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ABSTRACT

We study the differential privacy (DP) of low-rank adaptation (LoRA) fine-tuning.
Focusing on FA-LoRA (fixed A, trained B), where a single training step is equiv-
alent to applying a random Wishart projection to the gradients, we prove a formal
(ε, δ)-DP guarantee for LoRA without adding explicit additive noise. The result-
ing privacy parameters depend explicitly on dataset sensitivity and the projection
rank r. Moreover, the low-rank structure reduces memory and computation by
design. To place these results in a broader context, we formalize the underly-
ing projection operation as a general projection mechanism of which LoRA is an
instance. This mechanism is of independent interest as random projections are
ubiquitous in machine learning.

1 INTRODUCTION

Differential Privacy (DP) is widely regarded as the gold standard for protecting training data in
machine learning. Intuitively, DP limits the influence of any single example on the output, making
it difficult to infer whether that example appeared in the training set. The most widely used DP
algorithm in modern ML is DP-SGD, the private counterpart of the workhorse Stochastic Gradient
Descent (SGD).

However, DP-SGD is computationally demanding and often incurs a substantial utility loss, espe-
cially for large models. While it remains one of the few viable choices for training from scratch,
in many practical deployments sensitive data enters primarily during fine-tuning e.g., when an or-
ganization adapts a public pre-trained model on proprietary data. This motivates a simple strategy:
start from a large public pre-trained model and enforce privacy only during fine-tuning. In the non-
private setting, parameter-efficient fine-tuning (PEFT; (Han et al., 2024)) updates only a small set
of parameters while freezing the base model, substantially reducing memory and compute. This
naturally raises the question: can PEFT similarly reduce the cost of DP fine-tuning?

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a widely used PEFT method that often matches
full-parameter fine-tuning on downstream tasks (Hu et al., 2022; Dettmers et al., 2023). It freezes
the pre-trained weights and inserts randomly initialised trainable low-rank matrices, dramatically
shrinking the number of trainable parameters. Variants include adaptive-rank methods (Zhang et al.,
2023), quantization-aware tuning for low-bit backbones (Dettmers et al., 2023; Li et al., 2023),
stability/initialization refinements (Hayou et al., 2024; Meng et al., 2024), and structural decom-
positions (Liu et al., 2024), each targeting stronger quality under tight compute/memory budgets.
Approaches to privatising LoRA have also been proposed, including DP-LoRA (Liu et al., 2025).

Several LoRA variants (Sun et al., 2024; Hao et al., 2024) already incorporate substantial random-
ness (e.g., repeated re-initialization of component weight matrices). Yet existing privatisation algo-
rithms largely ignore this inherent randomness in their algorithmic design. At the same time, em-
pirical studies report reduced memorisation under LoRA (Hong et al., 2025) (without any explicit
privatisation) and note training dynamics that close match that of DP-SGD (Malekmohammadi &
Farnadi, 2025). These observations suggest that the built-in randomness may play a central role in
privacy, raising the possibility that LoRA could be provably private by design. To our knowledge,
no prior work establishes a formal DP guarantee for LoRA.
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A formal DP guarantee for LoRA without additive noise offers a practical route through the pri-
vacy–accuracy–compute trilemma: it can lower computational overhead while preserving accuracy
and ensuring privacy. In this work, we show that LoRA is provably differentially private.

Our key observation (see Section 2) is that certain LoRA variants (e.g. FA-LoRA (Sun et al., 2024;
Hao et al., 2024) with A fixed and only B trained) update parameters as if they applied a random
Wishart projection to the gradient. Leveraging this equivalence, we prove that FA-LoRA is (ε, δ)-
DP. To place this in a broader context, we formalize the underlying operation as a general projection
mechanism, which multiplies the output by a Wishart-distributed random matrix and establish its
privacy guarantees.
Definition 1 (Projection mechanism). Let S ⊂ Xn be a dataset collection and f : S → Rd×m a
query function. For r ∈ N and σ2 > 0, the (Wishart) projection mechanism is defined by

Ar,σ2(S) = M f(S), M := ZZ⊤,

where Z ∈ Rd×r has independent columns zk
i.i.d∼ N (0, σ2Id) or equivalently, M ∼Wd(σ

2Id, r).

We believe this projection-based approach is of independent interest: it departs from the classical
additive-noise mechanisms(e.g. Lemma 1) yet yields rigorous privacy guarantees. Random pro-
jections, such as Wishart transforms, are already common in standard ML (e.g., dimensionality
reduction, sketching, randomized preconditioning), and we expect that this mechanism will have
uses beyond LoRA. At this stage we also note that this is different from the common JL transforma-
tion: the expectation of the JL transformation matrix is zero, whereas the expectation of the Wishart
transformation matrix is a low rank identity matrix. Intuitively, JL preserves the norm of a vector
whereas Wishart preserves the angle.

Our Contributions. Our main contributions are twofold. First, we show that LoRA (and FA-LoRA)
is differentially private, with privacy parameters controlled by properties of the data and architecture,
concretely, by the ratio of the largest to smallest singular values of the gradient matrix. Second, to
obtain this result, we introduce and analyse a new DP mechanism: the random Wishart projection
mechanism, and establish its DP guarantees, discuss simple privacy amplification techniques, and
outline applications beyond LoRA.

Organization. In Section 2 we review DP preliminaries and give a brief overview of why LoRA
is private. Section 3 establishes privacy and convergence guarantees for the projection mechanism
with vector outputs (m = 1) and presents a simple privacy amplification method. Section 4 extends
these results to matrix-valued outputs (m > 1) and derives a privacy guarantee for LoRA. Finally,
Section 5 covers related work, limitations, and open questions.

2 PRELIMINARIES AND MAIN IMPLICATIONS FOR LORA

Before presenting our main results, we recall basic differential privacy (DP) notions and composi-
tion tools we rely on. We then introduce LoRA, explain its equivalence to the projection mecha-
nism (Definition 1), and state the per-step privacy guarantee enjoyed by LoRA.

Differential privacy limits how much the output distribution can change when a single data point is
modified.
Definition 2 (Neighboring datasets). Let S, S′ be datasets of same size. We write S ∼H S′ if they
differ in exactly one entry, i.e. dH(S, S′) = 1, where dH is the Hamming distance.

Then, differential privacy can be defined as follows.
Definition 3 (Differential privacy). A randomised algorithm A : S → Y is (ε, δ)-DP if for all
measurable E ⊆ Y and all S ∼H S′,

Pr(A(S) ∈ E) ≤ eε Pr(A(S′) ∈ E) + δ,

with probability taken over the internal randomness of A.

Differential privacy is commonly enforced by additive perturbations: i.e. by adding noise to the
output of a non-private query f , calibrated to the sensitivity of the underlying query f .
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Algorithm 1 One LoRA step with frozen A

Input: number of layers ℓmax, pretrained weight matrices W1,0, . . . ,Wℓmax,0 ∈ Rd×m; rank r <
min(d,m); dataset size N ; loss L; step size η; minibatch size B; .

Sample minibatch B ⊂ [N ] with |B| = B (Poisson rate q = B/N )
for each layer ℓ′ = 1, . . . , ℓmax do

Sample Aℓ′ ∼ N (0, 1)r×m and freeze it, Initialize B
(0)
ℓ′ ← 0 ∈ Rd×r

Wℓ ←Wℓ,0

B
(1)
ℓ′ ← B0

ℓ′Aℓ′ − η∇Bℓ
L
(
Wℓ,B

)
end for
return Wℓ ←Wℓ +B

(1)
ℓ′ Aℓ′ for ℓ ∈ [ℓmax].

Definition 4 (Sensitivity). For f : S → Rd, its ℓ2 sensitivity is

∆ := max
S∼HS′

∥f(S)− f(S′)∥2 .

One such example of canonical additive mechanisms is the Gaussian mechanism
Lemma 1 (Gaussian mechanism). Let f : S → Rd have sensitivity ∆. The mechanism

A(S) = f(S) + Z, Z ∼ N
(
0,

2∆2 log 2
δ

ε2
Id

)
is (ε, δ)-DP.

Restricting the domain of A to a dataset collection D ⊆ S yields a DP guarantee conditioned on
D. In practice, this often reduces ∆ and improving utility but comes at the cost of not providing
privacy on datasets outside the collection. Several approaches have been proposed in the literature
to check whether a dataset indeed belongs to a collection D, including the Propose-Test-Release
mechanism (PTR) Dwork & Lei (2009).

Basic Properties of DP DP mechanisms admit several simple but useful properties, including com-
position and amplification via subsampling, as stated below.
Lemma 2 (Basic composition). IfA1, . . . ,AK are each (ε, δ)-DP on the same domain and are run
on the same dataset, then the tuple (A1, . . . ,AK) is (Kε,Kδ)-DP.
Definition 5 (Poisson subsampling). Given a dataset D = {x1, . . . , xN}, include each xi indepen-
dently with probability q ∈ (0, 1) to form a subsample S. Equivalently, draw mi ∼ Bernoulli(q)
i.i.d. and set S = {xi : mi = 1}. Then |S| ∼ Binomial(N, q) and E[|S|] = qN .
Lemma 3 (Amplification by subsampling). Let A be (ε, δ)-DP. Under Poisson subsampling with
rate q, the composed mechanism A ◦ Sq is

(
log(1 + q(eε − 1)), qδ

)
-DP.

LoRA enjoys inherent privacy Before proceeding to our formal theoretical results, we first mo-
tivate our results using an application. Low-Rank Adaptation (LoRA) (Hu et al., 2022) is one of
the most popular parameter-efficient fine-tuning approaches for Large Language Model. LoRA aug-
ments a pretrained weight matrix W0 ∈ Rd×m by a low-rank update:

W = W0 +BA, B ∈ Rd×r, A ∈ Rr×m, r ≪ min {d,m} .

During fine-tuning, W0 is frozen; only the small factors (B,A) carry trainable degrees of freedom.
This keeps fine-tuning computationally efficient while leaving the base model intact. Algorithm 1
lists the basic steps of the algorithm.

They key observation is that if A is initialized Gaussian and then frozen while we update B by

Bt+1 = Bt − η (∇WL(Wt))A
⊤,

then after T steps, we can write

WT = W0 − η

T∑
t=1

(
∇WL(Wt)

)
(A⊤A). (1)

3
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Thus each step uses a gradient ∇WL(Wt) that is right-projected by the random matrix A⊤A (a
rank-r Wishart). This is exactly the projection mechanism we study. Our main result in Theorem 2
shows that WT enjoys (ε, δ)-DP guarantees where ε, δ depends on dimension of the weight matri-
ces, spectral properties of the gradient matrices, and properties of the dataset collection. While by
itself the privacy parameters are not very satisfactory, we believe that the fact that the very popular
algorithm already enjoys these guarantees, as has been hinted by previous work (Malekmoham-
madi & Farnadi, 2025) is already interesting. Additionally, in Section 4 we also discuss algorithmic
techniques to amplify these privacy guarantees.

3 PROJECTION MECHANISM FOR VECTOR OUTPUTS

In this section, we consider the projection mechanism, defined in Definition 1 for vector-valued
queries f : S → Rd. This setting is a special case of the more general mechanism that projects
matrices, but its simpler structure lets us give a clear proof sketch and build intuition for how the
mechanism operates. We first establish approximate differential privacy in Section 3.1 and then
prove convergence for gradient descent in Theorem 3. Lastly we show how to amplify the privacy
of this mechanism by adding small amounts of Gaussian noise.

3.1 PRIVACY GUARANTEE FOR THE VECTOR CASE

Let f : Xn → Rd satisfy ∥f(S)∥2 = 1 for all S (this can always be enforced by scaling the query;
we adopt this normalisation throughout). For a dataset collection D ⊂ Xn and query f , define the
minimum alignment

ρ(D, f) := min
S,S′∈D
S∼HS′

f (S)
⊤
f (S′) ∈ [−1, 1] . (2)

When the context is clear, we write ρ := ρ(D, f) for brevity. Large ρ means that neighbouring
query outputs are nearly co-directional. In this regime the laws of Mf(S) and Mf(S′) are harder
to distinguish, leading to tighter (ερ, δρ) guarantees (Figure 1c). Crucially, much like a sensitivity
parameter in additive mechanisms ρ is a property of D, f fixed by the dataset collection and the
query and is not controlled by the projection mechanism itself. At the end of this subsection we
discuss algorithmic techniques that can increase the effective alignment (Lemma 4).

To recall, for a given r, σ, the projection mechanism samples a Wishart matrix

M :=

r∑
i=1

ziz
⊤
i = ZZ⊤, where zi

i.i.d.∼ N
(
0, σ2Id

)
, Z = [z1, · · · , zr] ∈ Rd×r,

and releases Mf(S). Here r is the degrees of freedom (equivalently, the rank proxy) of the Wishart
distribution and is an algorithmic choice. Increasing r intuitively requires more random bits, as well
as increases the rank of M , and improves both ερ and δρ (Figure 1b). Conversely, smaller r can be
attractive in practice due to reduced memory and compute at the cost of privacy. Thus, choosing r
entails a clear trade-off between computational efficiency (smaller r) vs.tighter privacy guarantees
(larger r).
Theorem 1. For a dataset collection D and a query function f with outputs in Rd, let ρ > 0 be the
minimum alignment for f,D as defined in Equation (2). Then, for any R > (

√
d+
√
r)2, t > 0, and

η > 0 the projection mechanism with rank r and variance σ2 is (ερ, δρ)-DP on D, where

δρ = 1− Φ̄

(
t(1− ρ)− ρη√
(1− ρ2)(t+ η)

)
P(χ2

r > t+ η) + 2 exp
(
−c(
√
R−
√
d−
√
r)2
)

ερ ≤
|d− r − 1|

2
log

(
ρ+

√
1− ρ2

√
R2

t2
− 1

)
+

R3
√
2(1− ρ)

2t2

Proof sketch of Theorem 1 Let v = f(S) and v′ = f(S′) with ∥v∥ = ∥v′∥ = 1. By Lemma 15,
on
{
y : v⊤y > 0

}
the law of Mv has density

pv(y) = Cr,d

(
v⊤y

) r−d−1
2 exp

(
−r∥y∥2

2 v⊤y

)
,

4
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and similarly for pv′(y), where Cr,d = r
r+d−1

2

2
r
2 (2π)

d−1
2 Γ(r/2)

. For any measurable Y ⊆ supp(Mv) ∩

supp(Mv′),

P (Mv ∈ Y)
P (Mv′ ∈ Y)

≤ sup
y∈Y

Cr,d(v
⊤y)

r−d−1
2 exp

(
− r∥y∥2

2v⊤y

)
Cr,d(v′⊤y)

r−d−1
2 exp

(
− r∥y∥2

2v′⊤y

)
To control the above ratio, we keep y away from the boundary of either support and from excessively
large norms by defining the good set

Yt,R :=
{
y : v⊤y ≥ t, v′⊤y ≥ t, ∥y∥ ≤ R

}
.

We define the probability ratio conditioned on the good event as Lmax = supy∈Yt,R

P(Mv∈Y)
P(Mv′∈Y) .

Then, for any Y ⊆ supp(Mv),

P (Mv ∈ Y) = P (Mv ∈ Y ∩ Yt,R) + P
(
Mv ∈ Y ∩ Yc

t,R

)
≤ LmaxP (Mv′ ∈ Y ∩ Yt,R) + P

(
Mv ∈ Yc

t,R

)
≤ LmaxP (Mv′ ∈ Y) + P

(
Yc
t,R

)
and symmetrically with v, v′ swapped. Bounding Lmax by decomposing v′ = ρv+

√
1− ρ2 w with

w ⊥ v yields the stated ερ.

Next, we bound the failure probability of Yt,R with δρ. While the proof for this is slightly
more involved, it starts from the observation that X := v⊤Mv/σ2 ∼ χ2

r and conditional on
X = x, v⊤Mv′ | X = x is distributed as a Gaussian. Using these, we lower bound
Pr
(
v⊤Mv′ ≥ t | X = x

)
with the product of the χ2

r and N tails. Second, the operator-norm
event {∥M∥ > R} is controlled by ∥M∥ = σ2 ∥G∥2 where G is a standard Gaussian random ma-
trix. Combining this yields the required bound on δρ.

On the dependence of ρ on n. Intuitively, ρ captures how stable the direction of the normalised
query is under a record change. For average-like queries, a single replacement contributes an
O (1/n) perturbation to the unnormalised vector, which in turn yields ρ ≈ 1 − Õ

(
1/n2

)
. Con-

cretely, let f̃(S) = 1
n

∑n
i=1 g(xi) with ∥g(x)∥ ≤ L and assume infS∈D

∥∥∥f̃(S)∥∥∥ ≥ c0 > 0,

for a constant c0. Then neighbouring datasets S, S′ satisfy
∥∥∥f̃(S)− f̃(S′)

∥∥∥ ≤ 2L/n, which

implies ∥f(S)− f(S′)∥ ≤ 4L
c0n

. Since 1 − u⊤v = 1
2 ∥u− v∥2 for unit u, v, we obtain

ρ ≥ 1− 1
2 ∥f(S)− f(S′)∥2 ≥ 1− 8L2

c20n
2 .

Additional analysis parameters t, η, R. The statement of Theorem 1 introduces t > 0, η ≥ 0,
and R > (

√
d +
√
r)2. These are analysis parameters used to obtain a tight yet concise bound;

they are not hyper-parameters of the mechanism. In practice one evaluates the bound numerically
by optimising over these quantities. The slack η decouples a χ2

r tail from a (conditional) Gaussian
tail in the proof of δρ, yielding a closed-form expression that is conservative; empirically, the exact
mixed-tail calculation can be smaller (see Figure 1a). The parameters R and t define the good set
and serve as knobs between δρ and ερ: increasing t leads to a monotonic decrease in ερ, while
simultaneously increasing the bound on δρ. The parameter R controls the spectral-concentration
event for the Wishart matrix: larger R strengthens concentration and decreases δρ, but increases ερ.

A practical choice is to take R =
(√

d+
√
r + u

)2
with a small u > 0, which makes the spectral

term in δρ negligible once r is moderate. Given a target δ̄ ∈ (0, 1) and a maximum rank rmax ≪ d,
one can solve the δρ bound for the largest admissible t and then plug that t into the ερ bound, leading
to the following corollary.
Corollary 1. Let ρ be the minimum alignment as defined in Equation (2). Then for any 0 < r ≤ d,
δ > 2e−cr (for an absolute constant c > 0 from Gaussian spectral concentration), the projection
mechanism is (ερ, δ)-DP with

ερ ≤ C̃

(
d− r + 1

2
log
(
ρ+

√
(1− ρ2

(
d2

ρ2r2 − 1
))

+
d3
√

2(1− ρ)

2ρ2r2

)
,

for a universal constant C̃ > 0.
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(a) (b) (c)

Figure 1: 1a shows exact δ via finite integration vs our bound,1b shows ερ as a function of r, and 1c
shows ερ as a function of ρ. In figures 1b and 1c, ερ was computed by doing a sweep over all
analysis parameters to find the best parameter with δ < 0.1.

When ρ = 1 we have f(S) = f(S′), so the induced output distributions coincide and the true privacy
loss satisfies ερ = 0, which is also reflected in our bound. We note however that his intuition cannot
be observed in our δρ bound, an artifact of the conservative decoupling and concentration steps used
in the analysis. See Figure 1a for an illustration of this gap.

Privacy amplification by increasing effective alignment The privacy guarantees for random pro-
jection in Theorem 1 can be strengthened by introducing a simple pre-processing strategy. We add
uniform noise from a d-dimensional ball of radius γ/2 to f(S) before applying the projection.
Specifically,

M

(
f(S) +

γz

∥z∥

)
, z ∼ N(0, Id)

This improves the effective alignment, especially when the original alignment ρ is small (or even
negative) and in high-dimensional settings.
Lemma 4. Let v, v′ ∈ Rd be two unit vectors with with cos∠ (v, v′) = v⊤v′ ≥ ρ, z ∈ N (0, Id),

δ > 0 and γ > 1−ρ
1+ρ

√
2
d log

8
δ , then with probability at least 1− δ, we have

cos

(
∠

(
v +

γz

∥z∥2
, v′ +

γz

∥z∥2

))
≥ ρ+ s > ρ,

where s =
(1−ρ)γ2−4γ

√
2
d ln 8

δ

1+γ2+2γ
√

2
d ln 8

δ

.

We observe that achieving a fixed target improvement s in alignment requires choosing a larger γ
and adding more noise when the minimum alignment ρ is large (i.e., when the original vectors are
already well aligned).

3.2 APPLICATIONS

In this section, we highlight three potential applications of the projection mechanism for the case.
In Section 4, we highlight our main application to show that LoRA is inherently private.

Projected gradient descent (RP–GD). Analogous to DP–GD, which privatises gradients by addi-
tive noise, we privatise the average gradient direction via the projection mechanism and then take
a descent step with the projected output. Concretely, sample M ∼ Wd

(
σ2Id, r

)
once, and at each

iteration update
wt+1 = wt − ηM∇L(wt) .

This Randomly Projected Gradient Descent (RP–GD) algorithm retains directional information
(which is what drives progress for many optimisers) while providing guaranteeing DP. In Theo-
rem 3,we provide a convergence guarantee and identify regimes in which RP–GD improves upon
DP–GD when the dataset collection exhibits well-aligned gradient sums. For more details see Sec-
tion E.

Private Retrival Another possible application is to publish private embeddings for retrieval tasks.
Given a unit-normalised average embedding v, sample M ∼Wd

(
σ2Id, r

)
and release the y = Mv.

6
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The retrieval system maintains its catalogue {uj} ⊂ Rd unchanged and ranks by standard dot
products ⟨uj , y⟩ = ⟨uj ,Mv⟩. Since E[M ] = rσ2Id (unlike projections like the JL transformation)
and ∥M − rσ2Id∥ concentrates for moderate r, these scores approximate a constant multiple of
⟨uj , v⟩, preserving top-k ordering up to a small distortion that vanishes as r grows. This is useful for
various modern retrival applications, where the embedding v is computed as an average of multiple
embeddings. The same pattern applies to releasing class/cohort prototypes: compute the cohort
mean, normalise and release y = Mv. In short, any application where the original embedding is
an average embedding and final utility is measured with respect to cosine angle is a good fit for the
projection mechanism.

4 PROJECTION MECHANISM FOR MATRIX OUTPUTS

In this section we consider the projection mechanism applied to f : S → Rd×m with matrix-valued
output space (m > 1). We prove a privacy guarantee (Section 4.1) and apply this result to the
popular finetuning algorithm, LoRA, showing that LoRA inherits the same guarantee (Section 2).

4.1 PRIVACY GUARANTEE

Similar to the vector case, to obtain meaningful privacy guarantees for the projection mecha-
nism, we assume the outputs of the query f on any neighboring datasets S, S′ ∈ D are suffi-
ciently aligned (equation A1). We also assume that the outputs have rank k and bounded spectral
norm (equation A2). As in the vector-output setting, these assumptions depend only on the dataset
collection and the query function. At the end of this section, we provide algorithmic solutions to
amplify these values.

We formally define the assumptions as follows. For matrix outputs in Rd×m with d ≥ m and
rank(f(S)) ≤ k ≤ min(d,m), we measure alignment by the cosine of the k-th principal angle
between the column spaces of f(S) and f(S′):

ρk(f,D) = min
S

H∼S′, S,S′∈D
σk

(
Uf (S)

⊤Uf (S
′)
)
, (A1)

where Uf (S), Uf (S
′) have orthonormal columns spanning Col(f(S)) and Col(f(S′)).

To ensure the outputs have rank k and bounded norm, we impose: there exist constants ξk > 0 and
ξ1 <∞ such that for all S ∈ D,

σk

(
f(S)

)
≥ ξk and σ1

(
f(S)

)
≤ ξ1 (A2)

where σi(·) denotes the i-th largest singular value.

Projection mechanism. To recall, the mechanism releases MV where V = f(S) ∈ Rd×m and
M =

∑r
i=1 ziz

⊤
i with zi

i.i.d.∼ N (0, Id/r). This is a rank-r Wishart projection.

Theorem 2. For a dataset collection D and a query function f with outputs in Rd×m of rank k,
let ρk be the (column-space) alignment as in equation A1, and let ξk, ξ1 be as in equation A2.
Further, let ∆ = max

S
H∼S′, S,S′∈D

∥f(S)− f(S′)∥2. Then for any tuning parameters t > 0, and

R > ξ1(
√
d+
√
r)2, the rank-r projection mechanism with M =

∑r
i=1 ziz

⊤
i and zi

i.i.d.∼ N (0, Id/r)
is (ε, δ)-DP with

δ ≤ e
− 1

2 (
√
k−

√
r−(

√
t+η)/ξk)

2

+ + 2e

− 1
2

 (ρk − 1)t√
1− ρ2kR

−
√
m−

√
r

2

+ + 2e
−c

(√
R
ξ1

−
√
d−

√
r

)2

+ ,

ε ≤ (m− r)k

2
log

(
1 +

2ξ1
ξ2k

∆

)
+

r(d− r + 1)

2
log

(
1 +

R

t
∆

)
+

r3/2
√
k R3

√
2 t2

∆.

On the dependence of ρk on dataset size n Similar to the vector case, we can show that the
alignment parameter ρk increases with n. Let f̃(S) = 1

n

∑n
i=1 G(xi) ∈ Rd×m with ∥G(x)∥2 ≤

7
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L; the sensitivity of f̃ is
∥∥∥f̃(S)− f̃(S′)

∥∥∥ ≤ 2L
n . Under Equation (A2) and the rank assumption

of Theorem 2, let θmax be the largest principal angle between the k-dimensional column spaces of
f̃(S) and f̃(S′). Using the sinΘ theorem for column subspaces, we obtain sin (θmax) = ∥sinΘ∥ ≤
∥f̃(S)−f̃(S′)∥

ξk
≤ 2L

nξk
. Using ρk = cos θmax and 1 − cos θ ≤ sin2 θ for θ ∈ [0, π/2], we have that

ρk ≥ 1− 4L2

n2ξ2k
. Thus for average-like matrix queries, ρk ≈ 1− Õ(1/n2). In our matrix projection

theorem, larger ρk directly reduces the second term in δ.

4.2 APPLICATION TO LORA

As discussed before, a natural application of our privacy guarantee for the low-rank projection mech-
anism is Low-Rank Adaptation (LoRA)(Hu et al., 2022). Concretely, let Gt = ∇WL(Wt). Hao et al.
(2024) shows that LoRA update with fixed A is

Bt+1 = Bt − η GtA
⊤ =⇒ WT = W0 +BTA = W0 − η

T∑
t=1

Gt(A
⊤A).

Thus LoRA performs gradient descent with the gradient right-projected by the random Wishart
matrix A⊤A, which is precisely a projection mechanism on a matrix-valued output. Consequently,
LoRA inherits our privacy guarantee (Theorem 2) automatically. In practice, LoRA is applied across
multiple layers and trained with mini-batches. The privacy guarantee in Theorem 2 can be simply
composed over multiple layers and amplified via minibatch subsampling as is common in DP-SGD.

Algorithmic techniques to improve LoRA’s privacy guarantees Analogous to the RP-GD anal-
ysis in Theorem 3, applying LoRA with a single initialization of A requires Assumption A1 and
A2 to hold for the cumulative gradient trajectory

∑T
t=1 Gt under any neighbouring datasets in the

collection, since early misalignment can be amplified over the course of optimization. A practical
relaxation is to impose these assumptions per step (rather than on the sum) and resample A ev-
ery τ steps, incurring an additional composition over restarts. We include this resampling trick in
Algorithm 2, which is in the same spirit as Hao et al. (2024).

Algorithm 2 LoRA with resampled A on one layer
Input: pretrained model parameters W0 ∈ Rd×m, rank r with r < min(d,m), input X ∈ RN×k×n,
loss function L, number of rounds T and τ , step size η, mini-batch size B

for t = 0, . . . T − 1 do
Initialize B

(0)
t ∈ Rd×r and At ∈ Rr×k randomly ▷ resample A

for j = 1, . . . τ do
Random sample an example x ∈ Rk×n from the dataset X with probability B/N

W j
t ←Wt +B

(j−1)
t At (should it be ▷ update model

yj ←W j
t x ▷ evaluate

B
(j)
t ← B

(j−1)
t − η ∂L(y)

∂B |y=yj
▷ update B

end for
Wt+1 = Wt +B

(τ)
t At

end for
return WT

Role of ξk and ξ1. Further, it is also possible to improve the spectral properties of the gradient.
Assumption A2 requires uniform spectral bounds over D: σk(f(S)) ≥ ξk > 0 and σ1(f(S)) ≤
ξ1 < ∞ for all S ∈ D. Concretely, ξ1 can be reduced by enforcing spectral regularisation on
the gradients e.g. using spectral normalization of linear layers, gradient clipping in operator norm,
or whitening that rescales dominant directions. Conversely, ξk can be increased by adding a small
regulariser term to the loss e.g. ridge regulariser injects a λW term into the gradient and lifts smaller
singular values of the gradient, curvature damping adds λI to the gradient to prevent rank collapse;
both of these techniques raise the floor on ξk. In our bounds this improves

√
t/ξk in δ and reduces

the factor (m− r)k log
(
1 + 2ξ1

ξ2k
∆
)

in ε. We leave the exploration of further implications of these
techniques to future work.

8
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5 DISCUSSION AND OPEN QUESTIONS

The main contribution of our work is showing that the random projection mechanism is inherently
differentially private. Using this analysis we are able to show that LoRA also enjoys certain pri-
vacy guarntees. We also show how to improve this privacy guarantee algorithmically, either by
adding a small amount of additive gaussian noise or via algorithmic techniques like regularisation
and smoothening. Our proof relies on new technical tools in analysing the likelihood ratio of more
complex distributions than the classical distributions analyses in Differential Privacy.

However, there are several opportunities for further work. First, the privacy parameter is compli-
cated and hard to tune, additionally it scales with properties of the dataset like the alignment. We
believe techniques like smooth sensitivity, inverse-sensitivity mechanism, and PTR may be help-
ful in overcoming this issue. Second, we describe several algorithmic techniques that can improve
the privacy guarantee and we think it will be interesting to consider their impact on the utility of
the algorithm. Finally, while we list a few applications of the projection mechanism, it would be
interesting to find other applications of this mechanism.

Related works Random projection has been widely exploited in the privacy literature. Some
works—such as Kenthapadi et al. (2013); Li & Li (2023)—explore the privacy of JL-style projec-
tions or random sign flipping. However, these approaches typically do not treat the projection’s
randomness as part of the privacy mechanism: they publish the projection matrix and regard its
randomness as public information. Other lines of work use random projection primarily for di-
mensionality reduction, improving the privacy–utility trade-off by removing dimension dependence
from convergence guarantees in many private algorithms (Jiang et al., 2025; Kasiviswanathan, 2021;
Li et al.; Sheffet, 2019). By contrast, far fewer works explicitly leverage the inherent randomness of
the projection itself as a source of privacy.

There is also a line of work on privacy amplification via compression. In particular, Jin & Dai
(2025) shows that by compressing the gradient to their signs, SignSGD amplifies privacy guaran-
tees. Perhaps most related to our work, Hao et al. (2024); Malekmohammadi & Farnadi (2025) argue
that LoRA can be viewed as gradient compression through low-dimensional random projection and
induces training dynamics resembling DP-SGD for certain architectures. However, to our knowl-
edge, we are the first to provide a formal differential privacy guarantee for compression achieved via
random projection for arbitrary model choice.
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A APPENDIX

A MATHEMATICAL PRELIMINARIES

Definition 6. Matrices A and B are similar if there exists a matrix W so that

A = WBW−1

Lemma 5. Let A and B be symmetric matrices (of the same dimension). If A and B are similar
matrices, then they have the same eigenvalues.

Proof. Let A and B be similar matrices, this means there exists W so that A = WBW−1. Let x be
an eigenvector of A with λ its corresponding eigenvalue. This means

Ax = WBW−1x = λx

by right multiplicating with W−1 we see that this is equivalent to

B(W−1x) = λ(W−1x).

Lemma 6. Let A ∈ Rm×n be a matrix, and Q ∈ Rm×m, Q′ ∈ Rn×n orthogonal matrices then A
and A′ = QAQ′ have the same singular values.

Proof. Let A′ = QAQ′, then

A′⊤A′ = (Q′⊤A⊤Q⊤)(QAQ′) = Q′⊤A⊤AQ′.

By Lemma 5 we know A′⊤A′ and A⊤A have the same eigenvalues, which finishes the proof.

Lemma 7 (Corollary 7.3.2 in Vershynin (2018)). Let A be an m × n matrix with independent
N(0, 1) entries. Then, for t ≥ 0, we have

P
[
∥A∥ ≥

√
m+

√
n+ t

]
≤ 2 exp(−ct2).

Lemma 8. Let A ∈ Rm×r has i.i.d. N(0, 1) entries with m > r and let σ1(A) ≥ ... ≥ σr(A) be
its singular value, then for any t ≥ 0,

P
[
σr(A) ≤

√
m−

√
r − t

]
≤ e−

t2

2

Lemma 9 (Theorem 3.4.5 (Vershynin, 2018)). Let u be a random vector uniformly distributed on
the unit sphere in Rd (or w ∼ N (0, Id) and let u = w

∥w∥ ). Then for any unit vector v ∈ Rd and
t > 0, we have

P [⟨u, v⟩ ≥ t] ≤ 2e−
t2d
2 .

Lemma 10 (Perturbation bounds for pseudo-inverse, Theorem 4.1 in (Wedin, 1973)). Let A ∈
Rm×n of rank r, B ∈ Rm×n of rank s, then∥∥B† −A†∥∥

F
≤
√
2max

{∥∥A†∥∥2
2
,
∥∥B†∥∥2

2

}
∥B −A∥F

Lemma 11 (Weyl’s inequality, (Weyl, 1912)). Let ∆ ∈ Rm×n be a perturbation of arbitrary mag-
nitude. Denote X̃ = X +∆ with singular values σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n ≥ 0. Then,

|σ̃i − σi| ≤ ∥∆∥2, for i = 1, . . . , n

11
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Lemma 12. Let W ∼ Wishartd(r, Idσ2), then for any g ∈ Rd with ∥g∥2 = 1,

EgTWWT g = σ4r(r + d+ 1)

Proof. We know that for a wishart distribution W ,

EW = rσ2Id, Cov(Wij) = n(v2ij + viivjj).

Let 1 =

 1
1
...
1

 ∈ Rd. Then,

EgTWW⊤g = g⊤
(
Cov(W ) + E(W )E(W )⊤

)
g

= g⊤
(
σ4r(Id + 11⊤) + σ4rId

)
g

= σ4r(r + d+ 1)

(3)

Lemma 13 (Strong composition of differential privacy (Dwork & Roth, 2014)). For all ε, δ ≥ 0
and δ′ > 0, the adaptive composition of k algorithms, each of which is (ε, δ)-DP, is (ε̃, δ̃)-DP where

ε̃ = ε
√
2k ln(1/δ′) + kε

eε−1

eε + 1
and δ̃ = kδ + δ′.

Lemma 14. For Xi and Yi standard bivariate random variables with correlation ρ > 0

P(
r∑

i=1

XiYi < 0) ≤ (1− ρ2)r/2

Proof.

E[eλXiYi ] = (1− 2ρλ− (1− ρ2)λ2)−1/2 for λ ∈
(
− 1

1− ρ
,

1

1 + ρ

)
(write out proof as extra lemma)

(4)

in order to use this identity we will first convert the random variables to positive (exponential)
random variables (multiply with −t for t > 0 and take exponential) and then apply Equation (4):

P(
r∑

i=1

XiYi < 0) = P(e−t
∑r

i=1 XiYi ≥ 1) ≤ E[e−t
∑r

i=1 XiYi ] =

r∏
i=1

E(e−tXiYi ≥ 1) = (1+2ρt−(1−ρ2)t2)−r/2

where we used the above identity with λ = −t. Now we want to find t > 0 so that q(t)−r/2 is
minimized, with q(t) = 1 + 2ρt − (1 − ρ2)t2. As x → x−r/2 is decreasing on (0,∞) this is
equivalent to maximizing q(t).

q′(t) = 2ρ− 2(1− ρ2)t

q′′(t) = −2(1− ρ2) < 0

so t∗ = ρ
1−ρ2 maximizes q(t). We remark here that t∗ = −λ, so we need to check if t∗ ∈ (0, 1

1−ρ )

in order to be allowed to use Equation (4). Which is indeed true as
ρ

1− ρ2
<

1

1− ρ
⇐⇒ ρ < 1 + ρ

which is always true. So finally plugging this in we get:

q(t∗) = 1 +
2ρ2

1− ρ2
− (1− ρ2)ρ2

(1− ρ2)2

= 1 +
2ρ2

1− ρ2
− ρ2

(1− ρ2)
= 1 +

ρ2

1− ρ2

=
1

1− ρ2

Finally plugging this into the bound we get the wished results.
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B PRIVACY OF PROJECTION MECHANISM ON VECTORS

Theorem 1. For a dataset collection D and a query function f with outputs in Rd, let ρ > 0 be the
minimum alignment for f,D as defined in Equation (2). Then, for any R > (

√
d+
√
r)2, t > 0, and

η > 0 the projection mechanism with rank r and variance σ2 is (ερ, δρ)-DP on D, where

δρ = 1− Φ̄

(
t(1− ρ)− ρη√
(1− ρ2)(t+ η)

)
P(χ2

r > t+ η) + 2 exp
(
−c(
√
R−
√
d−
√
r)2
)

ερ ≤
|d− r − 1|

2
log

(
ρ+

√
1− ρ2

√
R2

t2
− 1

)
+

R3
√
2(1− ρ)

2t2

Proof. By Lemma 15 we know that for y so that v⊤y > 0

Cr,d,σ(v
⊤y)

r−d−1
2 exp

(
− ∥y∥2

2σ2v⊤y

)
So if we assume y ∈ Yt,R with

Yt,R := {Y : v⊤y > t, v′⊤y > t, ∥y∥ ≤ R}
then for any subset Y ∈ Yt,R,

P(Mv ∈ Y)
P(Mv′ ∈ Y)

=

∫
y∈Y Cr,d,σ(v

⊤y)
r−d−1

2 exp
(
− ∥y∥2

2σ2v⊤y

)
dy∫

y∈Y Cr,d,σ(v′⊤y)
r−d−1

2 exp
(
− ∥y∥2

2σ2v′⊤y

)
dy

≤ sup
y∈Y

Cr,d(v
⊤y)

r−d−1
2 exp

(
− r∥y∥2

2v⊤y

)
Cr,d(v′⊤y)

r−d−1
2 exp

(
− r∥y∥2

2v′⊤y

) := Lmax

(5)

For arbitrary Y ⊆ Support(Mv),

P(Mv ∈ Y) = P(Mv ∈ Y ∩ Yt,R) + P(Mv ∈ Y ∩ Yc
t,R)

(a)

≤ LmaxP(Mv′ ∈ Y ∩ Yt,R) + P(Mv ∈ Yc
t,R)

(b)

≤ LmaxP(Mv′ ∈ Y) + P(Mv′ ∈ Yc
t,R)

(c)

≤ LmaxP(Mv′ ∈ Y) + δ

(6)

where step (a) follows from Equation (5) together with P(A ∩ B) ≤ min(P(A),P(B)), step (b)
again uses P(A ∩B) ≤ min(P(A),P(B)), and step (c) follows from Equation (7).

The same argument holds for the other direction, with P(Mv′ ∈ Y) ≤ LmaxP(Mv ∈ Y) + δ′ for
any Y where δ′ = P(Mv′ ∈ Yc

t,R).

So it remains to show that max{δ, δ′} ≤ δρ. For M =
∑r

i=1 ziz
⊤
i where z′is are i.i.d. N (0, σ2Id),

let Y d
= Mv.

P(Y ∈ Yt,R) = P(Mv ∈ Yt,R) = PM

[
v⊤Mv > t, v′⊤Mv ≥ t, ∥Mv∥ ≤ R

]
(7)

equivalently for Y ′ d
= Mv′

P(Y ′ ∈ Yt,R) = P(Mv′ ∈ Yt,R) = PM

[
v⊤Mv′ > t, v′⊤Mv′ ≥ t, ∥Mv′∥ ≤ R

]
(8)

As v and v′ are both unit vectors these two events can ∥Mv′∥ ≤ R and ∥Mv∥ ≤ R are both implied
by ∥M∥ ≤ R. So both P(Y ∈ Yt,R) and P(Y ′ ∈ Yt,R) are lower bounded by

P
[
v⊤Mv′ > t, v′⊤Mv′ ≥ t, ∥M∥ ≤ R

]
= P

[
v⊤Mv′ > t, v⊤Mv ≥ t, ∥M∥ ≤ R

]
We will first focus on the event

Gt = {v⊤Mv′ > t, v⊤Mv ≥ t}

13
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(note that {v⊤Mv′ > t, v′⊤Mv′ ≥ t} occurs with the same probability as {v⊤Mv′ > t, v⊤Mv ≥
t} due to the randomness being over M and v and v′ both being unit vectors). In order to bound this
let us define

gi :=
1

σ
v⊤zi

hi :=
1

σ
v′⊤zi

both of these are uni variate standard random normal variables and
r∑

i=1

g2i =
1

σ2

∑
i=1

(v⊤zi)
2 =

1

σ2

r∑
i=1

v⊤ziz
⊤
i v =

1

σ2
· v⊤Mv

as well as

g⊤ · h =

r∑
i=1

gihi =
1

σ2

r∑
i=1

v⊤ziz
⊤
i v′ =

1

σ2
· v⊤Mv′

where g = (g1, . . . , gr) and h = (h1, . . . , hr). From now on we will denote X := 1
σ2 · v⊤Mv, and

Z := v⊤Mv′ for simplicity of notation. As the gi are uni variate standard normal variables we have
X ∼ χ2

r . We next would like to partition hi into a part independent and a part dependent on gi: For
this we define the unit vector

w :=


v′ − ρ v√
1− ρ2

, if |ρ| < 1,

any unit vector in v⊥, if |ρ| = 1.

we then see v′ = ρv +
√
1− ρ2w, which gives us

hi :=
1

σ
(ρv⊤zi +

√
1− ρ2w⊤zi = ρgi +

√
1− ρ2εi

where εi := w⊤zi ∼ N (0, σ2). Therefore

1

σ2
· Z = g⊤ · h =

r∑
i=1

ρg2i +
√

1− ρ2giεi

We then note that we constructed ε in such a way that εi⊥gi as

Cov(gi, εi) = E[giεi] = v⊤E[ziz⊤i ]w =
1

σ2
v⊤w = 0.

This now allows us to condition on gi and obtain Z|X = x ∼ N (σ2ρ ·x, σ4(1−ρ2)x). We will now
combine all of this to lower bound the probability of the event Gt := {v⊤Mv′ > t, v⊤Mv ≥ t}

P(v⊤Mv > t, v′⊤Mv > t) = P(X > t/σ2, Z > t) = EX,Z [1X>t/σ2 · 1Z>t] = EX [1X>t/σ2EZ [1Z>t|X]]

in a next step we will lower bound EZ [1Z>t|X] by noting that

P(Z > t|X = x) = Φ̄

(
t− ρxσ2

σ2
√
(1− ρ2)x

)
so

EX [1X>rtEZ [1Z>t|X]] = EX

[
1X>rtΦ̄

(
t− ρXσ2

σ2
√

(1− ρ2)X

)]

We further observe that f(x) := t−ρxσ2

σ2
√

(1−ρ2)x
is decreasing in x

d

dx
f(x) = − t+ ρσ2x

2σ2
√

1− ρ2x3/2
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for ρ ≥ 0. Hence for ρ, t, σ > 0 we have that Φ̄
(

t−ρxσ2

σ2
√

(1−ρ2)x

)
is increasing in x, so for any

x⋆ > rt

P(Gt) ≥ Φ̄

(
t− ρx⋆σ2

σ2
√

(1− ρ2)x⋆

)
P(χ2

r > x⋆)

we want to choose x⋆ to maximize this lower bound. Let’s choose it as x⋆ = t/σ2+η for any η ≥ 0
then

P(Gt) ≥ Φ̄

(
t/σ2(1− ρ)− ρη√
(1− ρ2)(t/σ2 + η)

)
P(χ2

r > t/σ2 + η)

We further define ẼR =
{
zi :

∥∥∑r
i=1 ziz

⊤
i

∥∥ ≤ R
}

and ER = {zi :
∥∥∑r

i=1 ziz
⊤
i v
∥∥ ≤ R}. Then,

ẼR ⊂ ER and P(ER) ≥ P(ẼR). As M =
∑r

i=1 ziz
⊤
i can be decomposed as

(
1√
r
Z
)(

1√
r
Z
)⊤

where Z ∈ Rd×r with i.i.d. entries N (0, 1), we can write
∥M∥ =

∥∥ZZ⊤∥∥σ2.

and thus apply Lemma 7 with t′ =
√
R/σ − (

√
d +
√
r) > 0 to get an upper bound on the bad

event Ec
R

P(Ẽc
R) = P(∥M∥ ≥ R) = P

(
∥Z∥ ≥ 1

σ

√
R

)
≤ 2 exp

−c(√R
σ
−
√
d−
√
r

)2
 (9)

Note this gives us the condition R ≥ σ2(
√
d+
√
r)2. Finally using

P(Gc
t ∪ Ec

R) ≤ P(Gc
t) + P(Ec

R) = 1− P(Gt) + P(Ec
R)

we get that

δρ ≤ 1− Φ̄

(
t/σ2(1− ρ)− ρη√
(1− ρ2)(t/σ2 + η)

)
P(χ2

r > t/σ2 + η) + 2 exp

−c(√R
σ
−
√
d−
√
r

)2


Finally, we derive the upper bound on Lmax. For y ∈ Gt ∪ ER, by Lemma 15,

P (y)

Q(y)
=

 v⊤y

(v′)⊤y︸ ︷︷ ︸
A


r−d−1

2

exp

 ∥y∥2

2σ2y⊤v′
− ∥y∥2

2σ2y⊤v︸ ︷︷ ︸
B

 (10)

where U = [u1, . . . , ud−1] ∈ Rd×(d−1) with {u1, . . . , ud−1} is an orthonormal basis of v⊥.

A =
v′⊤y

v⊤y
=

ρv⊤y +
√
1− ρ2w⊤P⊥y

v⊤y

= ρ+
√
1− ρ2

w⊤P⊥y

v⊤y

≤ ρ+
√
1− ρ2

∥P⊥y∥
v⊤y

= ρ+
√
1− ρ2

√
∥y∥2 − (v⊤y)2

v⊤y
= ρ+

√
1− ρ2

√
cos(∠(v, y))− 1

≤ ρ+
√
1− ρ2

√
R2 − t2

t
We can bound the exponent (part B) by,

B =
∥y∥2

2σ2y⊤v′
− ∥y∥2

2σ2y⊤v

=
∥y∥2 (y)⊤ (v − v′)

2σ2y⊤v′v⊤y

≤
R3
√
2(1− ρ)

2σ2t2
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All together this gives

δρ ≤ 1− Φ̄

(
t/σ2(1− ρ)− ρη√
(1− ρ2)(t/σ2 + η)

)
P(χ2

r > t/σ2 + η) + 2 exp

−c(√R
σ
−
√
d−
√
r

)2


and

ερ ≤
r − d− 1

2
log

(
ρ+

√
1− ρ2

√
R2 − t2

t

)
+

R3
√

2(1− ρ)

2σ2t2

setting t̃ = t/σ2 and R̃ = R/σ2, we get the bounds:

δρ ≤ 1− Φ̄

(
t̃(1− ρ)− ρη√
(1− ρ2)(t̃+ η)

)
P(χ2

r > t̃+ η) + 2 exp

(
−c
(√

R̃−
√
d−
√
r
)2)

and

ερ ≤
r − d− 1

2
log

(
ρ+

√
1− ρ2

√
R̃2σ4 − t̃2σ4

t̃σ2

)
+

R̃3σ6
√
2(1− ρ)

2σ6t̃2

with the condition t̃ > 0 and R̃ ≥ (
√
d +
√
r)2, which simplifies to (with renaming the variables

again)

δρ ≤ 1− Φ̄

(
t(1− ρ)− ρη√
(1− ρ2)(t+ η)

)
P(χ2

r > t+ η) + 2 exp

(
−c
(√

R−
√
d−
√
r
)2)

ερ ≤
r − d− 1

2
log

(
ρ+

√
1− ρ2

√
R2 − t2

t

)
+

R3
√
2(1− ρ)

2t2

Corollary 1. Let ρ be the minimum alignment as defined in Equation (2). Then for any 0 < r ≤ d,
δ > 2e−cr (for an absolute constant c > 0 from Gaussian spectral concentration), the projection
mechanism is (ερ, δ)-DP with

ερ ≤ C̃

(
d− r + 1

2
log
(
ρ+

√
(1− ρ2

(
d2

ρ2r2 − 1
))

+
d3
√

2(1− ρ)

2ρ2r2

)
,

for a universal constant C̃ > 0.

Proof. With R = (
√
d+ 2

√
r)2, we know by Theorem 1 that

δρ = 1−Π(r, t, ρ) + 2e−cr, Π(r, t, ρ) := Φ̄

(
t(1− ρ)− ρη√
(1− ρ2)(t+ η)

)
P(χ2

r > t+ η),

we further know that by this choice of R there exists a constant C > 0 s.t. R = Cd

ερ ≤
d− r + 1

2
log
(
ρ+

√
(1− ρ2)

(
Cd2

t2 − 1
))

+
C1d

3
√

2(1− ρ)

2t2
.

where C1 = C3 is also a constant independent of d, r.

We first fix a target δ̄ ∈ (0, 1) and we want to choose t in such a way that δρ ≤ δ̄. This is equivalent
to choosing t so that

Π(r, t, ρ) ≥ 1− δ̄ + 2e−cr = 1− (δ̄ − 2e−cr) =: 1− δ̄′

By construction ρ̄′ < 1, we further ensure that it does not become negative by clipping it at 0. Then
by definition of Π(r, t, ρ) we see that choosing t so that the following two conditions are fulfilled
suffices:

(i) Φ̄

(
t(1− ρ)− ρη√
(1− ρ2)(t+ η)

)
≥ 1− δ̄′/2

(ii) P(χ2
r > t+ η) ≥ 1− δ̄′/2
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This is equivalent to

(i) δ̄′/2 ≥ Φ

(
t(1− ρ)− ρη√
(1− ρ2)(t+ η)

)
(ii) δ̄′/2 ≥ P(χ2

r ≤ t+ η)

we define z := Φ−1(δ̄′/2), note that for δ̄′ < 1 we have z < 0 and q := qχ2
r
( δ̄

′

2 ). So the first
condition implies

t ≤
(z
√
1 + ρ+

√
z2(1 + ρ) + 4η)2

4(1− ρ)
− η

and the second condition implies

t ≤ q − η whereq ≃ r

(
1− 2

9r
+ z

√
2

9r

)3

Our goal is to choose η so that we can choose t as O(r) while still fulfilling both bounds. There
exists a sweet spot, as the first condition has a RHS increasing with η and the second has a RHS
decreasing with η. And we need to fulfill t ≤ min{t1(η), t2(η)}. The best option is to choose η
where the two meet:

t1(η
⋆) = t2(η

⋆)

Solving this allow us to choose t⋆ ≃ ρr (up to O(
√
r) terms). Which give us that there exists a

constant C̃ > 0

ερ ≤ C̃

(
d− r + 1

2
log
(
ρ+

√
(1− ρ2)

(
d2

ρ2r2 − 1
))

+
d3
√

2(1− ρ)

2ρ2r2

)
.

Lemma 15 (PDF of Mv). Let z1, ..., zr be i.i.d. N (0, σ2Id) where d ≥ r, M =
∑r

i=1 ziz
T
i , then

for v ∈ Rd with ∥v∥ = 1 and y ∈ Rd such that v⊤y > 0,

P(Mv = y) = Cr,d,σ(v
⊤y)

r−d−1
2 exp

(
− ∥y∥2

2σ2v⊤y

)
where Cr,d,σ = 1

2r/2Γ(r/2)σd−r−1(2π)(d−1)/2

Proof. For

Y = Mv =

r∑
i=1

ziz
⊤
i v,

let
ai = z⊤i v, ui = (I − vv⊤)zi =: P⊥zi.

Therefore, we can write zi = vv⊤zi + (I − vv⊤)zi = vai + ui, and Y as

Y =

r∑
i=1

ziz
⊤
i v =

r∑
i=1

(vai + ui)(aiv
⊤ + u⊤

i )v =

r∑
i=1

va2i + uiai,

where ai ∼ N (0, σ2), ui ∼ N (0, σ2P⊥). Further ai and ui are independent as

Cov(ai, ui) = E[ai · ui] = E[zTi vP⊥zi] = E[P⊥ziz
T
i v] = P⊥E[zizTi ]v = σ2P⊥v = 0.

Let S =
∑r

i=1 a
2
i , then

S ∼ σ2χ2
r, Y |S = s

d
= N

(
sv, σ2sP⊥

)
.

Define U ∈ Rd×(d−1) as [u1 · · ·ud−1] ∈ Rd×(d−1), where {u1, . . . , ud−1} is an orthonormal basis
of v⊥ then

U⊤U = Id−1, UU⊤ = I − vv⊤ = P⊥.
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Let Y⊥ = U⊤Y , then

S ∼ σ2χ2
r, Y⊥|S = s

d
= N

(
0, σ2sU⊤P⊥U

) d
= N

(
0, σ2sId−1

)
.

We note the last inequality follows from substituting P⊥ and noticing

U⊤v = (U⊤U)U⊤v = U⊤(UU⊤v) = U⊤0 = 0.

Therefore, for y ∈ {y ∈ Rd : y⊤v > 0},

P [S = s, Y⊥ = y⊥] = P [S = s]P [Y⊥ = y⊥|S = s] (11)

fSσ2(s) = fS

( s

σ2

)
=

sr/2−1e−
s

2σ2

2r/2Γ(r/2)σr−2
(12)

fY⊥|S(y⊥|S = s) = (2π)
− d−1

2
(
σ2s
)− d−1

2 exp

(
−∥y⊥∥

2

2σ2s

)
(13)

fS,Y⊥(s, y⊥) = Cr,d,σs
r−d+1

2 e−
s2+∥y⊥∥2

2σ2s , Cr,d,σ =
1

2r/2Γ(r/2)σd−r−1(2π)(d−1)/2
(14)

As we can write
(

S
Y⊥

)
=

(
v⊤

U⊤

)
Y (using point wise multiplication), let Q =

(
v⊤

U⊤

)
. One can

easily verify that Q⊤ = Q−1 and

Y = Q⊤
(

S
Y⊥

)
. (15)

By changing the variables from (S, Y⊥) to Y with Equation (15), we get the probablity density
function for Y when y⊤v ≥ 0 (s > 0), i.e.

P(Y = y) = Cr,d,σ(v
⊤y)

r−d+1
2 exp

(
−
r
∥∥U⊤y

∥∥2
2v⊤y

)

exp

(
−r

2

(
s+

∥∥U⊤y
∥∥2

v⊤y

))
= exp

(
− r

2v⊤y

(
y⊤(vv⊤ + UU⊤)y

))
= exp

(
−r ∥y∥2

2v⊤y

)
(16)

So we get

fY (y) = Cr,d,σ(v
⊤y)

r−d+1
2 exp

(
− ∥y∥
2σ2v⊤y

)
(17)

C PRIVACY OF PROJECTION MECHANISM ON MATRICES

Theorem 2. For a dataset collection D and a query function f with outputs in Rd×m of rank k,
let ρk be the (column-space) alignment as in equation A1, and let ξk, ξ1 be as in equation A2.
Further, let ∆ = max

S
H∼S′, S,S′∈D

∥f(S)− f(S′)∥2. Then for any tuning parameters t > 0, and

R > ξ1(
√
d+
√
r)2, the rank-r projection mechanism with M =

∑r
i=1 ziz

⊤
i and zi

i.i.d.∼ N (0, Id/r)
is (ε, δ)-DP with

δ ≤ e
− 1

2 (
√
k−

√
r−(

√
t+η)/ξk)

2

+ + 2e

− 1
2

 (ρk − 1)t√
1− ρ2kR

−
√
m−

√
r

2

+ + 2e
−c

(√
R
ξ1

−
√
d−

√
r

)2

+ ,

ε ≤ (m− r)k

2
log

(
1 +

2ξ1
ξ2k

∆

)
+

r(d− r + 1)

2
log

(
1 +

R

t
∆

)
+

r3/2
√
k R3

√
2 t2

∆.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. We first upper bound the likelihood ratio on a good set and then control the complement.

By Lemma 16, for any measurable Y ⊆ Rd×m,

Pr (MV ∈ Y) =
∫
Y
fMV (Y )dY

=

∫
Y∩Yt,R

Cm,k,r,d

∣∣V ⊤V
∣∣m−r

2

+
|S|

r−d−1
2

+ exp
(
−r

2
Tr
(
S†Y ⊤Y

))
dY

+ Pr
(
MV ∈ Y ∩ Yc

t,R

)
≤
∫
Y∩Yt,R

Cm,k,r,d

∣∣V ⊤V
∣∣m−r

2

+
|S|

r−d−1
2

+ exp
(
−r

2
Tr
(
S†Y ⊤Y

))
dY + Pr

(
MV ∈ Yc

t,R

)
,

where S := V ⊤Y and

Yt,R :=
{
Y ∈ Rd×m : σr

(
V ⊤Y

)
> t, σr

(
V ′⊤Y

)
> t, ∥Y ∥2 ≤ R

}
.

Let P (Y ) := fMV (Y ) and Q(Y ) := fMV ′(Y ). On Yt,R, Q(Y ) > 0 (∵ σr

(
V ′⊤Y

)
> t > 0) and

Lmax := sup
Y ∈Yt,R

P (Y )

Q(Y )

= sup
Y ∈Yt,R


∣∣V ⊤V

∣∣
+

|V ′⊤V ′|+︸ ︷︷ ︸
Part I


m−r

2

∣∣V ′⊤Y

∣∣
+

|V ⊤Y |+︸ ︷︷ ︸
Part II


d+1−r

2

exp

r

2
Tr
([(

V ′⊤Y
)† − (V ⊤Y

)†]
Y ⊤Y

)
︸ ︷︷ ︸

Part III

 .

Therefore,
Pr (MV ∈ Y) ≤ Lmax Pr (MV ′ ∈ Y) + Pr

(
MV ∈ Yc

t,R

)
.

An analogous bound holds with V and V ′ swapped.

Part I. Under equation A2, σk(V ), σk(V
′) ≥ ξk > 0 and σ1(V ), σ1(V

′) ≤ ξ1 <∞. Then

log

∣∣V ⊤V
∣∣
+

|V ′⊤V ′|+
=

k∑
i=1

log
λi(V

⊤V )

λi(V ′⊤V ′)
=

k∑
i=1

log

(
1 +

λi(V
⊤V )− λi(V

′⊤V ′)

λi(V ′⊤V ′)

)

≤ k log

(
1 +

∥∥V ⊤V − V ′⊤V ′
∥∥
2

ξ2k

)

≤ k log

(
1 +

2ξ1
ξ2k
∥V − V ′∥2

)
,

(18)

where the first inequality follows from Weyl’s inequality (Lemma 11) and the second from ∥V ⊤V −
V ′⊤V ′∥2 ≤ ∥V ⊤(V − V ′)∥2 + ∥(V − V ′)⊤V ′∥2 ≤ 2ξ1∥V − V ′∥2.

Part II. On Yt,R, σr(V
′⊤Y ) ≥ t and ∥Y ∥2 ≤ R. Hence

log

∣∣V ′⊤Y
∣∣
+

|V ⊤Y |+
=

r∑
i=1

log
σi(V

′⊤Y )

σi(V ⊤Y )
=

r∑
i=1

log

(
1 +

σi(V
′⊤Y )− σi(V

⊤Y )

σi(V ⊤Y )

)

≤ r log

(
1 +

∥∥V ′⊤Y − V ⊤Y
∥∥
2

t

)

≤ r log

(
1 +
∥V ′ − V ∥2 ∥Y ∥2

t

)
≤ r log

(
1 +

R

t
∥V ′ − V ∥2

)
.

(19)
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Part III. Using Cauchy–Schwarz and a standard pseudoinverse perturbation bound (Lemma 10),

Tr
(((

V ′⊤Y
)† − (V ⊤Y

)†)
Y ⊤Y

)
≤
∥∥∥(V ′⊤Y

)† − (V ⊤Y
)†∥∥∥

F
∥Y ∥2F

≤

√
2
∥∥∥(V ′ − V )

⊤
Y
∥∥∥
F

σr(V ⊤Y )σr (V ′⊤Y )
∥Y ∥2F

≤
√
2 ∥V ′ − V ∥2 ∥Y ∥

3
F

t2

≤
√
2r3/2R3

t2
∥V ′ − V ∥2 ,

(20)

since ∥Y ∥F ≤
√
r ∥Y ∥2 ≤

√
rR on Yt,R.

Combining Parts I–III yields the stated upper bound on ε by substituting ∆ := ∥V ′ − V ∥2.

It remains to bound the bad set probability Pr
(
Yc
t,R

)
. Let S := V ⊤MV and S′′ := V ′⊤MV ′ (both

are symmetric), and define the events

E1 := {λr(S) ≤ t} , E2 := {λr(S
′′) ≤ t} , E3 := {∥MV ∥2 > R} , Ẽ3 := {∥M∥2 > R/ξ1} .

Then E3 ⊆ Ẽ3 since ∥MV ∥2 ≤ ∥M∥2 ∥V ∥2 ≤ ξ1 ∥M∥2. Hence

Pr
(
Yc
t,R

)
= Pr (E1 ∪ E2 ∪ E3) ≤ Pr(E1) + Pr(E2) + Pr(Ẽ3).

Bounding E1. Write M = 1
r H̃H̃⊤ with H̃ ∈ Rd×r i.i.d. standard Gaussian. Let V = UΛW⊤ be

an SVD with Λ = diag(σ1, . . . , σk, 0, . . . ). Then

S = V ⊤MV =
1

r
WΛ⊤(U⊤H̃)(U⊤H̃)⊤ΛW⊤,

so by Lemma 5, λr(S) =
1
rσr(Λ

⊤U⊤H̃)2. With G := U⊤H̃ and the projector P onto the first k
coordinates,

σr(Λ
⊤G) ≥ ξkσr(PG) = ξkσr(G̃),

where G̃ ∈ Rk×r is i.i.d. standard Gaussian. Hence, using Lemma 8,

Pr (λr(S) ≤ t) = Pr
(
σr(G̃) ≤

√
rt/ξk

)
≤ exp

(
− 1

2

(√
k −
√
r − t/ξk

)2
+

)
. (21)

Bounding E2. Write M = 1
r H̃H̃⊤, set Y := V ⊤H̃ and Z := V ′⊤H̃ . Then

Pr
{
λr(V

⊤MV ) ≥ t, λr(V
′⊤MV ′) ≥ t

}
= E

[
1σr(Y )>

√
t E
[
1σr(ZY )>

√
t | Y

]]
.

To bound the inner term, we first denote P := V (V ⊤V )†V ⊤ and Θ := (V ⊤V )−1V ⊤V ′, and use
the conditional representation

ZY ⊤ | Y = Θ⊤Y Y ⊤ + S1/2GY ⊤,

where S := V ′⊤(I −P )V ′ and G ∈ Rm×r is distributed i.i.d. normal. So by the triangle inequality
for singular values,

σr(ZY ⊤) ≥ σmin(Θ
⊤Y )σr (Y )−

∥∥∥S1/2
∥∥∥
2
∥G∥2 ∥Y ∥ ≥ σmin(Θ|span(Y ))σ

2
r(Y )−

∥∥∥S1/2
∥∥∥ ∥G∥ ∥Y ∥ .

where
σmin

(
Θ|span(Y )

)
= inf

u∈span(Y ):∥u∥=1
∥Θu∥ ≥ ρk.

Hence, on the event
{
Y : σr(Y ) ≥

√
t+ η

}
,

Pr
(
σr(ZY ⊤) ≤ t | Y

)
≤ Pr

(
∥G∥2 ≥

σmin(Θ|span(Y ))(
√
t+ η)2 − t∥∥S1/2

∥∥ ∥Y ∥
)

≤ 2 exp

(
− 1

2

(
ρk(

√
t+η)2−t√

1−ρ2
k∥Y ∥

−
√
m−

√
r

)2

+

)
,
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using σmin(Θ|span(Y )) ≥ ρk,

∥S1/2∥2 = sin θmax =
√
1− cos2 θmax =

√
1− σk(Θ)2 =

√
1− ρ2k ,

and the Gaussian spectral–norm tail (Lemma 7) Pr (∥G∥2 ≥
√
m+

√
r + u) ≤ 2e−u2/2.

Substituting the conditional bound into the expansion gives

E
[
1σr(Y )>

√
tE
{
1σr(Z)>

√
t | Y

}]
≥ Pr

(
σr(Y ) >

√
t+ η

)(
1− 2 exp

(
− 1

2

(
ρk(

√
t+η)2−t√
1−ρ2

kR
−
√
m−

√
r

)2

+

))
,

because the inner probability is non-decreasing in σr(Y ) and we restrict to {σr(Y ) ≥
√
t + η}.

Now use the standard smallest–singular–value tail (Lemma 8) for Y = V ⊤H̃ with σk(V ) ≥ ξk:

Pr
(
σr(Y ) ≤

√
t+ η

)
≤ exp

(
− 1

2

(√
k −
√
r − (

√
t+ η)/ξk

)2
+

)
,

so

Pr
{
λr(V

⊤MV ) ≥ t, λr(V
′⊤MV ′) ≥ t

}
≥
(
1− e

− 1
2 (

√
k−

√
r−(

√
t+η)/ξk)

2

+

)1− 2e
− 1

2

(
ρk(

√
t+η)2−t√
1−ρ2

k
R

−
√
m−

√
r

)2

+



≥ 1− e
− 1

2 (
√
k−

√
r−(

√
t+η)/ξk)

2

+ − 2e

− 1
2

ρk(
√
t+ η)2 − t√
1− ρ2kR

−
√
m−

√
r

2

+ .

Bounding Ẽ3. Since M = 1
r H̃H̃⊤, we have ∥M∥2 = 1

r

∥∥∥H̃∥∥∥2
2
. Using Lemma 7, we obtain

Pr
(
Ẽ3
)
= Pr (∥M∥2 > R/ξ1) ≤ 2 exp

(
−c
(√

R
ξ1
−
√
d−
√
r
)2
+

)
. (22)

Putting the three bounds together yields the stated δ.

P(Ẽc1 ∪ Ẽc2 ∪ Ẽc3) ≤ P(Ẽc1 ∪ Ẽc2) + P(Ẽc3) = 1− P(Ẽ1 ∪ Ẽ2) + P(Ẽc3)

≤ exp

(
−1

2

(√
k −
√
r −

(√
t+ η

)
/ξk

)2
+

)

+ 2 exp

−1

2

(
ρk(
√
t+ η)2 − t√
1− ρ2kR

−
√
m−

√
r

)2

+


+ 2 exp

−c(√R
ξ1
−
√
d−
√
r

)2

+



Lemma 16 (PDF of MV when V ∈ Rd×m). Let z1, ..., zr be i.i.d. N (0, Id/r) and M =∑r
i=1 ziz

T
i . For V ∈ Rd×m of rank k with r ≤ k ≤ min(m, d), the density of Y = MV is

fMV (Y ) =

Cm,k,r,d

∣∣V ⊤V
∣∣m−r

2

+
|S|

r−d−1
2

+ exp

(
− rTr (S†Y ⊤Y )

2

)
, if S = V ⊤V ≻ 0 & rank(S) = r,

0, otherwise

for Cm,k,r,d = r
m(r+d−m)

2

(2π)m(d−k)2
mr
2 Γm( r

2 )

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Remark 1. For a symmetric matrix A with eigenvalues {λi} define

|A|+ :=
∏
λi>0

λi

Proof of Lemma 16. Let S = V ⊤MV . Then S ∼ 1
rWishartm(r, V ⊤V ). Write zi = Bai + ui

with ai := V ⊤zi, ui := P⊥zi, B := V
(
V ⊤V

)†
, P⊥ := I − V (V ⊤V )†V ⊤. Then

Y =

r∑
i=1

zia
⊤
i = BS + UA,

where U = [u1, . . . , ur] ∈ Rd×r and A = [a⊤1 ; . . . ; a
⊤
r ] ∈ Rr×m with S = A⊤A. One can check

U ⊥ A, and conditionally on S, UA ∼ MNd×m(0, 1
rP⊥, S). Here, MN denotes the matrix normal

distribution.

Let Π⊥ ∈ Rd×(d−k) be an orthonormal basis of col(P⊥) and set Y⊥ := Π⊤
⊥Y . Then Y⊥ | S ∼

MN(d−k)×m(0, 1
r Id−k, S). The change of variables T (Y ) := (S, Y⊥) = (V ⊤Y,Π⊤

⊥Y ) has Jaco-

bian determinant
∣∣V ⊤V

∣∣m/2

+
. Using the Wishart density for S, the matrix-normal density for Y⊥ | S,

and change of variables formula we obtain

fY (y) = Cm,k,r,d

∣∣V ⊤V
∣∣m−r

2

+
|S|

r−d−1
2

+ exp
(
−r

2

(
Tr
((

V ⊤V
)†

S
)
+Tr

(
S†Y ⊤

⊥ Y⊥
)))

.

Since Y ⊤
⊥ Y⊥ = Y ⊤Y − Y ⊤V (V ⊤V )†V ⊤Y = Y ⊤Y − S⊤(V ⊤V )†S and S = S⊤, we have

Tr
((

V ⊤V
)†

S
)
− Tr

(
S†S

(
V ⊤V

)†
S
)
= Tr

((
V ⊤V

)† (
SS†S − S

))
= 0,

using SS†S = S. Therefore the exponent simplifies to − r
2 Tr(S

†Y ⊤Y ), as claimed.

D PRIVACY AMPLIFICATION AND APPLICATIONS

Lemma 4. Let v, v′ ∈ Rd be two unit vectors with with cos∠ (v, v′) = v⊤v′ ≥ ρ, z ∈ N (0, Id),

δ > 0 and γ > 1−ρ
1+ρ

√
2
d log

8
δ , then with probability at least 1− δ, we have

cos

(
∠

(
v +

γz

∥z∥2
, v′ +

γz

∥z∥2

))
≥ ρ+ s > ρ,

where s =
(1−ρ)γ2−4γ

√
2
d ln 8

δ

1+γ2+2γ
√

2
d ln 8

δ

.

Proof. Given two firxed unit norm vectors v and v′ with alignment ρ := v⊤v′, we want to show that
ṽ := v + γz

∥z∥2
and ṽ′ := v′ + γz

∥z∥2
are more aligned than v and v′ with high probability. Note we

assume −1 ≤ ρ < 1 as ρ = 1 means v = v′ and therefore is a trivial case.

Let u = z
∥z∥2

be a uniform vector from the d-dimensional unit Euclidean ball. Then, we can rewrite
ṽ = v + γu and ṽ′ = v′ + γu and

cos(ṽ, ṽ′) = cos

(
v +

γz

∥z∥2
+ γu

)
=
⟨v + γu, v′ + γu⟩
∥v + γu∥ ∥v′ + γu∥

≥ γ2 + ρ+ γ (⟨v, u⟩+ ⟨v′, u⟩)√
1 + γ2 + γ ⟨v, u⟩

√
1 + γ2 + γ ⟨v′, u⟩

.
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By Lemma 9, setting t =
√

2
d ln

8
δ

P

[
⟨v, u⟩ ≥

√
2

d
ln

8

δ

]
≤ δ

4
, P

[
⟨v′, u⟩ ≥

√
2

d
ln

8

δ

]
≤ δ

4

P

[
⟨v, u⟩ ≤ −

√
2

d
ln

8

δ

]
≤ δ

4
, P

[
⟨v, u⟩ ≤ −

√
2

d
ln

8

δ

]
≤ δ

4

Therefore, with probability at least 1− δ,√
2

d
ln

8

δ
≤ ⟨v, u⟩ ≤

√
2

d
ln

8

δ
, −

√
2

d
ln

8

δ
≤ ⟨v′, u⟩ ≤

√
2

d
ln

8

δ
(23)

Which means with probability at least 1− δ

cos (v + γu, v′ + γu) ≥ ρ− γs+ γ2

1 + γs+ γ2

where s = 2
√

2
d ln

8
δ . Subtracting ρ from both sides and simplifies the equation, we complete the

proof.

E ADDITIONAL RESULTS ON CONVERGENCE GUARANTEE OF RP-GD

In this section, we analyse the convergence guarantee of projection mechanism when applied to
convex optimization problem. We show that under the minimum alignment assumption between the
dataset collection D and the gradient trajectory f , gradient descent with projection mechanism (RP-
GD) achieves a convergence rate comparable to, and in some regimes better than, that of DP-GD for
smooth convex optimization.

For a dataset S = {(xi, yi)}ni=1, let ℓ : W × (X × Y) → R+ be a loss function. Then, let
L :W×Z → R+ be the loss function over the entire dataset, i.e. L(w;S) = 1

n

∑n
i=1 ℓ(w, (xi, yi)).

The optimization problem is defined in Equation (24).

ŵ = arg min
w∈W

1

n

n∑
i=1

ℓ(w, xi, yi) =: arg min
w∈W

L(w;S). (24)

The most common private approach is DP-GD (equivalently, Noisy-GD when there is no gradient
clipping), which attains a convergence rate of

√
d/(Tε) (Abadi et al., 2016; Bassily et al., 2014). At

each step, DP-GD applies the Gaussian mechanism (Lemma 1) to the gradient and then performs
a gradient-descent update with the noisy gradient. In contrast, we propose Randomly Projected
Gradient Descent (RP-GD): first apply the projection mechanism (Definition 1) to the gradient, then
take a gradient descent step with the projected output. Specifically, sample M ∼ Wd(σ

2Id, r) once
and update at each time step with the following update function,

wt+1 = wt − ηM∇L(wt). (25)

RP-GD enjoys the following convergence guarantee.

Theorem 3. For a dataset collection D and the query function f(w0, S) =
∑T

i=0∇L(wi;S), let
the minimum alignment of f onD be ρ. For any dataset S ∈ D, if d ≤ 3

4r, r ≥ 16 log 1
δ and assume

L is convex and β-smooth, then RP-GD is (ερ, δ)-DP where ερ = Cr
√
1− ρ/ρ for some constant

C independent of d, r, and with probability at least 1− 2δ,

L(wT )− L⋆
S = O

(
β ∥w0 − w⋆

S∥2
2T

)
where w⋆

S = argminL(w;S) and L⋆
S = minL(w;S).
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Proof. Convergence: For a dataset S ∈ D, condition on a projection matrix M with λmax(M) > 0

and λmin(M) > 0. We first show that L(wT )− L⋆
S ≤

βλmax∥w0−w⋆
S∥2

Tλmin
.

Let vt = ∇L(wt). By smoothness of L,

L(wt+1) ≤ L(wt)− ηv⊤t Mvt +
βη2

2
∥Mvt∥2

≤ L(wt)− ηv⊤t Mvt +
βη2

2
λmaxv

⊤
t Mvt

≤ L(wt)− η

(
1− βηλmax

2

)
v⊤t Mvt

≤ L(wt)−
η

2
v⊤t Mvt

(26)

where the last inequality follows by η ≤ 1
2βλmax

. Rearranging,

v⊤t Mvt ≤
2

η
(L(wt)− L(wt+1)) (27)

Then

∥wt+1 − w⋆
S∥

2
M† = (wt+1 − w⋆

S)
⊤M†(wt+1 − w⋆

S)

= (wt − w⋆
S − ηMvt)

⊤M†(wt − w⋆
S − ηMvt)

= (wt − w⋆
S)

⊤M†(wt − w⋆
S)− 2ηv⊤t MM†(wt − w⋆

S) + η2v⊤t Mvt

= ∥wt − w⋆
S∥M† − 2ηv⊤t (wt − w⋆

S)− 2ηv⊤t (MM† − I)(wt − w⋆
S) + η2v⊤t Mvt.

(28)

By convexity of L,
L(wt)− L(w⋆

S) ≤ v⊤t (wt − w⋆
S)

Therefore, by convexity and Equation (27)

∥wt+1 − w⋆
S∥

2
M−1 ≤ ∥wt − w⋆

S∥M−1 − 2η (L(wt)− L(w⋆
S)) + 2η (L(wt)− L(wt+1))− 2ηv⊤t (MM† − I)(wt − w⋆

S)

= ∥wt − w⋆
S∥M−1 + 2η (L(w⋆

S)− L(wt+1)) + 2ηv⊤t (I −MM†)(wt − w⋆
S)
(29)

Rearrange,

L(wt+1)−L(w⋆
S) ≤

1

2η

(
∥wt − w⋆

S∥M−1 − ∥wt+1 − w⋆
S∥

2
M−1

)
+v⊤t (M

†M−I)(w0−w⋆
S) (30)

where the last part follows by wt = w0 +M
∑t

i=1 ηvt and (M†M − I)M = 0.

As L(wt) is monotonically decreasing (Equation (27)),

L(wT )− L(w⋆
S) ≤

1

T

T∑
t=1

L(wt)− L(w⋆
S)

≤ 1

2ηT

T∑
t=1

∥wt − w⋆
S∥M−1 − ∥wt+1 − w⋆

S∥
2
M† +

1

T

T∑
i=1

v⊤t (M
†M − I)(w0 − w⋆

S) ∵ Equation (30)

≤
∥w0 − w⋆

S∥M†

2ηT
≤ ∥w0 − w⋆

S∥λmax(M)

2Tλmin(M)
(31)

By initializing w0 ∼ N (0, Id/(dT )), the first term
∥∥(M†M − I)w0

∥∥ = O
(

1
Td

)
with high prob-

ability. (Variance σ2 cancels out; CHECK) By Lemma 8 and Lemma 7, for some t, t′, and for
M = σ2ZZ⊤ where Z ∈ Rd×r with each entry i.i.d. standard Gaussian

P(λmax(M) > σ2(
√
d+
√
r + t)2) = P(λmax(Z) >

√
d+
√
r + t) ≤ e−

t2

2
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Setting t =
√
2 log 1

ς , we have

P

λmax(M) >

(
√
d+
√
r +

√
2 log

1

ς

)2
 ≤ ς

As r ≥ 3d/4,

P

λmax(M) > σ2

(
2
√
r +

√
2 log

1

ς

)2
 ≤ P

λmax(M) > σ2

((
1 +

√
3

2

)
√
r +

√
2 log

1

ς

)2


≤ P

λmax(M) > σ2

(
√
d+
√
r +

√
2 log

1

ς

)2
 ≤ ς

(32)
Similarly,

P

λmin(M) < σ2

(
1

2

√
r −

√
2 log

1

ς

)2
 ≤ P

λmin(M) < σ2

(
√
r −
√
d−

√
2 log

1

ς

)2
 ≤ ς

(33)
Condition on these two events, which occur with probability at least 1−2ς , we substitute in λmax ≤

σ2
(
2
√
r +

√
2 log 1

ς

)2
and λmin ≥ σ2

(
1
2

√
r −

√
2 log 1

ς

)2
, which yields the desired result.

Our bound improves upon DP-GD when the dataset collection has well-aligned gradient sums. In
particular, when the minimum alignment is large (e.g., ρ = r

r+1 ), the privacy parameter ε remains
a constant, and RP-GD achieves an O(1/T ) convergence rate that is independent of the dimension
d. By contrast, if we fix ε = C, then DP-GD converges at rate O(

√
d/T ). For less aligned datasets,

for example, when 0 < ρ < 0.5, we obtain ε = O(d), and the convergence guarantee of RP-GD is
comparable to that of DP-SGD.

If the minimum-alignment assumption does not hold for the cumulative gradient over T steps, we
can relax it by requiring alignment only at the per-step gradient level and resampling a new pro-
jection at each step. This relaxation incurs an additional factor of T in the privacy guarantee due
to composition across steps. Notably, when r ≤ d, this procedure coincides with CompSGD (Ka-
siviswanathan, 2021), which also achieves nearly dimension-independent convergence guarantees.

Low-rank version also saves space and computation We note that Equation (25) is equivalent to
first performing a gradient descent in random projected subspaces using a variable z0 = Zw0 ∈ Rr

and the projection matrix Z ∈ Rd×r where M = ZZ⊤, by parameterizing wt = wt + Z⊤zt (Hao
et al., 2024). Therefore, when r < d, RP-GD is also more computationally and memory efficient.
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