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ABSTRACT

In this work, we take a first step toward elucidating the mechanisms behind emer-
gent exploration in unsupervised reinforcement learning. We study Single-Goal
Contrastive Reinforcement Learning (SGCRL) (Liu et al., 2025), a self-supervised
algorithm capable of solving challenging long-horizon goal-reaching tasks without
external rewards or curricula. We combine theoretical analysis of the algorithm’s
objective function with controlled experiments to understand what drives its explo-
ration. We show that SGCRL maximizes implicit rewards shaped by its learned
representations. These representations automatically modify the reward landscape
to promote exploration before reaching the goal and exploitation thereafter. Our
experiments also demonstrate that these exploration dynamics arise from learning
low-rank representations of the state space rather than from neural network func-
tion approximation. Our improved understanding enables us to adapt SGCRL to
perform safety-aware exploration.

1 INTRODUCTION

Recent breakthroughs in deep reinforcement learning (RL) have revealed emergent behaviors: agents
that develop skills without explicit rewards (Liu et al., 2025), learn to plan without world models (Bush
et al., 2025; Simmons-Edler et al., 2025), and exhibit sophisticated exploration in open-ended
environments (Team et al., 2021). For example, Single-Goal Contrastive Reinforcement Learning
(SGCRL), learns several manipulation skills before receiving any rewards and without any explicit
skill-learning objectives (Liu et al., 2025). Subsequent work has demonstrated this phenomenon
in robotic manipulation (Liu et al., 2025), locomotion (Bortkiewicz et al., 2025), and multi-agent
tasks (Nimonkar et al., 2025) (see Fig. 1), but the underlying mechanism that drives this emergent
exploration remains unknown.

Figure 1: SGCRL exhibits emergent ex-
ploration on a range of tasks. But why?

Conventional wisdom suggests that emergent properties
arise from using large models (Bubeck et al., 2023),
but even small neural networks learn feature hierar-
chies (Krizhevsky et al., 2009), and learning word rep-
resentations that support analogical reasoning is a result of
the choice of loss function (not architecture) (Hashimoto
et al., 2016; Arora et al., 2016). In the context of reinforce-
ment learning, the extent to which emergent behaviors de-
pend on neural network function approximation remains
an open research question. Without understanding the
drivers of behavior, we cannot reliably predict when, how,
or why exploration strategies will emerge, limiting our
ability to use these models safely and reliably.

Methodologically, our goal of understanding this phenomenon sits askew to the standard ML toolkit
used to optimize performance on benchmark tasks. We thus take inspiration from cognitive science,
where researchers study intelligent behavior with a rich toolkit including rational analysis (Anderson,
1990), intervention experiments (Bower & Clapper, 1989), and cognitive modeling (McClelland,
2009). As a case study in how methods from cognitive science can be used to study the properties of
AI models, we adapt these methods to understand emergent exploration in SGCRL. Specifically, we
(1) theoretically analyze the optimization objective to uncover the implicit drivers of agent behavior,
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(2) conduct controlled intervention experiments on these behavioral drivers, and (3) build a simple
model of the exploration mechanism in a tabular setting.

The main contribution of this paper is to show that it is possible to gain insight into the emergent
behavior of even relatively complex learning algorithms. We do so by answering a specific question:
Why does the SGCRL algorithm explore effectively in the absence of any obvious intrinsic or
extrinsic rewards? We show that exploration is driven by the interplay between the actor and the
critic. Although the algorithm is trained without external rewards, the actor’s objective can be
reinterpreted as maximizing (implicit) rewards that drive the agent to states that look like the
goal, according to the agent’s current representations. The critic shapes this implicit reward landscape
by decreasing the representational goal similarity of states along unsuccessful trajectories, pruning
them from future exploration. Surprisingly, a simplified tabular model of SGCRL reveals that these
exploration dynamics arise from learning low-rank representations, rather than from neural
network function approximation. Finally, our analysis provides insight into how to adapt SGCRL
to perform safety-award exploration. Our success in analyzing the emergent behavior of this
particular algorithm suggests that this approach can be applied productively to other settings where
AI systems produce complex and unexpected behaviors.

2 RELATED WORK

A growing line of work has discovered emergent behaviors in deep RL: agents demonstrate in-
creasingly sophisticated skills without explicit programming (Liu et al., 2025; Bush et al., 2025;
Simmons-Edler et al., 2025; Team et al., 2021). Existing approaches to understanding deep RL
agents aim to improve algorithm transparency or explain behavior post-hoc (Heuillet et al., 2021;
Glanois et al., 2024). Transparency-based methods include learning low-dimensional, meaningful
representations of the state space (Lesort et al., 2018; 2019; Raffin et al., 2019), labeling actions based
on targeted reward components (Juozapaitis et al., 2019), and maintaining subgoals with hierarchical
RL (Beyret et al., 2019; Cideron et al., 2020). Although transparency-based methods improve algo-
rithmic understanding, they require modified system architectures or auxiliary training tasks (Beyret
et al., 2019; Juozapaitis et al., 2019). In contrast, post-hoc methods take the RL algorithm as a
black-box, and attempt to distill the representations or predictions into interpretable trees (Bewley
& Lawry, 2021; Coppens et al., 2019) or maps (Greydanus et al., 2018; Zahavy et al., 2016). Our
work differs from prior work in trying to explain behavior from an algorithmic perspective without
the overhead of auxiliary training tasks.

Following a recent trend (Hamrick & Mohamed, 2020; Binz & Schulz, 2023; Frank, 2023; Ivanova,
2025; Ku et al., 2025), our methodology is inspired by tools in cognitive science for understanding
intelligent behavior, including rational analysis, intervention experiments, and small-scale models.
Rational analysis explains the behavior of agents by considering the optimal solutions to the problems
that they face (Anderson, 1990). In the context of AI models, this means determining the consequences
of maximizing their objective (McCoy et al., 2024). Intervention experiments are used to test theories
about the causal mechanisms underlying behavior (Bower & Clapper, 1989). Building simple
cognitive models is a tool that can be used to test whether a small set of principles is sufficient
to reproduce that behavior (McClelland, 2009). Accordingly, we draw on rational analysis and
controlled interventions to uncover the implicit objectives driving SGCRL’s exploration dynamics
and use a simplified computational model of the algorithm to understand how these dynamics arise.

Exploration in goal-conditioned RL is challenging because rewards are extremely sparse. Many
prior methods address this by commanding data collection on a distribution of goals, even
when the downstream task involves only a single target, to encourage broad exploration during
the training (Chane-Sane et al., 2021; Savinov et al., 2018; Shah et al., 2021; Zhang et al.,
2021a; Florensa et al., 2018; Pong et al., 2019; Venkattaramanujam et al., 2019). However, Liu
et al. (2025) showed that the contrastive RL algorithm, when collecting data with a single hard
goal, induces strong exploratory behavior and allows the agent to acquire useful skills without
additional supervision. They further demonstrated that this single-goal data collection approach
outperforms methods based on a distribution of goals, goal curricula, and waypoint generation.
In this work, we explain why single-goal training succeeds. Moreover, we show that collecting
data with a single hard goal produces representations that drive more effective exploration than
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those learned from multi-goal data—demystifying the surprising result of Liu et al. (2025) that
single-goal training can outperform subgoal curricula.

3 PRELIMINARIES

Problem Setup. We formulate a sequential decision-making problem as a Markov decision pro-
cess (Bellman, 1957; Puterman, 1994) without an explicit reward function. The state space is denoted
by S with the initial state is sampled s0 ∼ p0 and subsequence states are sampled st+1 ∼ p(· | st, at).
The agent is given a single target goal g ∈ S , representing the desired state to be reached. The agent
must learn a goal-conditioned policy at ∼ π(· | st, g).

Goal-conditioned RL. For any policy π, we define the γ-discounted occupancy measure (Sutton
et al., 1999a) pπγ (sf ) := (1− γ)

∑∞
t=0 γ

tpπt (st = sf ), where pπt (st = sf ) is the probability of being
at state sf at timestep t. Following prior work (Blier et al., 2021; Chane-Sane et al., 2021; Eysenbach
et al., 2022), the objective is to learn a policy that maximizes the probability of reaching the goal:
maxπ pπγ (g). This task is challenging because the agent does not receive any feedback from the
environment regarding its intermediate progress towards success.

Single-Goal Contrastive RL (SGCRL). We study SGCRL (Liu et al., 2025), an actor–critic
framework based on temporal contrastive learning. In contrast to prior work (Nasiriany et al.,
2019; Chane-Sane et al., 2021), the exploration of SGCRL (Liu et al., 2025) is not guided by a
human-designed curricula of tasks or manually specified reward functions. The critic estimates
the likelihood that a state–action pair (s, a) leads to a future state sf , and is parameterized as
ϕ(s, a)⊤ψ(sf ), where ϕ(s, a) and ψ(sf ) are learned embeddings. The critic embeddings are trained
with a contrastive loss where, for each state-action pair, (st, at), positive future states are drawn
by looking ∆ ∼ Geom(1 − γ) steps ahead; meanwhile, negative examples are sampled from the
marginal distribution p(sf ) := Ep(s,a) [pγ(sf | s, a)]. In particular we use the backward InfoNCE
loss (Myers et al., 2024; Liu et al., 2025):

max
ϕ,ψ

E(si,ai)∼pD(s,a)

s
(i)
f ∼pπγ (·|si,ai)
i=1,...,N

[
1

N

N∑
i=1

log
exp
(
ϕ(si, ai)

⊤ψ(s
(i)
f )
)∑N

j=1 exp
(
ϕ(sj , aj)⊤ψ(s

(i)
f )
)] ,

(1)

where pD(s, a) denotes the empirical data distribution of the replay buffer. The contrastive objective
aligns each state-action pair with its true positive future state while discouraging alignments with
unrelated states. We normalize all representations by their ℓ2 norm. Once trained, the critic encodes a
log-Q value ϕ(s, a)⊤ψ(sf ) = log pπγ (sf |s, a)− log p(sf ), (Eysenbach et al., 2022).

The actor aims to select actions that maximize the likelihood of reaching the goal:

max
π(a|s,g)

Es∼p(s), a∼π(·|s,g)
[
ϕ(s, a)⊤ψ(g) + τH

(
π(· | s, g)

)]
, (2)

where τ is an entropy-regularization coefficient (Williams & Peng, 1991). In the discrete-action
setting, the policy optimizing this objective samples actions from a softmax distribution:

π(a | s, g) = e
1
τ ϕ(s,a)

⊤ψ(g)∑
a′ e

1
τ ϕ(s,a

′)⊤ψ(g)
. (3)

For continuous action spaces, we train a parameterized actor π(· | s, sf ), where sf denotes a target
state that is not restricted to the final hard goal. The algorithm always collects data conditioned
on a single goal g and does not make use of rewards, demonstrations, or subgoals. For a complete
description of the method, see Appendix A.

4 SGCRL REPRESENTATIONS INDUCE A CURRICULUM OF REWARDS

In this section, we theoretically characterize the dynamics that drive exploration in SGCRL and make
testable hypotheses about its behavior, which we later verify in Section 5. We posit that the actor
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(a) Single-goal exploration dynamics
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(b) Representation geometry

Figure 2: (a) The agent moves toward goal-like states (left), rules out non-goal states by assigning
them low (green) ψ-similarity (center), and leaves a high (red) ψ-similarity trace along the successful
trajectory once the goal is found (right). Solid lines indicate past paths; dashed lines indicate
new paths. (b) Negative representations ϕ(si, ai) and ψ(s(j)f ) are pushed away from the common
component ψ(g), enhancing their contrast.

maximizes a discounted sum of implicit rewards shaped by the critic. Even when the algorithm poorly
estimates the probability of reaching the goal, the implicit reward function is well-defined and directs
exploration (Fig. 2a-left). As the actor optimizes this implicit reward signal, the critic dynamically
reshapes the reward landscape. This implicit reward reflects the agent’s belief about the goal position,
which updates over time as the agent gathers more data. Before the goal is found, the critic decreases
the implicit reward for states along unsuccessful trajectories (Fig. 2a-center). However, once the goal
is reached, the critic instead increases rewards along the successful path (Fig. 2a-right), shifting the
agent’s behavior from exploration to exploitation. In this way, our analysis highlights a connection to
a long line of work on reward shaping and the optimal design of reward functions that best facilitate
efficient synthesis of good policy parameters (Ackley & Littman, 1992; Ng et al., 1999; Singh et al.,
2009; Sorg et al., 2010a;b; Sorg, 2011; Devlin & Kudenko, 2012).

Moreover, since our analysis revolves exclusively around the associated actor and critic objectives, it
would suggest that the exploratory behavior of SGCRL does not depend on function approximation.

Section 4.1 establishes the equivalence between SGCRL and a reward-maximizing agent that max-
imizes representation similarity. Section 4.2.1 shows how contrastive learning naturally reduces
representation similarity in explored states, while Subsection 4.2.2 discusses how representations
evolve once the goal is reached. Formal theorem statements and proofs are provided in Appendix B.

4.1 THE ACTOR MAXIMIZES AN IMPLICIT, REPRESENTATION-BASED REWARD

Our analysis reveals that, although the SGCRL objective is defined with respect to reaching g, it
simultaneously drives the agent toward states sf that exhibit high representational similarity to the
goal, quantified by the inner product between the state and goal representations, a metric we denote
by ψ-similarity := ψ(sf )

⊤ψ(g). One interpretation of this similarity function is the agent’s encoding
of beliefs about the goal’s location in the ψ-similarity metric, which is progressively refined through
critic updates as more data are collected. This intuitively resembles posterior sampling approaches,
where the agent maintains a posterior over the underlying reward and transition functions (Strens,
2000; Osband et al., 2013) to guide exploration via epistemic uncertainty (Der Kiureghian & Ditlevsen,
2009).

Our main result in this section relies on an alignment property of the InfoNCE objective (Eq. 1),
namely that optimization encourages the representations of positive pairs to align in expectation.
This assumption is consistent with insights from prior work (Wang & Isola, 2020). However, in
Appendix B.2, we provide two concrete conditions under which the alignment property provably
holds. For example, Appendix B.2.2 shows that alignment is guaranteed when the learned
contrastive representations have an Isotropic Gaussian distribution (an assumption backed by
previous work Wang & Isola (2020)). For clarity, we state the alignment property here as an
assumption, with full proofs and technical details deferred to the appendix.

Assumption 1 (Alignment of positive examples under InfoNCE). When the InfoNCE loss (Eq. 1) is
optimized, the representation of any state–action pair (s, a) aligns with the expected representation
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of its future states:
ϕ(s, a) = Esf∼pπγ (sf |s,a)

[
ψ(sf )

]
.

Theorem 1. Given Assumption 1, maximizing the likelihood of reaching the goal in the SGCRL actor
objective (Eq. 2) is equivalent to maximizing the return

E s∼p(s)
a∼π(·|s,g)

[
ϕ(s, a)⊤ψ(g)

)]
= E s∼p(s)

a∼π(·|s,g)

[
Qψ(s, a)

]
,

where

Qψ(s, a) := Epπt (st)

[ ∞∑
t=0

γt ψ(st)
⊤ψ(g)

∣∣∣ s0 = s, a0 = a

]
.

Theorem 1 implies that, although SGCRL is an unsupervised algorithm and does not use any external
reward from the environment, it implicitly maximizes an internal reward i.e., ψ-similarity. This
result suggests that when ψ-similarity is well-structured and sufficiently dense, it can effectively
drive exploration. For instance, initial high ψ-similarity near the initial state provides the agent with
a gradient to move away from the start; however, ψ-similarity must decrease over time in regions
without the goal, otherwise the agent risks becoming trapped.

Moreover, Theorem 1 yields testable predictions, which we validate in Section 5. In particular,
the theorem predicts that the agent’s behavior is guided by similarity in representation space:
the agent is attracted to states with high ψ-similarity to the goal embedding and repelled from
states with low ψ-similarity, even when those states are respectively far from or close to the goal
in the raw environment. We empirically confirm this prediction in Section 5.2.

Notably, the formulation in Theorem 1 resembles the structure of successor representations and
successor features (Barreto et al., 2017; Kulkarni et al., 2016), where ψ(s) plays the role of a
state feature vector and ϕ(s, a) resembles a successor feature prediction. Yet several conceptual
differences distinguish our setting from this prior work. First, classical successor-feature methods
explicitly train state features (e.g., via reconstruction losses) and then learn successor features on
top of them. In SGCRL, both the features and their successor representations emerge naturally
from the InfoNCE objective, without requiring explicit successor-feature training. Second,
whereas successor features are typically used for rapid reward adaptation and transfer (Barreto
et al., 2017; Kulkarni et al., 2016), our focus is on how the learned representations themselves
drive exploration. In SGCRL, the state features evolve dynamically during training in a way
that induces exploratory behavior. Third, although this shaping effect resembles potential-based
reward shaping (Ng et al., 1999), SGCRL does not implement such shaping explicitly. The
“potential” toward the single goal arises implicitly from the contrastive objective rather than
from hand-crafted potentials. This contrasts with frameworks such as eigenoptions, which
deliberately construct potential-based rewards for different options (Machado et al., 2017).

4.2 REPRESENTATION UPDATES ADVANCE THE IMPLICIT REWARD CURRICULUM

So far, we discussed that the agent is driven by the shaped reward defined through ψ-similarity. In
this section, we analyze the evolution of ψ-similarity as the representations are updated. Specifically,
in Section 4.2.1 we show that before the goal is discovered, the ψ-similarity values of states that have
already been explored gradually decrease, preventing the agent from revisiting them and thereby
pruning the search space. In contrast, in Section 4.2.2 we argue that once the goal is found, this process
reverses: states along the path to the goal acquire higher ψ-similarity after their representations are
updated, which encourages the agent to consistently exploit that trajectory.

While the use of intrinsic rewards that exhibit this exploration-exploitation behavior has a rich
history—including novelty bonuses, episodic or count-based bonuses, and prediction-error bonuses
(Mohamed & Jimenez Rezende, 2015; Bellemare et al., 2016; Burda et al., 2019; Raileanu &
Rocktäschel, 2020; Pathak et al., 2017a; Henaff et al., 2022; Zhang et al., 2021b)—SGCRL differs
fundamentally from these approaches. In prior methods, intrinsic rewards are heuristically designed,
manually added to the task reward, and tuned via hyperparameters to balance exploratory drive
with task-directed performance and exploitation. By contrast, the intrinsic reward in SGCRL is not
an external design choice but emerges directly from the actor objective; it is principled, requires
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no additional tuning, and comes with an intuitive theoretical guarantee: it corresponds exactly
to maximizing the probability of reaching the goal under the agent’s current knowledge about
candidate goal states. In contrast, while other principled mechanisms for incentivizing exploration
exist!(Agarwal et al., 2020a;b), empirical demonstrations of their practicality and scalability remain
limited compared to SGCRL.

4.2.1 EXPLORATION BEFORE GOAL DISCOVERY

We analyze a simplified setting in which ψ(g) is fixed and the agent explores a region of the
environment that does not contain the goal; this assumption is realistic when the states are sufficiently
far from the goal and the critic network is sufficiently expressive. In this case, the updates affect
only the representations of states in that triplet, i.e., (s, a, sf ), while leaving ψ(g) unchanged. The
following theorem shows that if states in a region initially exhibit consistently high ψ-similarity (that
is, if their representations share a common component parallel to the goal representation, in addition
to independent state-specific noise) then repeated InfoNCE updates will reduce their similarity to
ψ(g) until they become orthogonal, rendering the region unattractive to the actor. Intuitively, since the
InfoNCE loss is invariant to shared components (i.e., adding a fixed vector to all representations) the
component of the representations parallel to ψ(g) does not help learn temporal differences. Because
normalized representations have limited capacity, they suppress this redundant component to better
use their representational budget to minimize the loss. See Figure 2b for an intuitive illustration.

Theorem 2 (Informal). Let D = {(si, ai, s(i)f )}Ni=1 denote the collected dataset, where each triplet

consists of a state si, an action ai, and the corresponding future state s(i)f observed in the trajectory
after taking (si, ai). Let ψ(g) ∈ Rd be a fixed high-dimensional unit vector representing the goal
such that g /∈ {s(i)f }Ni=1. Consider the normalized anchor embeddings {ϕ(si, ai)}Ni=1 and future

embeddings {ψ(s(i)f )}Ni=1 that are initialized as follows:

ϕ(0)(si, ai) = c ψ(g) + ζi, ψ(0)(sf,i) = c ψ(g) + κi,

where ζi, κi are i.i.d isotropic Gaussian vectors and c is a non-zero scalar. Suppose these embeddings
are updated using the InfoNCE gradient descent update rule as specified in Appendix B.1, with a
sufficiently large batch size N and sufficiently small learning rate η. Then, with high probability over
the random initialization, the system converges to an equilibrium that satisfies ϕ(si, ai)⊤ψ(g) =
ψ(s

(i)
f )⊤ψ(g) = 0,∀i.

Notably, the proof of this theorem relies only on a fixed-point analysis of the InfoNCE loss and does
not require any neural network function approximation.

In practice, at initialization, all ψ representations are nearly the same (no temporal structure has been
learned), so c is high for all states. As training progresses, states along unsuccessful trajectories
move away from ψ(g) in representation space. Consequently, Theorems 1 and 2 reveal a two-player
dynamic: the actor seeks regions with high ψ-similarity, while the critic reduces their similarity when
the goal is absent. Refer to Appendix B.5 for a discussion on how this mechanism enables efficient
exploration even in continuous settings, where the set of states to be ruled out is infinite.

Theorem 2 assumes that ψ(g) remains fixed while other representations are updated—an
assumption that holds exactly in the tabular setting. With a shared neural encoder, updates to
distant states can slightly shift ψ(g), but the theorem is stable to such drift: if ψ(g) changes
by at most ε, orthogonality holds up to an ε error. Moreover, we show in Appendix D.11,
that this orthogonalization effect persists empirically in continuous settings, indicating that the
fixed-point analysis remains a good practical approximation.

4.2.2 EXPLOITATION AFTER GOAL DISCOVERY

Considering that contrastive learning aligns the representations of positive examples (See Assump-
tion 1, Appendix B.2), the representations along a successful trajectory to the goal should align with
the goal representation ψ(g), since g appears as a positive example for those states. This leaves a
“trace” of high ψ-similarity states that enables the agent to reliably rediscover the goal. While full
alignment cannot be guaranteed theoretically, we find empirically that successful trajectories indeed
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form a high ψ-similarity trace from the start state to the goal. As shown in Section 5.1, this trace
consistently guides the agent to the goal, marking the transition from exploration to exploitation once
the goal has been discovered.

5 EXPERIMENTS

In this section, we present empirical evidence supporting our theoretical characterization of single-
goal exploration (Section 4) in both continuous and tabular settings. Through our experiments, we
address the following research questions:

RQ1. How do critic representations evolve during training to facilitate exploration and exploitation?

RQ2. How do critic representations influence the actor’s data collection strategy?

Subsection 5.1 addresses RQ1 using both a simplified model of SGCRL in a tabular setting as well as
standard SGCRL in the continuous setting. Subsection 5.2 addresses RQ2 in the continuous setting
and motivates our findings with preliminary results on how to utilize goal-similarity to improve safety.

Tasks. We study SGCRL on 2D point maze navigation tasks adapted from prior work (Eysenbach
et al., 2022; Liu et al., 2025) as well as the Tower of Hanoi goal-reaching task. The navigation
tasks involve reaching a goal in various maze configurations including the classic Four Rooms
domain (Sutton et al., 1999b), an L-shaped wall, and a spiral wall. The Tower of Hanoi task involves
moving a stack of disks across three locations with the constraint that larger disks cannot be placed
on smaller ones, and has been used extensively in studies of human problem-solving in cognitive
science (Simon, 1975). We do not use rewards or subgoals to solve any of the tasks, and success is
determined by whether the goal state is reached at some point during an episode. All training metric
curves are averaged over 8 random seeds. All shading denotes one standard error.

Tabular SGCRL. Previous implementations of SGCRL utilize neural network function approxi-
mation, raising the question of whether these behaviors are fundamental properties of the SGCRL
algorithm or artifacts of neural network dynamics. To isolate the SGCRL exploration mechanism
from neural network generalization properties, we designed a simplified computational model of the
algorithm for the tabular FourRooms maze and Tower of Hanoi task. Each state s has an embedding
ψ(s) stored in a lookup table and updated via the InfoNCE gradient rule (Appendix B.1). We assume
the environment follows deterministic transition dynamics and, instead of learning ϕ(s, a), further
assume access to the ground-truth dynamics st+1 = p(st, at) (this latter assumption can be relaxed
by learning in a model-based fashion). The policy takes actions according to Equation 3. Following
the assumptions for Theorem 2, all representations are initialized as ψ(s) = x+ ε(s), with a global
Gaussian seed x shared across states and small, independent Gaussian noise ε(s) per state.

5.1 RQ1. HOW DO CRITIC REPRESENTATIONS EVOLVE TO FACILITATE EXPLORATION AND
EXPLOITATION?

Our theory suggests that SGCRL automatically develops a curriculum of subgoals by updating
representations such that unsuccessful paths become less appealing over time (Thm. 2). To observe
how representations change in a controlled setting, we conducted a series of experiments with both the
simplified tabular SGCRL model and standard SGCRL algorithm, showing that ψ-similarity decreases
for states along unsuccessful trajectories and increases for states along successful trajectories. These
results support the hypothesis that SGCRL benefits from a natural exploration curriculum that
progressively pushes the agent toward unexplored regions.

Distinct phases of representation updates emerge. By running a simplified tabular version of
SGCRL, we aim to test whether SGCRL’s mechanism arise primarily from contrastive learning
of low-rank representations rather than from generalization properties of neural networks. Our
characterization of SGCRL’s exploration mechanism prescribes that representation updates should be
distinct before finding the goal compared to after finding the goal. That is, before reaching the goal,
we would expect the ψ-similarity of frequently visited states to decrease, and after finding the goal,
we would expect the ψ-similarity of frequently visited states to increase. To verify these dynamics,
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we ran tabular SGCRL in the Tower of Hanoi environment. We measured the correlation between
state visitation and goal similarity before and after the agent reached the goal.

0 1000 2000 3000
Trial

1.0
0.5
0.0
0.5
1.0

Pe
ar

so
n'

s r First majority success

Figure 3: Running SGCRL in a tabular Tower
of Hanoi environment reveals distinct phases of
learning. The 3 disk task is shown, but results
generalize to 4/5 disks.

We find that, even with the simplified tabular
model, the agent demonstrates effective explo-
ration and goal-reaching with distinct phases of
behavior. Given uniform initialization of all states
close to the goal, the correlation between state
visitation and goal similarity starts high. As train-
ing progresses, the state visitation count and goal
similarity become negatively correlated prior to
reaching the goal and positively correlated after
reaching the goal (see Fig. 3). We also performed
an ablation study where we replaced the vector-
ized representations with a |S| × |S| lookup table
of state-goal similarity and updated these scalar
values with the same contrastive objective. In this setting, the agent fails to explore efficiently,
requiring ∼ 100x more samples than tabular SGCRL. (Appendix D.3). These results indicate that
SGCRL’s exploration dynamics arise from contrastive learning with low-rank representations rather
than from neural network approximation or from the contrastive learning objective alone.

In Appendix D.1, we compare the evolution of ψ-similarity in SGCRL with the value function of
R-MAX (Brafman & Tennenholtz, 2002), an optimism-based exploration method for the tabular
setting that is provably-efficient (Strehl et al., 2009). R-MAX and SGCRL share similar exploration
dynamics: R-MAX starts with the belief that all states yield the maximum reward (equivalent to
assigning high ψ-similarity in SGCRL), and exploration progressively corrects these estimates as
states are visited and their true rewards are revealed. We also refer the reader to Appendix D.6,
which shows that although the exploration dynamics of SGCRL could, in the very worst case, require
searching the entire state space to reduce all ψ-similarity values, this does not occur in practice. In
continuous settings represented by neural networks, the algorithm avoids exhaustive search. Although
our findings suggest that neural network generalization is not the primary reason for SGCRL’s
exploration mechanism, it nevertheless provides a useful inductive bias: ψ-similarity reductions for
unsuccessful paths generalize to nearby states, improving exploration efficiency.

Representations along unsuccessful trajectories become dissimilar to the goal. To study RQ1
further, we simulate how representations evolve when goals are unreachable. Theorem 2 predicts
that representations for states along unsuccessful trajectories should become orthogonal to the goal.
To test this prediction, we ran an experiment in which we assigned the agent an imaginary goal
ψ(g) = z, with z sampled from a Gaussian distribution. We projected the learned representations
into three dimensions using PCA (see Fig 4), with z aligned to the vertical axis.
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(a) Representation evolution
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(b) ψ-similarity evolution

Figure 4: (a) Initially all representations start close to z,
later collapsing into a subspace orthogonal to z, while
preserving local room-level structure. (b) ψ-similarity
decreases along traversed, unsuccessful paths.

We find that initially the representations
cluster near the goal at the top of the unit
sphere. Over time, they drift toward the
“equator”, collapsing into the subspace or-
thogonal to z, while still clustering states
from the same room together. The drift re-
flects the agent’s visitation pattern: states
in the bottom-left room, visited first, are
pulled away earliest, while states in the top-
right room, reached only in later episodes,
collapse last. This experiment highlights
a key property of the SGCRL data col-
lection strategy: Because the single-goal
conditioned policy consistently drives the
agent toward areas with higher ψ-similarity
(unvisited states), representations of previ-
ously visited states are continually pushed
further from the goal. These results pro-
vide insight into RQ1 and highlight the ef-
fectiveness of single-goal exploration, even
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(c) Safety

Figure 5: SGCRL targets states with high ψ-similarity (a, b), avoiding states with low ψ-similarity
(c)

in settings without a real goal. Moreover, the same exploration dynamic also extends to the multi-goal
setting. With a simple modification to the action-selection mechanism, SGCRL is able to reach a
distribution of goals (Appendix D.7).

To test whether the same representation trend holds for the continuous setting, we conduct an
experiment using standard SGCRL in which we fixed the data collection trajectories to always move
in a particular cardinal direction. This experiment allows us to isolate the effect of unsuccessful
visitation on representational similarity. We find that initially the ψ-similarity of all states is high,
but, over the course of training, states along the frequently traversed paths systematically become less
similar to the goal (see Fig 4b).

SGCRL data collection structures representations strategically. We also investigate whether the
single-goal data collection strategy offers distinct advantages over other data collection strategies for
the representation shaping described in the above experiment. For the FourRooms task, we compare
single-goal data collection with an alternative strategy that samples goals from a uniform distribution.
This strategy fails to push representations of frequently visited states far from the goal, preventing
effective exploration (Appendix D.5). These results indicate that the SGCRL actor is not merely a
consumer of well-formed representations, but also an active contributor. Through data collection, it
shapes representations in a principled way that decreases ψ-similarity for frequently visited states.

5.2 RQ2. HOW DO CRITIC REPRESENTATIONS INFLUENCE THE ACTOR’S DATA COLLECTION
STRATEGY?

Next, we investigate how the dynamic representation updates characterized in Section 5.1 influence
the actor’s data collection strategy. Our theory posits that goal-similarity provides an internal reward
(Thm. 1) to direct agent behavior. In this vein, we conduct intervention experiments to study how
goal-similarity influences SGCRL’s visitation behavior, with applications to safety-aware exploration.

Agent targets states with high ψ-similarity. In our first experiment, we perturb the initial position
of the agent at various training checkpoints to be closer to the goal and observe whether the agent
directly targets the goal state or target states that “look like” the goal (high ψ-similarity). We find
that the agent navigates toward the closest region with high representational goal similarity, even if
it can reach the goal directly through a shorter path (see Fig. 5a). To test this behavior further, we
conduct another intervention in which we fixed the representations of a patch in the top-right room of
the FourRooms environment to match the goal embedding ψ(g). As shown in Fig. 5b (top), the agent
is strongly attracted to this patch, leading to a substantial increase in visitation of the top-right room
compared to the control setup (Fig. 5b, bottom). Notably, even when the agent succeeds in reaching
the true goal, it frequently detours into this patch along the way. These results yield an answer to RQ2,
indicating that the agent is guided by an implicit reward signal based on representational similarity to
the goal. This behavior emerges from the learning objective without any explicit programming to
seek goal-like states.

9
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Agent avoids states with low ψ-similarity. Based on our characterization of SGCRL’s behavioral
drivers (Sec. 4), we predict that manipulating contrastive representations allows more fine-grained
control of agent behavior during both training and deployment. We tested this prediction by setting
the representations of the states in one of the rooms in the continuous FourRooms environment to
be the negative of the goal representation (ψ(s) = −ψ(g);∀s ∈ R). We find that this intervention
leads the agent to systematically avoid that region during both training (Figure 5c – top) and test time
(Figure 5c – bottom). The agent successfully finds alternate paths to the goal while respecting the
imposed constraints (see Appendix D.15 for more figures). These preliminary experiments show
that understanding goal representation-driven exploration could lead to improvements in safety and
control of goal-reaching tasks, enabling practitioners to guide agent behavior through representation
design rather than explicit reward engineering (Ibrahim et al., 2024).

6 CONCLUSION

Through theoretical analysis and controlled experiments, we have shown that SGCRL implicitly
maximizes rewards based on representational goal-similarity, enabling effective exploration without
explicit rewards. Our results indicate that these exploration dynamics arise from contrastive learning
of low-rank representations rather than from function approximation with neural networks.

Prior work in self-supervised learning has considered contrastively-learned low-rank represen-
tations detrimental to downstream classification tasks due to loss of representational capacity.
However, for SGCRL, limited representational capacity is not a weakness, but rather a necessary
component of the method’s success. More specifically, the mechanism that allows SGCRL
to prune the search space relies on the geometric constraints imposed by low-dimensional,
normalized embeddings. Before the goal is found, the InfoNCE objective suppresses shared
components (e.g. psi(g)) that do not help learn temporal differences, driving the representa-
tions of states along unsuccessful trajectories to become orthogonal to the goal embedding and
incentivizing exploration towards unvisited states.

At a high-level, these dynamics align with classic exploration algorithms, like R-MAX and PSRL,
that refine a set of candidate desirable states during exploration. This characterization not only
helps to explain the success of SGCRL in prior work, but also charts a path for how to retain the
strong, appealing theoretical properties of R-MAX/PSRL in high-dimensional as well as long-horizon
tasks. (Liu et al., 2025; Eysenbach et al., 2022; Zheng et al., 2023).

Beyond analyzing SGCRL specifically, our analysis provides a case study for under-
standing emergent exploration through the lens of algorithmic interpretability inspired by
cognitive-science methods. We draw on analysis techniques commonly used in cognitive sci-
ence—including rational analysis, controlled interventions, and simplified modeling, to construct
and test a theoretical account of SGCRL’s behavior.

The particular instantiation of this framework operationalized in this work successfully yields insight
into the behavioral drivers of exploration, enabling us to better control these systems for safer
deployment. We anticipate that a similar methodology can be used to gain deeper insight into a range
of RL algorithms, potentially identifying ways in which those algorithms can be improved through
the same implicit, contrastive reward-shaping process (Asmuth et al., 2008).

Limitations. Our empirical study, through its focus on SGCRL, exclusively focused on goal-
reaching tasks and did not consider reward maximization more broadly. We analyzed the learning
dynamics of SGCRL but have yet to establish formal theoretical guarantees on its sample efficiency.
In future work, we aim to study whether SGCRL can achieve polynomial sample complexity in the
tabular setting (Kakade, 2003; Strehl et al., 2009) and extend the method empirically to a broader
space of tasks beyond goal reaching.
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Reproducibility Statement. We will provide the source code for tabular SGCRL upon publication.
The experiments using standard SGCRL use the codebase and default parameters given in (Liu et al.,
2025). The hyperparameters used for both tabular and standard SGCRL are given in Appendix C.
The proofs of all theoretical results are provided in Appendix B.

Ethics Statement Our work investigates the exploration dynamics of a self-supervised reinforce-
ment learning algorithm and therefore has no immediate ethical concerns. We also develop a variant
that mitigates certain behaviors relevant to safety-critical applications. However, as with many
advances in RL, similar techniques could, in principle, be misused to enhance adversarial behavior.
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APPENDIX

A SINGLE-GOAL CONTRASTIVE RL ALGORITHM

In this section, we provide more details about the SGCRL algorithm as presented in (Liu et al., 2025).

Algorithm 1 Single-goal Exploration with Contrastive RL. The difference from most prior methods is
that exploration is done by commanding a single difficult goal s∗, rather than sampling goals with a range of
difficulties.

1: Initialize policy πθ(a | s, g), replay buffer B, classifier with logits ϕ(s, a)Tψ(sf ).
2: while not converged do
3: Collect one trajectory of experience using π(a | s, sf = s∗), add to buffer B.
4: Update representations ϕ(s, a), ψ(sf ) and policy π(a | s, sf ) using contrastive RL.
5: Return policy π(a | s, g = s∗).

SGCRL is a simple modification of contrastive RL (Eysenbach et al., 2022): rather than asking the
human user to provide training subgoals for exploration, SGCRL always commands the policy to
collect data with a single hard goal s∗. This single hard goal is chosen to be a semantically meaningful
state corresponding to task completion. The actor and critic objectives are presented in Section 3.

B THEORETICAL RESULTS

B.1 GRADIENT DESCENT UPDATES FOR OPTIMIZING THE INFONCE OBJECTIVE

We derive the gradients of the backward InfoNCE loss with respect to the different representation
parameters in order to characterize their update dynamics. Consider the batch D = {si, ai, sfi}N
where sfi is the positive example for state action pair si, ai.

L(D;ϕ, ψ) = −
∑
i

log
exp

(
ϕ(si, ai)

⊤ψ(sfi)
)∑

k exp (ϕ(sk, ak)
⊤ψ(sfi))

pij :=
exp

(
ϕ(si)

⊤ψ(sfj)
)∑

k exp (ϕ(sk, ak)
⊤ψ(sfj))

(4)

Note that
∑
i pij = 1 but

∑
j pij ̸= 1

∇ϕ(si,ai)L = −
∑
j

(δi,j − pij) · ψ(sfj) (5)

∇ψ(sfj)L = −
∑
i

(δi,j − pij) · ϕ(si, ai) (6)

ϕ(t)(si, ai) = ϕ(t−1)(si, ai) + η
∑
j

(δi,j − pij) · ψ(t−1)(sfj) (7)

ψ(t)(sfj) = ψ(t−1)(sfj) + η
∑
i

(δi,j − pij) · ϕ(t−1)(si, ai) (8)

where η is the learning rate and δi,j := 1[i = j]. The update rules for the forward loss are analogous;
the only difference is that, in the denominator of pij , the summation is taken over ψ(sfk).

When representations are meant to have unit norm, we perform an additional normalization step after
every update.
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B.1.1 CONVERGENCE.

Definition 1 (Convergence). The convergence of the system characterized by Equations 7 and 8 is a
configuration in which the updates cease to alter any of the representations.

In the non-normalized case, this corresponds to vanishing gradients:

∇ϕ(si,ai)L = ∇ψ(sfi)L = 0 ∀i.

In the normalized case, convergence arises either when the gradients vanish, or when they are parallel
to the representations themselves, i.e.,

∇ϕ(si,ai)L = c′i ϕ(si, ai), ∇ψ(sfi)L = ci ψ(sfi), ∀i,

for some scalars ci, c′i. In this case, normalization preserves the representation since scaling by a
constant leaves the direction unchanged:

(c′i + 1)ϕ(si, ai)

∥(c′i + 1)ϕ(si, ai)∥
= ϕ(si, ai),

and similarly for ψ(sfi).

B.2 SUPPORTING ASSUMPTION 1

Here we provide two illustrative cases that support Assumption 1.

The first scenario considers the setting where representations are normalized, high-dimensional,
and—at convergence—uniformly distributed on the unit sphere. The uniformity assumption is a
well-established fact in the literature, with prior work showing that the optimum of contrastive losses
indeed yields such distributions (Wang & Isola, 2020).

The second scenario addresses the case where the data trajectories used for training can be partitioned
into disjoint trajectories. In this setting, we show that the ϕ and ψ representations along each trajectory
fully align—not only in expectation, but exactly—for all state–action pairs and future states sampled
along that path. This provides an even stronger version of Assumption 1.

We formalize the first scenario in Lemma 1, and then establish the second case in Lemma 2.

B.2.1 ALIGNMENT OF POSITIVE EXAMPLES UNDER DISJOINT TRAJECTORY ASSUMPTION

Consider the following data collection assumption: we collect data consisting of one anchor pair
(si, ai) together with multiple future states {skf,i}Kk=1 for each trajectory. The trajectories are disjoint,
meaning that no anchor pair (si, ai) or future state skf,i is shared across different trajectories. Under
this assumption, we can state the following lemma (the proof of the lemma is easily extendable to
cases where there are multiple anchor per trajectory):

Lemma 1 (Positive examples have fully aligned representations). Let N ≫ 1 be the batch size and
d≫ 1 be the representation dimension. Consider anchors (si, ai) and their corresponding positive
states sfi, i = 1, . . . , N , with initializations

ϕ0(si, ai) = ζi, ψ0(sfi) = κi,

where ζ0i , κ
0
i

i.i.d.∼ N
(
0, 1dId

)
. Suppose the representations are updated using gradient descent update

rule of either the backward or forward InfoNCE loss (with normalization), with update rules as
characterized in Appendix B.1. Then, with high probability over the initialization, the following holds
at equilibrium:

ϕ(si, ai) = ψ(sfi), ∀i.
Moreover, if each anchor (si, ai) has more than one positive example {sfki }k, then at equilibrium

ϕ(si, ai) = ψ(sfki ), ∀i, k,

where k indexes the positive examples.
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Proof. We refer the reader to the proof of Theorem 3 for the first part of this proof. There, we analyze
InfoNCE convergence under the assumption that each anchor (si, ai) has only a single future state
sfi . In particular, Claim 2 of Theorem 3 establishes the result in this case.

The more realistic setting, however, is when each anchor is associated with multiple positive examples.
To handle this, we slightly adapt the proof of Theorem 3 to again establish full alignment. We use the
same notation as in that proof and restrict attention to the case where each anchor has K = 2 positive
examples. The extension to any K > 1 follows identically.

Concretely, we assume a batch of size N , with anchor representations denoted {ui}Ni=1 (correspond-
ing to ϕ(si, ai)) and positive representations {vi}Ni=1 (corresponding to ψ(sfi)). Each anchor ui is
duplicated, i.e., u2i = u2i+1, while its two positive examples v2i,v2i+1 are independent. In other
words, each u2i has two distinct positive examples.

We establish the following claims by induction, grouping indices (2i, 2i+ 1) into bundles:

(a) α(t) := ⟨v(t)
2i ,u

(t)
2i ⟩ = ⟨v

(t)
2i+1,u

(t)
2i ⟩ does not depend on the choice of i, and αt > 0,∀t ≥ 1,

and α(∞) = 1.

(b) β(t) := ⟨v(t)
2i ,v

(t)
2i+1⟩ does not depend on the choice of i, and βt > 0,∀t ≥ 2, and β(∞) = 1.

(c) λ(t) := ⟨v(t)
i ,v

(t)
j ⟩ = ⟨u

(t)
i ,v

(t)
j ⟩ = ⟨u

(t)
i ,u

(t)
j ⟩ = 0 whenever ⌊i/2⌋ ̸= ⌊j/2⌋; that is,

cross-inner products are zero across bundles.

These properties hold at initialization (t = 0), since independent Gaussian vectors are almost surely
orthogonal in high dimensions (see, for instance, Equation 3.14 of Vershynin (2018)). We show that
the update dynamics then preserve these index invariant properties We simplify the probability matrix
as defined in Equation 4 using the induction assumptions at step t− 1:

p :=
exp⟨u(t−1)

i ,v
(t−1)
j ⟩∑

k exp⟨u
(t−1)
k ,v

(t−1)
j ⟩

, if ⌊i/2⌋ = ⌊j/2⌋,

and

q :=
exp⟨u(t−1)

i ,v
(t−1)
j ⟩∑

k exp⟨u
(t−1)
k ,v

(t−1)
j ⟩

, if ⌊i/2⌋ ≠ ⌊j/2⌋.

These satisfy the normalization condition 2p+ (N − 2)q = 1 and, since N is large, q is small.

Now we write the GD update rule noting that each anchor ui receives two gradient updates per
iteration (corresponding to its two positives):

û
(t)
2i+1 = û

(t)
2i

= u
(t−1)
2i + η

(1− 2p)
(
v
(t−1)
2i + v

(t−1)
2i+1

)
− 2

∑
j ̸=2i,2i+1

q v
(t−1)
j

 ,

u
(t)
2i =

û
(t)
2i

∥û(t)
2i ∥

, u
(t)
2i+1 =

û
(t)
2i+1

∥û(t)
2i+1∥

,

v̂
(t)
2i = v

(t−1)
2i + η

(1− 2p)u
(t−1)
2i −

∑
j ̸=2i,2i+1

q u
(t−1)
j

 ,

v
(t)
2i =

v̂
(t)
2i

∥v̂(t)
2i ∥

.

We first prove (c). For simplicity, we denote α(t−1) = α and β(t−1) = β. We also note that by the
induction hypothesis, the norms ∥û(t)

i ∥2 and ∥v̂(t)
i ∥2 are independent of the index i and we denote
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these norms at time t− 1 by ru , rv. We write the cross inner product and simplify it using the fact
that λ(t−1) = 0, q ≈ 0 and η is small and representations at time t− 1 are unit norm.

⟨u(t)
i ,v

(t)
j ⟩ =

⟨û(t)
i , v̂

(t)
j ⟩

∥û(t)
i ∥∥v̂

(t)
i ∥

=
1

√
ru rv

[
− ηq

(
3 + β

)
+O(η2)

]
≈
q≈0

0, whenever ⌊i/2⌋ ≠ ⌊j/2⌋.

The proofs for the cross inner products ⟨v(t)
i ,v

(t)
j ⟩ and ⟨u(t)

i ,u
(t)
j ⟩ when ⌊i/2⌋ ≠ ⌊j/2⌋ are entirely

analogous to the argument above. Note that the invariance to the index, carry from timestep t− 1 to
t. Now we analyze the evolution of β(t) and α(t), which similarly remain invariant to the choice of
index at time t, if being invariant to index at time t− 1.

r(t)u :=

∥∥∥∥∥∥u(t−1)
2i + η

(1− 2p)
(
v
(t−1)
2i + v

(t−1)
2i+1

)
− 2

∑
j ̸=2i,2i+1

q v
(t−1)
j

∥∥∥∥∥∥
2

= 1 +O(η2) + 4η(1− 2p)α, (9)

r(t)v :=

∥∥∥∥∥∥v(t−1)
2i + η

(1− 2p)u
(t−1)
2i −

∑
j ̸=2i,2i+1

q u
(t−1)
j

∥∥∥∥∥∥
2

= 1 +O(η2) + 2η(1− 2p)α. (10)

β(t) = ⟨v(t)
2i ,v

(t)
2i+1⟩

=
1

r
(t)
v

(β + η · 2(1− 2p)α)

=
β + 2η(1− 2p)α

1 + 2η(1− 2p)α
(11)

= β +
2η(1− 2p)α

(
1− β

)
1 + 2η(1− 2p)α

. (12)

Using the induction assumption that α(t) > 0 for all t ≥ 1, every gradient descent update increases
β(t) starting at t = 2. At equilibrium, β(t) can no longer increase, which implies that β(∞) = 1.
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α(t) =
〈
u
(t)
2i ,v

(t)
2i

〉
=

1
√
ru rv

(
α+ η(1− 2p)

(
2 + β

)
+O(η2)

)
≈ α+ η(1− 2p)(2 + β)√

1 + 4η(1− 2p)α
√
1 + 2η(1− 2p)α

(by the given form of rv, ru) (13)

=
set x:=η(1−2p)

α+ x(2 + β)√
1 + 4xα

√
1 + 2xα

≈ α+ x(2 + β)

(1 + 2xα) (1 + xα)
(14)

≈
η small

α+ x(2 + β)

(1 + 3xα)

= α+
x(2 + β − 3α2)

(1 + 3xα)
(15)

Where Equation 13 follows from the approximation
√
1 + cx ≈ 1 +

1
2cx for small x (equivalently, small η).

First, note that by Equation 13 and since β ≥ 0 (including at initialization), we have α(t) > 0 for all
t ≥ 1. This also completes the induction step to show that β(t) > 0 for all t ≥ 2, using the update
equation for β (Equation 12).

Moreover, as established earlier, at equilibrium we must have β = 1. Substituting this into Equation 15
further implies that α = 1 at equilibrium. Hence, we have successfully proved properties (a) and (b)
too.

B.2.2 SUPPORT FOR ASSUMPTION 1 VIA UNIFORM REPRESENTATIONS

Contrastive representations, when normalized, have been proven to converge to a uniform distribution
on the unit sphere (Wang & Isola, 2020). Building on this result, we adopt the same assumption to
provide additional theoretical support for Assumption 1. The specific form we prove here does not
yield exact equality,

Epπ(sf |s,a)[ψ(sf )] = ϕ(s, a),

but rather a positive proportionality. But since the multiplicative factor is strictly positive, the argmax
in the maximization problem of Theorem 1 remains unchanged and this result is still useful.

Lemma 2. Assuming both high dimensionality (d ≫ 1) and that, at convergence, the contrastive
representations ψ(s) are uniformly distributed on the unit sphere, we have:

Epπ(sf |s,a)[ψ(sf )] ≈
1

d
exp
(

1
2d

)
ϕ(s, a).

Proof. We begin by noting that, in high dimensions, a uniform distribution on the unit sphere is
equivalent to an isotropic Gaussian distribution N (0, 1dId) (see, for instance, Equation 3.15 of
Vershynin (2018)):

p(ψ) =
1

( 2πd )d/2
exp

(
−d∥ψ∥

2

2

)
,

where d is the representation dimension.

From the InfoNCE objective (Equation 1), at convergence the representation satisfies

ϕ(s, a)⊤ψ(sf ) = log
pπ(sf |s, a)
pπ(sf )

.
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Therefore, for the expectation we have

Epπ(sf |s,a)[ψ(sf )] =
∫
pπ(sf |s, a)ψ(sf ) dsf

=

∫
pπ(sf )

pπ(sf |s, a)
pπ(sf )

ψ(sf ) dsf

=

∫
pπ(sf ) exp

(
ϕ(s, a)⊤ψ(sf )

)
ψ(sf ) dsf .

Now, switching variables to ψf := ψ(sf ) and substituting the Gaussian density:

Epπ(sf |s,a)[ψ(sf )] =
∫
Rd

1

( 2πd )d/2
exp
(
−d2∥ψf∥

2
)
exp
(
ϕ(s, a)⊤ψf

)
ψf dψf .

Completing the square in the exponent:

−d2∥ψf∥
2 + ϕ(s, a)⊤ψf = −d2∥ψf −

ϕ(s, a)

d
∥2 + 1

2d∥ϕ(s, a)∥
2.

Thus,

Epπ(sf |s,a)[ψ(sf )] = exp
(

1
2d∥ϕ(s, a)∥

2
) ∫

Rd

1

( 2πd )d/2
exp

(
−d2∥ψf −

ϕ(s, a)

d
∥2
)
ψf dψf .

The integral above is simply the expectation of a Gaussian random vector with mean 1
dϕ(s, a), which

equals 1
dϕ(s, a). Therefore,

Epπ(sf |s,a)[ψ(sf )] = exp
(

1
2d∥ϕ(s, a)∥

2
) 1

d
ϕ(s, a).

Finally, since in high dimensions the learned ϕ(s, a) is unit norm, we obtain

Epπ(sf |s,a)[ψ(sf )] ≈
1

d
exp
(

1
2d

)
ϕ(s, a).

B.3 PROOF OF THEOREM 1

Proof. From Assumption 1:
ϕ(s, a) = Epπγ (sf |s,a)[ψ(sf )].

Substituting this into the first term of the SGCRL actor objective (Equation 2), we obtain

max
π

Es∼p(s), a∼π(a|s,g)
[
ϕ(s, a)⊤ψ(g)

]
= max

π
Es∼p(s), a∼π(a|s,g)

[
Epπγ (sf |s,a)[ψ(sf )]

⊤ψ(g)
]

Expanding the discounted future state distribution yields

= max
π

Es∼p(s), a∼π(a|s,g)

[
(1− γ)

∑
sf

( ∞∑
t=0

γt pπt (st = sf | s, a)
)
ψ(sf )

⊤ψ(g)

]

= max
π

Es∼p(s), a∼π(a|s,g)

[ ∞∑
t=0

γt Epπt (st)[ψ(st)
⊤ψ(g) | s0 = s, a0 = a]

]

= max
π

Es∼p(s), a∼π(a|s,g)

[
Eπ

[ ∞∑
t=0

γt ψ(st)
⊤ψ(g)

∣∣∣ s0 = s, a0 = a

]]
.

This is exactly the reinforcement learning reward maximization objective with reward function
r(s, a) = ψ(s)⊤ψ(g).

Therefore, maximizing the SGCRL objective is equivalent to maximizing the Q-value induced by this
reward function.
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B.4 A STRONGER VERSION OF THEOREM 2 AND PROOF

We now analyze the equilibrium dynamics of the InfoNCE update rule in the following theorem.
Claims 1 and 3 of this theorem directly imply the result stated in Theorem 2. For simplicity of
notation, we write ui in place of ϕ(si, ai) and vi in place of ψ(sfi).
Theorem 3 (InfoNCE representations at equilibrium). Let z ∈ Rd be a fixed unit vector, with d≫ 1.
Let {ui}ni=1 and {vi}ni=1 ⊂ Rd be anchor and future embeddings, initialized as:

u0
i = c z+ ζ0i , v0

i = c z+ κ0i

where ζ0i , κ
0
i

i.i.d.∼ N
(
0, 1−c

2

d Id

)
and c is a scalar. Suppose these vectors are updated via gradient

descent on the backward (or forward) InfoNCE loss with batch size N ≫ 1 and step size η > 0,
followed by unit-norm normalization. We assume η is sufficiently small.

Then, with high probability over the initialization, the dynamics satisfy the following:

1. At every step t, each representation decomposes as

uti = ctz+ ζti , vti = ctz+ κti,

where ζti , κ
t
i ⊥ z and ct is the same for all i.

2. At fixed point (i.e., when all the gradients are zero), u(∞)
i = v

(∞)
i , ∀i , and ⟨u(∞)

i ,v
(∞)
j ⟩ =

0, i ̸= j

3. At fixed point: c(∞) = 0, i.e., all representations become orthogonal to z as t→∞.

Proof. We establish the above results, together with three additional claims regarding the InfoNCE
update dynamics at equilibrium, via induction. At iteration t, we decompose each representation as

uti = c(t) z+ ζti , vti = c(t) z+ κti,

where the residuals ζti and κti are orthogonal to the unit vector z. We define the following quantities
and note that they are invariant with respect to the choice of index i (or i ̸= j where applicable):

(a) ⟨uti, z⟩ = ⟨vti , z⟩ = c(t) for all i.

(b) α(t) := ⟨ζti , κti⟩.

(c) λ(t) := ⟨ζti , κtj⟩ = ⟨ζti , ζtj⟩ = ⟨κti, κtj⟩ = 0 for all i ̸= j and for all t.

(d) r(t) := ∥ζti∥2 = ∥κti∥2 for all i.

Base case (t = 0): By initialization, ζ0i , κ
0
i ∼ N (0, 1−c

2

d Id) i.i.d., and ζ0i , κ
0
i ⊥ z. In high

dimensions, with probability 1 these vectors are all orthogonal to each other therefore λ(0) = α(0) = 0
and c0 is the same for all vectors by construction. And ∥ζ0i ∥ = ∥κ0i ∥ = 1 − c2 by construction.
Hence, all four properties a,b,c,d hold at t = 0.

Inductive step: Assume the properties hold at time t− 1. We now prove they also hold at time t.

We first prove it for the case that representations are normalized and for the backward InfoNCE loss,
the proof for the forward InfoNCE loss is exactly the same due to the symmetry at initialization,
which, as we will see later, is maintained through all the updates. The backward InfoNCE updates
with normalization are given by:

ûti = ut−1
i + η

vt−1
i −

∑
j

pijv
t−1
j

 (16)

uti =
ûti
∥ûti∥

, similarly for vti (17)
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where p(t−1)
ij =

exp(⟨ut−1
i ,vt−1

j ⟩)∑
k exp(⟨ut−1

k ,vt−1
j ⟩) .

Due to symmetry at time t− 1, we have:

p
(t−1)
ij = p

(t−1)
ji , p

(t−1)
ii =: p(t−1) for all i, j

so the matrix P (t−1) is symmetric, with equal diagonals and exchangeable off-diagonals. For ease of
notation we use p := p

(t−1)
ii and q := p

(t−1)
ij . Note that p+ (N − 1)q = 1

Property (a), (d): projection onto z and norm From the updates and the fact that all c(t−1) are
equal, we get: 〈

vt−1
i −

∑
j

pijv
t−1
j , z

〉
= c(t−1) −

∑
j

pijc
(t−1) = 0

Thus,

⟨ûti, z⟩ = ⟨ut−1
i , z⟩ = c(t−1), ⇒ ⟨uti, z⟩ =

c(t−1)

∥ûti∥
=: c(t) (18)

and the same holds for vti . In order to prove (a), we need to show that ∥ui∥ and ∥vi∥ are equal and
invariant to the index for any t. (For ease of notation we use α, λ, r instead of α(t−1), λ(t−1), r(t−1).)

∥∥ûti∥∥2 =

∥∥∥∥∥∥c(t−1)z+ ζt−1
i + η

(1− p)κt−1
i −

∑
j ̸=i

qκt−1
j

∥∥∥∥∥∥
2

=
(
c(t−1)

)2
+ r + 2η(1− p)α− 2η(N − 1)q λ

= 1 + 2η(1− p) · α+O(η2) (19)

We used the fact that due to normalization (c(t−1))2 + r = 1, we also used λ = 0.

It is straightforward to verify that the expression for ∥ûti∥
2 is independent of the choice of index

i. Furthermore, if we expand ∥v̂ti∥
2, we encounter the same number of matched pairwise or cross-

term inner products, with only the order of terms being swapped. As a result, we obtain the same
expression.

We therefore denote this common quantity by

L(t−1) :=
∥∥ûti∥∥2 =

∥∥v̂ti∥∥2 .
Therefor, it follows from Equation 18 that ⟨uti, z⟩ is identical for all representations. Since all these
representations share the same norm and identical projection onto z (i.e., the parallel component),
it must be that their orthogonal components—namely, ζti and κti—also have equal norms. Hence,
condition (d) is satisfied too, this also ends the proof for claim 1 of the theorem statement.

Properties (b), (c): Matching and cross inner product We expand:

ζti =
1

L(t−1)

ζt−1
i + η

(1− p)κt−1
i −

∑
j ̸=i

qκt−1
j


κti =

1

L(t−1)

κt−1
i + η

(1− p)ζt−1
i −

∑
j ̸=i

qζt−1
j


Then:

α(t) = ⟨ζti , κti⟩ =
1

(L(t−1))2
[
α+ 2η(1− p)r − 2η(N − 1)λq +O(η2)

]
=

1

(L(t−1))2
[α+ 2ηr(1− p) +O(η2)]
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This expression is independent of the choice of index i; this proves statement (b). Similarly, we can
evaluate ⟨ζ(t)i , κ

(t)
j ⟩ and ⟨ζ(t)i , ζ

(t)
j ⟩ for i ̸= j:

ζti =
1

L(t−1)

ζt−1
i + η

(1− p)κt−1
i −

∑
l ̸=i

qκt−1
l


ζtj =

1

L(t−1)

ζt−1
j + η

(1− p)κt−1
j −

∑
l ̸=j

qκt−1
l


κtj =

1

L(t−1)

κt−1
j + η

(1− p)ζt−1
j −

∑
l ̸=j

qζt−1
l


⟨ζti , ζtj⟩ =

1

(L(t−1))2
[λ+ 2η(1− p)λ− 2ηq(N − 2)λ− 2ηqα+O(η2)]

=
N Large

1

(L(t−1))2
[λ+ 2η(1− p)λ− 2ηq(N − 1)λ+O(η2)]

=
p+(N−1)q=1

1

(L(t−1))2
[λ+O(η2)]

⟨ζti , κtj⟩ =
1

(L(t−1))2
[λ+ 2η(1− p)λ− 2ηq(N − 2)λ− 2ηqr +O(η2)]

=
N Large

1

(L(t−1))2
[λ+ 2η(1− p)λ− 2ηq(N − 1)λ+O(η2)]

=
p+(N−1)q=1

1

(L(t−1))2
[λ+O(η2)]

Since N is large and p, q ≥ 0 with p+ (N − 1)q = 1, it follows that q ≈ 0. We observe that these
inner products are also independent of the specific choice of i and j, due to the same underlying
symmetry. Moreover ⟨ζ(t)i , κ

(t)
j ⟩ and ⟨ζ(t)i , ζ

(t)
j ⟩ are all zero given that λ is zero (induction) hence (c)

is also proved.

This completes the inductive step, i.e., the proof for a, b, c, d.

Now we assess how α(t) and r(t) change to prove claims 2, 3 of the theorem statement.

α(t) =
1

(L(t−1))2
[α+ 2ηr(1− p) · r +O(η2)] (20)

≈ α+ 2η(1− p) · r
1 + 2η(1− p) · α

= α+
2η(1− p)r ·

(
1− ααr

)
1 + 2η(1− p) · α

≥
α≤1

α+
2η(1− p)r ·

(
1− α

r

)
1 + 2η(1− p) · α

(21)

≥α+
2η(1− p)r · (1− α

r )

1 + 2η(1− p) · α
(22)

≥ α

Since the denominator is positive and 1− α/r ≥ 0. α only stops growing if the equality holds i.e.,
α/r = 1,

⟨ζ(t−1)
i , κ

(t−1)
i ⟩

∥ζ(t−1)
i ∥ ∥κ(t−1)

i ∥
= 1 ⇐⇒ cos

(
ζ
(t−1)
i , κ

(t−1)
i

)
= 1,
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so as long as cos
(
ζ
(t−1)
i , κ

(t−1)
i

)
< 1, α(t) increases, at equilibrium its growth should be stopped

and that means the alignment of each positive pair increases strictly, and positive pairs keep aligning
until they are fully aligned. This result, along with the fact that λ(t) = 0, ∀t, which we proved before,
completes the proof for claim 2 of the theorem statement.

Finally, we prove Claim 3 of the theorem by showing that, at equilibrium, r = 1, i.e., the squared
norm of the component orthogonal to z. Since each representation is normalized, this immediately
implies that the parallel component must vanish.

r(t) = r + 2η(1− p)α

Since α(0) = 0 and, by Equation 21, α(t) increases strictly (Note that due to norm 1 constraint on the
representations p can never approach 1) until full alignment, it follows that α(t) > 0 for all t ≥ 1.
Consequently,

r(t) > r(t−1) for all t ≥ 2.

Thus, the sequence {r(t)} is strictly increasing until it saturates at the unit-norm bound.

B.5 IMPLICATION OF THEOREM 2 IN FUNCTION APPROXIMATION SETTING

Theorem 2 shows that an agent trained with contrastive RL can rule out regions previously visited
where the goal was not found, as indicated by low ψ-similarity. At first glance, this mechanism
might appear inefficient in continuous settings, where the state space is infinite. However, in the
function approximation regime, we expect the critic network to generalize in two important ways: (1)
states that are far from the goal in the underlying state space should also be represented as far from
the goal in the embedding space, making them unattractive to explore; and (2) if a region is ruled
out as not containing the goal (low ψ-similarity), nearby states should likewise be ruled out. Thus,
with function approximation, this mechanism extends naturally to infinitely many states. Indeed, as
we have observed in previous work (Liu et al., 2025), SGCRL is capable of solving long-horizon
planning tasks in continuous environments. Also, we refer the reader to Appendix D.6 for two
experiments that show SGCRL in continuous setting explores the environment efficiently and avoids
non goal-unrelated states.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

Table 1: SGCRL Hyperparameters.

hyperparameter value

Standard SGCRL (Liu et al., 2025)
batch size 256
learning rate 3e-4
discount 0.99
actor target entropy 0
hidden layers sizes (policy, critic) (256, 256)
initial random data collection 10,000 transitions
replay buffer size 1e6
samples per insert1 256
representation dimension (dim(ϕ(s, a)), dim(ψ(sg))) 64
actor minimum std dev 1e-6
Tabular SGCRL
batch size 128
learning rate 1e-2
discount 0.99
initial random data collection False
replay buffer size 1e3
representation dimension (dim(ψ(sg))) 16
1 How many times is each transition used for training before being discarded.

D ADDITIONAL EXPERIMENTS

D.1 TABULAR SINGLE GOAL EXPLORATION FALLS WITHIN A CLASS OF CLASSICAL
EXPLORATION ALGORITHMS

Initialization  Exploration  Exploitation 

R-max 

SGCRL 

PSRL 

Figure 6: SGCRL shares characteristics with R-
max and PSRL

Through comparison with tabular exploration
methods, we investigate whether SGCRL employs
classical exploration strategies or explores in a
unique way. Historically, statistically-efficient
exploration algorithms broadly employ one of
two strategies: optimism in the face of uncer-
tainty (Kearns & Singh, 2002; Brafman & Ten-
nenholtz, 2002; Kakade, 2003; Strehl et al., 2009;
Jaksch et al., 2010; Jin et al., 2018) or poste-
rior sampling (Osband et al., 2013; Osband &
Van Roy, 2014; Abbasi-Yadkori & Szepesvari,
2014; Agrawal & Jia, 2017; Osband & Van Roy,
2017). One representative delegate of each is
R-MAX (Brafman & Tennenholtz, 2002) and
Posterior Sampling for Reinforcement Learning
(PSRL) (Strens, 2000; Osband et al., 2013), re-
spectively. Curiously, instances in either camp
may admit a unified regret analysis through the construction of confidence sets (Russo & Van Roy,
2013; Osband & Van Roy, 2014; Lu & Van Roy, 2019), collections that hold the true ground-truth
hypothesis with high probability and (by virtue of a good exploration strategy) can be shown to have
shrinking widths as data accumulates.

Empirically, we observe that SGCRL operates according to this same unified perspective, maintaining
an implicit collection of hypothesized goal states with optimistically-inflated values and progressively
refining this confidence set through targeted exploration. The algorithm’s goal-conditioned represen-
tation learning creates an initial landscape where many states appear promising (similar to the goal).
By visiting these candidate states, the algorithm systematically winnows this set until it finds the true
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goal state (see Fig. 6). Visualizing training checkpoints for all three algorithms, we find that, due to
optimistic initialization, SGCRL progressively explores candidate states like R-MAX until it finds
the goal, at which point it demonstrates the rapid exploitation of PSRL (upon identifying the true
underlying environment).

D.2 SGCRL ACHIEVES MODEST SUCCESS WHEN TRAINED WITH DATA COLLECTED BY
ANOTHER ALGORITHM

In this experiment, we investigate the role of the actor data collection algorithm in SGCRL perfor-
mance. We conduct yoked experiments in which we perform the SGCRL representation updates
using data collected by another algorithm (e.g. PSRL, R-MAX) running independently in parallel.
We also conduct a yoked control experiment in which SGCRL learns using the data collected by
another independently initialized SGCRL agent running in parallel. We find that when we yoke
SGCRL to PSRL or R-MAX, it learns to reach the goal, though not consistently (Fig. 7a, 7b). When
we yoke SGCRL to another SGCRL instance, both agents learn to consistently solve the task (Fig. 7c).
These results imply that SGCRL’s can learn somewhat useful representations when trained on data
collected by another algorithm, but still attains the best performance with single-goal data collection.
Contrary to previous work in both cognitive science (Markant & Gureckis, 2014; 2010) and deep
RL (Ostrovski et al., 2021), the success of the SGCRL-SGCRL yoked experiment implies that online
interaction with the environment is not necessary.
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(a) SGCRL yoked with PSRL
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(b) SGCRL yoked with R-MAX
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(c) SGCRL yoked with SGCRL

Figure 7: (a,b) SGCRL acheives modest success when trained on data collected by PSRL or R-MAX.
(c) SGCRL succeeds consistently when trained on data collected by a different SGCRL initialization.
Evaluation curves show the performance of the yoked SGCRL agent policy trained on data collected
by another agent.

D.3 SGCRL FAILS TO EXPLORE WITHOUT REPRESENTATIONS

In this ablation experiment, we investigate whether representations are important for strategic ex-
ploration. We ablate the representations by implementing a version of tabular SGCRL without
representations. Rather than parameterizing ψ with a 16-dimensional vector for each state, we simply
maintain an |S| × |S| table of scalar values for the ψ-similarity of each state, goal pair. We learn
the values in this table using the same InfoNCE updates and the rest of the method is exactly the
same as tabular SGCRL. We find that by ablating vectorized representations (Fig. 8), the agent fails
to explore effectively, requiring on the order of 100x more samples to find the goal and converging
to a low success rate. The results of this experiment imply that SGCRL representations, whether
approximated by a neural network or a vector, are important for strategic and efficient exploration.

D.4 SINGLE-GOAL EXPLORATION IN ROBOTIC MANIPULATION TASKS.

We find that the characterization of SGCRL detailed in Section 4 holds in a Sawyer robotic manipula-
tion task where the agent must pick up a block and place it in a bin (Yu et al., 2020). During early
stages of training, the agent moves the robotic end-effector towards regions of high representational
similarity to the goal. Subsequently, the representational goal similarity of these frequently visited
regions decreases, and the agent visits new regions (see Fig. 9). These observational results suggest
that our characterization of single-goal exploration generalizes beyond 2D navigation tasks.
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Figure 8: Replacing the vectorized representations in tabular SGCRL with a lookup table results in
slower exploration.

Figure 9: XY cross section of representational goal similarity for the Sawyer Bin environment. Each
row represents checkpoints throughout training for different training seeds. The gray lines show the
trajectory of the end-effector across 5 episodes. The agent moves the end-effector towards regions of
high ψ-similarity to the goal, and then those regions subsequently develop low ψ-similarity, driving
continued exploration to new areas.

D.5 SINGLE-GOAL DATA COLLECTION IS ESSENTIAL FOR EXPLORATION-ENCOURAGING
REPRESENTATIONS

In this section, we analyze the role of single-goal exploration in forming representations that promote
exploration even before the goal is discovered. We also examine the behavior of a single-goal
exploration agent when the goal is unreachable. Interestingly, the agent still engages in broad
exploration, eventually covering the entire state space, and at convergence, it settles into a random
walk across the maze since the goal is never found. To conduct experiments, we use the simplified
tabular model of SGCRL without neural networks introduced in Section 5.

As we saw earlier, the central mechanism that enables SGCRL’s effectiveness is precisely its ability to
drive the ψ-similarity of non-goal regions toward zero. This ensures that previously visited goal-free
states are ruled out, forcing the agent to focus on unexplored areas. Theorem 2 establishes this
formally, showing that contrastive representations in SGCRL implement exactly this property.
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In practice, however, the assumptions of Theorem 2 – for instance, symmetric initialization – do not
necessarily hold. For instance, in the four-room environment, the agent begins in the bottom-left
room and gradually visits new ones. Adding states from newly visited rooms to the replay buffer
alters the updates of earlier rooms, breaking the symmetry assumption and eliminating the guarantee
of orthogonality between room representations. In this section, we address two key questions: 1)
Does the phenomenon of decreasing ψ-similarity persist in more realistic settings? 2) If so, what are
the underlying dynamics, and are they unique to SGCRL’s goal-directed data collection, or can other
exploration strategies achieve the same effect?

Evolving the representations, as shown in Figure 4, demonstrates that even in realistic scenarios the
representations of visited rooms drift farther from the goal representation at (0, 0, 1) on the z-axis.
This behavior is intuitive: first, within a single room, the shared component aligned with ψ(g) = z
is essentially wasted energy for contrastive learning. To achieve a stronger contrastive loss among
states in the same room, the z-component of their representations is dampened (refer to Theorem
2). Second, as the agent explores more and begins visiting new rooms, the introduction of these new
room representations pushes the older room representations even further away from the goal. This
happens because newly visited rooms are initialized close to z, so in order to maintain contrast, older
rooms are better off shifting downward and away from it.

This observation naturally leads to the following question:

• RQ1. What happens if the representations of some areas in the new rooms are not initialized
close to z? Do we still see the decreasing ψ-similarity trend of visited states which is
essential for exploration?

• RQ2. Is single-goal exploration data collection necessary for ψ-similarity reduction in
visited states? What does the representation evolution look like if we instead use a multi-
goal exploration data collection policy that collect data by sampling a new exploratory goal
in the beginning of every episode?

To explore this, we designed a new experiment. In this setting, the representations of a small patch in
the top-left and bottom-right rooms is initialized orthogonal to z (in order to address RQ1), while
the rest of the state representations are initialized as z plus small random noise (see Figure 10). The
agent starts in the bottom-left room (marked by the green dot).
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rit
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Figure 10: SGCRL data collection vs random goal data collection. At initialization, all state
representations are a noisy version of the imaginary goal representation (z) while the two small
patches in the top left room and the bottom right room are initialized with an initialization orthogonal
to z.

Apart from representation initialization, the experimental setup is the same as the imaginary goal
experiment of Section 5.1. i.e., ψ(g) = z is a random Gaussian vector that does not correspond to the
representation of any actual maze state, simulating a scenario where many representation updates
occur without the agent ever observing the true goal. This experimental setup also allows us to
address another interesting side question:

• RQ3. How does the agent behave during early training and after convergence when the goal
is not feasible in the environment?

We start by answering RQ1 and RQ2 through comparing the following two data-collection strategies:
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(a) Random-goal (before conver-
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(b) Random-goal (after conver-
gence)
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(c) Single-goal (before conver-
gence)
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(d) Single-goal (after conver-
gence)

Figure 11: Comparison of representation evolution under two data collection strategies: (Top row)
random goal exploration and (Bottom row) SGCRL. Solid lines demonstrate the agent trajectory
across 5 episodes.

1. Single-goal exploration – actions are selected according to the greedy policy:

at ∼
1

Z(st)
exp

(
1

τ
ψ(p(st, at))

⊤z

)
.

2. Random-goal exploration – actions are chosen based on:

at ∼
1

Z(st)
exp

(
1

τ
ψ(p(st, at))

⊤ye

)
,ye ∼ N(0, Id)

Where p(st, at) is the environment dynamic that outputs st+1; moreover ye is a Gaussian-
sampled goal embedding drawn anew at each episode. This corresponds to the widely used
convention in earlier works Andrychowicz et al. (2017); Eysenbach et al. (2022) where
exploration is guided by sampling from a distribution of potential goals to learn more
effectively about the environment.

Both data collection strategies start from the same initial representations. We then compare how the
representations evolve under these two different data collection strategies.

As demonstrated in Figure 11, at episode 9000—before the representations have fully converged—the
single-goal strategy naturally avoids the small dark patches. Because these patches have lower
ψ-similarity compared to their surroundings, the policy does not visit them. Instead, it focuses on
areas with higher ψ-similarity. As a result, the representations of the most frequently updated states
consistently evolve by moving farther away from the goal, allowing them to form stronger contrasts
with the newly visited states that are closer to the goal in representation.

In contrast, the random goal exploration strategy does not avoid the dark patches (Figure 12a). By
visiting these areas, it adds their states to the replay buffer, which in turn forces the older room
representations to contrast with these new states. This dynamic prevents the older representations
from drifting away from the goal. Indeed, even after convergence, the ψ-similarity under random
goal exploration fail to approach zero, as shown in Figure 12b.
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Figure 12 further visualizes this evolution by projecting the representations into three dimensions
using PCA. The key takeaway is that single goal greedy data collection provides an implicit structural
benefit: by consistently moving toward regions of higher ψ-similarity, it pushes the representations
of previously visited areas farther from the goal. In doing so, it shapes the representations of visited,
non-goal regions in a way that naturally encourages further exploration.
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(a) Random goal (before conver-
gence)
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(b) Random goal (after conver-
gence)

−0.8−0.4 0.0 0.4 0.8 −0.8
−0.4

0.0
0.4

0.8

−0.8

−0.4

0.0

0.4

0.8

3D PCA plot of ψ(s) - FourRooms - Episode 09000

0.0

0.2

0.4

0.6

0.8

ψ-
sim

ila
rit

y

(c) SGCRL (before convergence)
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(d) SGCRL (after convergence)

Figure 12: Comparison of representation evolution under two data collection strategies, with rep-
resentations projected into 3D using PCA. (Top row) random goal exploration and (Bottom row)
SGCRL.

Agent behavior when the goal is unreachable Finally, we address RQ3 by examining the agent’s
behavior during both early and late training. The single-goal exploration agent is consistently drawn
toward new states, but never toward the dark patch, since the representation of that region lies far
from ψ(g). As training progresses without ever reaching the goal, the representations of all states
gradually become orthogonal to the goal, yielding a uniform ψ-similarity of zero across the maze. In
this regime, the agent performs an unstructured random walk indefinitely (Figure 12d). By contrast,
the multi-goal exploration agent exhibits more diverse behavior, since changing goals occasionally
directs it toward states that are initially far from ψ(g). However, because it fails to uniformly reduce
ψ-similarity across the entire state space, it often becomes trapped in small regions that retain slightly
higher similarity values (Figure 12b).

D.6 SINGLE-GOAL EXPLORATION EQUIPPED WITH NEURAL NETWORKS AVOIDS EXHAUSTIVE
STATE SPACE SEARCH

Our earlier analysis in Sections 4 and 5 showed that single-goal exploration operates as an optimization
process: it begins by treating every state as a potential goal and, through contrastive learning,
progressively prunes away non-goal states. In Appendix D.1, we demonstrate the similarity of
SGCRL to optimism-based and uncertainty-based methods such as R-MAX and PSRL.

However, in the worst case, these classical tabular exploration methods require an exhaustive search
over the entire state space O(S), which is infeasible in continuous settings. While this limitation
holds for our simplified tabular SGCRL model without neural networks, we conjecture that the
standard SGCRL algorithm with neural network approximation (ψ(s) = Fθ(s)) is less susceptible to
exhaustive search. Due to generalization, it is plausible that the reduction in ψ-similarity for visited
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states also extends to nearby states, thereby pruning not only the states actually visited but potentially
additional states that would otherwise lead to unproductive exploration.

To test our conjecture, we designed two experiments that evaluate state coverage in the presence of
distracting or irrelevant dimensions. The first setup introduces exogenous noise (noisy TV), while the
second introduces a controllable but irrelevant dimension. Together, these experiments probe whether
SGCRL avoids exhaustive search over parts of the state space that do not contribute to solving the task.
Our results suggest that SGCRL focuses its exploration on task-relevant regions of the state space
rather than expanding coverage indiscriminately. In contrast, the novelty-driven method PPO+RND,
which incorporates an optimism-based novelty bonus, often expends effort exploring irrelevant states.
This contrast highlights the practicality of SGCRL in continuous domains, where exhaustive search
is infeasible and where other optimism-based approaches may struggle.

Baseline. As a baseline, we consider a popular optimism-driven exploration method in continu-
ous control: PPO combined with Random Network Distillation (PPO+RND) (Burda et al., 2019;
Schulman et al., 2017). In addition to the goal-conditioned extrinsic reward 1(s = g), this method
incorporates an intrinsic reward based on the mean squared error between the predictions of two
networks, A and B, where B is slowly distilled into A. This prediction error serves as a measure of
novelty, assigning higher rewards to states that have not been frequently visited. The agent is trained
using PPO to maximize a weighted sum of the extrinsic reward (scale 2) and intrinsic reward (scale
1). We run this baseline for 300k environment steps. All results are averaged over at least 5 seeds of
randomness.

Environment. We consider a continuous 11× 11 four-room maze. The agent starts in the top-left
corner, and the goal is located in the bottom-right corner.

D.6.1 NOISY TV EXPERIMENT

Setup. Following prior work on exploration, we evaluate whether algorithms fall into the so-called
noisy TV trap, a scenario where an agent may be distracted by uncontrolled stochastic signals rather
than making meaningful progress toward the goal (Burda et al., 2019; Pathak et al., 2017b). To
simulate this phenomenon, we augment the bottom-left room of the four-room maze with an additional
stochastic dimension z, sampled uniformly from [0, 11] at every step. In all other rooms, the z-value
is fixed at zero. This setup creates an exogenous source of noise that the agent cannot influence. The
purpose of this experiment is to compare the state coverage achieved by PPO+RND and SGCRL in
the presence of such uncontrollable noise.

Results. We compare SGCRL and PPO+RND on task success and exploration behavior during
training. In the base environment, SGCRL achieves a success rate of 98%, while PPO+RND reaches
90%. In the noisy-TV setting, success rate decreases by about 8% for SGCRL and 11% for PPO+RND,
indicating that SGCRL is slightly more robust to the noisty-TV problem. However, task success alone
does not reveal exploration efficiency. We additionally measure state coverage of both algorithms by
discretizing the continuous maze into grid cells and computing the fraction of visited cells. Table 2
reports results after 300k environment steps.

In the standard setting, which corresponds to a grid of 121 states, both methods achieve broad
coverage (0.90 for SGCRL vs. 0.82 for PPO+RND). In the noisy-TV setting, where the grid expands
to 371 states due to the added noisy dimension, a clear divergence emerges: PPO + RND attains
much higher coverage (0.91) compared to SGCRL (0.36). This difference reflects the tendency of
PPO + RND to overexplore irrelevant states. The noisy TV introduces additional dimensions with
high intrinsic novelty, drawing PPO+RND to explore uninformative states. In contrast, SGCRL
maintains relatively low coverage (0.36), indicating that the additional noisy-TV states do not cause
it to overexplore uninformative states.

Moreover, we plot the average fraction of each episode spent in the bottom-left room (the noisy-
TV room) in Figure 27, where episode lengths are normalized to 50 steps. The results show that
PPO+RND spends roughly 2-4× more time in the noisy-TV room compared to SGCRL. This
tendency persists even after the agent has successfully discovered the goal. These results further
emphasize that SGCRL demonstrates robustness to irrelevant noise compared to PPO+RND.
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Table 2: State coverage (grid) comparison between PPO+RND and SGCRL. Lower coverage in the
noisy-TV and irrelevant-dimension experiments indicates robustness to distraction and irrelevant
state dimensions.

Method Noisy TV ↓ Irrelevant Dimension ↓ Four-Room (no noise)
PPO+RND 0.91 0.65 0.82
SGCRL 0.36 0.40 0.90
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Figure 13: Average fraction of episode time spent in the noisy-TV room.

D.6.2 IRRELEVANT STATE DIMENSION EXPERIMENT

Setup. In this experiment, we again extend the four-room maze with an additional z-axis. Unlike
the noisy TV setting, the agent now has full control over this dimension and can move freely along z
without encountering walls. However, both the initial state and the goal are constrained to lie on the
z = 0 plane, meaning that optimal behavior does not require exploring the z-dimension at all. The
purpose of this setup is to test whether SGCRL explores the irrelevant dimension (z ̸= 0), or whether
it efficiently focuses on states relevant to reaching the goal.

Results. The results are summarized in Table 2. In this setting, the state space contains 1331 grid
cells. After 300k steps, SGCRL explores approximately 40% of this space, while PPO+RND covers
about 65%. In absolute terms, PPO+RND visits roughly 332 more cells, which is a substantial
difference given the size of the maze. These results again highlight that SGCRL avoids exploring
dimensions of the state space that are irrelevant to the goal, in contrast to PPO+RND.

D.7 SGCRL IS CAPABLE OF REACHING MULTIPLE GOALS

To demonstrate that the SGCRL exploration mechanism extends beyond single-goal settings, we
adapt the policy to handle multiple goals simultaneously. Specifically, we extend the SGCRL policy
from targeting a single goal to optimizing over a distribution of goals, weighted by their relative
desirability. To illustrate this, we present empirical results in the point-maze environment using a
tabular setting without neural networks (the same experimental setup as in Section 5). These results
show that the single-goal exploration framework naturally generalizes to more complex multi-goal
tasks through algorithmic modifications, without requiring neural network architectures.

Formally, consider a task defined by a set of goals

G = {g1, g2, . . . , gK},
Here, achieving goal gi yields reward ri. We modify the action-selection mechanism so that the policy
chooses action at at state st according to the distribution Softmax

(
ψ(p(st, at))

⊤ψcomb
)
, where the

combined goal embedding is defined as

ψcomb :=

∑K
i=1 ri ψ(gi)

∥
∑K
i=1 ri ψ(gi)∥2

.

The transition model pst+1
← p(st, at) represents the environment dynamics. In our setting, this

model is provided to the agent; however, in practical applications it could also be learned. Our
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Figure 14: Representation evolution in the multi-goal task
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Figure 15: Multi-goal SGCRL maintains a high per-episode reach rate for both goals. Solid lines are
agent trajectories

purpose here is not to propose the most practical solution, but rather to illustrate—within a simple,
tabular model—the computational capabilities of the algorithm. This formulation enables the agent
to act according to a reward-weighted combination of goals, rather than committing to a single target.

We evaluate this algorithm in the four-room environment by selecting two goals located at the top-right
sub-room, indicated by stars in Figure 14. We assign equal weights r1 = r2 = 0.5. All representations
are initialized with a common component x+ε(s), where ε(s) is state-dependent Gaussian noise. We
visualize ψ-similarity, i.e., ψ(s)⊤ψcomb, as a heatmap throughout training in Figure 14. Similar to the
single-goal setting, we observe that while all representations initially resemble each other (and align
with the combined representation), as the agent explores the environment, they gradually diverge
from the common component (reflected by lower ψ-similarity values). Eventually, the ψ-similarity
values stabilize, remaining high in the vicinity of the two goals and low throughout the rest of the
environment.

We also plot the average success rate of reaching goal 1, goal 2, and both goals per episode in
Figure 15, where the shaded region denotes the standard error across 6 random seeds. The results
show that the algorithm manages to reach both goals with nearly equal frequency, and in many
episodes it successfully visits both by alternating between them. This experiment demonstrates that
SGCRL is capable of handling multi-goal tasks and more complex behaviors, in addition to the
simpler single-goal setting. It is worth noting that in the absence of two goals, when only the right
hand side goal is chosen, the agent always takes a different path that doesn’t pass through the left
hand side goal; therefore visiting the left hand side goal in this experiment is not accidental.

D.8 ABLATING THE REPRESENTATION DIMENSION

We investigate whether changing the representation dimension affects the orthogonality phenomenon
predicted by Theorem 2. Although the theorem assumes a high-dimensional representation space,
we assess what representation dimension is sufficient in practice for this orthogonality to emerge.
Specifically, we analyze the learned representations in a tabular FourRooms environment when the
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(c) Dimension=2

Figure 16: Any representation dimension of four or higher is sufficient to form orthogonal representa-
tions in the absence of the goal.

agent explores but fails to find the goal. This scenario is equivalent to selecting a random goal
embedding that does not correspond to any actual state in the environment, as in the experimental
setup of Figure 4a. We repeat this analysis for a range of representation dimensions.

Our results show that a representation dimension of 4 (or any dimension larger than 4) is sufficient for
the representations to become orthogonal when the goal is not found (see Figure 16). However, when
we reduce the representation dimension to 2, the orthogonality phenomenon no longer appears (In
Figure 16c, the representations lie in a 2D plane and don’t move away from the goal representation at
convergence. As a result, the agent collapses into a local minimum and repeatedly visits states near
its starting point, since the non-orthogonal representations cannot separate unexplored regions.

D.9 ABLATING THE REPRESENTATION NORMALIZATION

To investigate the role of normalization in representation formation and in the overall success of the
algorithm, we ablate representation normalization in the tabular FourRooms environment.

Theorem 2 suggests that normalization plays a crucial role in the exploration dynamics: because
the representation norm is constrained, any component of ψ(s) that was previously parallel to ψ(g)
(the “common” component) is forced into the orthogonal subspace. Without normalization, however,
the representations can continue to encode useful information without suppressing this parallel
component.

We evaluate this hypothesis by removing representation normalization in the tabular setting. We find
that normalization is indeed essential: in the 10× 10 FourRooms environment with an episode length
of 30, the non-normalized representations achieve zero success. It is worth noting that with a longer
episode length of 100, the non-normalized variant can eventually solve the task, but we report the
more challenging 30-step setting to evaluate performance under stress conditions.
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Figure 17: In the tabular experiment, representation normalization plays a very important role in
success.
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(b) Late training

Figure 18: A TD-style critic produces the same qualitative pattern as CRL: the ψ-similarity of visited
states decreases over training. However, despite this representational effect, the agent consistently
fails to reach the goal.

D.10 ABLATING THE CRITIC LOSS

We now consider the case where the critic is learned via temporal-difference (TD) learning. In
particular, suppose the discounted successor measure admits the low-rank form

pπγ (sf | s, a) = ϕ(s, a)⊤ψ(sf ).

To update the representations using TD, we minimize the squared TD error

LTD
ϕ,ψ =

(
ϕ(s, a)⊤ψ(sf )−

[
(1− γ)1[s = sf ] + γ ϕ(s′, a′)⊤ψ(sf )

])2
, (23)

where sf is sampled at a geometrically distributed time offset from t, (s′, a′) is the next transition in
the replay buffer, and a′ ∼ π(· | s′).
Let the TD error be

δ := ϕ(s, a)⊤ψ(sf )−
[
(1− γ)1[s = sf ] + γ ϕ(s′, a′)⊤ψ(sf )

]
.

The gradient-descent updates are then

ϕ(t)(s, a) = ϕ(t−1)(s, a)− 2η ψ(sf ) δ,

ψ(t)(sf ) = ψ(t−1)(sf )− 2η ϕ(s, a) δ,

followed by normalization of the representations. This TD-based procedure can be viewed as an
alternative to the contrastive CRL objective for learning a low-rank approximation of the successor
representation.

We implemented this TD-learning variant in the tabular FourRooms environment. While the
learned representations exhibit qualitatively similar structure to those obtained with the contrastive
method—states visited frequently during exploration acquire lower ψ-similarity, the agent consis-
tently fails to reach the goal across five random seeds, refer to Figure 18.

D.11 ANALYZING THE GOAL SIMILARITY IN THE CONTINUOUS SETTING

In this section, we examine whether the orthogonality result of Theorem 2 continues to hold in the
continuous setting. The theorem assumes that the representations of non-goal states are updated
while ψ(g) remains fixed, modeling the situation where the agent explores regions of the state space
without encountering the goal. This assumption is exact in the tabular case, where updates are local.
However, in practice, when representations are produced by a shared neural encoder, updating states
far from the goal can still modify ψ(g) indirectly.

To test whether the orthogonality effect persists despite this coupling, we run SGCRL in the continuous
FourRooms environment and choose a goal embedding corresponding to an out-of-bounds coordinate,
g = (20, 20), ensuring that the agent never observes the true goal state. We then track the evolution
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(b) Mid training,
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(c) Late training

Figure 19: Even with a shared neural encoder, updating representations in regions far from the goal
drives the representations of visited states to become approximately orthogonal to the goal embedding.
Starting point is at the top left corner and the impossible goal coordinate is (20, 20).

of goal similarity throughout training across multiple seeds. See Figure 19. Consistently, we observe
the same pattern as in the tabular setting: representations initially have high ψ-similarity to the goal
but gradually decay toward values near zero, reflecting an approximate orthogonalization. Although
the similarity does not reach exactly zero, it becomes close, indicating that the theoretical prediction
remains a good approximation even with a shared encoder.

D.12 SAFETY BASELINE EXPERIMENTS

To better contextualize our safety experiments, we evaluate a few baseline safe RL algorithms from
the Safe Policy Optimization algorithm benchmark (Ray et al., 2019) on the FourRooms safety
environment. In this environment, the states in the bottom left room are considered “unsafe". We
evaluate the following baselines:

• PPO: Proximal Policy Optimization (PPO) (Schulman et al., 2017) serves as an uncon-
strained baseline.

• PPO-LAG: PPO-Lagrangian (Ray et al., 2019) uses an adaptive penalty coefficient on
the PPO objective to enforce safety constraints. This method equivalently solves the
unconstrained max-min optimization problem

max
θ

min
λ≥0
L(θ, λ) = f(θ)− λg(θ), (24)

where f(θ) is the objective and g(θ) ≤ 0 is the constraint. We set the cost-limit hyperpa-
rameter to 1.0 (no tolerance to safety violations). We tune over values for the initial penalty
coefficient.

• CPO: Constrained Policy Optimization (Achiam et al., 2017) enforces constraints by solving
trust region optimization problems analytically at each policy update. We set the cost-limit
hyperparameter to 1.0 (no tolerance to safety violations).

Figure 20 shows the safety violation rate of these baselines. We do not plot SGCRL in this comparison
because standard SGCRL converges at a much slower rate than these lightweight, online baselines
(Fig. 5c).

D.13 ABLATING FORWARD VS BACKWARD INFONCE LOSS AND THE ROLE OF THE LOGSUMEXP TERM

While the main experiments use the InfoNCE backward loss to train the critic (Eq. 1), in this section
we include an ablation in which we also evaluate the InfoNCE forward loss (Equation 25), which
also contains an additional log-sum-exp term.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600

Trials
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Vi
sit

at
io

n 
Ra

te
PPO-Lag (multiplier = 0.1)
PPO-Lag (multiplier = 0.01)
PPO-Lag (multiplier = 1.0)

CPO
PPO

Figure 20: Comparison of safety violation rate for baseline safe RL algorithms
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Figure 21: Role of the logSumExp term in the success rate when using the InfoNCE forward loss.

max
ϕ,ψ

E(si,ai)∼pD(s,a)

s
(i)
f ∼pπγ (·|si,ai)
i=1,...,N

 1

N

N∑
i=1

log
exp
(
ϕ(si, ai)

⊤ψ(s
(i)
f )
)∑N

j=1 exp
(
ϕ(si, ai)⊤ψ(s

(j)
f )
) − α log

( N∑
j=1

expϕ(si, ai)
⊤ψ(s

(j)
f )
)2 ,

(25)

Our goal is to analyze the role of this log-sum-exp factor in shaping the learned representations and
in determining the agent’s success rate. We sweep the forward-loss temperature parameter using α ∈
0.001, 0.01, 0.05, 0.1 in the tabular four-room environment and observe no meaningful differences in
representation dynamics. In particular, the evolution of ψ − similarity during exploration—when the
agent visits states far from the goal—exhibits the same orthogonality pattern as with the backward
loss.

In the continuous setting, however, varying α does affect the agent’s rate of convergence. We include
these results in Figure 21. The representation patterns appear similar across difference values of α
(Figure 22).

D.14 ADDITIONAL EXPERIMENTS ON THE IMPORTANCE OF SINGLE-GOAL DATA COLLECTION

To further test the hypothesis that exploration with a single hard-goal representation is responsible
for the orthogonality effect described above, we conduct an additional experiment that mirrors the
setup of Appendix D.5. The only change is in the data-collection policy: instead of comparing single-
goal exploration to a completely random-goal policy, we now compare it to a family of multi-goal
exploration strategies that interpolate between these two extremes.
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Figure 22: Representations during training for different logSumExp coefficient values
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Figure 23: As the data-collection goal representation deviates further from ψ(g) (larger σ), the
learned representations are less strongly pushed toward the orthogonal subspace.

Concretely, in each episode we sample a goal embedding

ye = ψ(g) + σ ϵ, ϵ ∼ N (0, Id),

and use ye in place of ψ(g) in the multi-goal exploration policy. The scalar σ controls how tightly
the sampled goals are concentrated around the hard goal representation ψ(g): small values of σ
correspond to goals tightly clustered around ψ(g) (approaching the single-goal regime), while large
values of σ recover a widely spread goal distribution similar to the random-goal setting. We study the
evolution of the representations for σ ∈ {0.5, 2, 20}.
Our expectation is that, when σ is small, the induced data collection remains close to single-goal
exploration, leading to “clean” representation formation in which all frequently visited, non-goal
regions are driven far from ψ(g) and thus enjoy the same orthogonality effect. As σ increases, the data
collection becomes less aligned with the hard goal, and we anticipate that this degrades representation
quality: many visited states retain high similarity to ψ(g), preventing the agent from escaping already
explored regions and ultimately reducing exploratory coverage. The representation evolution under
these varying data-collection strategies is summarized in Figure 23.

Multiple reachable goal data collection While the previous experiment studied representation
formation under an unreachable goal, we now consider a setting in which the goal is reachable and
compare single-goal data collection with multi-goal data collection using two and four goals.

In the two-goal setup, the exploration goal is sampled uniformly at random from {g1 = (9, 9), g2 =
(6, 6)} at the beginning of each episode; And in the four-goal setup, the exploration goal is sampled
uniformly from g1, g2 or g3 = (0, 9), g4 = (9, 0). In all cases, the evaluation goal — used to measure
success — is fixed to the hardest goal, (9, 9).

Figure 24 shows the resulting success rates. The results clearly indicate that exploration with a single
goal leads to more effective representations and higher goal-reaching performance than distributing
exploration across multiple goals. This finding is consistent with the results of Liu et al. (2025).
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Figure 24: Success rate is the highest when we only collect data with the single hard goal. Tabular
experiment in the FourRoom environment.

Beyond success rates we also visualize the ψ-similarity across the three data-collection regimes
and the different goals. Note that in this realm since the goal is reachable, we do not expect the
representations to become fully orthogonal to the goal because Theorem 2 only predicts exact
orthogonality when the goal is unreachable. But we expect states that are far from the goal should
exhibit grow low ψ-similarity over time, while states closer to the goal — especially those along
typical paths to the goal — should retain high similarity.

With this intuition in mind, we investigate two key questions:

RQ1 When visualizing ψ(s)⊤ψ(gi) for each of the four goals gi, i ∈ {1, 2, 3, 4}, do we observe
the coherent structure in which states far from each goal exhibit low similarity, while states
near the goal and along the path to it exhibit high similarity for all 4 goals at the same time?

RQ2 When focusing solely on the hardest goal g1 = (9, 9), do the heatmaps of ψ(s)⊤ψ(g1)
differ depending on whether the data was collected using only g1, or using two or four
exploration goals? Specifically, are the representations learned through single-goal data
collection superior?

We first address RQ1. The similarity maps ψ(s)⊤ψ(g) for the four different goals in the four-goal
data-collection experiment are shown in Figure 25. While we do observe the general trend that states
far from each goal have low similarity and states closer to the goal have higher similarity for all four
goals, the structure is noticeably less precise than when data is collected using a single goal.

For instance, Figure 26a shows the representation when data is collected using only one goal, where
we observe a clean and smooth gradient of similarity toward the goal. In contrast, in the four-goal
setting (Figure 25a), the gradients are much less structured, and the model does not clearly distinguish
between g1 and g2.

An even clearer example is shown in Figure 25d, where almost the entire left side of the maze exhibits
high similarity with g4, even though many of these states are actually far from g4. This indicates
that when exploration is done with multiple goals, the learned representations become less sharply
aligned with the true spatial structure of the environment.

We now address RQ2. Refer to Figure 26 for a comparison of ψ(s)⊤ψ(g1) across different data-
collection strategies. We again see that, for multi-goal data collection strategies, although overall
states far from the goal have low similarity, there are still many states at distance 3–4 from the goal
that exhibit high similarity and those areas are where the agent gets stuck.

We hypothesize that this happens because the path from the starting point to g1 = (9, 9) and
g2 = (6, 6) is partially shared. Since the dataset contains trajectories that follow the same path but
sometimes terminate at g1 and sometimes at g2, the representation of g2 becomes similar to that of g1.
As a result, the agent can get “stuck” at g2 even when it is commanded to reach g1. In the single-goal
data-collection setting, this failure mode is avoided: the agent is always commanded to go to the
same goal, so irrelevant states such as g2 do not acquire g1-like representations that would cause the
policy to stall there.
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(c) ⟨ψ(s), ψ(g3)⟩
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Figure 25: Data collection with 4 goals. Heatmaps shows the goal similarities with respect to each of
the four goals. The trajectory over 5 episodes is shown, with line colors indicating the commanded
goal.
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(a) single-goal data collection
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(b) 2-goals data collection
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(c) 4-goals data collection

Figure 26: Comparison of representations with respect to g1 under single-goal, two-goal, and four-
goal data collection.

D.15 ADDITIONAL SAFETY EXPERIMENT RESULTS

Here, we provide additional plots to demonstrate that the safety intervention experiments (Fig. 5c)
hold when the intervention is conducted in either the top-right or bottom-left room of the FourRooms
environment.

E THE USE OF LARGE LANGUAGE MODELS

We used LLMs while implementing experiments to generate boilerplate code, debug errors, and plot
results. We wrote the paper manuscript manually but used LLMs to help edit writing for clarity and
grammar.
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Figure 27: Modifying the representations to be dissimilar to the goal improves controllability of the
agent’s behavior.
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