable zyp = Zwg € R”
and the projection matrix Z € R4*" where M = ZZ T, by parameterizing w; = w; + Z ' z; (Hao
et al.,[2024)). Therefore, when r < d, RP-GD is also more computationally and memory efficient.
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