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ABSTRACT

Representation learning is widely used for estimating causal quantities (e.g., the
conditional average treatment effect) from observational data. While existing rep-
resentation learning methods have the benefit of allowing for end-to-end learning,
they do not have favorable theoretical properties of Neyman-orthogonal learners,
such as double robustness and quasi-oracle efficiency. Also, such representation
learning methods often employ additional constraints, like balancing, which may
even lead to inconsistent estimation. In this paper, we propose a novel class of
Neyman-orthogonal learners for causal quantities defined at the representation
level, which we call OR-learners. Our OR-learners have several practical advan-
tages: they allow for consistent estimation of causal quantities based on any learned
representation, while offering favorable theoretical properties including double
robustness and quasi-oracle efficiency. In numerous experiments, we show that,
under certain regularity conditions, our OR-learners improve existing represen-
tation learning methods and achieve state-of-the-art performance. To the best of
our knowledge, our OR-learners are the first work to provide a unified framework
of representation learning methods and Neyman-orthogonal learners for causal
quantities estimation.

1 INTRODUCTION

Estimating causal quantities has many applications in medicine (Feuerriegel et al., 2024), policy-
making (Kuzmanovic et al.;2024), marketing (Varian, 2016)), and economics (Basu et al.,[2011). Here,
different causal quantities are of interest such as the conditional average treatment effect (CATE) and
the conditional average potential outcomes (CAPOs). For example, in personalized medicine, CATE
estimation can help in predicting the relative benefits of different treatment options, so that the one
with the best health outcome is selected.

Recently, representation learning methods have gained wide popularity in estimating causal quantities
from observational data (e.g.,|Johansson et al., 2016; Shalit et al., 2017} |Hassanpour & Greiner,
2019azb; Zhang et al.L|2020; |Assaad et al., 2021} Johansson et al.|[2022)). One benefit of representation
learning methods is that they allow for end-fo-end learning. Specifically, these methods aim to learn
low-dimensional representations where sometimes additional constraints are enforced to tackle
inherently causal inductive biases. This typically helps to reduce the estimation variance, especially
in low-sample low-overlap settings. For example, balancing is a common constraint to reduce
the influence of instrumental variables among the covariates (Johansson et al., 2022}, which helps
to improve the finite-sample performance when the data-generating mechanism indeed has many
instruments. Similarly, disentanglement aims to address an inductive bias that different nuisance
functions might share or not share common information.

However, constraints on representations can be problematic: constrained representations can lose
their asymptotic validity when too strict constraints are applied and estimation becomes inconsistent.
This phenomenon is also known as representation-induced confounding bias (Johansson et al.| 2019;
Melnychuk et al.,[2024). As a remedy, we later present a framework to quasi-oracle efficiently (and,
thus, consistently) estimate causal quantities even based on asymptotically invalid representations.

A related literature stream seeks to estimate causal quantities through a model-agnostic framework of
Neyman-orthogonal learners. Prominent examples are the DR-learners and the R-learner (Vanstee-
landt & Morzywotekl [2023; |Morzywolek et al.,|2023). They usually split estimation into two stages:
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Figure 1: Overview of the connections between representation learning and the estimation of causal
quantities. (i) Representation learning can help in estimating causal quantities by providing tools
to address different causal inductive biases (e. g., balancing, invertibility, and disentanglement).
Conversely, (ii) the estimation of causal quantities can be performed based on general-purpose
constrained representations (e. g., fair representations or representations that are learned in an un-
/self-supervised way). Our OR-learners can be used in both cases.

nuisance functions estimation and target model fitting, and, notably, any machine learning model can
be employed at each of the stages. Unlike end-to-end representation learning, Neyman-orthogonal
learners offer several favorable theoretical properties. For example, under regularity conditions,
Neyman-orthogonal learners guarantee double robustness and quasi-oracle efficiency in asymptotic
regime (Chernozhukov et al.,|2017 [Foster & Syrgkanis|, [2023)). Further, by employing a separate
target model in the second stage, Neyman-orthogonal learners help to address another causal inductive
bias, namely that the ground-truth CATE function can be “simpler” than individual CAPOs (Curth &
van der Schaar,2021a)). Yet, the connections between Neyman-orthogonal learners and the end-to-end
representation learning methods are still not well understood.

In this paper, we unify two streams of work, namely, representation learning methods and Neyman-
orthogonal learners. Specifically, we propose a novel, general framework to perform an asymptotically
quasi-oracle efficient (and, thus, consistent) estimation of causal quantities based on the learned
representations, which we call orthogonal representation learners (OR-learners). Our OR-learners
are highly flexible as they target at estimating different causal quantities, like CAPOs and CATE, at
the representation level of heterogeneity (Fig. [T). Furthermore, our OR-learners effectively solve the
drawbacks of constrained representations (i.e., representation-induced confounding bias caused by too
strict constraints) and bring favorable theoretical properties associated with Neyman-orthogonality,
namely, double robustness and quasi-oracle efficiency.

In sum, our contributions are as followsﬂ (1) We introduce the OR-learners, a novel framework to
unify representation learning methods and Neyman-orthogonal learners. (2) We show theoretically
that our OR-learners address the drawbacks of existing end-to-end representation learning methods.
That is, our OR-learners allow us to perform a quasi-oracle efficient estimation of causal quantities
while offering other favorable properties related to Neyman-orthogonality. (3) We demonstrate that,
under regularity conditions, our OR-learners improve the performance in estimating causal quantities
for existing representation learning methods.

2 RELATED WORK

Our work aims to unify two streams of work, namely, representation learning methods and Neyman-
orthogonal learners. We briefly review both in the following (see the full overview in Appendix [A).

Representation learning for estimating causal quantities. Several methods have been previously
introduced for end-to-end representation learning of CAPOs/CATE (see, in particular, the seminal
works by Johansson et al.l [2016; Shalit et al.l |2017; Johansson et al.l 2022). A large number of
works later suggested different extensions to these. Existing methods fall into three main streams:
(1) One can fit an unconstrained shared representation to directly estimate both potential outcomes
surfaces (e.g., TARNet [Shalit et al., 2017)). (2) Some methods additionally enforce a balancing
constraint based on empirical probability metrics, so that the distributions of the treated and untreated
representations become similar (e.g., CFR and BNN Johansson et al., 2016} |Shalit et al.| 2017). Im-
portantly, balancing based on empirical probability metrics is only guaranteed to perform a consistent
estimation for invertible representations since, otherwise, balancing leads to a representation-induced
confounding bias (RICB) (Johansson et al., 2019; Melnychuk et al. [2024). Finally, (3) one can
additionally perform balancing by re-weighting the loss and the distributions of the representations
with learnable weights (e.g., RCFRJohansson et al.,2022)). We later adopt the representation learning
methods from (1)—(3) as baselines.

'Code is available at ht tps : //anonymous . 4open.science/r/OR-learners)
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Neyman-orthogonal learners. Causal quantities can be estimated using model-agnostic methods,
so-called meta-learners (Kiinzel et al.,2019). Prominent examples are the R-learner (Nie & Wager,
2021) and DR-learner (Kennedyl [2023;; |Curth et al.| [2020). Meta-learners have several practical
advantages (Morzywolek et al., 2023): (i) they oftentimes offer favorable theoretical guarantees
such as Neyman-orthogonality (Chernozhukov et al., 2017; Foster & Syrgkanis, [2023); (ii) they can
address the causal inductive bias that the CATE is “simpler” than CAPOs (Curth & van der Schaar
2021a), and (iii) the target model obtains a clear interpretation as a projection of the ground-truth
CAPOs/CATE on the target model class. (Curth & van der Schaar (2021b) provided a comparison of
meta-learners implemented via neural networks with different representations, yet with the target
model based on the original covariates (the representations were only used as an interim tool to
estimate nuisance functions). However, in our work, we study the learned representations as primary
inputs to the target model.

Research gap. Our work is the first to unify representation learning methods and Neyman-orthogonal
learners. As a result, one can combine any representation learning method from above with our
OR-learners, which then (i) offer favorable properties of Neyman-orthogonality and (ii) address the
causal inductive bias that the CATE is “simpler” than CAPOs.

3 PRELIMINARIES

Notation. We denote random variables with capital letters Z, their realizations with small letters
z, and their domains with calligraphic letters Z. Let P(Z), P(Z = z), E(Z) be the distribution,
probability mass function/density, and expectation of Z, respectively. Let P, { f(Z)} = 2 >°7 | f(z;)
be the sample average of f(Z), and [-||, be the Ly-norm with || f|| ;. = /E(f(Z)?). Then, we
define the following nuisance functions: 7%(x) = P(A = a | X = ) is the covariate propensity
score for the treatment A, and pZ(z) = E(Y = y | X = z, A = a) is the expected covariate-
conditional outcome for the outcome Y. Similarly, we define 7¢(x) = P(A = a | (X) = ¢) and
u(p) = E(Y =y | ®(X) = ¢, A = a) as the representation propensity score and the expected
representation-conditional outcome for a representation ®(z) = ¢, respectively. Importantly, the
upper indices in 7%, u*, v, ¢ indicate whether the corresponding nuisance functions depend on
the covariates x or on the representation ¢. In, our work, we adopt the standard Neyman-Rubin
potential outcomes framework (Rubin} |1974). Let Y'[a] be the potential outcome after intervening on
the treatment do(A = a), and let Y [1] — Y'[0] be the treatment effect.

Problem setup. To estimate the causal quantities, we make use of an observational dataset D
that contains high-dimensional covariates X € X C R a binary treatment A € {0,1}, and a
continuous outcome Y € Y C R. For example, a common setting is anti-cancer therapy, where the
outcome is the tumor growth, the treatment is whether chemotherapy is administered, and covariates
are patient information such as age and sex. The dataset D = {x;, a;,y;}"; is assumed to be
sampled i.i.d. from a joint distribution P(X, A, Y"), where n is the dataset size.

Causal quantities. We are interested in the estimation of two major causal quantities at the covariate
level of heterogeneity: conditional average potential outcomes (CAPOs) given by £ (x), and the
conditional average treatment effect (CATE) given by 7% (z), with

La(w) =E(Ya] | X =2) and 7%(x) =E(Y[1] - Y[0] | X = z) = & (2) — &o (@) €]

The estimation of causal quantities can be alternatively formulated as a mean squared error (MSE)
minimization task:
£ () = argminE(Y[a] — g(X))* and 77() = argminE ((Y[1] - Y[0]) — g(X))*, @
9€g 9€9

where G is the class of all measurable functions g(-) : X — ). Finally, to estimate the causal
quantities from the observational data, we make standard identifiability and smoothness assumptions

(see Appendix [B).

3.1 META-LEARNERS FOR CAPOs AND CATE

Plug-in learners. A naive way to estimate CAPOs and CATE is to simply estimate 1§ (x) and if ()
and ‘plug them into’ the identification formulas for CAPOs and CATE. For example, an S-learner
(S-Net) fits a single model with the treatment as an input, while a T-leaner (T-Net) builds two models
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for each treatment (Kiinzel et al.| 2019). Many end-to-end representation learning methods, such as
TARNet (Shalit et al.,[2017) and BNN without balancing (Johansson et al.,|2016)), can be seen as
variants of the plug-in learner: In the end-to-end fashion, they build a representation of the covariates
¢ = ®(z) € & C R% and then use ¢ to estimate 1% (z) = [1%(®(z)) with the S-Net (BNN w/o
balancing) or the T-Net (TARNet).

Yet, plug-in learners have several major drawbacks (Morzywolek et al.| 2023} |Vansteelandt &
Morzywotlekl 2023). (a) They do not account for the selection bias, namely, that /i is estimated better
for the treated population and /i for untreated. (b) In the case of CATE estimation, the plug-in learners
might additionally fail to address the causal inductive bias that the CATE is a “simpler” function than
both CAPOs, as it is impossible to add additional smoothing for the CATE model separately from
CAPOs models. (c) It is also unclear how to consistently estimate the CAPOs/CATE depending on the
subset of covariates V' C X. For example, it is unclear how to estimate representation-level CAPOs,
£9(¢) = E(Y]a] | ®(X) = ¢), and CATE, 7%(¢) = E(Y[1] — Y[0] | ®(X) = ¢), especially when
the representations are constrained.

Working model & target risks. To address the shortcomings of plug-in learners, two-stage meta-
learners were proposed (see Appendix . They proceed in three steps. (1) First, they choose a
target working model class, G = {g(-) : V C X — Y} such as, e. g., neural networks. A target
model takes a (possibly confounded) subset V' of the original covariates X as an input and outputs
the prediction of causal quantities conditioned on V, namely CAPOs, £¥(v) = E(Y[a] | V = v) and
CATE, 7% (v) = E(Y[1] = Y[0] | V = v).

2) Then, two-stage meta-learners formulate one of the target risks for g(v), where v € V. There are
multiple choices for choosing a target risk, each with different interpretations and implications for
finite-sample two-stage estimation. For example, two usual target risks for CAPOs are based on the
MSE (Vansteelandt & Morzywotekl 2023)):

Lya(g:m) =E(Y[a] —g(V))*  and  Le,(g,m) = E (15 (X) — g(V))?, (3)
where V C X, n = (u¥, n?) are nuisance functions (expected covariate-conditional outcomes and
covariate propensity score) that influence the target risks. Minimizers of both Ly, and L¢, would be
the same if we had access to infinite data for potential outcomes, Y'[a], and the ground-truth expected
covariate-conditional outcomes, p%. Yet, the values of both Ey[a] and L, are generally different,
which influences finite-sample two-stage learning. At the same, CATE only allows for an MSE target
risk, similar to £¢, (Morzywolek et al., 2023)

L-(g,m) =E (15 (X) — p5 (X)) — g(V))*. @)
Also, for CATE estimation, we can consider an overlap-weighted MSE alternative of £, (g) (Foster
& Syrgkanis| 2023 Morzywolek et al.,[2023), namely:

Lagrsr(91) = E [ (X) E (X) (5 (X) = 5 (X)) — 9(V))?] . )

Unlike the plug-in learners, the population minimizers of the target risks in Eq. (3) and (@) can recover
the representation-level CAPOs/CATE (see Remark [T) of Appendix [C).

Remark 1 (Identifiability of V'-conditional causal quantities). The V -conditional CAPOs and CATE
are identifiable as population minimizers of the target risks from Eq. (3) and @), respectively, if they
are contained in the working model class, i.e., £, € Gand TV € G.

3) In the last step, two-stage meta-learners minimize a chosen target risk, ﬁ(g, 7)), which is estimated
using observational data and estimated at the first-stage nuisance functions, 7). The latest step then
yields so-called Neyman-orthogonal learners when the target risk is estimated with semi-parametric
efficient estimators (Robins & Rotnitzkyl [1995; [Foster & Syrgkanis), [2023)).

Neyman-orthogonal learners. Efficient estimation of the target risks introduces the well-known
class of Neyman-orthogonal learners. e CAPOs: For example, efficient estimators of MSE target
risks for CAPOs yield two DR-learners with the following losses:

Evto.i) =B HEZE (v -0+ (1- HES) ar0 -0, ©
—a 2
Leator) = Bu{ (HES (v —az00) + 00 - a0)) . 0

?An analogue to the first target risk of CAPOs, namely, Ly1)-y(o(9) = E((Y[1] = Y[0]) — g(V))?,
contains a counterfactual expression, Y'[1] — Y'[0], and is, thus, unidentifiable.
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The first learner, ﬁy[a] (g,7), is known as DR-leaner in the style of |[Foster & Syrgkanis| (2023)), while
the second one, ﬁga (g,7), is referred to as Kennedy| (2023)-style DR-learner. e CATE: Here, an

efficient estimator for target MSE, £, (g, ), is the DR-learner in the style of [Kennedy| (2023); and an
efficient estimator for overlap weighted MSE, £, (g, 1), is the R-learner (Nie & Wager, 2021))
with the following loss:

. A 1—-A ) 2
£r(g,7) = Pn{ (W(Y = BEO0) = 2 (V= 0) 00 — 3 (6 - g<v>) } ®)

Erpmarlai) = Pu{ ((v = 2(3)) - (4= 57 00)a01) ] o

where #(X) = E(Y | X = &) = % (X) i (X) + 78 (X) a5 (X).

Apart from addressing the issues of plug-in learners (a)—(c), Neyman-orthogonal learners provide two
favorable asymptotical theoretical properties (Foster & Syrgkanis| 2023; | Kennedyl, 2023): double
robustness and quasi-oracle efficiency, and, thus, are (in some sense) asymptotically optimal for
causal quantities estimation (Balakrishnan et al.} 2023). Double robustness states that, if one of the
nuisance functions is estimated consistently, then the V'-conditional CAPOs/CATE are estimated
consistently, and quasi-oracle efficiency allows for the minimizer of the target loss with the estimated
nuisance functions to be nearly identical to the minimizer of the target loss with the oracle nuisance
functions even if the nuisance functions are estimated with slow rates (see Appendix [B]for the further
details). We refer to Remark 2]in Appendix [C|for a formal statement about double robustness and
quasi-oracle efficiency.

Remark 2 (Double robustness and quasi-oracle efficiency of Neyman-orthogonal learners). Under
mild conditions, the following inequality holds for the estimators of V -conditional CAPOs/CATE:
the estimated target model, § = argmin g L(g,n), and the ground-truth target model, g* =

argmin g £(g,7n):
1§ = g*II7, < O(Lo(8,9) — Lo(g*, 7)) + R2(n.7), (10)

where o € {Y|a], &, T, mom17}, and R%(n,7) is a second-order remainder which includes nuisance
functions estimation errors of the higher order (> 2). Moreover, DR-learners for CATE and CAPOs
obtain the double robustness property.

4 ORTHOGONAL REPRESENTATION LEARNING

Motivation. The theory on Neyman-orthogonal learners (Morzywolek et al.,|2023; [Vansteelandt &
Morzywolek, 2023)) does not provide a guidance on how to choose V' C X. Also, to the best of our
knowledge, Neyman-orthogonal learners were not studied through the lens of different representations
®(X), chosen in place of V. For example, if the representation ®(.X) itself is learned to be predictive
of p7, as in all the end-to-end representation learning methods, fitting the target model based on
V = ®(X) may be beneficial compared to other choices of V. We aim to study this research gap
and thus introduce a novel class of Neyman-orthogonal learners called orthogonal representation
learners (OR-learners).

Overview of our OR-learners. Our OR-learners use neural networks to fit a target model g based on
the learned representations ®(X ). They proceed in three stages (see Fig.: (0) fitting a representation
network, (1) estimating nuisance functions (if necessary), and (2) fitting a target model. At the stage
(0), any representation learning method can be performed. Then, at the stage (1), we might need
to additionally fit nuisance functions (e. g., when the constrained representations were used at the
stage (0) so that ¢ can be inconsistent wrt. 4%). Finally, at the stage (2), we utilize different
DR- and R-losses, presented in Sec.[3.1] to fit the target model and, thus, yield a final estimator of
CAPOs/CATE.

Variants. In the following, we discuss different variants of our OR-learners depending on the type
of representations they are based: in Sec. .1 .2] and £.3] we separately consider unconstrained,
constrained invertible and constrained non-invertible representations. For the latter two types of
representations, we consider balancing with empirical probability metrics as the main constraint.
For each, we present new theoretical results for our OR-learners, where we discuss the following
questions: (i) How can the learned representation space be interpreted? (ii) Does the representation
ensure asymptotic validity in light of the representation-induced confounding bias (RICB)? (iii) How
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will our OR-learners help in that the target model based on the representation g(¢) can outperform
the original end-to-end representation learning predictor /1#? and (iv) How can the trained target
model be interpreted?

4.1 OR-LEARNERS FOR UNCONSTRAINED REPRESENTATIONS

We consider representations ®(X) as unconstrained if they are outputs of some fully-connected
subnetwork, FC,, and the overall output, % (®(X)), aims to minimize a (weighted) MSE loss wrt.
to the outcome Y (see stage (0) in Fig.[2). Examples include vanilla representation networks without
balancing, e. g., TARNet (Shalit et al.,|2017), BNN (Johansson et al.,|2016), DragonNet (Shi et al.,
2019), CFR-ISW (Hassanpour & Greiner, [2019a), and BWCFR (Assaad et al., 2021)).

(i) Interpretation of the learned representations. Neural networks can handle increasingly more
complicated regression tasks by simply adding more layers. This can be formalized with the notion of
(Holder) smoothness: Each layer induces a new space in which the ground-truth regression function
becomes smoother and thus easier to estimate (see Remark 3]in Appendix [C).

Remark 3 (Smoothness of the hidden layers). Under mild conditions on the representation network,
there exists a hidden layer (marked by V') of the network with an increased smoothness.

In our setting of CAPOs/CATE estimation, we consider V' = ®(X). Thus, if learned well enough,
the representation-subnetwork FC,4 and the induced representation space ®(-) : X — & should
simplify the task of CAPOs/CATE estimation.

(ii) Validity wrt. the RICB. The unconstrained representations ®(X) can be also considered
asymptotically valid when ds > 2. As an example of valid representation ®(X) with dy = 2, we
can consider {x§(X), u7(X)} (see Proposition ] in Appendix[C).

Proposition 4 (Valid unconstrained representation with d, = 2). The representation ®(X) =
{pg(X), (X))} is valid for CAPOs and CATE.

These representations can be learned arbitrarily well in the asymptotic regime, given sufficiently
deep representation subnetwork, FC,4, with unconstrained representations (that follows from the
universal approximation theorem). Hence, in the case of dg > 2, the unconstrained representations
do not induce the representation-induced confounding bias (RICB). That is, although, in general,
(Y[0],Y[1]) )L A | ®(X), the representation contains all the sufficient information for estimation
of uZ, and, hence, the causal quantities can be consistently estimated solely with ®(X): £*(z) =
EX(®(x)) = pl(®(x)) and 77(x) = 74(®(x)) = pl(®(x)) — p(®(x)). Additionally, in the
absence of constraints and the RICB, the original representation network /1 (®(z)) can be used as a
consistent estimator of % (z).

(iii) How will our OR-learners help? OR-learners proceed by using the original representation
network as the estimator for % (x) and additionally fit a covariate propensity score network 72 (z).
Therefore, the second-stage model g(¢) uses additional propensity information and achieves more
efficient estimation. Interestingly, BWCFR without balancing (an inverse propensity of treatment
weighted IPTW) learner) (Assaad et al.l |2021)) can be seen as a special case of our OR-learners.
It aims at estimating CAPOs and can achieve Neyman-orthogonality in a single-stage of learning.
This happens due to the fact that the target model, g(x), coincides with one of the nuisance functions,
[%(z): In this case, both DR-learner losses from Eq. (6) and ({7 simplify to the IPTW-learner loss (=
weighted MSE loss of BWCFR):

1{A=a}

Lyla(9= a5, 1) = Le, (9= pi,h) = Pn{ 2 (0 (Y - ﬂi(w))Q} (11

Notably, the same trick is not possible for CATE estimation, and, therefore, a second-stage model is
needed even for BWCFR.

(iv) Interpretation of the target model. The fitted target model can be interpreted as some form of a
conditional calibration of the original representation network. To see that, we can compare our target
model, for which V' = ®(X) holds, with two other alternatives (see stage (0) in Fig. : a target
model with the input V' = X and another target model with the input V' = {%, i7} (these are also
known as prognostic scores; see Appendix [A.T)). The first option (i.e., V' = X) suggests fitting the
target model completely from scratch and “misses” the opportunity to use learned representations. In
addition, the losses of the second-stage model can be highly unstable in low-sample regime (e. g,

due to high inverse propensity scores), which hinders the chances of g(V) = ¢g(X) to learn the
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Figure 2: An overview of our OR-learners. Our OR-learners proceed in three stages: (0) fitting
a representation network, (1) estimation of the nuisance functions (if necessary), and (2) fitting
the target models. For the stage (0), we also show different options for the target model input V.
Depending on the choice of the input V, the second-stage model g(V) obtains different interpretations:
it either learns a new model from scratch or performs a calibration of the representation network.

representations “from scratch”. On the other hand, the second option (i.e., V = {/i7, [ff}ﬂ can only
use the outputs of the representation network. For example, the optimal §(i17(x), i (x)) wrt. the

DR-loss in the style of (2023) would have the following form:

i s 1{A=a}Yy Jon 1{A = Jon

o). 7 (2) = BT i) ) + sz [1-E(HE S )| (1)
This implies that g performs the average calibration of the original representation network. Therefore,

when V = ®(X), the target model acts as a conditional calibration of the original representation
network, namely, a middle ground between full re-training and the calibration on average.

4.2 OR-LEARNERS FOR INVERTIBLE REPRESENTATIONS WITH BALANCING

Now, we turn our attention to how our OR-learners affect invertible representations, where we
enforce additional balancing with empirical probability metrics. Balancing aims to minimize some
empirical probability metric between treated and untreated distributions of the representations,
namely, dist(P(®(X) | A =0),P(®(X) | A =1)). To enforce balancing, we use empirical integral
probability metrics (IPMs), Wasserstein metric (WM), or maximum mean discrepancy (MMD), as
suggested in 2017 Johansson et al| 2022) (see definitions in Appendix [B). Further,
we use normalizing flows (Tabak & Vanden-Eijnden, [2010; [Rezende & Mohamed, [2015) for the
representation subnetwork FCy to enforce a strict invertibility. Examples of such networks are CFR
2017), CER-ISW (Hassanpour & Greiner} 20194), and BWCFR (Assaad et al., 2021) [
which we call CFRFlow, CFRFlow-ISW, and BWCFRFlow, respectively.

(i) Interpretation of the learned representations. As we used a normalizing flow as the repre-
sentation subnetwork, the transformation ®(-) becomes a diffeomorphism. Therefore, it can only
non-linearly scale down or up different parts of the original space X’. Then, in order to minimize
the original MSE loss, the representation network would scale up the parts of space to increase the
smoothness of uf () (see Remark and Proposition in Appendix . At the same time, balancing
can only scale down regions of the space X’ with the lack of overlap (see Proposition[6]in Appendix [C).

Proposition S (Smoothness via expanding transformations). A representation network with a repre-
sentation ®(X) achieves higher Holder smoothness of ug(-) by expanding some parts of X.

Proposition 6 (Balancing via contracting transformations). A representation network with a rep-
resentation ®(X) reduces the IPMs, namely, WM and MMD, between the distributions of the
representations P(®(X) | A =0) and P(®(X) | A = 0) by contracting some parts of X.

Therefore, the final learned representation would combine both scaling up due to effort in smoothing
and scaling down due to balancing. If both scaling up and down happen in the different areas of
the covariate space, then balancing could be beneficial. On the other hand, if both are happening in
the same parts of the space, balancing renders itself useless and any amount of it can only harm the
performance of the representation network. This important result allows us to formulate a crucial
inductive bias needed for balancing to perform well: areas with the lack of overlap need to coincide
with the areas with low heterogeneity of potential outcomes/treatment effect.

*We can also consider V' = #{; yet, it yields the same interpretation as V' = {ig, 47 }.
*CFR-ISW and BWCEFR additionally implement balancing by re-weighting, using inverse propensities of
treatment weights.
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Invertible representations with balancing (Sec. 4.2) Non-invertible representations with balancing (Sec. 4.3)
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Figure 3: Summary of the insights. Show are the insights from Sec. (left) and (right).
For both figures, we highlight in how our OR-learners (in red) can be beneficial
in the comparison with the base representation network (in blue). Specifically, we compare the
generalization performances in terms of MSE / precision in estimating heterogeneous effect (PEHE)
(lower is better), depending on the strength of balancing, . In both cases, we show the behavior
in a finite-sample vs. asymptomatic regime (n — o0). The plots point to the effectiveness of our
OR-learners in the asymptotic regime, especially when too much balancing is applied.

(ii) Validity wrt. the RICB. Invertible representations can not induce RICB (Melnychuk et al.| [2024).
However, by scaling up and down different parts of the space X, we can influence the low-sample
performance, e. g., the gradient descent depends on the scale of inputs (LeCun et al., 2002]).

(iii) How will our OR-learners help? We build our OR-learners similarly to Sec.[41] i.e., we used
the representation network outputs as the estimators of the nuisance functions, /i*(x). Notably, both
CRFFlow-ISW and BWCFRFlow, can be considered Neyman-orthogonal wrt. to the target risks for
CAPOs (see the similar argument in Sec. @(iii)). Our OR-learners then will effectively try to “undo”
the effect of balancing, as they reintroduce the propensity weighting. Specifically, DR-learners would
“re-focus” the target models on the parts of the representation space with the lack of overlap: These
regions will have large inverse propensity scores and, thus, the target model will have larger loss
there. At the same time, R-learner would be leaning to ignore these regions in its loss.

(iv) Interpretation of the target model. As it we describe in (iii), the target model “undoes” the
effect of balancing, and, therefore, it slowly loses its interpretation as the conditional calibration
model as more balancing is applied. We summarize the benefits of applying our OR-learners on top
of the invertible representations in Fig. |§| (left).

4.3 OR-LEARNERS FOR NON-INVERTIBLE REPRESENTATIONS WITH BALANCING

Finally, we discuss how our OR-learners perform based on the non-invertible (general) representations
where balancing with empirical probability metrics is enforced. This type of representations were
implemented by numerous methods (see the overview in Sec.[2).

(i) Interpretation of the learned representations. The learned representations have a similar
interpretation as in Sec[4.2](i). However, the representation network is now not only allowed to scale
down or up different parts of the original covariates space, but also to fold it, project it, etc. At the
same time, the results of Remark 3] Propositions [5]and [] still hold in this case. For example, when
balancing is applied, non-overlapping parts of the space could be simply folded together (Keup &
Helias, [2022)) or projected onto some subspace (i. e., transformations with the Lipschitz constant less
than one would be applied).

(ii) Validity wrt. the RICB. When too much balancing is applied, the representations may (i) lose
heterogeneity and (ii) induce the RICB (Melnychuk et al.,[2024])). That means that (i) no asymptotically
consistent estimation based solely on the representations ®(z) is possible, e. g., £%(x) # £2(®(x));
and (ii) the consistent estimation of the representation level causal quantities itself requires the access
to the original covariates, i.e., £ (¢) # u® (o).

(iii) How will our OR-learners help? Asymptotically, our OR-learners will help to remove the
RICB so that we can consistently estimate representation level CAPOs and CATE. Yet, they cannot
recover the lost heterogeneity and will only estimate causal quantities at XY level of heterogeneity,
where X¥ C X : XV 1l A. Interestingly, in the extreme case of the heterogeneity loss (i. e., when
representations are constant, ®(X) = 0), our OR-learners would yield (semi-parametrically) efficient
estimators of average potential outcomes (APOs) and average treatment effect (ATE). We refer to
Proposition[7]in Appendix [C|for further details.

Proposition 7 (Consistent estimation with ®(X') = 0). For constant representations ®(X) = 0, our
OR-learners yield semi-parametric efficient (augmented inverse propensity of treatment weighted
(A-IPTW)) estimators of APOs and ATE / overlap-weighted ATE.
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On the other hand, in the low-sample setting, our OR-learners will “undo” the effect of balancing by
employing the covariate propensity score. Therefore, our OR-learners on the one hand can “undo”
the benefit brought by balancing (if there is such a setting), and, on the other, partially fix the damage
after applying too much balancing.

(iv) Interpretation of the target model. The target model obtains similar interpretation as in Sec.
(iv). However, in the case of the non-invertible representations with balancing, only XV level causal
quantities can be estimated with the target model. We summarize the benefits of applying our
OR-learners on top of the non-invertible representations in Fig. 3| (right).

5 EXPERIMENTS

Setup. We now validate our intuition for OR-learners empirically. We follow prior literature (Curth
& van der Schaar, 2021b; Melnychuk et al.,|2024) and use several (semi-)synthetic datasets where
both counterfactual outcomes Y '[0] and Y'[1] and ground-truth covariate level CAPOs / CATE are
available. We perform experiments in three settings, in which we compare the performances of
vanilla representation learning methods with our OR-learners based on the learned representations.
o In Setting A, we compare different OR-learners based on unconstrained representations. e In
Settings B and C, we show how our OR-learners help to improve performance based on invertible
and non-invertible representations with balancing, respectively.

Performance metrics. We report (i) the out-of-sample root mean squared error (rMSE) and (ii) the
root precision in estimating heterogeneous effect ({PEHE) for CAPOs and CATE, respectively. How-
ever, as we are interested in how our OR-learners improve existing representation learning methods,
we report the difference in the performance between the original representation network and our
OR-learners. Formally, we compute A, (rtMSE) and A, (rPEHE), where ¢ € {&,,Y[a], 7, mom17} is
a specific learner for CAPOs or CATE. Datasets. We used three standard datasets for benchmarking
in causal inference: (1) a fully-synthetic dataset (d, = 2) (Kallus et al., 2019; Melnychuk et al.,
2024); (2) the semi-synthetic IHDP dataset (n = 672 4 75;d,, = 25) (Hill,[2011; Shalit et al., 2017);
(3) a collection of 77 semi-synthetic ACIC 2016 datasets (n = 4802, d,, = 82) (Dorie et al., 2019).
We refer to Appendix [D| for further details. Baselines. We implemented various state-of-the-art
representation learning methods, which act as baselines. We further combine each baseline with our
OR-learners (see implementation details in Appendix [E). Importantly, both the baselines and the
combination with our OR-learners undergo rigorous hyperparameter tuning, so that the comparison
is fair and any performance gain must be attributed to how we integrate a Neyman-orthogonal loss
(shown in green number across all tables). The baselines are: TARNet (Shalit et al.l2017); several
variants of BNN (Johansson et al.l 2016) (w/ or w/o balancing); several variants of CFR (Shalit et al.|
2017; Johansson et al., 2022) (w/ balancing, non-/ invertible); several variants of RCFR (Johansson
et al., [2018; |2022) (different types of balancing); several variants of CFR-ISW (Hassanpour &
Greiner, [2019a)) (w/ or w/o balancing, non-/ invertible); and BWCFR (Assaad et al., 2021) (w/ or
w/o balancing, non-/invertible).

m Setting A. In Setting A, we want to compare the performance of vanilla representation networks
(i.e., TARNet and BNN (o = 0.0)) and our OR-learners applied on top of the unconstrained
representations, where the latter is denoted V' = ®(X). We compare it with several other variants
of our OR-learners, where the target network has different inputs: V' = X and V' = {iiZ, 47}, yet
the same depth of one hidden layer. We also compare with the target model based on the covariates
space, but which matches the depth of the original representation network, V = X* (see Remark[g]
in Appendix [C]for description). Therefore, we provide a fair comparison of our OR-learners and
other alternative variants of DR/R-learners. Results. Table[T] shows the results for the ACIC 2016
dataset collection (we refer to Appendix [F] for additional results for the synthetic dataset). Therein,
our OR-learners with V' = ®(X) achieve superior performance for both CAPOs and CATE. Hence,
using the representation ®(X) as an input for the target model suggests a good trade-off between
full re-training (as it is the case with V' = X™* and V' = X) and a simple averaged calibration,
V= {ig, i}

m Setting B. Here, we study how our OR-learners counteract balancing of the invertible representa-
tions. For that, we compare a TARFlow (=TARNet with a normalizing flow as the representation
subnetwork) and other invertible representation networks with varying amounts of balancing «: CFR-
Flow, CFRFlow-ISW, and BWCFRFlow. For CAPOs estimation, CFRFlow-ISW and BWCFRFlow
are already Neyman-orthogonal (see Sec. and thus can be considered as special cases of our
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OR-learners. For the CATE, we use a second-stage model with the DR-learner. Results. The results
for Setting B are shown in Fig. f] (we refer to Appendix [F for additional results for the synthetic
and IHDP datasets). Therein, CFRFlow-ISW and BWCFRFlow improve the performance of the
CFRFlow. The reason is that the synthetic benchmark does not contain instruments and the amount
of balancing makes the task of estimating CAPOs/CATE harder.

m Setting C. In the final Setting C, we show how our OR-learners “undo” the damage brought by
too strict balancing, now including a possible RICB. For this, we use five different representation
networks (CFR, BNN, RCFR, CFR-ISW, and BWCFR) as baselines each with two types of balancing
and o = 0.1: Wasserstein metric (WM) and maximum mean discrepancy (MMD). Results. We report
the results in Table 2] for the ACIC 2016 dataset collection (we refer to Appendix [F for additional
results for the synthetic dataset). Here, we filtered only the runs, where balancing representations
deteriorated the performance in comparison to the vanilla versions of the representation networks,
namely, TARNet for CFR, RCFR, CFR-ISW, and BWCFR; and BNN w/o balancing for BNN. Again,
we observe that our OR-learners enhance the performance of the representation networks with
balancing, even if balancing itself is too restrictive.

Choice of a target model. In general, there is no nuisance-free way to do CATE/CAPOs model
selection based solely on the observational data (Curth & van der Schaar| [2023). Hence, in the
absence of the ground-truth counterfactuals or at least RCT data, one cannot reliably choose among
target models with different inputs (e.g., V = ®(X) vs. V = X) or different hyperparameters
(e.g., regularization strength). We can even consider asymptotically-equivalent alternative variants
of Neyman-orthogonal learners where constraints are enforced for the second-stage model (see
Remark [8]in Appendix [C). Yet, our choice of OR-learners with V = ®(X) is based on (i) a crucial
inductive bias that the high-dimensional covariates lie on some low-dimensional manifold and (ii) a
finite-sample consideration, that the representation network has learned it well in comparison to a
second-stage model with an unstable loss (e. g., DR-learner with high inverse propensities).

Implications. We discovered that the inductive bias for balancing is the exact opposite from the
regularity conditions of Neyman-orthogonal learners. In Sec.[4.2] we showed that balancing assumes
that the lack of overlap coincides with the lack of potential outcomes/treatment effect heterogeneity
(thus, these parts of covariate space will be ignored in the loss of the representation network). On
the other hand, Neyman-orthogonal learners do not make such an assumption and consider the areas
with the lack of overlap as uncertain. For example, the DR-learners would try to infinitely up-weight
any observations in those areas (due to extreme inverse propensity weights) and the R-learner would
ignore them (assign the weights of zero). Even if the inductive bias (that the lack of overlap implies
the lack of heterogeneity) can be assumed, it is still unclear how to choose an optimal amount of
balancing on practice (Curth & van der Schaar, [2023)). We thus advise against using balancing for
representations.

10
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A EXTENDED RELATED WORK

Our work aims to unify two streams of work, namely, representation learning methods (Sec.[A.2)
and Neyman-orthogonal learners (Sec.[A.T)). We review both in the following and then discuss the
implications for our work.

A.1 REPRESENTATION LEARNING FOR ESTIMATING CAUSAL QUANTITIES

Several methods have been previously introduced for end-to-end representation learning of CA-
POs/CATE (see, in particular, the seminal works by [Johansson et al., |2016; [Shalit et al., 2017}
Johansson et al., [2022)). Existing methods fall into three main streams: (1) One can fit an uncon-
strained shared representation to directly estimate both potential outcomes surfaces (e.g., TARNet
Shalit et al.;2017). (2) Some methods additionally enforce a balancing constraint based on empirical
probability metrics, so that the distributions of the treated and untreated representations become
similar (e.g., CFR and BNN lJohansson et al., 2016} [Shalit et al., 2017). Importantly, balancing
based on empirical probability metrics is only guaranteed to perform a consistent estimation for
invertible representations since, otherwise, balancing leads to a representation-induced confounding
bias (RICB)(Johansson et al., 2019;Melnychuk et al., 2024). Finally, (3) one can additionally perform
balancing by re-weighting the loss and the distributions of the representations with learnable weights
(e.g., RCFR Johansson et al., [2022).

Table 3] provides a summary of the main representation learning methods for the estimation of causal
quantities. Therein, we showed how different constraints imposed on the representations relate to
the consistency of estimation and Neyman-orthogonality of the underlying methods. We highlight
several important constrained representations below and discuss the implications for estimating causal
quantities.

Table 3: Overview of representation learning methods for CAPOs/CATE estimation. Here, parenthe-
ses imply the possibility of an extension.

Method ‘ Learner ‘ Constraints ‘ Consistency ‘ Neyman-orthogonality
t: f estimati

| ype | Balancing Invertibility ~Disentanglement | Ol estimation | CAPOs | CATE
TARNet (Shalit et al.] 2017] Johansson
et al.]2022) Pl ‘ - B - ‘ v ‘ X ‘ X
BNN (Johansson et al.{2016}; CFR (Shalit
et al.;20171Johansson et al.12022]; ESCFR | PI IPM (any) /- - X[/ invertible] X X
(Wang et al. 2024
RCFR (Johansson et al. 201812022 ‘ WPI ‘ IPM + LW (any) /- - ‘ X[ invertible] ‘ X ‘ X
DACPOL (Atan et al.J[2018); CRN (Bical
et al.1[2020); ABCEI (Du et al.]2021};
CT (Melnychuk et al.J2022]; MitNet (Guo, ISb B - X X X
et al.}2023]; BNCDE (Hess et al.} 2024
SITE (Yao et al.;2018] | PI | Ls MPD - | X[/ invertible] | X | X
DragonNet (Shi et al. |2019] | PL/OR) | - - - \ v | (/PRK) | @™
PM lSchwgb et al.;2018]; StableCFR (Wu WPI IPM + UVM _ _ v X X
et al.{2023]
CFR-ISW (Hassanpour & Greiner2019a}; ‘ WPI ‘ IPM + RP - - ‘ X ‘ X ‘ X
DR-CFR (Hassanpour & Greiner!2019b}; _ a 5A Y DR,
DeR-CFR (Wa et al 12032 ‘ ‘ IPM + CP - D = {9, 97, Y} v X[VPR IPM =0] X
DKLITE (Zhang et al.}[2020] | PI | cv RL - | X[/ invertible] | X | X
BWCFR (Assaad et al.J2021] | IPTW | IPM+CP - - \ v | xwPM=01 | X
SNet (Curth & van der Schaar) 2021b: P = {P°, A DY, DR, DR
Chauhan ct al J2023] ‘ DR ‘ - - PHO, ph1} 4 S 4
GWIB (Yang et al.|2024] | PI | M1 - - | X | x | x
OR-learners (our paper) ‘ DR/R ‘ (any) NFs /- (any) ‘ v ‘ /PRrs | /PRg ‘ /UR, R

Legend:
® Learner type: plug-in (PI); weighted plug-in (WPI); inverse propensity of treatment weighted (IPTW); doubly robust (DR); Robinson’s / residualized (R)
© Balancing: integral probability metric (IPM); learnable weights (LW): Jensen-Shannon divergence (JSD); local similarity (LS); upsampling via matching (UVM);
representation propensity (RP); covariate propensity (CP); counterfactual variance (CV); mutual information (MI)
o Invertibility: middle point distance (MPD); reconstruction loss (RL); normalizing flows (NFs)
o Neyman-orthogonality: DR-learner in the style of [Kennedy (2023} (DR ); DR-learner in the style of [Foster & Syrgkanis [(2023} (DRgs)

Disentanglement. |Shi et al.| (2019) proposed to use the shared representation, as in (1) TARNet,
to additionally estimate the propensity score. Then, Hassanpour & Greiner| (2019b); Wu et al.
(2022) suggested disentangling the representation of (1) TARNet or (2) CFR, so that different
parts of the disentangled representation can serve to estimate different nuisance functions (potential
outcomes surfaces and propensity score). Based on their work, |Curth & van der Schaar (2021b) and
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Chauhan et al.| (2023) further developed a general framework for disentangled representation based
on (1) TARNet as a flexible estimator of nuisance functions for different CATE meta-learners.

Balancing and invertibility. Following (2) CFR and BNN, several works proposed alternative
strategies for balancing representations with empirical probability metrics, e. g., based on adversarial

learning 2018}, [Curth & van der Schaar, 20212} Du et al., 2021}, Melnychuk et al., 2022}
Guo et a1.|, ; metric learning (Yao et al., 2018); counterfactual variance minimization (Zhang
et al.,2020); and empirical mutual information 2024). To enforce invertibility (and, thus,
consistency of estimation), several works suggested metric learning heuristics or
reconstruction loss (Zhang et al.l [2020). Other methods, extended balancing by re-weighting, as in
(3) RCFR, e. g., with weights based on matching (Schwab et al.| 2018; Wu et al., 2023)); with inverse
propensity of treatment weights (IPTW) (Hassanpour & Greiner, [2019aib; |Assaad et al., 2021},

2032).

Validity of representations for consistent and orthogonal estimation. As mentioned previously,
balancing representations with empirical probability metrics without strictly enforcing invertibility
generally leads to inconsistent estimation based on representations. This issue was raised as a
representation-induced adaptation error (Johansson et al., [2019) in the context of unsupervised
domain adaptation and as a representation-induced confounding bias (RICB) (Melnychuk et al.,[2024)
in the context of estimation of causal quantities. More generally, the RICB can be recognized as a
type of runtime confounding (Coston et al.|[2020)), i. ., when only a subset of covariates is available
for the estimation of the causal quantities. Several works offered a solution to circumvent the RICB
and achieve consistency, e. g., [Assaad et al.| (2021)) employed IPTW based on original covariates,
and Melnychuk et al.| (2024) used a sensitivity model to perform a partial identification. However, to
the best of our knowledge, no Neyman-orthogonal method was proposed to resolve the RICB (see

Fig. ).

Note on non-neural representations. Multiple works also explored the use of non-neural representa-
tions for the estimation of causal quantities, also known under the umbrella term of scores. Examples
include propensity/balancing scores (Rosenbaum & Rubinl |1 [Antonelli et al},2018), prognostic
scores (Hansenl 2008 [Huang & Chan, 2017 [Luo & Zhu, 2020; /Antonelli et al.| 2018; D" Amour &
[Franks|, 2021), and deconfounding scores (D’ Amour & Franks|, |2021)). However, we want to highlight
that these works focus on different, rather simpler than ours settings:

* Propensity, balancing, and deconfounding scores (Rosenbaum & Rubin| [1983) were employed the
estimate average causal quantities |Antonelli et al.| (2018));|D’ Amour & Franks|(2021). Examples
are average potential outcomes (APOs) and average treatment effect (ATE). This is because
they lose information about the heterogeneity of the potential outcomes/treatment effect. In our
work, on the other hand, we study a general class of heterogeneous causal quantities, namely,
representation-conditional CAPOs/CATE.

* Prognostic scores (Hansen| [2008) can be used for both averaged (Antonelli et al.| 2018}, [Luo &
Zhul,[2020; [D”Amour & Franks, 2021)) and heterogeneous causal quantities (Huang & Chanl [2017).
In (Huang & Chan| 2017;|Luo & Zhu| 2020), they are used in the context of a sufficient covariate
dimensionality reduction. Yet, these works either (i) make simplifying strong assumptions
(Antonelli et al.} 2018 [Luo & Zhu},[2020;[D”Amour & Franks), 2021)), so that the prognostic scores
coincide with the expected covariate-conditional outcome; or (ii) consider only linear prognostic

scores (Huang & Chan| 2017; [Luo & Zhul [2020). To the best of our knowledge, the first practical
method for non-linear, learnable representations was proposed by (Johansson et al.} 2016}, [Shalit
et al 2017} Johansson et al} [2022).

Hence, the above-mentioned works operate in much simpler settings and are not relevant baselines
for our work.

A.2 NEYMAN-ORTHOGONAL LEARNERS

Meta-learners. Causal quantities can be estimated using model-agnostic methods, so-called meta-
learners (Kiinzel et al.}[2019). Meta-learners typically combine multiple models to perform two-stage
learning, namely, (1) nuisance functions estimation and (2) target model fitting. As such, meta-
learners must be instantiated with some machine learning model to perform (1) and (2). Meta-learners
have several practical advantages (Morzywolek et al., [2023): (i) they oftentimes offer favorable
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theoretical guarantees such as Neyman-orthogonality; (ii) they can address the causal inductive bias
that the CATE is “simpler” than CAPOs (Curth & van der Schaar, |2021a)), and (iii) the target model
obtains a clear interpretation as a projection of the ground-truth CAPOs/CATE on the target model
class.

|Representations for causal quantities estimation |

A broad variety of meta-learners have been de-
veloped. Notable examples include X- and
U-learners (Kinzel et all 2019), R-learner No Yes

(Nie & Wager, 2021), DR-learner (Kennedyl, o
Yes No
A Y

2023; |Curth et al., 2020), and IVW-learner
(Fisher, [2024). Several works extended the

theory of targeted maximum likelihood esti- usggi/g:tasa @scmes ) removes

mation (van der Laan et al| [2011) and pro- information do“;?eg?:t‘i\’}“ee”" F;f:;’l';ﬁ;‘;

posed Neyman-orthogonal single-stage learners; o potential 1| covariates covariates

e. g., EP-learner for CATE (van der Laan et al.| J_ J_ 'J_

2024) and i-learner for CAPOs (Vansteelandt TR £ & -

& Morzywotek, |2023). Furthermore, |Curth & }ffo'n;%r)_l """" I - ¢ ;|

van der Schaar (2021b) provided a comparison  Sensistency of

of meta-learners implemented via neural net- . I

works, where disentangled unconstrained rep- EM*—'?Y@'.QAE’Q%_Q _____________ & & |
®(X) |-level CATE ) ) )

resentations are used SOIely to estimate (1) nui- Neyman-orthogonality (double robustness & quasi-oracle efficiency)

sance functions but not as inputs to the (2) target )
model. Figure 5: Flow chart of consistency and Neyman-

orthogonality for representation learning methods.

Neyman-orthogonality. Neyman-orthogonality ~ Qur OR-learners fill the gaps, marked with red
(Foster & Syrgkanis,, [2023)), or double/debiased  dotted lines.

machine learning (Chernozhukov et al.,[2017),

directly extend the idea of semi-parametric efficiency to infinite-dimensional target estimands such
as CAPOs and the CATE. Informally, Neyman-orthogonality means that the population loss of the
target model is first-order insensitive to the misspecification of the nuisance functions. Examples of
Neyman-orthogonal learners are DR-, i-learners for CAPOs (Vansteelandt & Morzywotek, [2023));
and DR-, R-, IVW-, EP-learners for CATE (Morzywolek et al., 2023).

Choice of target models. Existing works on meta-learners usually build the (2) second-stage target
model based on the original covariates, for example, the comparative study in (Curth & van der
Schaar},2021b)). At the same time, the theory of meta-learners (Morzywolek et al.l[2023]; [Vansteelandt
& Morzywotek, |[2023) allows for the target model to depend on any subset of covariates and to still
preserve all the favorable properties (i)-(iii). However, it remained unclear, how different target
models relate to each other in terms of (a) performance and (b) interpretation if they are based on
different leaned representations of covariates. In this paper, we study these questions in detail and
introduce OR-learners, a novel class of Neyman-orthogonal learners where the target model is based
on any representation (with or without constraints).

A.3 IMPLICATIONS FOR OUR WORK

Balancing and finite-sample generalization error. In the original works on balancing representa-
tions (Shalit et al., 2017; Johansson et al., |2022)), the authors provided finite-sample generalization
error bounds for any estimator of CAPOs/CATE based on a factual estimation error and a distribu-
tional distance between treated and untreated population. Therein, the authors employed integral
probability metrics as the distributional distance. These bounds were further improved with other
distributional distances, e. g., counterfactual variance (Zhang et al., [2020), total variation (Csillag
et al.,|2024), and KL-divergence (Huang et al., [2024)). Importantly, the work of the (Shalit et al.|
2017; Johansson et al., 2022)) suggests that the large distributional distance only acknowledges the
lack of overlap between treated and untreated covariates (and hence, the hardness of the estimation)
and does not instruct how much balancing needs to be applied. In our work, we confirm that the
optimal amount of balancing is indeed not related to the generalization error bounds.

Estimation of causal quantities for general-purpose learned representations. Other constraints
may be applied to the representations, e. g., to achieve algorithmic fairness (Zemel et al., 2013 Madras
et al.} 2018)). Although several works combined Neyman-orthogonal learners and fairness constraints,

17



Under review as a conference paper at ICLR 2025

they were in slightly different from our setting. For example, Kim & Zubizarretal (2023) provided
a DR-learner for fair CATE estimation based on the linear combination of the basis functions; and
Frauen et al.|(2024) built fair representations for policy learning with DR-estimators of policy value.
The latter work, nevertheless, can be seen as a special case of our general OR-learners.
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B BACKGROUND MATERIALS

In this section, we provide the formal definition of notions such as Neyman-Orthogonality and Holder
smoothness used in Sec Bl

B.1 ASSUMPTIONS

Identifiability. The identification of CAPOs/CATE from observational data requires further assump-
tions, which are standard in the literature (Rubin, [1974). The reason is that the fundamental problem
of causal inference: the counterfactual outcomes, Y[1 — AJ, are never observed, while the potential
outcomes are only partially observed, i.e., Y = AY[1] 4+ (1 — A)Y'[0]. Therefore, it is standard to
assume (i) consistency: if A = a, then Y]a] = Y; (i) overlap: P(0 < 7#%(X) < 1) = 1; and (iii) un-
confoundedness: (Y[0],Y[1]) 1L A | X. Given the assumptions (i)—(iii), both CAPOs and CATE are
identifiable from observational data as expected covariate-conditional outcomes, £Z (z) = p*(x), or
as the difference of expected covariate-conditional outcomes, 7% (x) = uf (z) — u¥(x), respectively.

Smoothness. To consistently estimate CAPOs and CATE (e. g., with neural networks), we follow
Curth & van der Schaar|(2021b); Kennedy| (2023) and make regular (Holder) smoothness assumptions
(see Appendix [B| for the definition). We assume the ground-truth response function p%(-) to be
Ba-smooth, the ground-truth propensity score 7% (+) to be y-smooth, and 7%(+) to be §-smooth (for

Ba>v,0 > 0).

B.2 NEYMAN-ORTHOGONALITY AND DOUBLE ROBUSTNESS

Definition 1 (Neyman-orthogonality Foster & Syrgkanis|(2023); Morzywolek et al.|(2023)). A risk
L, is called Neyman-orthogonal if its pathwise cross-derivative equals to zero, namely,

DyDyL(g",m)g—9g"n—n]=0 forallgeg, (13)

. k
where Dy F(f)[h] = $F(f + th)li=o and DEF(f)[h1, ..., hi] = 57250 F(f + tahy + -+ +
tkhi )|, =..=t,=0 are pathwise derivatives |Foster & Syrgkanis| (2023), g* = argmin g L(g,7),
and 1 is the ground-truth nuisance function.

Informally, this definition means that the risk is first-order insensitive wrt. to the misspecification of
the nuisance functions.

Definition 2 (Double robustness). An estimator g of g* = argmin g L(g,n) is said to be double
robust if, for any estimators [i; and 77 of the nuisance functions !, and 77, it holds that

~ * 12 A A * A AT T2 || ~x 2
19 =97II7, < O(LG, ) = L{g", 7)) + Op (17T = =T |I” I — wgll”), (14)
where L(g,1) — L(g*,n) is the difference between the risks of the estimated target model and the
optimal target model where the estimated nuisance functions are used.

Definition 3 (Quasi-oracle efficiency). An estimator § of g* = argmin g L(g,n) is said to be
quasi-oracle efficient if the estimators [i and 77 of the nuisance functions i, and w7 are allowed to
have slow rates of convergence, o(n’l/ 4) and the following still holds asymptomatically:

N )2 R £ A _
1§ = 9*1I7, S O(L(3,7) — L(g", 7)) + or(n™"/?), (15)
where L(g,1) — L(g*, 1) is the difference between the risks of the estimated target model and the
optimal target model where the estimated nuisance functions are used.
B.3 HOLDER SMOOTHNESS

Definition 4 (Holder Smoothness). Let 3 > 0,C > 0 and X C R%. A function f : X — R is
said to be 3-Holder smooth (i.e., belongs to the Hilder class C8 (X)) if it satisfies the following
conditions:

1. fis | S| times continuously differentiable on X, where | 3] denotes the largest integer less
than or equal to (.
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2. All partial derivatives of | of order || satisfy the Holder condition of order 8 — |3].
Specifically, there exists a (Lipschitz) constant C > 0 such that for all multi-indices o with
|a| = | B8] and for all z,x’ € X,

D% f(z) = D*f(a")] < Clle - a'll~+,

where D f denotes the partial derivative of | corresponding to the multi-index o, and || - ||
is the Euclidean norm.

In our context:

* For each treatment level a, the function pZ (-) is assumed to be §3,-Holder smooth with 5, > 0.
* The propensity score 72 (-) is assumed to be y-Holder smooth with v > 0.

* The conditional average treatment effect function 7% () is assumed to be §-Holder smooth with
0 >0.

B.4 INTEGRAL PROBABILITY METRICS

Integral probability metrics (IPMs) are a broad class of distances between probability distributions,
defined in terms of a family of functions F. Given two probability distributions P(Z;) and P(Z5)
over a domain Z, an IPM measures the maximum difference in expectation over a class of functions

F:

IPM(P(21),P(Z,)) = sup [E(f(Z1)) — E(f(Z2))]-

In this framework, F specifies the allowable ways in which the difference between the distributions
can be measured. Depending on the choice of F, different IPMs arise.

Wasserstein metric (Earth Mover’s Distance). The Wasserstein metric is a specific IPM where the
function class F is the set of 1-Lipschitz functions, which are functions where the absolute difference
between outputs is bounded by the absolute difference between inputs:

W(P(Z:1),P(Z2)) = fséljg [E(f(Z1)) — E(f(Z2))].

This metric can be interpreted as the minimum cost required to transport probability mass from one
distribution to another, where the cost is proportional to the distance moved.

Maximum mean discrepancy (MMD). Another popular example is the Maximum Mean Discrep-
ancy, where the function class F corresponds to functions in the unit ball of a reproducing kernel
Hilbert space (RKHS), Frxus,1 = {f € H : || fll;; < 1}

MMD(P(2,), P(%2)) = S [E(f(Z1)) = E(f(Z2))].

This discrepancy measure is often used in hypothesis testing and in training generative models,
particularly when the distributions are defined over high-dimensional data.
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C THEORETICAL RESULTS

Remark 1 (Identifiability of V-conditional causal quantities). Assume that the ground-truth V -
conditional CAPOs and CATE are contained in the working model class, i.e., £ € G and TV € G.
Then, the V -conditional CAPOs/CATE are identifiable as population minimizers of the following
target risks:

£a() = argmin Ly 4)(g,n) = argmin Le, (g,7), (16)
geG 9geG

7Y(-) = argmin L, (g,7) 17
geg

where Ly q) and Ly, are given by Eq. (@), and L, is given by Eq. @). Furthermore, if the overlap-
weighted V -conditional CATE, 77 (v) = E(n§(X)nf(X)(uf(X) — p5(X)) | V = v), is
contained in the working model class, i. e., T o € G, the overlap-weighted V -conditional CATE is
identifiable as a population minimizer of target risk of the R-learner:

v

Trom, (1) = arg rgin Loomi=(9:1), (18)
ge

where L, - is given by Eq. (9).

Proof. The proof is adapted from (Vansteelandt & Morzywotekl, 2023} Morzywolek et al, [2023).
First, it is easy to see that V'-conditional CAPOs and CATE are identifiable, given the ground-truth
nuisance functions (e.g., via G-computation formulas):

) = E(Y[] = Y[0] | V = v) = & (v) — & (v), (19)
W) =E(Y[a] |V =v) LEEY]] | X) |V =v) "L EEV[] | X, A=a) |V = 20)
PEYREY | X, A=a) |V =0) = EE(X) |V =), @1

where (*) holds due to the law of iterated expectation.

Then, due to the properties of the mean squared error, the last expression is also a population
minimizer of the following target risk:

v T . T 2 .
() =E(ui(X) |V =v) =argminE(p(X) — g(V))” = argmin L, (g,7).  (22)

9eG 9€g
For the same reason, 7%(v) is a population minimizer of the risk of the DR-learner, i.e., £.; and
TR, (v) is a population minimizer of the risk of the R-learner, i.e., Ly, -. Additionally, the risk

Ly [q) has the same population minimizer as L¢,, :

argenglin Lya)(g,m) = ar!%erginIE (Yla] — g(V))* (23)
=argmin [ (Y fa] = (X))" + 2 (¥la] = 45() (3 (X) = 9(V)) + E (3 (X) = 9(V))*

(24)

= argmin [2( (3 (X) = 9(V)) B(Vla] = g (X) | X)) + B (i (X) = 9(v))" (25)

= argergin E (u2(X) - g(V))* = argergin Le,(9,m)- (26)

O

Remark 2 (Double robustness and quasi-oracle efficiency of Neyman-orthogonal learners). Under
mild conditions, the following inequality holds for the estimators of V -conditional CAPOs/CATE,
the estimated target model § = argmin, g L(g,n), and the ground-truth target model, g* =

argmingcg £(g,7n):
15— 97117, < O(Lol3,) — Lolg™. ) + R2(n.7), 27
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where o € {Y|a], &, 7, mom17}, and R%(n,7) is a second-order remainder which includes nuisance
functions estimation errors of the higher order. Specifically, R2(n, ) are as follows:

RY oy (n,9) = RE (n.7) = Op (|l — i3, 175 — 7517, ). (28)
Rim.i)= > Oe(llag — pll, 177 — =7ll7, ), (29)
a€c{0,1}
R2 . () =Os (77 —aflly, )+ > Oe(llad — pilly, 177 —=7l7,)-  (30)
ac{0,1}

Hence, even with slow converging estimators of the nuisance functions, all of the mentioned Neyman-
orthogonal learners ¢ € {Y[a], &4, T, Tom1 T} achieve quasi-oracle efficiency (see Definition|l5|in
Appendix[B). Moreover, DR-learners for CATE and CAPOs obtain the double robustness property
(see Definition2]in Appendix|B).

Proof. We refer to Theorem 1 of (Morzywolek et al.| [2023)) and Appendix A of
Morzywotek}, 2023) for the proofs.

Remark 3 (Smoothness of the hidden layers). Let the learned unconstrained representation network
consist of the fixed-width fully-connected layers with locally quadratic activation functions. Then,
there exists a hidden layer (marked by V') of the representation network with increased Holder

smoothness. That is, the expected V -conditional outcome, u!(-) € CBa (V), is Holder smoothe
than the original expected covariate-conditional outcome, % (-) € CPa(X):

Ba < Ba and C<C. 31)

Proof. (informal) We adopt the proof of Lemma 3(d) from (Ohn & Kim| [2019) and Theorem X1.6
from (Elbrachter et al} 202T).

In Lemma 3(d) from (Ohn & Kim| [2019)), the authors formulated an important result for fixed-width
fully-connected neural networks with locally quadratic activation functions. Informally, Lemma

A.3(d) constructs an approximation of a Taylor expansion f;(z) = Zizl (m;)k by using a fixed-

width deep neural network. Here, f;(x) is an example of a generic 5 = J Holder-smooth function.
Then, the approximation of f;(x) is done by adding J layers where each layer, j € 1,...,J, is only
capable of approximating f;(z) but not f;1(z).

Theorem XI.6 of (Elbréachter et al}[202T)), on the other hand, shows the impossibility of universal
approximation with fixed-width fixed-depth neural networks. That means it is always possible to find
a f = 2-smooth function (with the increasing Lipshitz constant, i.e., second-order derivative) that is
impossible to approximate with the fixed-width fixed-depth neural networks. Hence, an increase of
either width or depth is required.

Therefore, by (Elbriachter et al.| [202T), it is impossible to approximate some functions already for
£ = 2 with the fixed width and depth. At the same time, the construction of fixed-width deep
networks in (Ohn & Kim| 2019) allows for such an estimation by increasing the depth. Notably, with
a similar intuition, the theoretical result (namely, more flexibility requires more layers) holds for
general classes of fixed-width deep networks (Hanin| 2019} [Kidger & Lyons| [2020).

Our proof then follows by contradiction: There should be a hidden layer with larger smoothness since,
otherwise, we would not be able to approximate the function solely with the remaining layers. [

Proposition 4 (Valid unconstrained representation with d, = 2). The representation ®(X) =
{pg(X), p7(X)} is valid for CAPOs and CATE, namely:

Eile) = €0(2() = pl(B(x) and 77(2) = 77(2(x)) = pf (B(x)) — i (B(2)).  (32)

>In our paper, we consider the decrease of both C' and /3 as smoothing.
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Proof. We employ properties of conditional expectations:

T(@(x)) = E(Y[1] - Y[0] | 2(X) = ®(2)) (33)
=EEY | X,A=1)-EY | X,A=0)| ®(X)=o(x)) (34)
=EEY | X, A=1)| (15(x), 17 (2))) —EEQY | X, 4 =0) | (5(2), 15 (x)))

(35)
= pi(@) — pg(x) = 7°(2). (36)

On the other hand, the following holds:
7(®(x)) = B(E(Y | X, A =1) | (u§(2), g (2))) —E(E(Y | X, A =0) | (1§ (2), u (x)))

(37

=B | (ug(2), ui (), A =1) = E(Y | (u5(2), 7 (x)), A = 0) (38)

= 17 () — 13 (2()). (39)

The derivation of £%(z) = £2(®(x)) = u (®(x)) follows analogously. O

Proposition S (Smoothness via expanding transformations). A representation network with a repre-
sentation ®(X) achieves higher Holder smoothness of pg(-) by expanding some parts of the space
X. That is, for p2(-) € CP(X) and pg(-) € CPa (@) with C < C, it is necessary that the following
holds:

Lip(®) > 1, (40)
where Lip(®) is a Lipschitz constant of the transformation ®(-). In the case of an invertible
transformation, we have Lip(®) = sup,c y |det ®'(x)| and, thus, ®(-) expands (scales up) some
parts of the space X.

Proof. The proof follows from the properties of the transformation ®(-) as a continously-differential
function. On the one hand, by the definition of the Holder smoothness (see Deﬁnitionlﬂ_:[):

D (9) = Dpy()] < Clig = ¢'ll3" ") for g, ¢ € @ (41
IDp%(z) — Dpl ()| < Cllw — 2|3~ forz,2’ € X. (42)
On the other hand:
[®(x) — ®(2")[|2 < Lip(®) |z — 2|2 (43)
Therefore, we yield the following inequalities:
|D* 1 (2(x)) — D*py(2(a))] < Ol @(a) = @(a) 51 (44)
< C(Lip(@) ™" e a5 s
c
Applying the fact that C < C finalizes the proof:
¢ < C(Lip(®))™ P — Lip(@) > 1. (46)
O

Proposition 6 (Balancing via contracting transformations). A representation network with a repre-
sentation ®(X) reduces the IPMs, namely, WM and MMD (see definitions in Appendix between
the distributions of the representations P(®(X) | A= 0) and P(®(X) | A = 0) by contracting some
parts of the space X. That is, to minimize an IPM (either WM or MMD):

IPM (]P’(@(X) |A=0),P(®(X)| A= 1)) <IPM (]P’(X |A=0),P(X|A= 1)), 47)
it is necessary that the following holds:
Lip(®) < 1, (48)

where Lip(®) is a Lipschitz constant of the transformation ®(-). In the case of an invertible
transformation, Lip(®) = sup,c  |det ®'(x)|, and, thus, ®(-) scales down some parts of the space
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Proof. First, we provide the proof for the Wasserstein metric. The Wasserstein metric between the
distributions of the representations can be expressed as

W(P(®(X) | A=0),P(®(X)| A=1)) (49)
= sup IE(f(®(X)) | A=0)—E(f(®(X))[A=1) (50)
fsggl/f ::1:|A:1)71P’(X::1:|A:0))d:c (51)
= su X=2|A=1)-PX=2|A=0))dx 52

f;K/f [A=1)-P(X=2]A=0)) (52
—KW(P(X | A=0),P(X | A=1)), (53)

where K is a Lipschltz constant of ®(-), and the latter equality follows from properties of the
Wasserstein metric. Then, we see that the desired inequality in Eq. holds when K < 1.

Similarly, the inequality from Eq. 7)) can be shown for the maximum mean discrepancy by using a
Lipschitzness property of a reproducing kernel Hilbert space (RKHS) (see Proposition 3.1 in (Fiedler],
): all functions f € Frkus,1 are Lipschitz with the constant 1. Therefore, for a composition of
functions f o ® to be in the RKHS, i.e., Frkus, 1, it is required that Lip(®) < 1.

O

Proposition 7 (Consistent estimation with ®(X') = 0). For constant representations ®(X) = 0, our
OR-learners yield semi-parametric efficient (augmented inverse propensity of treatment weighted
(A-IPTW)) estimators of APOs and ATE / overlap-weighted ATE. Specifically, if the target model
is characterized by an intercept parameter 0 € R, namely, g(-) = 0, then the minimization of the

OR-learners losses yields the following 6:

O, = Ovia =M{W(Y—ﬂi(x»+ﬂ2(){>}, (54)
br = Pu{ 0 (0 = X)) = 2 (V= 00) + (0~ (0}, 69

éﬂ'mrl‘r = Pn{ (56)

(
(A—ar(X))* (A-7f(X

Proof. The proof follows from properties of the (weighted) MSE risks. For E(Z — )2, as in DR-loss
in the style of Kennedyl |2023 , the minimum for a constant § € R is achieved at § = E(Z). For
E(Z; — 0)? + E(Z — 0)?, as in DR-loss in the style of (Foster & Syrgkanis| 2023), the minimum is
achieved at f = E(Z; + Z»). For the weighted MSE, E(w(Z)(Z — 6)?), the minimum is achieved

E(w(Z2)Z)
for § = Bw(Z) O

Remark 8 (Alternative construction of Neyman-orthogonal learners for constrained representations).
Let alternative learners targeting at the representation-level CAPOs/CATE be defined in the following
way. For a working model, G = {g o ®(-) : X — Y}, we aim to minimize the following target risks:

Lo(go®,n) = Lo(go®,n) + a dist(P(®(X) | A=0),P(®(X) | A=1)) (57)
wrt. go ® € G, where L, is defined in Eq. @)-@) for o € {Ya],&a, T, mom17}, and dist(-,-)
is a distributional distance, e.g., an IPM. Then, the (1) ®(X)-conditional CAPOs and CATE
identifiable as population minimizers of the target risks from Eq. (X)), if they are contained in the
G ={g(:) : @ = YV}. Also, (2) the following target losses are Neyman-orthogonal

Lo(go@.7) = Lo(go @,7) + adist(P(B(X) | A=0),P((X) [A=1)),  (58)

where L, is defined in Eq. Q)-@) for o € {Y'[a], &4, 7, mom17}. Therefore, these variants of Neyman-
orthogonal learners are asymptotically equivalent to our OR-learners.
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Proof. The result (1) follows from the properties of joint optimization of Eq. &7) wrt. go ® € G and
Remark[1]

The Neyman-orthogonality of £, (2) holds, as the balancing constraint, cTi?c(]P’(q)(X ) | A=
0),P(®(X) | A = 1)), is insensitive wrt. the misspecification of the nuisance functions, 7 and
M- 0
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D DATASET DETAILS

D.1 SYNTHETIC DATASET

We utilize a synthetic benchmark with hidden confounding as proposed by [Kallus et al.| (2019)), but
modify it by incorporating the confounder as the second observed covariate. Specifically, synthetic
covariates X7 and X5, along with treatment A and the outcome Y, are generated using the following
data-generating process:

X, ~ Unif(~2,2),
Xy ~ N(()) 1)7

A ~ Bern (1+exp(—(0.751X1—X2+0.5)))
Y~N((2A-1)X1+A—-2sin(2(24-1) X1 + X3) —2 X5 (1+0.5X7),1),

(59)

where X, X5 are mutually independent.

D.2 THDP DATASET

The Infant Health and Development Program (IHDP) dataset |Hill (2011); Shalit et al.| (2017) is a
widely-used semi-synthetic benchmark for evaluating treatment effect estimation methods. It consists
of 100 train/test splits, with 1,y = 672, neyy = 75, and d,, = 25. However, this dataset suffers from
significant overlap violations, leading to instability in methods that rely on propensity re-weighting
Curth & van der Schaar| (2021b); |Curth et al.[(2021]).

D.3 ACIC 2016 DATASET COLLECTION

The covariates for ACIC 2016 are derived from a large-scale study on developmental disorders
(Niswander} [1972). The datasets in ACIC 2016 vary in the number of true confounders, the degree
of overlap, and the structure of conditional outcome distributions. ACIC 2016 features 77 distinct
data-generating mechanisms, each with 100 equal-sized samples (n = 4802, dx = 82) after one-hot
encoding the categorical covariates.
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E

Implementation. We implemented our OR-learners in PyTorch and Pyro. For better compatibility,
the fully-connected subnetworks have one hidden layer with a tuneable number of units. For the
normalizing flow subnetworks, we employed residual normalizing flows |Chen et al.| (2019) that
have three hidden layers with a tuneable synchronous number of units. All the networks for our
OR-learners (see Stages (0)-(2) in Fig. [2)) are trained with AdamW (Loshchilov & Hutter, [2019).
Each network was trained with nepocn = 200 epochs for the synthetic dataset and 7epocn = 50 for the

ACIC 2016 dataset collection.

Hyperparameters. We performed hyperparameter tuning at all the stages of our OR-learners for
all the networks based on five-fold cross-validation using the training subset. At each stage, we
did a random grid search with respect to different tuning criteria. Table f] provides all the details
arameters tuning. For reproducibility, we made tuned hyperparameters available in our

on hype
GitHub

IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Table 4: Hyperparameter tuning for baselines and our OR-learners.

Stage | Model | Hyperparameter Range / Value
Learning rate 0.001, 0.005, 0.01

Minibatch size 32,64, 128

TARNet Weight decay 0.0, 0.001, 0.01, 0.1
BNN Hidden units in FCy Rd,, 1.5 Rd,,2 Rd,
CFR Hidden units in FC, Rdy, 1.5 Rdg, 2 Rd,
BWCFR Tuning strategy random grid search with 50 runs
Tuning criterion factual MSE loss

Optimizer AdamW

Representation network learning rate 0.001, 0.005, 0.01

Propensity network learning rate 0.001, 0.005, 0.01

Minibatch size 32,64, 128

Representation network weight decay 0.0, 0.001, 0.01, 0.1

Propensity network weight decay 0.0, 0.001, 0.01, 0.1

Stage 0 | CFR-ISW Hidden units in FCy Rd,, 1.5 Rd,,2 Rd,
Hidden units in FC, Rdy, 1.5 Rdg, 2 Rdy

Hidden units in FC; 4 Rdg, 1.5 Rdy, 2 Rdg

Tuning strategy random grid search with 50 runs

Tuning criterion factual MSE loss + factual BCE loss

Optimizer AdamW

Learning rate 0.001, 0.005, 0.01

Minibatch size 32,64, 128

Weight decay 0.0, 0.001, 0.01, 0.1

Hidden units in FCy Rd,, 1.5 Rd,, 2 Rd,

RCFR Hidden units in FC, Rdy, 1.5 Rdy,2 Rdy
Hidden units in FC,, Rdy, 1.5 Rdy, 2 Rdy

Tuning strategy random grid search with 50 runs

Tuning criterion factual MSE loss

Optimizer AdamW

Learning rate 0.001, 0.005, 0.01

Minibatch size 32,64, 128

Weight decay 0.0, 0.001, 0.01, 0.1

Propensity network | Hidden units in FCy. Rd,, 1.5 Rd,, 2 Rd,
Tuning strategy random grid search with 50 runs

Tuning criterion factual BCE loss

Stage 1 Optimizer AdamW
Learning rate 0.001, 0.005, 0.01

Minibatch size 32,64, 128

Hidden units in FCenp Rd,, 1.5 Rd,, 2 Rd,,

Outcomes network | Weight decay 0.0, 0.001, 0.01, 0.1
Tuning strategy random grid search with 50 runs

Tuning criterion factual negative log-likelihood loss

Optimizer SGD (momentum = 0.9)

Learning rate 0.005

Minibatch size 64

EMA of model weights 0.995

Stage2 | Target network Hidden units in g £ Hidden units in FC,
Tuning strategy no tuning

Optimizer AdamW

R = 2 (synthetic data), R = 1 (

THDP dataset), R = 0.25 (ACIC 2016 datasets collection)

®https://anonymous.4open.science/r/OR-learners)
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F ADDITIONAL EXPERIMENTS

F.1 SETTING A

Table 5] shows additional results for the synthetic dataset in Setting A. Therein, we observe that our
OR-learners with V' = ®(X) are highly effective in comparison to the DR/R-learners based on the
original covariates.

Table 5: Results for synthetic experiments in Setting A. Reported: improvements of our OR-
learners over representation networks; mean over 15 runs. Here, nin = 500, dg = 2.

| Ag Ay | Ay Avp | Ay Angmyr
V = {AZ,p%} | —0002 —0.004 | —0002 —0.004 | —0.006  —0.009
TARNet V= —+0.064 +0.078 —+0.083 +0.059 —0.018 —0.021
V=X* +0.015 +0.015 +0.023 +0.004 —0.013 —0.017
V = @(X) —0.002 —0.004 =+0.000 —0.003 —0.011 —0.012
V = (A%(X), A%(X)) | —0.006 —0009 | +0.001 —0.009 | —0.007  —0.006
— A . ¥l . vi
BNN (a = 0.0) V=X —+0.067 +0.045 —+0.101 —+0.037 0.020 0.023

V=X +0.011 —0.005 +0.023 —0.008 —0.010 —0.017
V =o&(X) —0.008 —0.010 —0.002 —0.011 —0.012 —0.012

Lower = better. Improvement over the baseline in green, worsening of the baseline in red

F.2 SETTING B

Fig. [6] shows the results for the IHDP dataset in Setting B. Interestingly, here balancing in CFRFlow
seems to outperform our OR-learners for some values of «. This is not surprising, as the IHDP
dataset contains strong overlap violations and one of the ground-truth potential outcome surfaces
is linear Y'[1]. However, the optimal « are different for both CAPOs and CATE, which renders
balancing impractical.

IPM: MMD — Y[0] IPM: MMD — Y[1] IPM: MMD — 7
2.0 1.00
1.8 0.95 1 1.4 4
5 1.6 E 0.90 %
=2 = 5121
Z 14+ == 0.85 7 )
x > T
£ £ 0.80 £
E 1.2 4 § ] 1.0
0.75
1.0 4
0.70 1 081
0.8
T T T T T T
107! 10! 107! 10! 10! 10
IPM: WM — Y[0] IPM: WM — Y1] IPM: WM — 1
1.8 1 0.95 1.4 1
1.3 1
1.6 4 0.90
5 1.4 5 0.85 1 E -
i = SRR
5 12 £ 0.80 £ 101
= ] =
B 0.75 0.9 4
1.0 4
0.70 1 081
0.8
T T T T 0.7 4 T T
1072 10° 1072 10° 1072 10°
Models
—— CFRFlow —— BWCFRFlow (€ OR-learners) —— BWCFRFlow (+ DR-learner)
CFRFlow-ISW (€ OR-learners) —— CFRFlow-ISW (+ DR-learner) —— Oracle

Figure 6: Results for IHDP experiments in Setting B. Reported: ratio between the performance of
TARFlow (CFRFlow with o = 0) and representation networks with varying a;; mean =+ se over 100
train/test splits.

In Fig.[7} we additionally show how the learned normalizing flows transform the original space X (the
models are the same as in Fig.[). The rendered transformations match the theoretical results provided
in Sec.[4.2] Specifically, TARFlow scales up (expands) the original space so that the regression task
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becomes easier in the representation space. At the same time, CRFFlows with different balancing
hyperparameters o aim to scale down (contract) the space, thus, achieving better balancing.

TARFlow (a = 0.0)

Training sample Training sample

Untreated
Treated

CFRFlow (WM; a = 0.05) CFRFlow (MMD; a = 0.05)

Training sample Training sample Training sample Training sample
3 . Untreated 3 . Untreated 3 . Untreated 3 . Untreated

Treated . . Treated - ] ] Treated . . Treated

CFRFlow (WM; a = 1.0) CFRFlow (MMD; o = 1.0)

g sample Training sample Training sample Training sample
itreated 3 . Untreated 3 . Untreated 3 . Untreated
Treated R N Treated 1 ] Treated R . Treated

—4 T T T —4 T T T -4 T T T -4 T T T
2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

Figure 7: Visualization of the invertible transformations defined by the learned normalizing flow
subnetworks for synthetic experiments in Setting B. Here, nuain = 500, dg = 2. Specifically, we
show how a grid in the original covariate space, X C R?, gets transformed onto the representation
space, ¢ C R%. We vary the strength of balancing o € {0,0.05, 1.0} and the IPM € {WM, MMD}.
As suggested by the theory in Sec.[d.2] the covariate space gets scaled up for o = 0 and gets scaled
up for large values, e. g., « = 1.

F.3 SETTING C

Table [6| shows additional results for the synthetic dataset in setting C. Here, our OR-learners improve
over the vast majority of the non-invertible representation learning methods where balancing is
applied.

Table 6: Results for synthetic experiments in Setting C. Reported: improvements of our OR-
learners over representation networks; mean over 15 runs. Here, Nain = 500, dg = 2.

| Ag Ay | Ay Ay | A Aggeys
CFR (MMD:; « = 0.1) 0006 —0009 | —0.005 —0014 | —0.011  —0017
CFR (WM: o = 0.1) 0003  —0005 | —0.006 —0.006 | —0.001  —0.005
BNN (MMD: o = 0.1) 0058 —0011 | —0.051 —0.006 | —0.048  —0038
BNN (WM; o = 0.1) 40016  —0.005 | —0.013  +0007 | —0026  —0.026
RCFR (MMD:; o = 0.1) 0010 —0012 | 0032 —0012 | —0.040  —0.028
RCFR (WM; & = 0.1) 0008 —0003 | —0.009 —0.006 | —0.019  —0015
CFR-ISW (MMD; v =0.1) | 40.002 —0002 | —0.003 —0.008 | +0.001  —0.002
CFR-ISW (WM: a=0.1) | 40001  —0004 | —0.006 —0.003 | —0.009  —0.008
BWCFR (MMD: a =0.1) | +0.007 —0005 | —0.003 —0.003 | —0.015  —0017
BWCFR (WM; o = 0.1) 0007  —0008 | —0010 —0.003 | —0.010  —0015

Lower = better. Improvement over the baseline in green, worsening of the baseline in red
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