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Abstract

Optimistic exploration is central to improving sample efficiency in reinforcement
learning with human feedback, yet existing exploratory bonus methods to incen-
tivize exploration often fail to realize optimism. We provide a theoretical analysis
showing that current formulations, under KL or α-divergence regularization, unin-
tentionally bias exploration toward high-probability regions of the reference model,
thereby reinforcing conservative behavior instead of promoting discovery of uncer-
tain regions. To address this pitfall, we introduce the General Exploratory Bonus
(GEB), a novel theoretical framework that provably satisfies the optimism principle.
GEB counteracts divergence-induced bias via reference-dependent reward regula-
tion and unifies prior heuristic bonuses as special cases, while extending naturally
across the full α-divergence family. Empirically, GEB consistently outperforms
baselines on alignment tasks across multiple divergence settings and large language
model backbones. These results demonstrate that GEB offers both a principled and
practical solution for optimistic exploration in RLHF. Code is available here.

1 Introduction

Despite the acknowledged significance of online exploration for reinforcement learning with human
feedback (RLHF) [1, 2, 3], there remains a paucity of theoretical frameworks governing how to
explore. As shown in Fig. 1 (1, top), standard online RLHF algorithms [4, 5, 6] generally rely on
passive exploration, i.e., the stochasticity of the policy itself to generate responses, with no mechanism
to incentivize novelty or diversity. As a result, this approach can be notoriously sample-inefficient.
When the optimal behavior resides in low-probability regions, passive exploration is unlikely to
discover it, leading to policies that remain trapped around local optima.

To address this, some works [7, 8, 9, 10, 11] have attempted to devise sample-efficient algorithms,
inspired by the principle optimism in the face of uncertainty. As illustrated in Fig. 1 (2, top), the
principle aims to generate responses for regions of high epistemic uncertainty, thus encouraging data
collection in unexplored areas for further training. To operationalize this, recent attempts [12, 13, 14]
encourage exploration by adding exploratory bonuses to reward modeling, which is practically
optimizeable for large language models. These methods intend to artificially inflate rewards in
underexplored regions, nudging the policy toward more informative data collection.

Unfortunately, our theoretical analysis in Section 3 reveals a fundamental pitfall: under the common
KL-regularized RLHF, the existing theoretical framework of exploratory bonuses fails to satisfy
optimism. In particular, we prove that existing bonus formulations can undesirably drive the policy π
toward the reference policy πref due to the divergence regulation in the exploratory bonus, and the
induced bonus actually biases exploration toward high-probability regions of the reference model. As
illustrated in Fig. 1 (II, bottom), the bonus disproportionately amplifies rewards for regions already
well-covered by πref, thereby reinforcing conservative behavior rather than driving exploration into
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uncertain regions. This failure is not confined to KL-divergence; we further extend our analysis to the
more general α-divergence family and prove that the same collapse persists across a wide range of
divergence-regularized objectives. Thus, while existing approaches appear to encourage exploration,
they in fact undermine the very principle of optimism they aim to realize.

Motivated by these failures, we propose a new framework, General Exploratory Bonus (GEB),
which theoretically unifies existing approaches while provably satisfying optimism (Section 4).
GEB corrects the failure modes of prior approaches by directly introducing a reference-dependent
regulation into the reward. This adjustment offsets the undesired conservatism induced by divergence
regularization, allowing the exploratory bonus to satisfy optimism—it increases the probability of
responses rarely sampled to pursue potentially more preferred answers, as shown in Fig. 1 (III,
bottom). Importantly, GEB provides a unified formulation: prior heuristic exploratory bonuses can be
reinterpreted as special cases, and the framework naturally extends to the full class of α-divergences.
Beyond correcting the theoretical shortcomings, GEB remains practically implementable—it can be
seamlessly integrated into the standard iterative RLHF loop without additional sampling cost.

We validate GEB on a large-scale alignment task across different divergences and model backbones.
Empirically, GEB consistently yields stronger alignment compared to its counterpart of passive
exploration. For example, the three GEB variants that we consider generally outperform the iterative
f-DPO [15] across different divergence regulations, while the most performant variant surpasses
several existing optimistic exploration methods that incorporate exploratory bonuses [12, 13, 14]. By
analyzing the distribution of sampled responses, we validate that GEB can successfully encourage
sampling in the region of small πref, thereby effectively achieving optimistic exploration.

We summarize our main contributions:

1. We formally prove that the existing theoretical framework of exploratory bonuses under KL
and α-divergence regularization fails to achieve optimistic exploration.

2. We introduce General Exploratory Bonus (GEB), a novel theoretical framework of optimistic
exploration for RLHF that provably satisfies the optimism principle and unifies prior heuristic
bonuses.

3. We empirically validate GEB on LLM alignment tasks, showing improved performance and
broad applicability across multiple divergence families.

2 Preliminaries

Iterative online RLHF. Let x be a prompt sampled from a distribution ρ and y be a response
given x, which is sampled from a policy π(·|x) modeled by a language model. We denote by r(x, y)
a real-valued reward model. An iterative online RLHF proceeds for rounds T , where each round
t = 1, ..., T has the following three steps: (i) The reward model rt is trained on the human preference
dataset Dt = {(x, yw, yl)}, where yw, yl denote the preferred and dispreferred response to x; (ii)
The policy πt is updated to maximize the reward rt(x, y) for responses y ∼ πt(·|x) conditioned on
prompt x; and (iii) using the updated policy, we sample x̃ ∼ ρ, and generate multiple response pairs
(ỹ1, ỹ2) ∼ πt(·|x̃). Human evaluators then annotate these pairs to produce preference-labeled data
{(x̃, ỹw, ỹl)}. The dataset for the next round is formed by Dt+1 = Dt ∪ {(x̃, ỹw, ỹl)}. For reward
modeling step (i), we typically adopt the Bradley-Terry objective [16]:

rt = argmin
r

LBT (Dt, r) = argmin
r

E(x,yw,yl)∼Dt
− log[σ(r(x, yw)− r(x, yl))], (1)

where σ denotes the sigmoid function. Next, in each step (ii), given the learned reward function rt,
the policy πt is updated to maximize the expected reward, often with a KL-regularization as follows

πt = argmax
π

Jβ,KL(π, rt) = argmax
π

Ex∼ρ,y∼π(·|x)rt(x, y)− βDKL(π∥πref), (2)

where β > 0 is a hyperparameter and πref is the reference model. The effectiveness of iterative
online RLHF [17, 18] has been validated in various real-world systems such as Claude [19] and
LLaMA-series [20, 21], but there is still much room for improvement in terms of sample-efficient
exploration.
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Figure 1: The upper part compares passive exploration and optimistic exploration. Optimistic
exploration stimulates the trajectories τ of small πref (seldom visited/uncertain), while passive
exploration sticks to the high-πref region, failing to approach global optima. The dashed line separates
regions of high vs. low likelihood under the learning policy πθ. The lower part contrasts the effect
of the exploration bonus term in optimistic reward modeling between prior works and our GEB. Prior
works often emphasize rewards in frequently visited regions, which constrains exploration within
certain areas. In contrast, our GEB amplifies rewards in seldom-visited regions, thereby encouraging
further sampling in uncertain areas and successfully achieving optimistic exploration.

Sample inefficiency of iterative online RLHF. In online RLHF, standard online sampling is usually
performed passively, relying solely on the LLM policy’s inherent randomness. However, if the policy
assigns a small probability to the optimal action, passive exploration may never explore it. Some
recent theoretical analyses [22, 18] and empirical evidence [23, 14] present that the passive approach
fails to sufficiently explore the prompt-response space. Particularly, Xie et al. [13] demonstrates that
the sample complexity can be exponential in 1/β for passive exploration, which is unacceptable in the
small-β regime. After then, follow-up studies propose to implement the principle “optimism towards
uncertainty" into RLHF algorithms, i.e., encourage exploration of uncertain trajectories. Several
works on this try to estimate uncertainty by leveraging some uncertainty quantification techniques,
such as elliptical potential [19], Bayesian modeling [10], and epistemic neural network training [11].
However, these methods are generally computationally prohibitive in LLM-scale settings. Therefore,
recent works [13, 14, 12] propose exploratory bonuses for optimistic exploration, which can be
computationally more tractable for LLM-based optimization.

3 Exploratory Bonus and How It Can Fail

In this section, we first provide the iterative online RLHF formulation with an exploratory bonus
(Section 3.1). We then theoretically prove that the existing formulation can fail to achieve optimistic
exploration under both KL-constrained RLHF (Section 3.2) and a more general α-divergence-
regularized RLHF (Section 3.3), motivating our proposed method in Section 4.

3.1 Exploratory Bonus

To improve the sample efficiency of iterative online RLHF, recent works [12, 14] introduce exploratory
bonuses, which aim to encourage the policy model to explore the under-visited space given an
optimistic reward estimation. These approaches modify the standard RLHF loop by adding an
exploratory bonus term Lbonus in the reward modeling phase. Specifically, in the t-th iteration, the
reward model rt and policy πt are optimized by

rt = argmin
r

[
LBT (Dt, r)− κLbonus(r)

]
, (3)

πt = argmax
π

Jβ,KL(π, rt) = argmax
π

Ex∼ρ,y∼π(·|x)rt(x, y)− βDKL(π∥πref), (4)
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where κ > 0 is a hyperparameter. By Eq. 3, the reward model rt should not only fit the observed data
in Dt, but also learn to maximize the bonus term Lbonus(r).

To boost exploration, the bonus term is designed to amplify the probability mass of policy more
in underexplored areas rather than incentivizing it solely towards high empirical reward areas. As
mentioned in § 2, early works on RLHF optimistic exploration are computationally prohibitive in the
LLM fine-tuning regime. Thus, it is necessary to set a new approach that not only aligns with the
principle of optimism in the face of uncertainty but is also cost-effective. For this, we derive a new
condition for the exploration bonus to achieve optimism, avoiding direct uncertainty quantification:

Definition 3.1 (Optimism condition for exploration bonus) Given an input prompt x and a re-
sponse y, when a reward model r and a policy π are computed with Eq. 3 and Eq. 4, respectively, the
exploratory bonus Lbonus achieves optimism, if

∂

∂πs(y|x)
(
∂Lbonus(r(x, y))

∂π(y|x)
) < 0, (5)

where πs is a typical sampling policy, a joint policy on all iterations up to the current iteration.

Specifically, at the t-th iteration, the typical sampling policy πs = π1 ◦ π2 ◦ · · · ◦ πt is a joint
distribution of all previous policies up to the current iteration. This distribution is not directly
computable; rather, it serves as a theoretical construct describing how responses in Dt are generated.
In Eq. 5, rather than characterizing Lbonus in its original function space, we define it by a condition
on its partial derivatives with respect to two policies: current policy and typical policy. This new
optimism condition not only enables us to flexibly define Lbonus, but also serves as a core tool for
theoretically analyzing existing methods. Although Lbonus appears unrelated to the current policy
π—as it is defined in terms of the reward model r(x, y)—the policy-reparameterized reward
rπ(x, y) allows us to express r(x, y) directly in terms of π as follows [24]:

r(x, y) := rπ(x, y) = β log
π(y|x)
πref(y|x)

+ β logZ(x), where Z(x) = Ey∼πref exp(r(x, y)/β).

This is derived from the closed-form solution of the proximal preference optimization (Eq. 2) as
π(y|x) = exp(r(x,y)/β)

Z(x) . Thanks to this alternative representation of the reward, we can express and
interpret the bonus term with respect to our current policy π, which yields the following implication.

Implication. Our new optimism condition requires the derivative of the bonus term with
respect to the current policy, ∂Lbonus(rπ(x, y))/∂π(y|x), to be negatively correlated with
the typical policy πs. In other words, as a response y is likely rare sample under πs (i.e.,
uncertain or underexplored responses), it should receive a larger ascending force in the policy
distribution π, i.e., a higher ∂Lbonus(rπ(x, y))/∂π(y|x). This new definition of the optimism
principle, which is specified through the lens of partial derivative alignment, ensures the
exploratory bonus nudges the exploration towards an uncertain response region without
explicit uncertainty quantification. In practice, πs can be substituted by the reference model
policy πref or intermediate checkpoints of π across iterations. We adopt the commonly used
πref as πs in our following demonstration.

3.2 Failure Under KL-constrained RLHF

Previous works, including Zhang et al. [12] and Cen et al. [14], formulate the exploratory bonus with
Lbonus(r) = maxπ Jβ,KL(π, r). Under this formulation, optimizing the exploratory bonus in Eq. 3
yields a min–max bilevel objective: minr −κmaxπ[Ex∼ρ,y∼πr(x, y)− βDKL(π∥πref)]. Intuitively,
this objective encourages r not only to fit the observed data via LBT but also to assign high reward to
unobserved regions by maximizing maxπ Ex∼ρ,y∼πr(x, y) in Lbonus(r). Here, we theoretically show
that such formulations can suffer from optimism failures under KL-regularized RLHF.

Lemma 3.1 (Optimism failure under KL-divergence.) Let r1 = argminr LBT (D, r) be a re-
ward model trained with the vanilla BT loss, and let r2 = argminr[LBT (D, r)−κmaxπ Jβ,KL(π, r)]
be a reward model trained with an additional exploratory bonus. If the policy is optimized via Eq. 4,
then r1 and r2 yield the same set of policies.

4



See the proof in Appendix B.1. The lemma shows that incorporating the exploratory bonus
Lbonus(r) = maxπ Jβ,KL(π, r) into the reward training objective fails to induce the policy to sample
from low-πref(y|x) regions, i.e., unexplored responses. That is, Lbonus is ineffective for optimism.
We next extend the result beyond KL divergence to a more general class of α-divergence families.

3.3 Generalization to α-divergence-constrained RLHF

In this subsection, we theoretically show that the failure of optimism can broadly be extended to the
α-divergence class. Many common divergences, such as reverse KL-divergence, Hellinger distance,
and forward KL-divergence, are special cases of α-divergence.

Definition 3.2 (α-divergence class) An α-divergence is a certain type of function D(p|q) =∫
f(dpdq )dq that measures the difference between two probability distributions p and q, where

f(x) =
xα − αx− (1− α)

α(1− α)
,

and α is a hyperparameter typically with 0 ≤ α ≤ 1.

Lemma 3.2 (Optimism failure under α-divergence.) Consider an objective Jβ,f (π, r) =

Ex∼ρ,y∼π(y|x)r(x, y) + βEx∼ρ,y∼πref(y|x)f(
π(y|x)
πref(y|x) ), where f belongs to α-divergence class. If

a reward is trained with r̂ = argminr[LBT (D, r) − κLbonus] and a policy π is updated
by argmaxπ Jβ,f (π, r̂) with Lbonus = maxπ Jβ,f (π, r), the gradient of the bonus satisfies
∂2Lbonus(rπ)

∂πref∂π
≥ 0, which means Lbonus encourage trajectories with large πref more strongly, in contra-

diction to the optimism principle (Definition 3.1).

Proof For a RL objective Jβ,f (π, r), the relation between the optimal policy π∗
f and the reward r

can be formulated as follows,

π∗
f (y|x) =

1

Z(x)
πref(y|x)(f ′)−1(r(x, y)/β), rπ(x, y) = βf ′(

π∗(y|x)
πref(y|x)

Z(x)), (6)

where Z(x) is a normalization term and (f ′)−1 is the inverse function of f ′. The bi-level objective can
be similarly transformed to a single level one by canceling the inner maximization maxπ by Eq. 6. The
single-level objective can be written as rt = argminr LBT (D, r)−κEx∼ρ,y∼πref

1
Z(x) (f

′)−1( r(x,y)β )·
r(x, y)− βf( 1

Z(x) (f
′)−1( r(x,y)β ). Since the policy is computed by argmaxπ Jβ,f (π, r), the reward

can be reparameterized by the policy with Eq. 6, which fortunately cancels Z(x). Then, the optimistic
reward-modeling objective can be reparameterized as

argmin
π

Ldpo(D, π)− κβEx∼ρ,y∼πref

[ π(y|x)
πref(y|x)

f ′(
π(y|x)
πref(y|x)

)− βf(
π(y|x)
πref(y|x)

)
]
. (7)

Since for α-divergence, f(u) = uα−αu−(1−α)
α(α−1) , the partial derivative of Eq. 7 is (πref

π )1−α, which
induces positively correlated gradients w.r.t. π and πref when 0 ≤ α < 1, and is a constant when
α = 1, hence contradictory to the optimism defined in Definition 3.1. □

Table 1: Realized exploratory bonus under dif-
ferent divergence classes when Lbonus(r) =
maxπ Jβ,f (π, r).

f exploratory bonus

reverse KL constant
forward KL Ex∼ρ,y∼πref log

π(y|x)
πref(y|x)

Hellinger distance Ex∼ρ,y∼πref

√
π(y|x)
πref(y|x)

According to Lemma 3.2, we summarize several
forms of exploratory bonus induced by different α-
divergences in Table 1. For clarity, these expressions
are presented after removing constant coefficients and
additive biases. In every case, the resulting bonus en-
courages the policy to place more probability mass on
responses that the reference model already samples
frequently, rather than on underexplored responses.
Now, we further prove that it actually drives π to
collapse toward πref and that the failure extends beyond α-divergence to other f -divergences.

Theorem 3.3 (Optimism failure beyond α-divergence.) When f belongs to f -divergence, and the
reward function is obtained by r̂ = argminr[LBT (Dt, r) − κmaxπ Jβ,f (π, r)] and the policy is
updated by argmaxπ Jβ,f (π, r̂), the bonus term −κmaxπ Jβ,f (π, r) induces the policy model π to
coincide with πref when xf ′′(x) is a monotone function.
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The monotonic increase of xf ′′(x) can be satisfied by a broader divergence class beyond α-divergence,
including JS-divergence and Pearson χ2. Please see the detailed proofs in Appendix B.2.

Intuitive understanding. The optimization of the exploratory bonus in Eq. 3 is a min-
max bi-level objective, minr −κmaxπ[Ex∼ρ,y∼πr(x, y) − βDKL(π∥πref)]. Due to inner
maximization maxπ , the divergence constraint implicitly makes π close to πref to reduce the
KL divergence. Meanwhile, outer minimization minr forces r to provide high rewards in
the region of high π to maximize the expected reward. Their combination implicitly makes
r focus more on the region of high πref. As responses in high πref area are easily sampled
from scratch, prior exploratory bonuses just concentrate sampling on regions that are already
frequently visited, contradictory to the optimism principle, which requires encouraging
exploration for responses y rarely sampled by the reference model.

4 General Exploratory Bonus with Optimism Principle

Motivated by the failure of the existing optimistic exploration works, we now propose a novel
framework, General Exploratory Bonus (GEB), and prove that it achieves optimism. We further show
that prior heuristic bonuses—and their broader variants—emerge as special cases of our formulation.

Formulation of a novel exploratory bonus. As shown in the previous section, existing bonus
schemes fail because the divergence constraints in maxπ Jβ,f (π, r) force the optimal policy π to
remain close to πref, thereby biasing exploration toward regions where πref is large. Achieving
optimistic exploration requires the optimal π to counteract this effect and deviate from πref. Our key
idea is therefore to incorporate an additional πref-dependent term into the reward that offsets the
influence of the divergence regularization. The resulting exploratory bonus takes the form

Lbonus = max
π

Jβ,f (π,R), (8)

where our new reward formulation, R, now depends not only on the original reward model r(x, y) but
also on πref(y|x). Now, the optimal policy of maxπ Jβ,f (π,R(x, y)) can be obtained by replacing
r(x, y) with R(x, y) in Eq 6. This yields π∗(y|x) = 1

ZR(x)πref(f
′)−1(R(x,y)

β ), where ZR(x) is a
normalization term.

Following Lemma 3.2, we substitute π(y|x) in maxπ Jβ,f (π,R(x, y)) with its optimal form
π∗(y|x) and then apply the reward reparameterization trick for α-divergences [25], i.e., r(x, y) =
f ′(π∗(y|x)

/
πref(y|x)), where f specifies the divergence. Given this policy-reparameterized reward,

we specify the exploratory bonus term in Eq 8 as follows:

Lbonus = βEx∼ρ,y∼πref(·|x)

[u(x, y)
ZR(x)

f ′(u(x, y))− f(
u(x, y)

ZR(x)
)
]
. (9)

In Eq. 9, we introduced u(x, y) as an atomic function employed to construct the actual loss, and it
is given by u(x, y) = (f ′)−1(R(x, y)/β) in this setup. Note that, after reward reparameterization,
u(x, y) can be expressed in terms of π(y|x) and πref(y|x). Moreover, as the functional form of
R(x, y) is not restricted to a specific class, u(x, y) can be instantiated in many ways using these two
distributions, while it must satisfy u(x, y) > 0 for all x, y to ensure that the argument of f ′(·) lies
within its domain. See Table 2 for the example entries we are considering in this work.

Equivalence to a practical objective. In our proposed exploratory bonus, the normalization term
ZR(x) in Eq. 9 cannot be eliminated. Fortunately, Lemma 4.1 (proved in Appendix B.4) shows that
the training objectives with and without ZR(x) are equivalent. This equivalence allows us to convert
the objective into a more concise form, facilitating both analysis and practical implementation.

Lemma 4.1 Denote two objectives as h(u(x, y)) = Ex∼ρ,y∼πrefu(x, y)f
′(u(x, y)) − f(u(x, y))

and ĥ(u(x, y)) = Ex∼ρ,y∼πref
u(x,y)
ZR(x)f

′(u)− f(u(x,y)ZR(x) ) where u(x, y) is a function with π(y|x) and
πref(y|x). If the ratio

f ′(u(x, y)) + u(x, y)f ′′(u(x, y))− f ′(u(x,y)ZR(x) )

ZR(x)u(x, y)f ′′(u(x, y))
= Λ(x) (10)
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Table 2: GEB under different divergence classes and design of u. Note that (1) now the bonus term
can be computed without the reference probability mass πref; (2) all of these u instantiations meet the
condition u > α when 0 < π < 1. The presented bonuses are simplified by removing constants.

f

Lbonus u
1 + α− π 1/π arctanh(1− π) + α

reverse KL Ex∼ρ,y∼πref − π(y|x) Ex∼ρ,y∼πref
1

π(y|x) Ex∼ρ,y∼πrefarctanh(1− π(y|x))
forward KL Ex∼ρ,y∼πref log(1− π(y|x)) Ex∼ρ,y∼πref − log π(y|x) Ex∼ρ,y∼πref log arctanh(1− π(y|x))

Hellinger Distance Ex∼ρ,y∼πref

√
1.5− π(y|x) Ex∼ρ,y∼πref

1√
π(y|x)

Ex∼ρ,y∼πref

√
arctanh(1− π(y|x)) + 0.5

is independent of y and Λ(x) > 0, then minimizing the two objectives, minπ −h(u(x, y)) and
minπ −ĥ(u(x, y)), yields the same class of optimal policies.

Note that the α-divergence (0 ≤ α ≤ 1; see Def. 3.2) naturally satisfies the condition in Eq. 10
whenever u(x, y) > α. As we show in the next paragraph, enforcing u(x, y) > α is straightforward in
practice, which grants our framework substantial flexibility and extensibility. Leveraging Lemma 4.1,
we can thus rewrite our objective in Eq. 9 into a concise and analytically convenient form without the
normalization term:

Lbonus = βEx∼ρ,y∼πref

[
u(x, y)f ′(u(x, y))− f(u(x, y))

]
, (11)

where u(x, y) is flexibly formulated by π(y|x) and πref(y|x) satisfying u(x, y) > α.

GEB successfully achieves optimism. Building on Lemma 4.1, we now show that our proposed
framework achieves the optimism condition in Definition 3.1 (See Appendix B.5 for the proof).

Theorem 4.2 Consider an α-divergence f with 0 ≤ α ≤ 1, and the exploratory bonus Lbonus =

βEx∼ρ,y∼πref

[
u(x, y)f ′(u(x, y))−f(u(x, y))

]
, where u(x, y) is a function dependent on π(y|x) and

πref(y|x). For any (x, y), if ∂u
∂π + πref

∂2u
∂π∂πref

+
(α−1)πref

u
∂u
∂π

∂u
∂πref

< 0 and u(x, y) > α, the optimism

condition in Definition 3.1 is satisfied; that is, ∂2Lbonus
∂π∂πref

≤ 0.

In our formulation, u(x, y) can be flexibly defined in terms of π(y|x) and πref(y|x) as long as it
satisfies the derivative condition in Theorem 4.2 and u(x, y) > α. In particular, when u(x, y)
depends solely on π(y|x) and is independent of πref(y|x), any function that is strictly decreasing in
π with u(x, y) > α constitutes a valid choice. This design flexibility underscores the extensibility
of our framework. In Table 2, we list several such choices of u, along with their corresponding
reparameterized exploratory bonus terms under three different α-divergences. From a practical
standpoint, since Lbonus is computed as an expectation over πref(·|x), it does not require additional
sampling and can be seamlessly integrated into iterative online RLHF. Meanwhile, to avoid unintended
decreases in the likelihood of preferred responses, we follow Chen et al. [23] and restrict the
computation of the bonus on rejected responses to ensure that the probability of preferred responses
continues to increase.

Prior exploratory bonuses are encompassed within GEB. Although we have shown that exist-
ing theoretical formulations of Lbonus fail to guarantee optimism, many practical implementations
have nevertheless been effective through various approximations and adaptations. These approx-
imations and adaptations are generally inextensible beyond the reverse KL divergence (detailed
in Appendix B.3). In this paragraph, we show that these practical implementations can be nat-
urally subsumed into our GEB framework, and even broader objectives can be reinterpreted as
instances of optimistic exploration. For example, Zhang et al. [12] and Xie et al. [13] finally
implement their exploratory bonus as κEx∼ρ,y∼πref(y|x) log π(y|x), which belongs to GEB when
u = − log π + 1 and f is KL-divergence. Similarly, Cen et al. [14] implement the exploratory bonus
as κEx∼ρ,y∼πcal(·|x) log

π
πref

where πcal is a fixed calibration distribution. This also falls under GEB by
setting u = −πcal

πref
log π

πref
− πcal

πref
log πref +1 and f is KL-divergence. Interestingly, even objectives not

explicitly designed for exploration can be reinterpreted through our GEB framework. For instance,
Chen et al. [23] augment the DPO loss with an additional term κEx,y∼πref

σ(−β log π(y|x)
πref(y|x) ), which

was originally introduced to control sample complexity. In our framework, this corresponds to
optimistic exploration with u = −σ(−β log π(y|x)

πref(y|x) ) + 1.
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Figure 2: Comparison of log πref of sampled response in the last iteration between the general
exploratory bonuses and vanilla iterative DPO. GEB-π, GEB-1/π, and GEB-arctanh(π − 1) corre-
sponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2

Takeaways. In summary, we introduce a general formulation of the exploratory bonus term,
GEB, which showcases the following unique strengths: (1) In contrast to the prior bonus
terms, GEB meets the optimism condition theoretically, thus provably boosts exploration
on relatively untapped region; (2) GEB spans a broad class of instantiations as shown in
Table 2, specified by the combination of the α-divergence class and the functional form
of u, which provides a plenty options for practitioners to choose on demand; (3) GEB is
practical as it does not incur additional sampling costs and can be seamlessly integrated into
the existing iterative online RLHF framework (Appendix D.1); and (4) GEB offers an unified
understanding of existing methods by generalizing them as special cases in a single flexible
formulation.

5 Experiments

5.1 Experimental Settings

Following prior works [12, 13, 23], we adopt the same iterative online algorithm as in Algorithm 1
with three iterations, aiming to isolate the effects of different exploration bonuses. We adopt two LLM
backbones: Llama-3-8B-SFT [18] following prior works, and Mistral-Instruct-v0.3 [26]. The training
prompt set is RLHFlow-UltraFeedback [18] as in previous works. URM-LLaMa-3.1-8B [27] serves
as the preference oracle. We evaluate the outcome policies on both in-domain and out-of-domain
test sets. Specifically, for the in-domain test, we use a held-out test set from UltraFeedback [28], and
sample 64 times per prompt with the outcome policy to compare the average reward and win-rates
against the base model. We use length-controlled AlpacaEval2 benchmark [29] with GPT-4 as a
judge for out-of-domain alignment test, and MATH-500 [30] to evaluate out-of-domain reasoning
ability.

Baselines. We adopt f-DPO [25], which extends DPO to the f-divergence class, as the primary
baseline. We further compare GEB with three optimistic-exploration methods that incorporate
exploratory bonuses—SELM [12], XPO [13], and VPO [14]. Since the approximations or adaptations
in their implementations do not extend beyond the KL divergence, we report their results only under
KL. In contrast, we introduce a new baseline, Failed Exploratory Bonus (FEB), which removes these
approximations or adaptations, i.e., Eq. 13.

5.2 Results & analyses

GEB delivers robust improvements across different loss designs, divergence classes, and lan-
guage model backbones. The experimental results are shown in Table 3. Across both backbones,
GEB generally outperforms f-DPO and FEB. Under the KL-divergence, GEB displays better or
at least on-par performance compared to prior exploratory-bonus methods. Notably, the win-rate
increases over 1.82% and 0.94% under the KL-divergence, over 2.36% and 1.29% under the Hellinger
Distance, compared with their f-DPO counterpart. GPT-4 evaluation on the Alpaca benchmark also
shows consistent performance gains on the out-of-domain alignment task. While GEB maintains on
par, or usually better results in MATH, showing less performance degradation beyond alignment,
known as alignment tax [31, 32].

GEB effectively encourages exploration in small πref region, yielding more diverse sampling. In
Figure 2, we visualize the distribution of log πref for sampled responses in the last iteration under the
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Table 3: In-domain evaluation on different exploration bonuses. Boldface and underline indicate
the best and the second-best results, respectively. GEB-π, GEB-1/π, and GEB-arctanh(π − 1)
corresponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2.

KL (α=1) Hel. (α=0.5) f-KL (α=0) Avg.
WR AvgR WR AvgR WR AvgR WR AvgR

Mistral-Instruct-v0.3

f-DPO 78.42 0.7480 72.69 0.6536 51.11 0.5918 67.40 0.6645
SELM 77.56 0.7530 - - - - - -
XPO 79.71 0.7492 - - - - - -
VPO 78.57 0.7426 - - - - - -
FEB 78.42 0.7480 71.54 0.6525 47.53 0.5928 65.83 0.6644

GEB-π 81.00 0.7542 75.48 0.6641 51.68 0.5976 69.39 0.6720
GEB-1/π 80.00 0.7554 73.97 0.6541 52.26 0.6051 68.74 0.6715

GEB-arctanh(π − 1) 79.71 0.7559 75.69 0.6614 52.76 0.5989 69.39 0.6721
LLaMA-3-8B-SFT

f-DPO 73.11 0.8050 71.11 0.7859 67.38 0.7579 70.53 0.7829
SELM 74.19 0.8126 - - - - - -
XPO 72.40 0.8119 - - - - - -
VPO 71.61 0.7971 - - - - - -
FEB 73.11 0.8050 68.17 0.7591 67.95 0.7611 69.74 0.7751

GEB-π 74.34 0.8156 71.68 0.7840 67.67 0.7681 71.23 0.7892
GEB-1/π 74.76 0.8102 72.25 0.7859 68.17 0.7591 71.73 0.7851

GEB-arctanh(π − 1) 74.98 0.8080 73.26 0.7877 68.89 0.7569 72.38 0.7842

Table 4: Out-of-domain evaluation on different exploration bonuses with LLaMA-3-8B-SFT. Bold-
face and underline indicate the best and the second-best results, respectively. GEB-π, GEB-1/π, and
GEB-arctanh(π − 1) corresponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2.

KL(α=1) Hel.(α=0.5) f-KL(α=0) Avg.
Alpaca Math Alpaca Math Alpaca Math Alpaca Math

f-DPO 25.72 67.6 24.73 69.0 17.80 69.2 22.75 68.6
FEB 25.72 67.6 23.75 68.6 19.62 68.6 23.03 68.3

GEB-π 28.27 69.2 25.87 69.6 20.05 71.6 24.73 70.1
GEB-1/π 26.10 68.4 25.28 70.2 19.80 69.2 23.73 69.3

GEB-arctanh(π − 1) 24.90 71.0 25.96 67.6 19.62 69.2 23.49 69.3

Table 5: Dist-n of the sampled corpus in the last iteration under the KL divergence.

dist-1 dist-2 dist-3 dist-4

f-DPO 0.0189 0.2700 0.6349 0.8418
GEB-π 0.0192 0.2694 0.6323 0.8420

GEB-1/π 0.0191 0.2738 0.6401 0.8448
GEB-arctanh(π − 1) 0.0192 0.2730 0.6391 0.8447

KL divergence. When trained with the GEB, the policy model consistently samples more trajectories
with a smaller πref compared to the policy trained by f-DPO loss. This validates our motivation that
GEB can encourage sampling trajectories of small πref for optimistic exploration. In Table 5, we
further calculate the distinct-n (n = 1, 2, 3, 4) for the sampled responses in the last iterations under
the KL divergence, which measures the diversity of a corpus. GEB generally has higher diversity
scores, validating that GEB incentivizes qualitatively more diverse samples.

The choice of κ. Since the formulation of u in Eq. 9 is flexible, the scale of the GEB term can differ
substantially across designs, hence the absolute value of the bonus is less informative. Instead, we
examine the relative ratio of the bonus term to the vanilla RL loss |κLbonus|/|LRL|, which provides a
more consistent basis for comparison and offers better practical guidance for tuning κ across diverse
settings. As shown in Fig. 3, performance remains stable when the ratio lies within a suitable range
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Figure 3: Experiments with different κ. The three graphs are under KL divergence, Hellinger
Distance, and forward KL divergence from left to right, respectively. The p, f, tanh in the legends
correspond to 1 + α− π, 1/π, arctanh(1− π) + α in Table 2 respectively.

Table 6: Ablation study on the sample responses used for the bonus term calculation. We compare
the results on UltraFeedback (win rate) across three divergences with all responses (all) and with the
rejected responses only (rejected-only).

Method KL all KL rejected-only Hel. all Hel. rejected-only fKL all fKL rejected-only

GEB-π 79.78 81.00 73.40 75.48 51.32 51.68
GEB- 1

π 79.56 80.00 72.25 73.97 51.61 52.26
GEB-arctanπ 79.64 79.71 73.11 75.69 51.25 52.76

(1e-2 to 1e-6 in our case). However, if the ratio is too large, it impedes optimization of the RL
objective and degrades performance; if too small, the exploration incentive in uncertain regions
diminishes and performance reverts to the vanilla baseline.

Restricting the exploratory bonus to rejected responses. Restricting the bonus term to rejected
responses is a common practice in prior works on exploratory bonuses [12, 23, 14]. Importantly, this
restriction does not constitute a theoretical departure from our framework. The optimism guarantee
in Theorem 4.2 hinges on increasing the probability of low πref regions, i.e., underexplored regions.
Because rejected samples lie precisely in these low-probability areas, applying the bonus only to
rejected responses preserves the intended optimism direction. While preserving the theoretical
guarantee on the optimism, it also shows a practical advantage as shown in Table 6.

Table 7: Semantic coherence scores of responses produced by policy
models trained using DPO and the GEB variants.

DPO GEB-π GEB-1/π GEB-arctanhπ

KL. 1.24 1.08 1.32 1.19
Hel. 1.33 1.42 1.12 1.23
fKL. 1.32 1.38 1.32 1.30

Semantic coherence of
the sampled responses.
We use GPT-4 to evaluate
whether a given sentence
is coherent, nonsensical, or
contains meaningless con-
tent. The scoring scale
ranges from 0 (fully coher-
ent) to 3 (complete nonsense with no coherent meaning). We apply this evaluation to the responses
generated in the final training iteration of DPO and the three GEB variants. The resulting scores are
as follows.

As shown in Table 7, the responses produced by the GEB variants exhibit semantic coherence
comparable to those generated by DPO. This indicates that, in practice, GEB promotes exploration
into moderately underrepresented yet still semantically meaningful regions of the output space.

6 Conclusion

While recent work proposes exploratory bonuses to operationalize the “optimism in the face of
uncertainty" principle, our work shows that the existing theoretical frameworks of exploratory
bonuses fail under KL and α-divergence regularization. To address prior theoretical pitfalls, we
introduce General Exploratory Bonus (GEB), a novel theoretical framework for sample-efficient
RLHF. Our approach provably satisfies the optimism principle and unifies prior heuristic bonuses. We
empirically validate GEB on LLM alignment tasks with diverse bonus designs and LLM backbones,
showing improved performance and broad applicability across multiple divergence families.
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A Related Works

Alignment & RLHF. Alignment [33, 34, 35, 36, 37] aims to ensure AI systems act in accordance
with human values, preferences, and goals; and it has become a critical field in AI research. To
steer language models to match human preferences, Reinforcement Learning from Human Feedback
(RLHF) [38, 39] achieves great success and has become the standard alignment pipeline. However,
its computational complexity has motivated a family of Direct Preference Optimization (DPO)
[24, 40, 41] that forgoes explicit reward modeling. Despite their efficiency, recent researchers
[3, 1, 17] reemphasize the significance of online sampling.

Optimistic exploration of RLHF. To address the computational overheads of passive exploration
in RLHF, which samples trajectories just based on randomness, some existing attempts have been
devoted to sample-efficient RL algorithms. Most of the works [7, 8, 42, 9, 22] adhere to the principle
of optimism, proposing specialized prompt or response selection strategies to emphasize uncertain
samples. While some research [11, 27] propose uncertainty-aware reward models with epistemic
neural networks or bootstrap ensembles, these methods introduce additional cost. Some research
also addresses the sample efficiency with different theoretical foundations, such as information
theory [10], preference-incentive exploration [23]. Notably, several works [12, 13, 14] introduce
different exploratory bonuses, which can implement optimism toward uncertainty without additional
computations. However, they only focus on KL-divergence and their theoretical framework cannot
result in real optimism as shown in Section 3.2.

Efficient RL for LLM. Beyond optimistic exploration, some research proposes fine-grained
signals for RL learning. For instance, several studies propose segment-level [43, 44] or token-
level [45, 46] reward functions for alignment or text control. Notably, for reasoning tasks, the process
reward model [47, 48, 49], which provides step-wise feedback for solutions, has shown promising
effectiveness. On the other hand, recent research [50, 51, 52] on LLM reasoning reveals that high-
entropy tokens guide the model toward diverse reasoning paths. Training with only high-entropy
tokens is more beneficial for reasoning performance [53]. While our approach is highly extensible,
we believe the orthogonal methods can be further incorporated with our general exploratory bonus.

B Optimism Failure of previous works

B.1 Optimism failure under KL-divergence

We start by proving how the existing exploratory bonus term under KL-divergence instantiation fails
to achieve optimistic exploration.

Lemma 3.1 Let r1 = argminr LBT (D, r) be a reward model trained with the vanilla BT loss, and
let r2 = argminr[LBT (D, r)− κmaxπ Jβ,KL(π, r)] be a reward model trained with an additional
exploratory bonus. If the policy is optimized via Eq. 4, then r1 and r2 yield the same set of policies.

Proof First, the inner maximization of the bonus term admits a closed-form solution, π∗(y|x) =
πref(y|x)e

r(x,y)
β /Z(x) where Z(x) = Ey∼πref(·|x)e

r(x,y)
β is a normalization term. Substituting this

solution for the bi-level objective of r2 reduces it to a single-level form:

r2 = argmin
r

[
LBT (D, r)− κEx∼ρβ logEy∼πrefe

r(x,y)
β ]. (12)

As shown in Rafailov et al. [24], the log-ratio β log πθ(y|x) − β log πref(y|x) represents the same
class of the original reward function r through Eq. 4, thus all r in the reward modeling objectives can
be reparameterized by the log-ratio. Plugging this into Eq. 12 yields

argmin
π

Ldpo(D, π)− κEx∼ρβ logEy∼πref(·|x)
π(y|x)
πref(y|x)

. (13)

Since the second term equals 0, the reparameterized Eq. 12 is exactly the vanilla DPO loss, that is, the
reparameterized training objective of r1. Thus, the exploratory bonus in the reward training objective
does not affect the final policy set. □
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B.2 Extension beyond α-divergence

The following theorem formally proves that the exploratory bonus −κmaxπ Jβ,f (π, r) cannot
encourage optimism for a more general divergence class.

Theorem 3.3 When f belongs to f -divergence, the reward function is obtained via r̂ =
argminr[LBT (Dt, r)− κmaxπ Jβ,f (π, r)], and the policy is updated by argmaxπ Jβ,f (π, r̂), the
bonus term −κmaxπ Jβ,f (π, r) induces the policy model π to coincide with πref when xf ′′(x) is a
monotone function.

Proof By Lemma 3.2, we can reparameterize the bonus term used for optimistic reward modeling
into Eq. 6. Denote h(u) = uf ′(u)− f(u). For a fixed prompt x, the training step can then be written
as the following constrained optimization problem:

argmax
π

Ey∼πref(·|x)h(
π(y|x)
πref(y|x)

) s.t.
∑
y

π(y|x) = 1 and ∀y, π(y|x) > 0. (14)

Then we can apply the Lagrange multiplier as

L = Ey∼πrefh(
π(y|x)
πref(y|x)

)− µ
(∑

y

π(y|x)− 1
)
−

∑
y

η(y)π(y|x), (15)

where µ, η are the dual variables. Then we utilize the Karush-Kuhn-Tucker (KKT) conditions for
the given optimization problem. The complementary slackness gives that ∀y, η(y)π(y|x) = 0. The
stationary condition requires

∂L
∂π(y|x)

= h′(
π(y|x)
πref(y|x)

)− µ− η(y) = 0. (16)

Let Sy = {y|π(y|x) > 0}. For all y ∈ Sy, complementary slackness implies η(y) = 0. Since
h′(u) = uf ′′(u) is a monotone function, we can obtain ∀y ∈ Sy,

π(y|x)
πref(y|x) is a constant. Then

applying the normalization constraint, Ey∼πref(·|x)
π(y|x)
πref(y|x) = 1. Hence, we conclude that the unique

interior optimum is π∗(y|x) = πref(y|x). □

The theorem implies that the reparameterized exploratory bonus attains its maximum only when π
and πref coincide. The condition that xf ′′(x) is a monotone function is satisfied by α-divergence
and beyond, e.g. Pearson χ2. Hence, the exploratory bonus −κmaxπ Jβ,f (π, r) in the reward
training objective generally contradicts the optimism, since it cannot encourage trajectories with
small initialized possibility.

B.3 Prior adaptions & approximations cannot generalize

Although the theoretical justification for the previously proposed exploratory bonus does not hold, its
empirically implemented loss remains effective due to various adaptations and approximations. In
this subsection, however, we show that these adaptations and approximations cannot be extended
beyond the KL-divergence class.

Zhang et al. [12] modify the formulation of Jβ,f (π, r) in the optimistic exploratory bonus
−κmaxπ Jβ,f (π, r) as

J ′
β,f (π, r) = Ex,y∼π,y′∼πref [r(x, y)− r(x, y′)]− βDKL(π|πref), (17)

which adds a bias in the reward expectation term. Under KL-divergence, the original Jβ,f (π, r)
will be zero after re-parameterization as shown in Lemma 3.1, thus the sole reparameterized bias
term will remain as −Ey′∼πref log π(y

′|x). Since Jβ,f (π, r) cannot be reparameterized to zero except
KL-divergence, this adaptation cannot generalize then.

In the derivations of Cen et al. [14], an idealized calibration distribution πcal is assumed to satisfy
Ey∼πcal

r(x, y) = 0. Since πcal is not directly accessible in practice, the method substitutes rejected
responses to approximate expectations under Eπcal

. These rejected samples, however, do not satisfy
the defining property of πcal, making the approximation theoretically inconsistent.
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The theoretical framework of Xie et al. [13] is based on Implicit Q-Approximation (refer to Lemma
C.3 in the original paper) as follows,

β
log π(y|x)
log πref(y|x)

= r(x, y)− V ∗(x) (18)

where V (x)∗ is the KL-regularized value function. Because this relation depends critically on the
logarithmic structure of the KL divergence, the framework cannot be extended to more general
divergence families either.

In contrast, our general exploratory bonus integrates seamlessly with iterative online RLHF algorithms
and extends naturally to the entire α-divergence family. As discussed in §4, all these heuristic bonus
terms can be encompassed by our unified theoretical framework.

B.4 Equivalence between a sophisticated objective and a simple one.

Lemma 4.1 Denote two objectives as h(u(x, y)) = Ex∼ρ,y∼πrefu(x, y)f
′(u(x, y)) − f(u(x, y))

and ĥ(u(x, y)) = Ex∼ρ,y∼πref
u(x,y)
Z(x) f

′(u)− f(u(x,y)Z(x) ) where u(x, y) is a function with π(y|x) and
πref(y|x). If the ratio

f ′(u(x, y)) + u(x, y)f ′′(u(x, y))− f ′(u(x,y)Z(x) )

Z(x)u(x, y)f ′′(u(x, y))
= Λ(x) (19)

is independent of y and Λ(x) > 0, then minimizing the two objectives, minπ −h(u(x, y)) and
minπ −ĥ(u(x, y)), yields the same class of optimal policies.

Proof Similar to Lemma 4.1, for a fixed x, we can write a similar formulation of the Lagrange
multipliers as follows,

L = Ey∼πrefh(u(x, y))− µ1(
∑
y

π(y|x)− 1)−
∑
y

η1π(y|x), (20)

where µ, η are the dual variables. Then, we utilize the KKT conditions formulation for the given
optimization problem. Similar to Lemma 4.1, when π(x, y) > 0, we obtain

∂h

∂π(y|x)
= u(x, y)f ′′(u(x, y)) · πref(y|x) ·

∂u(x, y)

∂π(y|x)
= µ1. (21)

Similarly, we can obtain the KKT conditions for ĥ(u(x, y)) as follows,

∂ĥ

∂π(y|x)
=

1

Z(x)
(f ′(u(x, y))+u(x, y)f ′′(u(x, y))−f ′(

u(x, y)

Z(x)
))·πref(y|x)·

∂u(x, y)

∂π(y|x)
= µ2, (22)

where µ2 is another dual variable. With the condition of Eq. 20, these two partial derivatives in
Eq. 21 and Eq. 22 are equivalent when µ2 = µ1Λ(x). Hence, every policy that satisfies the stationary
condition for h also satisfies it for ĥ. Since Λ(x) > 0, the second-order derivative ∂2h

∂2π(y|x) and
∂2ĥ

∂2π(y|x) have the same sign, which indicates they share the same local minima. Hence, minimizing

the two objectives minπ −h(u) and minπ −ĥ(u) induces the same class of policies.

□

B.5 GEB enables optimistic exploration

In this subsection, we prove how GEB meets the optimism principle specified by Definition 3.1.

Theorem 4.2 Consider an α-divergence f with 0 ≤ α ≤ 1, and the exploratory bonus Lbonus =

βEx∼ρ,y∼πref

[
u(x, y)f ′(u(x, y))−f(u(x, y))

]
, where u(x, y) is a function dependent on π(y|x) and

πref(y|x). For any (x, y), if ∂u
∂π + πref

∂2u
∂π∂πref

+
(α−1)πref

u
∂u
∂π

∂u
∂πref

< 0 and u(x, y) > α, the optimism

condition in Definition 3.1 is satisfied; that is, ∂2Lbonus
∂π∂πref

≤ 0.
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Proof First, substituting the optimal solution of the inner maximization and utilizing reward repa-
rameterization, we obtain the training objective as in Eq. 9. By Lemma 4.1, this can be equivalently
expressed as

Lbonus = βEx∼ρ,y∼πref(·|x)

[
u(x, y)f ′(u(x, y))− f(u(x, y))

]
. (23)

For α-divergences, the conditions in Lemma 4.1 are satisfied. Since we have f ′(u) + uf ′′(u) −
f ′( u

Z ) = uα−1(Z1−α−α)/(1−α) and uf ′′(u) = uα−1, the fraction Λ(x) = (Z1−α−α)/Z(1−α)
in Lemma 4.1 is independent of y. Since u > α, ZR = Ey∼πref(·|x)u > 0, thus Λ(x) > 0 is also
satisfied. Finally, the mixed second-order derivative of Eq. 11 is computed as

∂2Lbonus

∂π∂πref
= βEx∼ρ

∑
y

uα−1(
∂u

∂π
+ πref

∂2u

∂π∂πref
+

(α− 1)πref

u

∂u

∂π

∂u

∂πref
) < 0, (24)

which achieves the optimism defined in Definition 3.1. □

C Regret Bound

In derivations, we utilize the theoretical tools in [12, 13, 14]. First, we make some standard statistical
assumptions following Cen et al. [14].

Assumption C.1 For any reward function r, and any trajectory τ , we have −Rmax < r(τ) < Rmax,
where Rmax is a constant.

This is an assumption generally made for theoretical analyses of RLHF. Note that Rmax is measurable
and controllable in practice. Then we introduce the assumption of the reward class proposed in Cen
et al. [14], which offers a regularization mechanism for the subsequent derivations.

Assumption C.2 We assume that r∗ ∈ R, where

R = {r : Ex∼ρ,τ∼πcal(·|x)r(x, y) = 0}, (25)

where ρ is the prompt distribution and πcal is a fixed calibration distribution independent of the
algorithm.

We also introduce the preference generalized eluder coefficient proposed in Zhang et al. [12], an
extension of the generalized eluder coefficient [54], which connects prediction error and in-sample
estimation error.

Definition C.1 Let fr(x, y, y′) = rt(x, y)− r∗(x, y). For a reward function class R, we define the
preference generalized eluder coefficient as the smallest dPGEC as

T∑
t=1

Ex∼ρ,y∼πt(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y
′)]

≤

√√√√dPGEC

T∑
t=1

Ex∼ρ,y∼π̃t(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y′)]2 + 4
√
dPGECT , (26)

With the above assumptions and the theoretical tool, we can have the following regret boundary.

Theorem C.1 Let Jβ,f (π, r) = Ex∼ρ,y∼π(·|x)r(x, y) − βEx∼ρ,y∼πref(·|x)f(
π(y|x)
πref(y|x) ). In the t-th

iteration of the iterative online RLHF, the reward function and the policy are updated via

rt = argmin
r

[
LBT (Dt, r)− κLbonus

]
, (27)

πt = argmax
π

Jβ,KL(π, rt) = argmax
π

Ex∼ρ,y∼π(·|x)rt(x, y)− βDKL(π∥πref), . (28)

When the exploratory bonus is Lbonus = maxπ Jβ,f (π,R), and the hyperparameter κ satisfies

κ =
√

log(T |R|δ−1)
(γdPGECT ) (32Rmaxe

4Rmax)−1, with probability at least 1− δ, the regret can be bounded
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as follows,
T∑

t=1

Jβ,f (π
∗, r∗)− Jβ,f (π

t, r∗) ≤ O(Rmaxe
4RmaxT

√
dPGECγ log(|R|δ−1)), (29)

where γ = supx,y
π

πcal
, r∗ and π∗ are ground-truth reward function and corresponding optimal

policy with π∗ = argmaxπ Jβ,f (π, r
∗).

Proof First, we can decompose the regret function as in Cen et al. [14] as follows,
T∑

t=1

Jβ,f (π
∗, r∗)− Jβ,f (π

t, r∗)

=

T∑
t=1

[Jβ,f (π
∗, r∗)− Jβ,f (π

t, rt)]︸ ︷︷ ︸
Term 1

+

T∑
t=1

[Jβ,f (π
t, rt)− Jβ,f (π

t, r∗)]︸ ︷︷ ︸
Term 2

. (30)

Then, we will bound term 1 and term 2 individually and combine them at last.

Bound term 1. Since the function R(x, y) is dependent on r(x, y), we denote it as R(r) for this
part. First, we connect the term 1 with maxπ Jβ,f (π,R(rt))−maxπ Jβ,f (π,R(r∗)). When π∗ is
the optimal π for maxπ Jβ,f (π, r

∗), we have

Term 1 ≤ Jβ,f (π
∗, r∗)− Jβ,f (π

∗, rt) ≤ sup
x,y

π∗

πt
Ex∼ρ,y∼πt

(r∗ − rt). (31)

Similarly, we can obtain its lower bound as −2Rmax. Then, we have

Term 1 ≤
T∑

t=1

[
max
π

Jβ,f (π,R(rt))−max
π

Jβ,f (π,R(r∗))
]
+ 4RmaxT. (32)

Bound term 2. First, we utilize the preference generalized eluder coefficient to connect the
prediction error to in-sample error.

Term 2 =

T∑
t=1

Ex∼ρ,y∼πt(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y
′)] (33)

≤ ηTdPGEC

4
+ 4

√
dPGECT +

1

η

T∑
t=1

Ex∼ρ,y∼π̃t(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y
′)]2, (34)

where the first equality uses the property of the reward class in Assumption C.2, and the inequality
follows Definition C.1 with Cauchy–Schwarz inequality. Then, we bound the squared in-sample error
as follows.

Ex∼ρ,τ∼π̃t
[frt(x, y, y

′)− fr∗(x, y, y
′)]2 ≤ γEx∼ρ,τ,τ ′∼π̃t

[frt(x, y, y
′)− fr∗(x, y, y

′)]2 (35)

≤ γ(32Rmaxe
4Rmax)2Ex∼ρ,τ,τ ′∼π̃t

[σ(frt(x, y, y
′))− σ(fr∗(x, y, y

′))]2 (36)

≤ 8γ(32Rmaxe
4Rmax)2Ex∼ρ,τ,τ ′∼π̃t(·|x)D

2
H(Prt(·|τ, τ ′)∥Pr∗(·|τ, τ ′)), (37)

where γ = supx,y
π̃t

πcal
, and the second inequality utilizes the Lemma C.8 in Xie et al. [13], the third

inequality uses (x− y)2 < 4(x+ y)(
√
x−√

y). Refer to the Lemma C.6 in Xie et al. [13], we have∑
i<t

Ex∼ρ,τ,τ ′∼π̃t(·|x)D
2
H(Prt(·|τ, τ ′)∥Pr∗(·|τ, τ ′)) ≤ L

(t)
BT (rt)− L

(t)
BT (r

∗) + 2 log(|R|δ−1) (38)

where L
(t)
BT (r) =

∑
i<t Ey,y′∼D⊔ − log σ(fr(x, y, y

′)) is the vanilla BT loss for reward modeling.
Finally, the term 2 can be bounded by

Term 2 ≤ 4
√
dPGECT +

ηTdPGEC

4
+

8γ

η
(32Rmaxe

4Rmax)2(L
(t)
BT (rt)− L

(t)
BT (r

∗) + 2T log(|R|δ−1)). (39)
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Bound the regret. Since the rt is optimized by L
(t)
BT (rt) −

∑T
i=1 κmaxπ Jβ,f (R(rt), π),

we have rt = argminr∈R L
(t)
BT (rt) −

∑T
i=1 κmaxπ Jβ,f (R(rt), π) Therefore, when η =

4
√

2γ log(T |R|δ−1)
TdPGEC

(32Rmaxe
4Rmax) and κ = η

4γ (32Rmaxe
4Rmax)−2, the regret can be bounded

by

Regret ≤ 4
√
dPGECT +

√
23γdPGEC log(|R|δ−1)(32Rmaxe

4RmaxT ) + 4RmaxT. (40)

□

D Experiments

D.1 Implementation Details

Algorithm. Following prior work [12, 13, 23], we adopt the same algorithmic backbone for
empirical validation in order to isolate and compare the effects of different exploratory bonuses
in the loss function. This backbone bypasses reward modeling at each iteration through reward
reparameterization, a procedure commonly referred to as iterative DPO [18]. Previous methods of
exploratory bonuses further reparameterize their bonus terms to make them compatible with this
framework. To extend the original framework to α-divergence, we extend the iterative DPO with
f-DPO [25] loss, and likewise reparameterize our generalized exploratory bonus accordingly. The
full procedure is summarized in Algorithm 1. Since the only difference is the loss function in Line 5
of Algorithm 1, our GEB does not induce any additional compute costs.

Algorithm 1 Iterative Online Algorithm with Exploratory Bonus
Input: Reference model πref, iteration number T , prompt set for each interation D1, . . . ,DT , reward

function r;
Output: Trained model πT ;

1: for iteration t = 1, 2, . . . , T do
2: for x ∈ Dt do
3: y1, y2 ∼ πref(·|x) and obtain the rewards r(y1), r(y2);
4: Rank the reward and denote y+, y− as the preferred and dispreferred response between

y1, y2 and update Dt = {x, yw, yl};
5: πt = argminπ LDPO − κLbonus(π)
6: update πref with πt (optional)
7: end for
8: end for

Hyperparameter settings and environments. All experiments are conducted on two NVIDIA
H200 GPUs. When training and sampling, the max length is set to 2048. For training, the batch
size per device is set to 2; we enable gradient checkpointing, and the gradient accumulation step
is set to 64; the learning rate is 5e-7 with a cosine scheduler, and the warm-up ratio is 0.03. In the
main experiments, we use the best performance with κ with a suitable ratio range to f-dpo loss across
1, 1e− 2, 1e− 4, 1e− 6, 1e− 8. For sampling, the temperature is set to 1. For in-domain evaluation
and MATH evaluation, we set temperature to 0.6 and top-p to 0.9; we use the default setting of
alpaca-eval.

21



reward

Figure 4: Comparison on the bandit policy distributions trained with DPO (left) and GEB (right). The
DPO policy collapses to a local optimum, while the GEB policy continues to explore and ultimately
chooses the globally preferred action.

E Toy Experiments

Figure 5: Initial reference bandit distribution
(“ref”) and the reward distribution. Because the
most preferred action lies in a low-probability re-
gion, it is rarely visited under purely passive explo-
ration.

To illustrate a setting in which GEB yields sub-
stantial improvement, we construct a toy exam-
ple in which the most preferred action lies in a
rarely visited region.

E.1 Experimental setting

We consider a 1000-arm bandit with 1000 pa-
rameters, each parameter corresponding to a dis-
tinct arm. As shown in Fig. 5, the most preferred
action lies in a rarely visited region, making it
unlikely to be sampled under pure passive exploration, as in f-DPO. Each experiment is run for 5000
iterations. At each iteration, the bandit policy generates 64 rollouts to form a batch of 32 preference
pairs. The learning rate is set to 1e-2 with no warm-up phase.

E.2 Results and Analyses

As shown in Fig. 4, the bandit policy trained with DPO becomes trapped in a local optimum: its
probability mass collapses onto a suboptimal action because the policy never encounters the truly
preferred action during training. In contrast, all three GEB variants successfully recover the desired
distribution (right panel of Fig. 4), concentrating probability on the most preferred action. This
demonstrates that GEB effectively promotes exploration into low-probability regions, enabling the
policy to discover and select the optimal action despite its small initial likelihood.

F Supplement results of main experiments

F.1 Repeated run of the main experiment

To assess the statistical significance of GEB’s performance gains, we repeat each experiment three
times and report the mean and standard deviation. As shown in Table 8, GEB achieves consistently
higher performance than baseline methods, with statistically significant improvements.

F.2 The choice of u

The three variants of the exploration bonuses in Table 2 represent different instantiations of the
GEB framework. Each satisfies the optimism condition in Definition 3.1 and exhibits consistent
performance improvements on the alignment task.

Nonetheless, the curvature of u with respect to π meaningfully affects the optimization dynamics of
the exploratory bonus. For instance, when u = 1− π + α, the function is linear, thus the gradient
of u to π is a constant. Therefore, the per-trajectory incentive to decrease π is constant. In contrast,
when u is convex—such as u = 1/π—the gradient magnitude diminishes as π becomes larger. This
results in a more conservative reduction of π compared to the linear case.
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Table 8: Repeated in-domain evaluation on different exploration bonuses. Boldface and underline
indicate the best and the second-best results, respectively. GEB-π, GEB-1/π, and GEB-arctanh(π−
1) corresponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2.

KL (α=1) Hel. (α=0.5) f-KL (α=0)
WR AvgR WR AvgR WR AvgR

Mistral-Instruct-v0.3

f-DPO 78.39 ±0.54 0.7480 ±0.0171 72.61 ±0.97 0.6536±0.0291 51.56±1.52 0.5918±0.0540
FEB 78.39 ±0.54 0.7480±0.0171 70.18±1.77 0.6428 ±0.1002 48.22±1.72 0.5910 ±0.0093

GEB-π 80.64±1.71 0.7523±0.0270 74.79±1.32 0.6710±0.0231 52.23±0.89 0.5990±0.0102
GEB-1/π 79.47±0.63 0.7602±0.0036 72.97±1.17 0.6561±0.0054 53.40±1.22 0.6030±0.0093

GEB-arctanh(π − 1) 79.15±0.89 0.7567±0.0231 75.12±1.65 0.6602±0.0171 52.59±0.77 0.5974±0.0372

LLaMA-3-8B-SFT

f-DPO 73.35 ±0.68 0.7984±0.0270 71.73±1.33 0.7902±0.0177 67.04±2.39 0.7579±0.0090
FEB 73.35 ±0.68 0.7984±0.0270 68.36±2.17 0.7560±0.0312 66.44±1.36 0.7598 ±0.0063

GEB-π 74.52±1.80 0.8096±0.0136 72.02±1.11 0.7911 ±0.0171 66.97±1.45 0.7702±0.0048
GEB-1/π 75.07±1.42 0.8092±0.0063 72.40±0.80 0.7709±0.0242 67.93 ±0.25 0.7588±0.0033

GEB-arctanh(π − 1) 74.97±1.44 0.8055±0.0021 73.78±2.40 0.7877±0.0054 68.34±0.49 0.7602±0.0372

Takeaway: The curvature of u with respect to π governs the behavior of the exploration bonus. Greater
convexity leads to a more conservative shift of probability mass toward underexplored regions.

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The failure of existing theoretical framework is demonstrated in §3.2. The
theoretical framework is introduced in §4. The empirical studies are in §??
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in §??.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We generally provide proofs directly after the lemma or theorem, while some
of proofs are supplemented in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details can be found in §?? and §D.1. Moreover, we
provide the reproducible code and scripts here.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets we use are all open-sourced, and we have provided the repro-
ducible code and scripts here..

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details can be found in §?? and §D.1. Moreover, we
provide the reproducible code and scripts here.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The repeated training on large-scale LLMs are computation-costly, but we
use multiple variants of GEB and experiments of different hyper-parameters to validate the
stability of GEB.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The implemented details are in §D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted according to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In §??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: A aim of RLHF is to reduce the occurrence of jailbreaking behaviors. Existing
safeguard strategies can be generally applied to our outcome policies.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The usage of outcome policies follows the standard usage of LLMs in the
huggingface package.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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