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Abstract

Optimistic exploration is central to improving sample efficiency in reinforcement1

learning with human feedback, yet existing exploratory bonus methods to incen-2

tivize exploration often fail to realize optimism. We provide a theoretical analysis3

showing that current formulations, under KL or α-divergence regularization, unin-4

tentionally bias exploration toward high-probability regions of the reference model,5

thereby reinforcing conservative behavior instead of promoting discovery of uncer-6

tain regions. To address this pitfall, we introduce the General Exploratory Bonus7

(GEB), a novel theoretical framework that provably satisfies the optimism principle.8

GEB counteracts divergence-induced bias via reference-dependent reward regula-9

tion and unifies prior heuristic bonuses as special cases, while extending naturally10

across the full α-divergence family. Empirically, GEB consistently outperforms11

baselines on alignment tasks across multiple divergence settings and large language12

model backbones. These results demonstrate that GEB offers both a principled and13

practical solution for optimistic exploration in RLHF. Code is available here.14

1 Introduction15

Despite the acknowledged significance of online exploration for reinforcement learning with human16

feedback (RLHF) [1, 2, 3], there remains a paucity of theoretical frameworks governing how to17

explore. As shown in Fig. 1 (1, top), standard online RLHF algorithms [4, 5, 6] generally rely on18

passive exploration, i.e., the stochasticity of the policy itself to generate responses, with no mechanism19

to incentivize novelty or diversity. As a result, this approach can be notoriously sample-inefficient.20

When the optimal behavior resides in low-probability regions, passive exploration is unlikely to21

discover it, leading to policies that remain trapped around local optima.22

To address this, some works [7, 8, 9, 10, 11] have attempted to devise sample-efficient algorithms,23

inspired by the principle optimism in the face of uncertainty. As illustrated in Fig. 1 (2, top), the24

principle aims to generate responses with high epistemic uncertainty, thus encouraging data collection25

in unexplored regions for further training. To operationalize the principle, recent research [12, 13, 14]26

encourages exploration by adding exploratory bonuses to the reward modeling, which is practically27

optimizable for large language models. These methods intend to artificially inflate rewards in28

underexplored regions, nudging the policy toward more informative data collection.29

Unfortunately, our theoretical analysis in Section 3 reveals a fundamental pitfall: under the common30

KL-regularized RLHF, the existing theoretical framework of exploratory bonuses fails to satisfy31

optimism. In particular, we prove that existing bonus formulations can undesirably drive the policy π32

toward the reference policy πref due to the divergence regulation in the exploratory bonus, and the33

induced bonus actually biases exploration toward high-probability regions of the reference model. As34

illustrated in Fig. 1 (II, bottom), the bonus disproportionately amplifies rewards for regions already35

well-covered by πref, thereby reinforcing conservative behavior rather than driving exploration into36
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uncertain regions. This failure is not confined to KL-divergence; we further extend our analysis to the37

more general α-divergence family and prove that the same collapse persists across a wide range of38

divergence-regularized objectives. Thus, while existing approaches appear to encourage exploration,39

they in fact undermine the very principle of optimism they aim to realize.40

Motivated by these failures, we propose a new framework, General Exploratory Bonus (GEB),41

which theoretically unifies existing approaches while provably satisfying optimism (Section 4).42

GEB corrects the failure modes of prior approaches by directly introducing a reference-dependent43

regulation into the reward. This adjustment offsets the undesired conservatism induced by divergence44

regularization, allowing the exploratory bonus to satisfy optimism—it increases the probability of45

responses rarely sampled to pursue potentially more preferred answers, as shown in Fig. 1 (III,46

bottom). Importantly, GEB provides a unified formulation: prior heuristic exploratory bonuses can be47

reinterpreted as special cases, and the framework naturally extends to the full class of α-divergences.48

Beyond correcting the theoretical shortcomings, GEB remains practically implementable—it can be49

seamlessly integrated into the standard iterative RLHF loop without additional sampling cost.50

We validate GEB on a large-scale alignment task across different divergences and model backbones.51

Empirically, GEB consistently yields stronger alignment compared to its counterpart of passive52

exploration. For example, the three GEB variants that we consider generally outperform the iterative53

f-DPO [15] across different divergence regulations, while the most performant variant surpasses54

several existing optimistic exploration methods that incorporate exploratory bonuses [12, 13, 14]. By55

analyzing the distribution of sampled responses, we validate that GEB can successfully encourage56

sampling in the region of small πref, thereby effectively achieving optimistic exploration.57

We summarize our main contributions:58

1. We formally prove that the existing theoretical framework of exploratory bonuses under KL59

and α-divergence regularization fails to achieve optimistic exploration.60

2. We introduce General Exploratory Bonus (GEB), a novel theoretical framework of optimistic61

exploration for RLHF that provably satisfies the optimism principle and unifies prior heuristic62

bonuses.63

3. We empirically validate GEB on LLM alignment tasks, showing improved performance and64

broad applicability across multiple divergence families.65

2 Preliminaries66

Iterative online RLHF. The effectiveness of iterative online RLHF [16, 17] has been validated in67

many real-world systems such as Claude [18] and LLaMA-series [19, 20]. The algorithm proceeds68

in T rounds, with each round having two steps: (1) the πt is learned with the current dataset69

Dt, and then samples x ∼ ρ, (y1, y2) ∼ πt(·|x); (2) Human evaluator annotate the preference70

of (x, y1, y2) → (x, yw, yl) to form Dt+1, where the prompt x is sampled from an independent71

distribution ρ, response y1, y2 are two response sampled from the policy of the t-th iteration πt.72

When computing πt with dataset Dt in the step (1) of each iteration, a reward function rt(x, y)73

is first learned from a collected human preference data Dt = {(x, yw, yl)}, where yw, yl denote74

the preferred and dispreferred response to x, respectively. Reward modeling typically follows the75

Bradley-Terry objective [21]:76

rt = argmin
r

LBT (Dt, r) = argmin
r

E(x,yw,yl)∼Dt
− log[σ(r(x, yw)− r(x, yl))], (1)

where σ denotes the sigmoid function. Given the learned reward function rt, the policy πt is then77

updated to maximize the expected reward, often with a KL-regularization as follows78

πt = argmax
π

Jβ,KL(π, rt) = argmax
π

Ex∼ρ,y∼π(·|x)rt(x, y)− βDKL(π∥πref), (2)

where β > 0 is a hyperparameter, and πref is the reference model.79

Sample inefficiency of iterative online RLHF. Online sampling for standard online RLHF algorithms80

is carried out passively, relying solely on the inherent randomness of the LLM policy. However, if81

the policy places a small probability mass on the optimal action, passive exploration may fail to ever82

explore this action. Theoretical analyses [22, 17] and empirical evidence [23, 14] present that the83
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Figure 1: The upper part compares passive exploration and optimistic exploration. Optimistic
exploration stimulates the trajectories τ of small πref (seldom visited/uncertain). While passive
exploration sticks to the high-πref region, failing to approach global optima. The lower part contrasts
the effect of the exploration bonus term in optimistic reward modeling between prior works and our
GEB. Prior works often emphasize rewards in frequently visited regions, which constrains exploration
within certain areas. In contrast, our GEB amplifies rewards in seldom-visited regions, thereby
encouraging further sampling in uncertain areas and successfully achieving optimistic exploration.

passive approach fails to sufficiently explore the prompt-response space. Particularly, Xie et al. [13]84

demonstrate that the sample complexity can be exponential in 1/β for passive exploration, which85

is unacceptable in the small-β regime. Therefore, several works [13, 14, 12] propose exploratory86

bonuses to implement optimistic exploration for efficient sampling. However, in the next section, we87

will show that prior formulations cannot provably achieve optimism.88

3 Exploratory Bonus and How It Can Fail89

In this section, we will first provide the iterative online RLHF formulation with an exploratory bonus90

(Section 3.1). We then theoretically prove that the existing formulation can fail to achieve optimistic91

exploration under both KL-constrained RLHF (Section 3.2) and a more general α-divergence-92

regularized RLHF (Section 3.3), motivating our proposed method in Section 4.93

3.1 Exploratory Bonus94

To improve the sample efficiency of iterative online RLHF, recent works [12, 14] introduce exploratory95

bonuses, which try to encourage optimistic exploration. These approaches modify the standard loop96

by adding an exploratory bonus term Lbonus. Specifically, in the t-th iteration, the reward model rt97

and policy πt are optimized by98

rt = argmin
r

[
LBT (Dt, r)− κLbonus(r)

]
, (3)

πt = argmax
π

Jβ,KL(π, rt) = argmax
π

Ex∼ρ,y∼π(·|x)rt(x, y)− βDKL(π∥πref), (4)

where κ > 0 is a hyperparameter. By Eq. 3, the reward model rt should not only fit the observed data99

in Dt, but also learn to maximize the bonus term Lbonus(r).100

To achieve optimistic exploration, the bonus term is expected to stimulate probability increase more101

prominently in unexplored areas. Formally, we have the following definition:102
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Definition 3.1 (Optimism condition for exploration bonus) When a reward model r and a policy103

π is computed with Eq. 3 and Eq. 4, the exploratory bonus Lbonus(r) achieves optimism, if104

∂2Lbonus(r)

∂π(y|x)∂πs(y|x)
< 0, (5)

where πs(y|x) is an ideal sampling distribution for response at the current iteration.105

To interpret the optimism condition of the exploration bonus term in Definition. 3.1, we consider the
policy-reparameterized reward model r(x, y) := r(π), which can be derived from the closed-form
solution of Eq. 2 as π(y|x) = exp(r(x,y)/β)

Z(x) , where Z(x) = Ey∼πref exp(r(x, y)/β) is a normalization
function. This yields the reward model expressed via the policy [24]:

r(π) = β log
π(y|x)
πref(y|x)

+ logZ(x).

Implication. Eq. 5 requires the gradient ∂Lbonus(r(π))/∂π(y|x) to be negatively correlated with106

the sampling probability πs. In other words, responses rarely sampled under πs (i.e., uncertain or107

underexplored outputs) should receive a larger ascending of the policy distribution π, i.e., larger108

∂Lbonus(r(π))/∂π(y|x). In practice, πs can be substituted by the reference model or intermediate109

checkpoints. We adopt the commonly used πref as πs in our following demonstration.110

3.2 Failure Under KL-constrained RLHF111

Previous works, including Zhang et al. [12] and Cen et al. [14], formulate the exploratory bonus112

with Lbonus(r) = maxπ Jβ,KL(π, r). In this case, optimizing exploratory bonus in Eq. 3 becomes113

a min-max bi-level objective as minr −κmaxπ[Ex,y∼πr(x, y) − βDKL(π∥πref)]. Intuitively, they114

intend to make r not only fit the observed data by LBT , but also have a larger reward in unobserved115

regions by maximizing the maxπ Ex,y∼πr(x, y) in Lbonus(r). Here, we theoretically show that such116

formulations can suffer from optimism failures under KL-regularized RLHF.117

Lemma 3.1 (Optimism failure under KL-divergence.) Let r1 = argminr LBT (D, r) be a re-118

ward model trained with the vanilla BT loss, and let r2 = argminr[LBT (D, r)−κmaxπ Jβ,KL(π, r)]119

be a reward model trained with an additional exploratory bonus. If the policy is optimized via Eq. 4,120

then r1 and r2 yield the same set of policies.121

Proof First, the inner maximization of the bonus term admits a closed-form solution, π∗(y|x) =122

πref(y|x)e
r(x,y)

β /Z(x) where Z(x) = Ey∼πref(·|x)e
r(x,y)

β is a normalization term. Substituting this123

solution reduces the bi-level training objective of r2 to a single-level form:124

r2 = argmin
r

[
LBT (D, r)− κEx∼ρβ logEy∼πrefe

r(x,y)
β ]. (6)

As shown in Rafailov et al. [24], the log-ratio β log πθ(y|x) − β log πref(y|x) represents the same125

class of the original reward function r through Eq. 4, thus the reward r1, r2 can be reparameterized126

by the log-ratio. Plugging this into Eq. 6 yields127

argmin
π

Ldpo(D, π)− κEx∼ρβ logEy∼πref(·|x)
π(y|x)
πref(y|x)

. (7)

Since the second term equals 0, the reparameterized Eq. 6 is exactly the vanilla DPO loss, which is128

the same as the reparameterized training objective of r1. Thus, the exploratory bonus in the reward129

training objective has no effect on the final policy set. □130

The lemma proves that incorporating the exploratory bonus Lbonus(r) = maxπ Jβ,KL(π, r) into the131

reward training objective fails to induce the policy model to sample from low-πref(y|x) regions, i.e.,132

unexplored responses. In other words, the bonus term is ineffective at inducing optimism. We next133

extend the result beyond KL regularization to a more general class of α-divergence family.134

3.3 Generalization to α-divergence-constrained RLHF135

In this subsection, we theoretically show that the failure of optimism can broadly extend to the136

α-divergence class. Many common divergences, such as reverse KL-divergence, Hellinger distance,137

and forward KL-divergence, are special cases of α-divergence.138
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Definition 3.2 (α-divergence class) An α-divergence is a certain type of function D(p|q) =∫
f(dpdq )dq that measures the difference between two probability distributions p and q, where

f(x) =
xα − αx− (1− α)

α(1− α)
,

and α is a hyperparameter typically with 0 ≤ α ≤ 1.139

Lemma 3.2 (Optimism failure under α-divergence.) Consider objective Jβ,f (π, r) =140

Ex∼ρ,y∼π(y|x)r(x, y) + βEx∼ρ,y∼πref(y|x)f(
π(y|x)
πref(y|x) ), where f belongs to α-divergence class.141

If a reward is trained with r = argminr[LBT (D, r) − κLbonus] and a policy π is updated142

by argmaxπ Jβ,f (π, r) with Lbonus = maxπ Jβ,f (π, r), the gradient of the bonus satisfies143

∂2Lbonus(r(π))
∂π∂πref

≥ 0, which means Lbonus encourage trajectories with large πref more strongly, in144

contradiction to the optimism principle (Definition 3.1).145

Proof For a RL objective Jβ,f (π, r), the relation between the optimal policy π∗
f and the reward r146

can be formulated as follows,147

π∗
f =

1

Z(x)
πref(y|x)(f ′)−1(r/β), r(x, y) = βf ′(

π∗(y|x)
πref(y|x)

Z(x)), (8)

where Z(x) is a normalization term and (f ′)−1 is the inverse function of f ′. The bi-level objective can148

be similarly transformed to a single level one by canceling the inner maximization maxπ by Eq. 8. The149

single-level objective can be written as rt = argminr LBT (D, r)−κEx∼ρ,y∼πref
1

Z(x) (f
′)−1( r(x,y)β )·150

r(x, y)− βf( 1
Z(x) (f

′)−1( r(x,y)β ). Since the policy is computed by argmaxπ Jβ,f (π, r), the reward151

can be reparameterized by the policy with Eq. 8, which fortunately cancels Z(x). Then the optimistic152

reward-modeling objective can be reparameterized as153

argmin
π

Ldpo(D, π)− κβEx∼ρ,y∼πref

[ π(y|x)
πref(y|x)

f ′(
π(y|x)
πref(y|x)

)− βf(
π(y|x)
πref(y|x)

)
]
. (9)

Since for α-divergence, f(u) = uα−αu−(1−α)
α(α−1) , the partial derivative of Eq. 9 is (πref

π )1−α, which154

induces positively correlated gradients w.r.t. π and πref when 0 ≤ α < 1, and is a constant when155

α = 1, hence contradictory to the optimism defined in Definition 3.1. □156

Table 1: Realized exploratory bonus under dif-
ferent divergence classes when Lbonus(r) =
maxπ Jβ,f (π, r).

f exploratory bonus

reverse KL constant
forward KL Ex∼ρ,y∼πref(y|x) log

π(y|x)
πref(y|x)

Hellinger distance Ex∼ρ,y∼πref(y|x)

√
π(y|x)
πref(y|x)

According to Lemma. 3.2, we enumerate several ex-157

ploratory bonus under different α-divergence in Ta-158

ble 1. The listed bonuses are simplified by removing159

constant coefficients and bias. The listed exploratory160

bonuses generally force the policy model to maxi-161

mize the possibility of trajectories sampled by the162

reference model, not the underexplored ones. We fur-163

ther prove that it actually drives π to collapse toward164

πref and that the failure extends beyond α-divergence165

to other f -divergences.166

Theorem 3.3 (Optimism failure beyond α-divergence.) When f belongs to f -divergence, and the167

reward function is obtained by r̂ = argminr[LBT (Dt, r) − κmaxπ Jβ,f (π, r)] and the policy is168

updated by argmaxπ Jβ,f (π, rt), the bonus term −κmaxπ Jβ,f (π, r) induces the policy model π169

to coincide with πref when xf ′′(x) is a monotone function.170

The detailed proofs are in Appendix B.1. The monotone increase of xf ′′(x) can be satisfied by a171

broader divergence class besides α-divergence, including JS-divergence and Pearson χ2.172

Intuitive understanding. Optimization of exploratory bonus in Eq. 3 is a min-max bi-level objec-173

tive as minr −κmaxπ[Ex,y∼πr(x, y)− βDKL(π∥πref)]. Due to the inner maximization maxπ, the174

divergence constraint implicitly makes π close to πref to avoid the divergence penalty. Considering175

the outer minimization minr, r is forced to provide large rewards on region of high π to maximize176

the reward expectation. Their combination implicitly makes r focus more on region of large πref.177

Since samples with large πref is easily rolled out from scratch, previous exploratory bonuses merely178

concentrate sampling on regions that are already easy to explore, contradictory to the optimism179

principle, which requires encouraging responses y rarely sampled by the reference model.180
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4 General Exploratory Bonus with Optimism Principle181

Motivated by the failure of the existing exploratory bonus, we now propose a novel framework,182

General Exploratory Bonus (GEB), and prove that it achieves optimism. We further show that prior183

exploratory bonuses—and broader variants—emerge as special cases of our formulation.184

Formulation of a novel exploratory bonus. As shown in Section 3, the failure of existing bonuses185

arises because the divergence constraints in maxπ Jβ,f (π, r) force π to align with πref, biasing186

exploration toward high-πref regions. To achieve optimistic exploration, the optimal π must instead187

counteract this regularization and move away from πref. Our key idea is to introduce an additional188

reference-dependent regulation into the reward, which offsets the influence of divergence regular-189

ization. The resulting exploratory bonus takes the form −κmaxπ Jβ,f (π,R(r, πref)). Note that the190

formulation of R(·, ·) can be diverse. Since the reward R(r, πref) is now explicitly dependent on191

πref, the inner optimal policy of the bi-level problem is 1
ZR(x)πref(f

′)−1(R(r,πref)
β ), where ZR(x) is a192

normalization term. Unlike previous cases, the optimal policy is no longer guaranteed to be positively193

correlated with πref, enabling the policy to deviate from the reference distribution.194

As in Lemma 3.2, we can substitute the inner π by the closed-form solution, and then utilize the195

reward reparameterization of α-divergence [25] as r = f ′(π/πref) for a divergence instance f to196

obtain the reparameterized exploratory bonus as197

Lbonus(r(π)) = βEx∼ρ,y∼πref(·|x)

[ u

ZR(x)
f ′(u)− f(

u

ZR(x)
)
]
, (10)

where u = (f ′)−1(R(πref(y|x), π(y|x)
πref(y|x) )/β) and ZR(x) = Ey∼πref(·|x)u. Since the domain of198

divergence class is generally (0,+∞) while there are no additional constraints on the formulation of199

R, u can be flexibly formulated with π and πref unless u ≥ 0.200

Equivalence to a practical objective. In our proposed exploratory bonus, the normalization term201

ZR(x) in Eq. 10 cannot be canceled. Fortunately, we prove the following lemma in Appendix E to202

show the equivalence between the two training objectives, one with and the other without ZR(x),203

which helps transform the objective to a succinct formulation for analyses and practical use.204

Lemma 4.1 Denote two objectives as h(u) = Ex∼ρ,y∼πrefuf
′(u) − f(u) and ĥ(u) =205

Ex∼ρ,y∼πref
u

Z(x)f
′(u) − f( u

Z(x) ) where u is a function with π and πref. When [f ′(u) + uf ′′(u) −206

f ′( u
Z(x) )]/[Z(x)uf ′′(u)] = Λ(x) is constant in y and Λ(x) > 0, minimizing the two objectives207

minπ −h(u) and minπ −ĥ(u) induce the same class of policies.208

GEB successfully achieves optimism. Building on Lemma 4.1, we now prove that our proposed209

framework indeed achieves the optimism requirement.210

Theorem 4.2 For each iteration of online RLHF, if the policy is updated by π = argmaxπ Jβ,f (π, r)211

while its reward is trained with r = argminr[LBT (D, r) − κLbonus]. When f be-212

longs to α-divergence class, and Lbonus = maxπ Jβ,f (π,R(r, πref)), denote u(π, πref) =213

(f ′)−1
(
R
(
(f ′)−1( π

πref
), πref

)
/β

)
, Then, ∂2Lbonus

∂π∂πref
≤ 0 if ∀(x, y); ∂u

∂π+πref
∂2u

∂π∂πref
+

(α−1)πref

u
∂u
∂π

∂u
∂πref

<214

0 and u > α, where α is a hyperparameter that defines α-divergence (Definition 3.2).215

Proof First, substituting the optimal solution of the inner maximization and utilizing reward216

reparameterization, we obtain the training objective as in Eq. 10. By Lemma 4.1, this can be217

equivalently expressed as218

Lbonus = βEx∼ρ,y∼πref

[
uf ′(u)− f(u)

]
. (11)

For α-divergences, the conditions in Lemma 4.1 are satisfied. Since f ′(u) + uf ′′(u) − f ′( u
Z ) =219

uα−1(Z1−α − α)/(1 − α) and uf ′′(u) = uα−1, the fraction Λ(x) = (Z1−α − α)/Z(1 − α) in220

Lemma 4.1 is independent of y. Since u > α, ZR = Ey∼πref(·|x)u > 0, thus Λ(x) > 0 is also221

satisfied. Finally, the mixed second-order derivative of Eq. 11 is computed as222

∂2Lbonus

∂π∂πref
= βEx∼ρ

∑
y

uα−1(
∂u

∂π
+ πref

∂2u

∂π∂πref
+

(α− 1)πref

u

∂u

∂π

∂u

∂πref
) < 0, (12)
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Table 2: General exploratory bonus under different divergence classes and design of u. Note all
u > α when 0 < π < 1. The presented bonus is simplified by removing constant coefficients or
biases.

f

Lbonus u
1 + α− π 1/π arctanh(1− π) + α

reverse KL Ex∼ρ,y∼πref − π(y|x) Ex∼ρ,y∼πref
1

π(y|x) Ex∼ρ,y∼πrefarctanh(1− π(y|x))
forward KL Ex∼ρ,y∼πref log(1− π(y|x)) Ex∼ρ,y∼πref − log π(y|x) Ex∼ρ,y∼πref log arctanh(1− π(y|x))

Hellinger Distance Ex∼ρ,y∼πref

√
1.5− π(y|x) Ex∼ρ,y∼πref

1√
π(y|x)

Ex∼ρ,y∼πref

√
arctanh(1− π(y|x)) + 0.5

which achieves the optimism defined in Definition 3.1. □223

In our formulation, u can be flexibly defined in terms of π, πref as long as it satisfies the derivative224

condition in Theorem 4.2 and u > α. This flexibility highlights the extensibility of our framework.225

In particular, when u depends only on π, any function with u > α and negative correlation with π226

qualifies. In Table 2, we list several such choices of u, along with their corresponding reparameterized227

exploratory bonus under three different α-divergences.228

From a practical standpoint, since Lbonus is expressed as an expectation over πref, it does not require229

additional sampling and can be seamlessly integrated into iterative online RLHF. To avoid unintended230

decreases in the likelihood of preferred responses, however, we follow Chen et al. [23] and restrict231

computation of the bonus on rejected responses to ensure that the probability of preferred responses232

continues to increase.233

Prior exploratory bonuses are encompassed within GEB. Although we have shown that exist-234

ing theoretical formulations of Lbonus fail to guarantee optimism, many practical implementations235

have nevertheless been effective through various approximations and adaptations. These approx-236

imations and adaptations are generally inextensible beyond the reverse KL divergence (detailed237

in Appendix B.2). In this subsection, we show that these practical implementations can be nat-238

urally subsumed into our GEB framework, and even broader objectives can be reinterpreted as239

instances of optimistic exploration. For example, Zhang et al. [12] and Xie et al. [13] finally240

implement their exploratory bonus as κEx∼ρ,y∼πref(y|x) log π(y|x), which belongs to GEB when241

u(π) = − log π + 1 and f is KL-divergence. Similarly, Cen et al. [14] implement the exploratory242

bonus as κEx∼ρ,y∼πcal(·|x) log
π
πref

where πcal is a fixed calibration distribution. This also falls243

under GEB by setting u = −πcal
πref

log π
πref

− πcal
πref

log πref + 1 and f is KL-divergence. The cor-244

responding reparameterized exploratory bonus reduces to Ex∼ρ,y∼πcal
− log π

πref
+ C(x), where245

C(x) = Ex∼ρ,y∼πref [−πcal
πref

log πref + 1]. Interestingly, even objectives not explicitly designed for246

exploration can be reinterpreted through our GEB framework. For instance, Chen et al. [23] augment247

the DPO loss with an additional term κEx,y∼πref
σ(−β log π(y|x)

πref(y|x) ), which was originally introduced248

to control sample complexity. In our framework, this corresponds to optimistic exploration with249

u = −σ(−β log π(y|x)
πref(y|x) ) + 1.250

5 Experiments251

5.1 Experimental Settings252

Following prior works [12, 13, 23], we adopt the same iterative online algorithm as in Algorithm 1253

with three iterations, aiming to isolate the effects of different exploration bonuses. We adopt two LLM254

backbones: Llama-3-8B-SFT [17] following prior works, and Mistral-Instruct-v0.3 [26]. The training255

prompt set is RLHFlow-UltraFeedback [17] as in previous works. URM-LLaMa-3.1-8B [27] serves256

as the preference oracle. We evaluate the outcome policies on both in-domain and out-of-domain257

test sets. Specifically, for the in-domain test, we use a held-out test set from UltraFeedback [28], and258

sample 64 times per prompt with the outcome policy to compare the average reward and win-rates259

against the base model. We use length-controlled AlpacaEval2 benchmark [29] with GPT-4 as a260

judge for out-of-domain alignment test, and MATH-500 [30] to evaluate out-of-domain reasoning261

ability.262

Baselines. We adopt f-DPO [25], which extends DPO to the f-divergence class, as the primary263

baseline. We further compare GEB with three optimistic-exploration methods that incorporate264
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Table 3: In-domain evaluation on different exploration bonuses. Boldface and underline indicate
the best and the second-best results, respectively. GEB-π, GEB-1/π, and GEB-arctanh(π − 1)
corresponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2.

KL (α=1) Hel. (α=0.5) f-KL (α=0) Avg.
WR AvgR WR AvgR WR AvgR WR AvgR

Mistral-Instruct-v0.3

f-DPO 78.42 0.7480 72.69 0.6536 51.11 0.5918 67.40 0.6645
SELM 77.56 0.7530 - - - - - -
XPO 79.71 0.7492 - - - - - -
VPO 78.57 0.7426 - - - - - -
FEB 78.42 0.7480 71.54 0.6525 47.53 0.5928 65.83 0.6644

GEB-π 81.00 0.7542 75.48 0.6641 51.68 0.5976 69.39 0.6720
GEB-1/π 80.00 0.7554 73.97 0.6541 52.26 0.6051 68.74 0.6715

GEB-arctanh(π − 1) 79.71 0.7559 75.69 0.6614 52.76 0.5989 69.39 0.6721
LLaMA-3-8B-SFT

f-DPO 73.11 0.8050 71.11 0.7859 67.38 0.7579 70.53 0.7829
SELM 74.19 0.8126 - - - - - -
XPO 72.40 0.8119 - - - - - -
VPO 71.61 0.7971 - - - - - -
FEB 73.11 0.8050 68.17 0.7591 67.95 0.7611 69.74 0.7751

GEB-π 74.34 0.8156 71.68 0.7840 67.67 0.7681 71.23 0.7892
GEB-1/π 74.76 0.8102 72.25 0.7859 68.17 0.7591 71.73 0.7851

GEB-arctanh(π − 1) 74.98 0.8080 73.26 0.7877 68.89 0.7569 72.38 0.7842

Table 4: Out-of-domain evaluation on different exploration bonuses with LLaMA-3-8B-SFT. Bold-
face and underline indicate the best and the second-best results, respectively. GEB-π, GEB-1/π, and
GEB-arctanh(π − 1) corresponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2.

KL(α=1) Hel.(α=0.5) f-KL(α=0) Avg.
Alpaca Math Alpaca Math Alpaca Math Alpaca Math

f-DPO 25.72 67.6 24.73 69.0 17.80 69.2 22.75 68.6
FEB 25.72 67.6 23.75 68.6 19.62 68.6 23.03 68.3

GEB-π 28.27 69.2 25.87 69.6 20.05 71.6 24.73 70.1
GEB-1/π 26.10 68.4 25.28 70.2 19.80 69.2 23.73 69.3

GEB-arctanh(π − 1) 24.90 71.0 25.96 67.6 19.62 69.2 23.49 69.3

exploratory bonuses—SELM [12], XPO [13], and VPO [14]. Since the approximations or adaptations265

in their implementations do not extend beyond the KL divergence, we report their results only under266

KL. In contrast, we introduce a new baseline, Failed Exploratory Bonus (FEB), which removes these267

approximations or adaptations, i.e., Eq. 7.268

5.2 Results & analyses269

GEB delivers robust improvements across different loss designs, divergence classes, and lan-270

guage model backbones. The experimental results are shown in Table 3. Across both backbones,271

GEB generally outperforms f-DPO and FEB. Under the KL-divergence, GEB displays better or272

at least on-par performance compared to prior exploratory-bonus methods. Notably, the win-rate273

increases over 1.82% and 0.94% under the KL-divergence, over 2.36% and 1.29% under the Hellinger274

Distance, compared with their f-DPO counterpart. GPT-4 evaluation on the Alpaca benchmark also275

shows consistent performance gains on out-of-domain alignment task. While GEB maintains on par,276

or usually better results in MATH, showing less performance degradation beyond alignment, known277

as alignment tax [31, 32].278

GEB effectively encourages exploration in small πref region, yielding more diverse sampling. In279

Figure 2, we visualize the distribution of log πref for sampled responses in the last iteration under the280

KL divergence. When trained with the GEB, the policy model consistently samples more trajectories281
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Figure 2: Comparison of log πref of sampled response in the last iteration between the general
exploratory bonuses and vanilla iterative DPO. GEB-π, GEB-1/π, and GEB-arctanh(π − 1) corre-
sponds to 1 + α− π, 1/π, and arctanh(1− π) + α as in Table 2

100 10 2 10 4 10 6 10 8

| bonus|/| dpo|

66.0%

68.0%

70.0%

72.0%

74.0%

76.0%

w
in

-r
at

e 
(K

L.
)

GEB-
GEB-1/
GEB-arctanh( 1)

102 100 10 2 10 4 10 6

| bonus|/| dpo|

64.0%

66.0%

68.0%

70.0%

72.0%

w
in

-r
at

e 
(H

el
.)

GEB-
GEB-1/
GEB-arctanh( 1)

100 10 2 10 4 10 6 10 8

| bonus|/| dpo|

60.0%

62.0%

64.0%

66.0%

68.0%

70.0%

w
in

-r
at

e 
(f-

K
L.

)

GEB-
GEB-1/
GEB-arctanh( 1)

Figure 3: Experiments with different κ. The three graphs are under KL divergence, Hellinger
Distance, and forward KL divergence from left to right, respectively. The p, f, tanh in the legends
correspond to 1 + α− π, 1/π, arctanh(1− π) + α in Table 2 respectively.

Table 5: Dist-n of the sampled corpus in the last iteration under the KL divergence.

dist-1 dist-2 dist-3 dist-4

f-DPO 0.0189 0.2700 0.6349 0.8418
GEB-π 0.0192 0.2694 0.6323 0.8420

GEB-1/π 0.0191 0.2738 0.6401 0.8448
GEB-arctanh(π − 1) 0.0192 0.2730 0.6391 0.8447

with a smaller πref compared to the policy trained by f-DPO loss. This validates our motivation that282

GEB can encourage sampling trajectories of small πref for optimistic exploration. In Table 5, we283

further calculate the distinct-n (n = 1, 2, 3, 4) for the sampled responses in the last iterations under284

the KL divergence, which measures the diversity of a corpus. GEB generally has higher diversity285

scores, validating that GEB incentivizes qualitatively more diverse samples.286

The choice of κ. Since the formulation of u in Eq. 10 is flexible, the scale of the GEB term can287

differ substantially across designs, hence the absolute value of the bonus is less informative. Instead,288

we examine the relative ratio of the bonus term to the vanilla RL loss |κLbonus|/|LRL|, which289

provides a more consistent basis for comparison and offers better practical guidance for tuning κ290

across diverse settings. As shown in Fig. 3, performance remains stable when the ratio lies within a291

suitable range (1e-2 to 1e-6 in our case). However, if the ratio is too large, it impedes optimization292

of the RL objective and degrades performance; if too small, the exploration incentive in uncertain293

regions diminishes and performance reverts to the vanilla baseline.294

6 Conclusion295

While recent work proposes exploratory bonuses to operationalize the “optimism in the face of296

uncertainty" principle, our work shows that the existing theoretical frameworks of exploratory297

bonuses fail under KL and α-divergence regularization. To address prior theoretical pitfalls, we298

introduce General Exploratory Bonus (GEB), a novel theoretical framework for sample-efficient299

RLHF. Our approach provably satisfies the optimism principle and unifies prior heuristic bonuses. We300

empirically validate GEB on LLM alignment tasks with diverse bonus designs and LLM backbones,301

showing improved performance and broad applicability across multiple divergence families.302
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A Related Works558

Alignment & RLHF. Alignment [33, 34, 35, 36, 37] aims to ensure AI systems act in accordance559

with human values, preferences, and goals; and it has become a critical field in AI research. To560

steer language models to match human preferences, reinforcement Learning from Human Feedback561

(RLHF) [38, 39] acheives great success and has become the standard alignment pipeline. However,562

its computational complexity has motivated a family of Direct Preference Optimization (DPO)563

[24, 40, 41] that forgo explicit reward modeling. Despite their efficiency, recent researchers [3, 1, 16]564

reemphasize the significance of online sampling.565

Optimistic exploration of RLHF. To address the computational overheads of passive exploration566

in RLHF, which samples trajectories just based on randomness, some existing attempts have been567

devoted to sample-efficient RL algorithms. Most of works [7, 8, 42, 9, 22] adhere to the principle568

of optimism, proposing specialized prompt or response selection strategies to emphasize uncertain569

samples. While some research [11, 27] propose uncertainty-aware reward models with epistemic570

neural networks or bootstrap ensembles, these methods introduce additional cost. Some research571

also addresses the sample efficiency with different theoretical foundations, such as information572

theory [10], preference-incentive exploration [23]. Notably, several works [12, 13, 14] introduce573

different exploratory bonuses, which can implement optimism toward uncertainty without additional574

computes. However, they only focus on KL-divergence and their theoretical framework cannot result575

in real optimism as shown in Section 3.2.576

Efficient RL for LLM. Beyond optimistic exploration, some research proposes fine-grained577

signals for RL learning. For instance, several research propose segment-level [43, 44] or token-578

level [45, 46] reward function for alignment or text control. Notably, for reasoning tasks, process579

reward model [47, 48, 49] which provides step-wise feedback for solutions has shown promise580

effectiveness. On the other hand, recent research [50, 51, 52] on LLM reasoning reveal that high-581

entropy tokens guide the model toward diverse reasoning paths. Training with only high-entropy582

tokens are more beneficial for reasoning performance [53]. While our approach is highly extensible,583

we believe the orthogonal methods can be further incorporated with our general exploratory bonus.584

B Optimism Failure of previous works585

B.1 Extension beyond α-divergence586

The following theorem formally proves that the exploratory bonus −κmaxπ Jβ,f (π, r) cannot587

encourage optimism for more general divergence class.588

Theorem 3.3 When f belongs to f -divergence, and the reward function is obtained by r̂ =589

argminr[LBT (Dt, r)− κmaxπ Jβ,f (π, r)] and the policy is updated by argmaxπ Jβ,f (π, rt), the590

bonus term −κmaxπ Jβ,f (π, r) induces the policy model π to coincide with πref when xf ′′(x) is a591

monotone function.592

Proof By Lemma. 3.2, we reparameterize the bonus term for optimistic reward-modeling to Eq. 8.593

Denote h(u) = uf ′(u) − f(u). For a fixed prompt x, we formulate the training process as a594

constrained problem as follows,595

argmax
π

Ey∼πref(·|x)h(
π(y|x)
πref(y|x)

) s.t.
∑
y

π(y|x) = 1 and ∀y, π(y|x) > 0. (13)

Then we can apply the Lagrange multiplier as596

L = Ey∼πrefh(
π(y|x)
πref(y|x)

)− µ
(∑

y

π(y|x)− 1
)
−

∑
y

η(y)π(y|x), (14)

where µ, η are the dual variables. Then we utilize the Karush-Kuhn-Tucker (KKT) conditions for the597

given optimization problem. The complementary slackness requires that ∀y, η(y)π(y|x) = 0. The598

stationary condition requires599

∂L
∂π(y|x)

= h′(
π(y|x)
πref(y|x)

)− µ− η(y) = 0. (15)
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We denote Sy = {y|π(y|x) > 0}, we have ∀y ∈ Sy, η(y) = 0. Since h′(u) = uf ′′(u) > 0 due to600

the convexity of f(·), we can obtain ∀y ∈ Sy,
π(y|x)
πref(y|x) is a constant. Then applying the normalisation601

constraint, Ey∼πref(·|x)
π(y|x)
πref(y|x) = 1. Hence, the unique interior optimum is π∗(y|x) = πref(y|x). □602

The theorem implies that the reparameterized exploratory bonus attains its maximum only when π603

and πref coincide. The condition that xf ′′(x) is a monotone function is satisfied by α-divergence604

and beyond, e.g. Pearson χ2. Hence, the exploratory bonus −κmaxπ Jβ,f (π, r) in the reward605

training objective generally contradicts the optimism, since it cannot encourage trajectories with606

small initialized possibility.607

B.2 Prior adaptions & approximations cannot generalize608

Though the theoretical framework of prior exploratory bonus fails, their empirically implemented609

loss remains effective through different adaptions and approximations. However, in this subsection,610

we show these adaptions and approximations are inextensible beyond KL-divergence class.611

Zhang et al. [12] adapt the formulation of Jβ,f (π, r) in −κmaxπ Jβ,f (π, r) as612

J ′
β,f (π, r) = Ex,y∼π,y′∼πref [r(x, y)− r(x, y′)]− βDKL(π|πref) (16)

which adds a bias in reward expectation term. Under KL-divergence, the original Jβ,f (π, r) will613

be zero after re-parameterization as shown in Lemma 3.1, thus the sole reparameterized bias term614

will remain as −Ey′∼πref log π(y
′|x). Since Jβ,f (π, r) cannot be reparameterized to zero except615

KL-divergence, this adaption cannot generalize then.616

In the derivations of Cen et al. [14], it utilizes an ideal distribution πcal which should satisfy617

Ey∼πcal
r(x, y) = 0. Since πcal is practically unobtainable, it uses the rejected responses to approx-618

imate Eπcal
, which does not satisfy the predefined condition of πcal thus not rigorously coherent619

to the theory. While the regret decomposition of Xie et al. [13] relies on the logarithm form of620

KL-divergence, thus inextensible to broader divergence class.621

In contrast, our general exploratory bonus can seamlessly incorporate iterative online RLHF algorithm622

and can naturally extend to the entire α-divergence class. All prior bonuses mentioned above can be623

encompassed by our theoretical framework.624

C Regret Bound625

In derivations, we utilize the theoretical tools in [12, 13, 14]. First, we make some standard statistical626

assumptions following Cen et al. [14].627

Assumption C.1 For a reward function r, and a random function R(·), and any trajectory τ , we628

have −Rmax < r(τ), R(r(τ)) < Rmax, where Rmax is a constant.629

This is an assumption generally made for theoretical analyses of RLHF. Note that Rmax is measurable630

and controllable in practice. Then we introduce the assumption of the reward class proposed in Cen631

et al. [14], which offers a regularization mechanism to incorporate additional policy preferences in632

the subsequent derivations.633

Assumption C.2 We assume that r∗ ∈ R, where634

R = {r : Ex∼ρ,τ∼πcal(·|x)r(x, y) = 0}, (17)

where ρ is the prompt distribution and πcal is a fixed calibration distribution independent of the635

algorithm.636

We also introduce the preference generalized eluder coefficient proposed in Zhang et al. [12], an637

extension of the generalized eluder coefficient [54], which connects prediction error and in-sample638

estimation error.639
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Definition C.1 Let fr(x, y, y′) = rt(x, y)− r∗(x, y). For a reward function class R, we define the640

preference generalized eluder coefficient as the smallest dPGEC as641

T∑
t=1

Ex∼ρ,y∼πt(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y
′)]

≤

√√√√dPGEC

T∑
t=1

Ex∼ρ,y∼π̃t(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y′)]2 + 4
√
dPGECT , (18)

642

With the above assumptions and the theoretical tool, we can have the following regret boundary.643

Theorem C.1 Let Jβ,f (π, r) = Ex∼ρ,y∼π(·|x)r(x, y) − βEx∼ρ,y∼πref(·|x)f(
π(y|x)
πref(y|x) ), when the hy-644

perparameter of the loss Eq. 3 κ =
√

log(T |R|δ−1)
(γdPGECT ) (32Rmaxe

4Rmax)−1, with probability at least645

1− δ, the regret can be bounded as follows,646

T∑
t=1

Jβ,f (π
∗, r∗)− Jβ,f (π

t, r∗) ≤ O(Rmaxe
4RmaxT

√
dPGECγ log(|R|δ−1)), (19)

where γ = supx,y
π

πcal
, r∗ and π∗ are ground-truth reward function and corresponding optimal647

policy with π∗ = argmaxπ Jβ,f (π, r
∗).648

Proof First, we can decompose the regret function as in Cen et al. [14] as follows,649

T∑
t=1

[Jβ,f (π
∗, r∗)− Jβ,f (π

t, rt)]︸ ︷︷ ︸
Term 1

+

T∑
t=1

[Jβ,f (π
t, rt)− Jβ,f (π

t, r∗)]︸ ︷︷ ︸
Term 2

. (20)

Then, we will bound term 1 and term 2 individually and combine them at last.650

Bound term 1. First, we connect the term 1 with maxπ Jβ,f (π,R(rt))−maxπ Jβ,f (π,R(r∗)).651

When π∗ is the optimal π for maxπ Jβ,f (π, r
∗), we have652

Term 1 ≤ Jβ,f (π
∗, r∗)− Jβ,f (π

∗, rt) ≤ sup
x,y

π∗

πt
Ex∼ρ,y∼πt

(r∗ − rt). (21)

Similarly, we can obtain its lower bound as −2Rmax. Then, we have653

Term 1 ≤
T∑

t=1

[
max
π

Jβ,f (π,R(rt))−max
π

Jβ,f (π,R(r∗))
]
+ 4RmaxT. (22)

Bound term 2. First, we utilize the preference generalized eluder coefficient to connect the654

prediction error to in-sample error.655

Term 2 =

T∑
t=1

Ex∼ρ,y∼πt(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y
′)] (23)

≤ ηTdPGEC

4
+ 4

√
dPGECT +

1

η

T∑
t=1

Ex∼ρ,y∼π̃t(·|x),y′∼πcal
[frt(x, y, y

′)− fr∗(x, y, y
′)]2, (24)

where the first equality uses the property of the reward class in Assumption C.2, and the inequality656

follows Definition C.1 with Cauchy–Schwarz inequality. Then, we bound the squared in-sample error657

as follows.658

Ex∼ρ,τ∼π̃t
[frt(x, y, y

′)− fr∗(x, y, y
′)]2 ≤ γEx∼ρ,τ,τ ′∼π̃t

[frt(x, y, y
′)− fr∗(x, y, y

′)]2 (25)

≤ γ(32Rmaxe
4Rmax)2Ex∼ρ,τ,τ ′∼π̃t

[σ(frt(x, y, y
′))− σ(fr∗(x, y, y

′))]2 (26)

≤ 8γ(32Rmaxe
4Rmax)2Ex∼ρ,τ,τ ′∼π̃t(·|x)D

2
H(Prt(·|τ, τ ′)∥Pr∗(·|τ, τ ′)), (27)

17



where γ = supx,y
π̃t

πcal
, and the second inequality utilizes the Lemma C.8 in Xie et al. [13], the third659

inequality uses (x− y)2 < 4(x+ y)(
√
x−√

y). Refer to the Lemma C.6 in Xie et al. [13], we have660 ∑
i<t

Ex∼ρ,τ,τ ′∼π̃t(·|x)D
2
H(Prt(·|τ, τ ′)∥Pr∗(·|τ, τ ′)) ≤ L

(t)
BT (rt)− L

(t)
BT (r

∗) + 2 log(|R|δ−1) (28)

where L
(t)
BT (r) =

∑
i<t Ey,y′∼D⊔ − log σ(fr(x, y, y

′)) is the vanilla BT loss for reward modeling.661

Finally, the term 2 can be bounded by662

Term 2 ≤ 4
√
dPGECT +

ηTdPGEC

4
+

8γ

η
(32Rmaxe

4Rmax)2(L
(t)
BT (rt)− L

(t)
BT (r

∗) + 2T log(|R|δ−1)). (29)

Bound the regret. Since the rt is optimized by L
(t)
BT (rt) −

∑T
i=1 κmaxπ Jβ,f (R(rt), π),663

we have rt = argminr∈R L
(t)
BT (rt) −

∑T
i=1 κmaxπ Jβ,f (R(rt), π) Therefore, when η =664

4
√

2γ log(T |R|δ−1)
TdPGEC

(32Rmaxe
4Rmax) and κ = η

4γ (32Rmaxe
4Rmax)−2, the regret can be bounded665

by666

Regret ≤ 4
√
dPGECT +

√
23γdPGEC log(|R|δ−1)(32Rmaxe

4RmaxT ) + 4RmaxT. (30)

□667

D Experiments668

D.1 Implementation Details669

Algorithm. Following prior works Zhang et al. [12], Xie et al. [13], Chen et al. [23], we adopt670

the same algorithmic backbone for empirical validation to explicitly show the effect of different671

exploratory bonus in loss function. This algorithm bypasses the reward modeling in each iteration672

through reward reparameterization, known as iterative DPO [17]. Previous works further reparam-673

eterizes the bonus term to incorporate the algorithm. Since iterative DPO can seamlessly extend674

to f-divergence, we also follow prior works to reparameterize our general exploratory bonus. The675

detailed algorithm can be formulated as in Algorithm 1.676

Algorithm 1 Iterative Online Algorithm with Exploratory Bonus
Input: Reference model πref, iteration number T , prompt set for each interation D1, . . . ,DT , reward

function r;
Output: Trained model πT ;

1: for iteration t = 1, 2, . . . , T do
2: for x ∈ Dt do
3: y1, y2 ∼ πref(·|x) and obtain the rewards r(y1), r(y2);
4: Rank the reward and denote y+, y− as the preferred and dispreferred response between

y1, y2 and update Dt = {x, yw, yl};
5: πt = argminπ LDPO − κLbonus(π)
6: update πref with πt (optional)
7: end for
8: end for

Hyperparameter settings and environments. All experiments are conducted on two NVIDIA677

H200 GPUs. When training and sampling, the max length is set to 2048. For training, the batch678

size per device is set to 2; we enable the gradient checkpointing and the gradient accumulation step679

is set to 64; the learning rate is 5e-7 with cosine scheduler, and the warm up ratio is 0.03. In main680

experiments, we use the best performance with κ with a suitable ratio range to f-dpo loss across681

1, 1e− 2, 1e− 4, 1e− 6, 1e− 8. For sampling, the temperature is set to 1. For in-domain evaluation682

and MATH evaluation, we set temperature to 0.6 and top-p to 0.9; we use the default setting of683

alpaca-eval.684
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E Proofs of Lemma 4.1685

Lemma 4.1 Denote two objectives as h(u) = Ex∼ρ,y∼πrefuf
′(u) − f(u) and ĥ(u) =686

Ex∼ρ,y∼πref
u

Z(x)f
′(u) − f( u

Z(x) ), where u varies with π and πref. When [f ′(u) + uf ′′(u) −687

f ′( u
Z(x) )]/[Z(x)uf ′′(u)] = Λ(x) is constant in y and Λ(x) > 0, minimizing the two objectives688

minπ −h(u) and minπ −ĥ(u) induce the same class of policies.689

Proof For a fixed x, with the Lagrange multiplier and KKT conditions, when π(y|x) > 0, we690

obtain691

∂h

∂π(y|x)
= u(x, y)f ′′(u(x, y)) · ∂πref(y|x)u(x, y)

∂π(y|x)
= µ1(x), (31)

where µ1(x) is a dual variable with respective to x. When f ′(u)+uf ′′(u)−f( u
Z )

Zuf ′′(u) = Λ(x), we have692

µ1(x)Λ(x) =
1

Z
(f ′(u) + uf ′′(u)− f ′(

u

Z
)) · ∂πref(y|x)u(x, y)

∂π(y|x)
, (32)

which directly follows by the KKT conditions of ĥ(x), i.e. ∂ĥ
∂π(y|x) = µ2(x) where µ2(x) is a dual693

variable equals to µ1(x)Λ(x). Hence, every policy that satisfies the stationary condition for h also694

satisfies it for ĥ. Since Λ(x) > 0, the second-order derivative ∂h
∂2π(y|x) and ∂ĥ

∂2π(y|x) have the same695

sign, which indicates they share the same local minima. Hence, minimizing the two objectives696

minπ −h(u) and minπ −ĥ(u) induce the same class of policies.697

□698

F Statement & Limitations699

We have included all implementation details, hyperparameters, and training procedures in the paper700

and appendix. Our code and scripts for reproducing the experiments are available through the701

anonymous GitHub repository to obey the double-blind policy, and will be further made publicly702

available upon publication.703

This work studies reinforcement learning from human feedback (RLHF) using only publicly available704

or synthetic data, without new human subject collection. Here, by providing a rigorous theoretical705

framework with strong empirical evidence, we pursue a high standard of scientific excellence. We706

also take into account inclusiveness to make all our visualizations accessible to the unprivileged707

group of people, by producing figures distinguished by light, shade, and marker. While RLHF has the708

potential to amplify biases or harmful behaviors if misused, our work is intended solely to advance709

safe and responsible research, and we encourage its application in alignment with ethical standards.710

GEB is generally based on online iterative RLHF. This online RLHF backbone has an off-policy711

instinct. We do not explore whether our GEB can also be seamlessly incorporated into more on-policy712

algorithms. Meanwhile, our experiments only focuses on the alignment task; whether GEB can713

benefit more general task is still mysterious. Nonetheless, our paper shows the failure of the existing714

theoretical frameworks of exploratory bonuses, and introduce General Exploratory Bonus (GEB), a715

novel theoretical framework for sample-efficient RLHF. Our approach provably satisfies the optimism716

principle and unifies prior heuristic bonuses. The empirical results also show improved performance717

and broad applicability across multiple divergence families.718
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NeurIPS Paper Checklist719

1. Claims720

Question: Do the main claims made in the abstract and introduction accurately reflect the721

paper’s contributions and scope?722

Answer: [Yes]723

Justification: The failure of existing theoretical framework is demonstrated in §3.2. The724

theoretical framework is introduced in §4. The empirical studies are in §5725

Guidelines:726

• The answer NA means that the abstract and introduction do not include the claims727

made in the paper.728

• The abstract and/or introduction should clearly state the claims made, including the729

contributions made in the paper and important assumptions and limitations. A No or730

NA answer to this question will not be perceived well by the reviewers.731

• The claims made should match theoretical and experimental results, and reflect how732

much the results can be expected to generalize to other settings.733

• It is fine to include aspirational goals as motivation as long as it is clear that these goals734

are not attained by the paper.735

2. Limitations736

Question: Does the paper discuss the limitations of the work performed by the authors?737

Answer: [Yes]738

Justification: The limitations are discussed in §F.739

Guidelines:740

• The answer NA means that the paper has no limitation while the answer No means that741

the paper has limitations, but those are not discussed in the paper.742

• The authors are encouraged to create a separate "Limitations" section in their paper.743

• The paper should point out any strong assumptions and how robust the results are to744

violations of these assumptions (e.g., independence assumptions, noiseless settings,745

model well-specification, asymptotic approximations only holding locally). The authors746

should reflect on how these assumptions might be violated in practice and what the747

implications would be.748

• The authors should reflect on the scope of the claims made, e.g., if the approach was749

only tested on a few datasets or with a few runs. In general, empirical results often750

depend on implicit assumptions, which should be articulated.751

• The authors should reflect on the factors that influence the performance of the approach.752

For example, a facial recognition algorithm may perform poorly when image resolution753

is low or images are taken in low lighting. Or a speech-to-text system might not be754

used reliably to provide closed captions for online lectures because it fails to handle755

technical jargon.756

• The authors should discuss the computational efficiency of the proposed algorithms757

and how they scale with dataset size.758

• If applicable, the authors should discuss possible limitations of their approach to759

address problems of privacy and fairness.760

• While the authors might fear that complete honesty about limitations might be used by761

reviewers as grounds for rejection, a worse outcome might be that reviewers discover762

limitations that aren’t acknowledged in the paper. The authors should use their best763

judgment and recognize that individual actions in favor of transparency play an impor-764

tant role in developing norms that preserve the integrity of the community. Reviewers765

will be specifically instructed to not penalize honesty concerning limitations.766

3. Theory assumptions and proofs767

Question: For each theoretical result, does the paper provide the full set of assumptions and768

a complete (and correct) proof?769

Answer: [Yes]770
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Justification: We generally provide proofs directly after the lemma or theorem, while some771

of proofs are supplemented in Appendix.772

Guidelines:773

• The answer NA means that the paper does not include theoretical results.774

• All the theorems, formulas, and proofs in the paper should be numbered and cross-775

referenced.776

• All assumptions should be clearly stated or referenced in the statement of any theorems.777

• The proofs can either appear in the main paper or the supplemental material, but if778

they appear in the supplemental material, the authors are encouraged to provide a short779

proof sketch to provide intuition.780

• Inversely, any informal proof provided in the core of the paper should be complemented781

by formal proofs provided in appendix or supplemental material.782

• Theorems and Lemmas that the proof relies upon should be properly referenced.783

4. Experimental result reproducibility784

Question: Does the paper fully disclose all the information needed to reproduce the main ex-785

perimental results of the paper to the extent that it affects the main claims and/or conclusions786

of the paper (regardless of whether the code and data are provided or not)?787

Answer: [Yes]788

Justification: The implementation details can be found in §5 and §D.1. Moreover, we789

provide the reproducible code and scripts here.790

Guidelines:791

• The answer NA means that the paper does not include experiments.792

• If the paper includes experiments, a No answer to this question will not be perceived793

well by the reviewers: Making the paper reproducible is important, regardless of794

whether the code and data are provided or not.795

• If the contribution is a dataset and/or model, the authors should describe the steps taken796

to make their results reproducible or verifiable.797

• Depending on the contribution, reproducibility can be accomplished in various ways.798

For example, if the contribution is a novel architecture, describing the architecture fully799

might suffice, or if the contribution is a specific model and empirical evaluation, it may800

be necessary to either make it possible for others to replicate the model with the same801

dataset, or provide access to the model. In general. releasing code and data is often802

one good way to accomplish this, but reproducibility can also be provided via detailed803

instructions for how to replicate the results, access to a hosted model (e.g., in the case804

of a large language model), releasing of a model checkpoint, or other means that are805

appropriate to the research performed.806

• While NeurIPS does not require releasing code, the conference does require all submis-807

sions to provide some reasonable avenue for reproducibility, which may depend on the808

nature of the contribution. For example809

(a) If the contribution is primarily a new algorithm, the paper should make it clear how810

to reproduce that algorithm.811

(b) If the contribution is primarily a new model architecture, the paper should describe812

the architecture clearly and fully.813

(c) If the contribution is a new model (e.g., a large language model), then there should814

either be a way to access this model for reproducing the results or a way to reproduce815

the model (e.g., with an open-source dataset or instructions for how to construct816

the dataset).817

(d) We recognize that reproducibility may be tricky in some cases, in which case818

authors are welcome to describe the particular way they provide for reproducibility.819

In the case of closed-source models, it may be that access to the model is limited in820

some way (e.g., to registered users), but it should be possible for other researchers821

to have some path to reproducing or verifying the results.822

5. Open access to data and code823
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Question: Does the paper provide open access to the data and code, with sufficient instruc-824

tions to faithfully reproduce the main experimental results, as described in supplemental825

material?826

Answer: [Yes]827

Justification: The datasets we use are all open-sourced, and we have provided the repro-828

ducible code and scripts here..829

Guidelines:830

• The answer NA means that paper does not include experiments requiring code.831

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/832

public/guides/CodeSubmissionPolicy) for more details.833

• While we encourage the release of code and data, we understand that this might not be834

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not835

including code, unless this is central to the contribution (e.g., for a new open-source836

benchmark).837

• The instructions should contain the exact command and environment needed to run to838

reproduce the results. See the NeurIPS code and data submission guidelines (https:839

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.840

• The authors should provide instructions on data access and preparation, including how841

to access the raw data, preprocessed data, intermediate data, and generated data, etc.842

• The authors should provide scripts to reproduce all experimental results for the new843

proposed method and baselines. If only a subset of experiments are reproducible, they844

should state which ones are omitted from the script and why.845

• At submission time, to preserve anonymity, the authors should release anonymized846

versions (if applicable).847

• Providing as much information as possible in supplemental material (appended to the848

paper) is recommended, but including URLs to data and code is permitted.849

6. Experimental setting/details850

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-851

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the852

results?853

Answer: [Yes]854

Justification: The implementation details can be found in §5 and §D.1. Moreover, we855

provide the reproducible code and scripts here.856

Guidelines:857

• The answer NA means that the paper does not include experiments.858

• The experimental setting should be presented in the core of the paper to a level of detail859

that is necessary to appreciate the results and make sense of them.860

• The full details can be provided either with the code, in appendix, or as supplemental861

material.862

7. Experiment statistical significance863

Question: Does the paper report error bars suitably and correctly defined or other appropriate864

information about the statistical significance of the experiments?865

Answer: [No]866

Justification: The repeated training on large-scale LLMs are computation-costly, but we867

use multiple variants of GEB and experiments of different hyper-parameters to validate the868

stability of GEB.869

Guidelines:870

• The answer NA means that the paper does not include experiments.871

• The authors should answer "Yes" if the results are accompanied by error bars, confi-872

dence intervals, or statistical significance tests, at least for the experiments that support873

the main claims of the paper.874
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• The factors of variability that the error bars are capturing should be clearly stated (for875

example, train/test split, initialization, random drawing of some parameter, or overall876

run with given experimental conditions).877

• The method for calculating the error bars should be explained (closed form formula,878

call to a library function, bootstrap, etc.)879

• The assumptions made should be given (e.g., Normally distributed errors).880

• It should be clear whether the error bar is the standard deviation or the standard error881

of the mean.882

• It is OK to report 1-sigma error bars, but one should state it. The authors should883

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis884

of Normality of errors is not verified.885

• For asymmetric distributions, the authors should be careful not to show in tables or886

figures symmetric error bars that would yield results that are out of range (e.g. negative887

error rates).888

• If error bars are reported in tables or plots, The authors should explain in the text how889

they were calculated and reference the corresponding figures or tables in the text.890

8. Experiments compute resources891

Question: For each experiment, does the paper provide sufficient information on the com-892

puter resources (type of compute workers, memory, time of execution) needed to reproduce893

the experiments?894

Answer: [Yes]895

Justification: The implemented details are in §D.1.896

Guidelines:897

• The answer NA means that the paper does not include experiments.898

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,899

or cloud provider, including relevant memory and storage.900

• The paper should provide the amount of compute required for each of the individual901

experimental runs as well as estimate the total compute.902

• The paper should disclose whether the full research project required more compute903

than the experiments reported in the paper (e.g., preliminary or failed experiments that904

didn’t make it into the paper).905

9. Code of ethics906

Question: Does the research conducted in the paper conform, in every respect, with the907

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?908

Answer: [Yes]909

Justification: The research is conducted according to the NeurIPS Code of Ethics.910

Guidelines:911

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.912

• If the authors answer No, they should explain the special circumstances that require a913

deviation from the Code of Ethics.914

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-915

eration due to laws or regulations in their jurisdiction).916

10. Broader impacts917

Question: Does the paper discuss both potential positive societal impacts and negative918

societal impacts of the work performed?919

Answer: [Yes]920

Justification: In §F.921

Guidelines:922

• The answer NA means that there is no societal impact of the work performed.923

• If the authors answer NA or No, they should explain why their work has no societal924

impact or why the paper does not address societal impact.925
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• Examples of negative societal impacts include potential malicious or unintended uses926

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations927

(e.g., deployment of technologies that could make decisions that unfairly impact specific928

groups), privacy considerations, and security considerations.929

• The conference expects that many papers will be foundational research and not tied930

to particular applications, let alone deployments. However, if there is a direct path to931

any negative applications, the authors should point it out. For example, it is legitimate932

to point out that an improvement in the quality of generative models could be used to933

generate deepfakes for disinformation. On the other hand, it is not needed to point out934

that a generic algorithm for optimizing neural networks could enable people to train935

models that generate Deepfakes faster.936

• The authors should consider possible harms that could arise when the technology is937

being used as intended and functioning correctly, harms that could arise when the938

technology is being used as intended but gives incorrect results, and harms following939

from (intentional or unintentional) misuse of the technology.940

• If there are negative societal impacts, the authors could also discuss possible mitigation941

strategies (e.g., gated release of models, providing defenses in addition to attacks,942

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from943

feedback over time, improving the efficiency and accessibility of ML).944

11. Safeguards945

Question: Does the paper describe safeguards that have been put in place for responsible946

release of data or models that have a high risk for misuse (e.g., pretrained language models,947

image generators, or scraped datasets)?948

Answer: [No]949

Justification: A aim of RLHF is to reduce the occurrence of jailbreaking behaviors. Existing950

safeguard strategies can be generally applied to our outcome policies.951

Guidelines:952

• The answer NA means that the paper poses no such risks.953

• Released models that have a high risk for misuse or dual-use should be released with954

necessary safeguards to allow for controlled use of the model, for example by requiring955

that users adhere to usage guidelines or restrictions to access the model or implementing956

safety filters.957

• Datasets that have been scraped from the Internet could pose safety risks. The authors958

should describe how they avoided releasing unsafe images.959

• We recognize that providing effective safeguards is challenging, and many papers do960

not require this, but we encourage authors to take this into account and make a best961

faith effort.962

12. Licenses for existing assets963

Question: Are the creators or original owners of assets (e.g., code, data, models), used in964

the paper, properly credited and are the license and terms of use explicitly mentioned and965

properly respected?966

Answer: [Yes]967

Justification: The creators or original owners of assets (e.g., code, data, models), used in the968

paper, are properly credited.969

Guidelines:970

• The answer NA means that the paper does not use existing assets.971

• The authors should cite the original paper that produced the code package or dataset.972

• The authors should state which version of the asset is used and, if possible, include a973

URL.974

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.975

• For scraped data from a particular source (e.g., website), the copyright and terms of976

service of that source should be provided.977
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• If assets are released, the license, copyright information, and terms of use in the978

package should be provided. For popular datasets, paperswithcode.com/datasets979

has curated licenses for some datasets. Their licensing guide can help determine the980

license of a dataset.981

• For existing datasets that are re-packaged, both the original license and the license of982

the derived asset (if it has changed) should be provided.983

• If this information is not available online, the authors are encouraged to reach out to984

the asset’s creators.985

13. New assets986

Question: Are new assets introduced in the paper well documented and is the documentation987

provided alongside the assets?988

Answer: [Yes]989

Justification: The usage of outcome policies follows the standard usage of LLMs in the990

huggingface package.991

Guidelines:992

• The answer NA means that the paper does not release new assets.993

• Researchers should communicate the details of the dataset/code/model as part of their994

submissions via structured templates. This includes details about training, license,995

limitations, etc.996

• The paper should discuss whether and how consent was obtained from people whose997

asset is used.998

• At submission time, remember to anonymize your assets (if applicable). You can either999

create an anonymized URL or include an anonymized zip file.1000

14. Crowdsourcing and research with human subjects1001

Question: For crowdsourcing experiments and research with human subjects, does the paper1002

include the full text of instructions given to participants and screenshots, if applicable, as1003

well as details about compensation (if any)?1004

Answer: [NA]1005

Justification: The paper does not involve crowdsourcing nor research with human subjects.1006

Guidelines:1007

• The answer NA means that the paper does not involve crowdsourcing nor research with1008

human subjects.1009

• Including this information in the supplemental material is fine, but if the main contribu-1010

tion of the paper involves human subjects, then as much detail as possible should be1011

included in the main paper.1012

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1013

or other labor should be paid at least the minimum wage in the country of the data1014

collector.1015

15. Institutional review board (IRB) approvals or equivalent for research with human1016

subjects1017

Question: Does the paper describe potential risks incurred by study participants, whether1018

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1019

approvals (or an equivalent approval/review based on the requirements of your country or1020

institution) were obtained?1021

Answer: [NA]1022

Justification: The paper does not involve crowdsourcing nor research with human subjects.1023

Guidelines:1024

• The answer NA means that the paper does not involve crowdsourcing nor research with1025

human subjects.1026

• Depending on the country in which research is conducted, IRB approval (or equivalent)1027

may be required for any human subjects research. If you obtained IRB approval, you1028

should clearly state this in the paper.1029
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• We recognize that the procedures for this may vary significantly between institutions1030

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1031

guidelines for their institution.1032

• For initial submissions, do not include any information that would break anonymity (if1033

applicable), such as the institution conducting the review.1034

16. Declaration of LLM usage1035

Question: Does the paper describe the usage of LLMs if it is an important, original, or1036

non-standard component of the core methods in this research? Note that if the LLM is used1037

only for writing, editing, or formatting purposes and does not impact the core methodology,1038

scientific rigorousness, or originality of the research, declaration is not required.1039

Answer: [NA]1040

Justification: The core method development in this research does not involve LLMs as any1041

important, original, or non-standard components.1042

Guidelines:1043

• The answer NA means that the core method development in this research does not1044

involve LLMs as any important, original, or non-standard components.1045

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1046

for what should or should not be described.1047
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