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Abstract

Optimistic exploration is central to improving sample efficiency in reinforcement
learning with human feedback, yet existing exploratory bonus methods to incen-
tivize exploration often fail to realize optimism. We provide a theoretical analysis
showing that current formulations, under KL or a-divergence regularization, unin-
tentionally bias exploration toward high-probability regions of the reference model,
thereby reinforcing conservative behavior instead of promoting discovery of uncer-
tain regions. To address this pitfall, we introduce the General Exploratory Bonus
(GEB), a novel theoretical framework that provably satisfies the optimism principle.
GEB counteracts divergence-induced bias via reference-dependent reward regula-
tion and unifies prior heuristic bonuses as special cases, while extending naturally
across the full a-divergence family. Empirically, GEB consistently outperforms
baselines on alignment tasks across multiple divergence settings and large language
model backbones. These results demonstrate that GEB offers both a principled and
practical solution for optimistic exploration in RLHF. Code is available here,

1 Introduction

Despite the acknowledged significance of online exploration for reinforcement learning with human
feedback (RLHF) [} 2| 3], there remains a paucity of theoretical frameworks governing how to
explore. As shown in Fig. (1| (1, top), standard online RLHF algorithms [4, |5, 6] generally rely on
passive exploration, i.e., the stochasticity of the policy itself to generate responses, with no mechanism
to incentivize novelty or diversity. As a result, this approach can be notoriously sample-inefficient.
When the optimal behavior resides in low-probability regions, passive exploration is unlikely to
discover it, leading to policies that remain trapped around local optima.

To address this, some works [7} 1819, 10, [11]] have attempted to devise sample-efficient algorithms,
inspired by the principle optimism in the face of uncertainty. As illustrated in Fig.[I] (2, top), the
principle aims to generate responses with high epistemic uncertainty, thus encouraging data collection
in unexplored regions for further training. To operationalize the principle, recent research [12}[13}[14]]
encourages exploration by adding exploratory bonuses to the reward modeling, which is practically
optimizable for large language models. These methods intend to artificially inflate rewards in
underexplored regions, nudging the policy toward more informative data collection.

Unfortunately, our theoretical analysis in Section [3|reveals a fundamental pitfall: under the common
KL-regularized RLHF, the existing theoretical framework of exploratory bonuses fails to satisfy
optimism. In particular, we prove that existing bonus formulations can undesirably drive the policy 7
toward the reference policy 7 due to the divergence regulation in the exploratory bonus, and the
induced bonus actually biases exploration toward high-probability regions of the reference model. As
illustrated in Fig. [T| (II, bottom), the bonus disproportionately amplifies rewards for regions already
well-covered by 7, thereby reinforcing conservative behavior rather than driving exploration into
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uncertain regions. This failure is not confined to KL-divergence; we further extend our analysis to the
more general a-divergence family and prove that the same collapse persists across a wide range of
divergence-regularized objectives. Thus, while existing approaches appear to encourage exploration,
they in fact undermine the very principle of optimism they aim to realize.

Motivated by these failures, we propose a new framework, General Exploratory Bonus (GEB),
which theoretically unifies existing approaches while provably satisfying optimism (Section [).
GEB corrects the failure modes of prior approaches by directly introducing a reference-dependent
regulation into the reward. This adjustment offsets the undesired conservatism induced by divergence
regularization, allowing the exploratory bonus to satisfy optimism—it increases the probability of
responses rarely sampled to pursue potentially more preferred answers, as shown in Fig. [I] (III,
bottom). Importantly, GEB provides a unified formulation: prior heuristic exploratory bonuses can be
reinterpreted as special cases, and the framework naturally extends to the full class of a-divergences.
Beyond correcting the theoretical shortcomings, GEB remains practically implementable—it can be
seamlessly integrated into the standard iterative RLHF loop without additional sampling cost.

We validate GEB on a large-scale alignment task across different divergences and model backbones.
Empirically, GEB consistently yields stronger alignment compared to its counterpart of passive
exploration. For example, the three GEB variants that we consider generally outperform the iterative
f-DPO [15]] across different divergence regulations, while the most performant variant surpasses
several existing optimistic exploration methods that incorporate exploratory bonuses [12, |13} [14]. By
analyzing the distribution of sampled responses, we validate that GEB can successfully encourage
sampling in the region of small 7., thereby effectively achieving optimistic exploration.

‘We summarize our main contributions:

1. We formally prove that the existing theoretical framework of exploratory bonuses under KL
and a-divergence regularization fails to achieve optimistic exploration.

2. We introduce General Exploratory Bonus (GEB), a novel theoretical framework of optimistic
exploration for RLHF that provably satisfies the optimism principle and unifies prior heuristic
bonuses.

3. We empirically validate GEB on LLM alignment tasks, showing improved performance and
broad applicability across multiple divergence families.

2 Preliminaries

Iterative online RLHF. The effectiveness of iterative online RLHF [[16, [17]] has been validated in
many real-world systems such as Claude [18] and LLaMA-series [19, [20]]. The algorithm proceeds
in T rounds, with each round having two steps: (1) the m; is learned with the current dataset
Dy, and then samples  ~ p, (y1,y2) ~ m:(+|«); (2) Human evaluator annotate the preference
of (z,y1,y2) — (z,y*, ") to form D;, 1, where the prompt x is sampled from an independent
distribution p, response y;, y2 are two response sampled from the policy of the ¢-th iteration 7.
When computing 7; with dataset D, in the step (1) of each iteration, a reward function r(z, y)
is first learned from a collected human preference data D; = {(z,y",y")}, where y*,y' denote
the preferred and dispreferred response to x, respectively. Reward modeling typically follows the
Bradley-Terry objective [21]:

ry = arg mrin Lpr(Dy,r) = arg m}nE(m’yw’yz)NDt —loglo(r(z,y") — r(z,y"))], )

where o denotes the sigmoid function. Given the learned reward function r;, the policy m; is then
updated to maximize the expected reward, often with a KL-regularization as follows

Ty = arg mﬂfax jB,KL(ﬂ-a Tt) = arg mq?JXEajwp,yww(-|m)Tt($7 y) - ﬂDKL(ﬂ'Hﬂ'TCf)) (2)

where 8 > 0 is a hyperparameter, and 7 is the reference model.

Sample inefficiency of iterative online RLHF. Online sampling for standard online RLHF algorithms
is carried out passively, relying solely on the inherent randomness of the LLM policy. However, if
the policy places a small probability mass on the optimal action, passive exploration may fail to ever
explore this action. Theoretical analyses [22, |17] and empirical evidence [23] [14] present that the



84
85
86
87
88

89

90
91
92
93

94

95
96
97
98

99
100

101
102

preferred, dispreferred, preferred, dispreferred,
low Tref Llow et high 7ef high 7..f

policy distribution (1) passive exploration (2) optimistic exploration

over trajectory T

Tref o e

=
.

encourage
exploration

-
-

T T to uncertain areas T
Exploration bonus term effect for optimistic reward modeling
1
o) obse;ved data : o T
XX Xx, ! .
XXX ! more prominent
A 1
B X" ) increase on
/ ‘: : certain
' 1 .
_____ - X% 1 cooo® area
K. -
7 . T T
(I) vanilla RM (IT) prior framework (I1II) GEB

Figure 1: The upper part compares passive exploration and optimistic exploration. Optimistic
exploration stimulates the trajectories 7 of small 7¢ (seldom visited/uncertain). While passive
exploration sticks to the high-7.s region, failing to approach global optima. The lower part contrasts
the effect of the exploration bonus term in optimistic reward modeling between prior works and our
GEB. Prior works often emphasize rewards in frequently visited regions, which constrains exploration
within certain areas. In contrast, our GEB amplifies rewards in seldom-visited regions, thereby
encouraging further sampling in uncertain areas and successfully achieving optimistic exploration.

passive approach fails to sufficiently explore the prompt-response space. Particularly, Xie et al. [13]
demonstrate that the sample complexity can be exponential in 1/ for passive exploration, which
is unacceptable in the small-53 regime. Therefore, several works [13], [14} [12] propose exploratory
bonuses to implement optimistic exploration for efficient sampling. However, in the next section, we
will show that prior formulations cannot provably achieve optimism.

3 Exploratory Bonus and How It Can Fail

In this section, we will first provide the iterative online RLHF formulation with an exploratory bonus
(Section [3.1)). We then theoretically prove that the existing formulation can fail to achieve optimistic
exploration under both KL-constrained RLHF (Section [3.2)) and a more general «-divergence-
regularized RLHF (Section[3.3)), motivating our proposed method in Section 4]

3.1 Exploratory Bonus

To improve the sample efficiency of iterative online RLHF, recent works [[12,[14] introduce exploratory
bonuses, which try to encourage optimistic exploration. These approaches modify the standard loop
by adding an exploratory bonus term Lyoqys. Specifically, in the ¢-th iteration, the reward model r;
and policy m; are optimized by

ry = arg Hl]ln [ﬂBT(Dt,T) — K Lovonus (7) |, )
Ty = arg mngB,KL(ﬂ—v ) = arg max Eonp iy ()7 (2,y) — BDkL(7 || Tref), S

where £ > 0 is a hyperparameter. By Eq.[3] the reward model r; should not only fit the observed data
in Dy, but also learn to maximize the bonus term Lyonys (7).

To achieve optimistic exploration, the bonus term is expected to stimulate probability increase more
prominently in unexplored areas. Formally, we have the following definition:
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Definition 3.1 (Optimism condition for exploration bonus) When a reward model r and a policy
m is computed with Eq. E]and Eq. |} the exploratory bonus Lyen,s(1) achieves optimism, if

82Lbonus(r)
Om(ylz)Oms(ylx)

where 7s(y|x) is an ideal sampling distribution for response at the current iteration.

<0, &)

To interpret the optimism condition of the exploration bonus term in Definition. [3.1] we consider the
policy-reparameterized reward model r(z,y) := r(7), which can be derived from the closed-form

solution of Eq.as m(ylx) = W’ where Z(z) = Eynr,, exp(r(z,y)/B) is a normalization
function. This yields the reward model expressed via the policy [24]:

r(r) = Blog ~WITL

+ log Z(x).
—cr) (@)

Implication. Eq.[5|requires the gradient d Lyonus (r()) /O (y|x) to be negatively correlated with
the sampling probability 7. In other words, responses rarely sampled under 7 (i.e., uncertain or
underexplored outputs) should receive a larger ascending of the policy distribution 7, i.e., larger
OLvonus (7(7)) /O (y|x). In practice, w4 can be substituted by the reference model or intermediate
checkpoints. We adopt the commonly used 7. as 7, in our following demonstration.

3.2 Failure Under KL-constrained RLHF

Previous works, including Zhang et al. [12] and Cen et al. [14], formulate the exploratory bonus
with Loonus (1) = max, Jg k1 (m, 7). In this case, optimizing exploratory bonus in Eq. becomes
a min-max bi-level objective as min, —k max;|[Eq yrr(z,y) — BDkL (7| 7)) Intuitively, they
intend to make r not only fit the observed data by £z, but also have a larger reward in unobserved
regions by maximizing the max, E; y~7(2, y) in Loonus(r). Here, we theoretically show that such
formulations can suffer from optimism failures under KL-regularized RLHF.

Lemma 3.1 (Optimism failure under KL-divergence.) Let r; = argmin, Lpp(D,r) be a re-
ward model trained with the vanilla BT loss, and let ro = arg min,[L (D, r)—k max, Ja.x.(m,7)]
be a reward model trained with an additional exploratory bonus. If the policy is optimized via Eq.
then 11 and 73 yield the same set of policies.

Proof  First, the inner maximization of the bonus term admits a closed-form solution, 7* (y|z) =
r(z.y) ey o I .
Tet(y|z)e™ 7 /Z(x) where Z(x) = Eyr (|sy¢ 7 is a normalization term. Substituting this

solution reduces the bi-level training objective of 73 to a single-level form:

r(z,y)

re = argmin [Lpr(D,7) — KEynpBlogEyur e 7 |. (6)

As shown in Rafailov et al. [24], the log-ratio 5 log mg(y|z) — 5 log mer(y|z) represents the same
class of the original reward function  through Eq.[4] thus the reward r;, ry can be reparameterized
by the log-ratio. Plugging this into Eq. [6] yields

Tret (Y] )

Since the second term equals 0, the reparameterized Eq. [6]is exactly the vanilla DPO loss, which is

the same as the reparameterized training objective of r;. Thus, the exploratory bonus in the reward
training objective has no effect on the final policy set. ]

arg min Lg,0(D, 7) — kEz~pBlog E

yNﬂ'ref(‘lx)

The lemma proves that incorporating the exploratory bonus Lyonys (1) = max, Jg ki (7, ) into the
reward training objective fails to induce the policy model to sample from low-m.¢(y|x) regions, i.e.,
unexplored responses. In other words, the bonus term is ineffective at inducing optimism. We next
extend the result beyond KL regularization to a more general class of a-divergence family.

3.3 Generalization to a-divergence-constrained RLHF

In this subsection, we theoretically show that the failure of optimism can broadly extend to the
a-divergence class. Many common divergences, such as reverse KL-divergence, Hellinger distance,
and forward KL-divergence, are special cases of a-divergence.
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Definition 3.2 (a-divergence class) An «-divergence is a certain type of function D(plq) =
Ir (%)dq that measures the difference between two probability distributions p and q, where
2 —ar—(1—a)

J(@) = a(l—a) ’

and « is a hyperparameter typically with 0 < o < 1.

Lemma 3.2 (Optimism failure under a-divergence.) Consider objective  Jp f(m,T) =

Egrpymrm(yln)T (T, y) + BE:ENp,yNﬂ'mf(y\x)f(%)’ where [ belongs to a-divergence class.

If a reward is trained with v = argmin,[Lpr(D,r) — KLpomus] and a policy  is updated
by argmax, Jg s(m,7) With Lpons = maxy Jg s(m,7), the gradient of the bonus satisfies

9? Loms (7)) : ; : : :
R T > 0, which means Lpons encourage trajectories with large c more strongly, in

contradiction to the optimism principle (Definition[3.1).

Proof For a RL objective g, (, ), the relation between the optimal policy m¢ and the reward r
can be formulated as follows,

1 N1 y 7 (yl2)
— T r/B), r(x,y)=p0f(———=Z(x)), ®)
Z(I‘) ref(y| )(f ) ( /6) ( y) f (ﬂ-ref(y|x) ( ))
where Z () is a normalization term and ( f’) ! is the inverse function of f’. The bi-level objective can
be similarly transformed to a single level one by canceling the inner maximization max, by Eq.[§] The

single-level objective can be written as 1, = arg min, Lp7 (D, 1) ~KEomp ymme 7y (f) 7 (%)

Tf

r(x,y) — Bf( Z(lx) (f’)_l(%). Since the policy is computed by arg max. Jg, s (m, r), the reward
can be reparameterized by the policy with Eq. (8} which fortunately cancels Z(z). Then the optimistic

reward-modeling objective can be reparameterized as
Teet(Y|2) © " Trer(ylz) et (y|2)

arg min Lapo(D, 7) = KBy

Since for a-divergence, f(u) = W&Zi__%_a), the partial derivative of Eq. @is (%)=, which
induces positively correlated gradients w.r.t. 7 and 7, when 0 < o < 1, and is a constant when

a = 1, hence contradictory to the optimism defined in Definition 3.1} O

According to Lemma. [3.2] we enumerate several ex- Table 1: Realized exploratory bonus under dif-
ploratory bonus under different a-divergence in Ta- ferent divergence classes when Lygnys(r) =
ble[T} The listed bonuses are simplified by removing max, Js ¢ (7, 7).

constant coefficients and bias. The listed exploratory f ‘ exploratory bonus
bonuses generally force the policy model to maxi-
mize the possibility of trajectories sampled by the
reference model, not the underexplored ones. We fur-
ther prove that it actually drives 7 to collapse toward  Hellinger distance
Tf and that the failure extends beyond a-divergence
to other f-divergences.

reverse KL constant
m(y|z)
et (y|2)

E n(ylo)

Ty~ et (Y] x) Tref (Y] )

forward KL Einpymmr(yle) 108

Theorem 3.3 (Optimism failure beyond «a-divergence.) When [ belongs to f-divergence, and the
reward function is obtained by # = argmin, [Lpr(Dy,r) — Kk max, Jg, r(m, )] and the policy is
updated by arg max, Jg, r(m,1¢), the bonus term —k max, Jg, f(7, 1) induces the policy model 7
to coincide with T, when x f" () is a monotone function.

The detailed proofs are in Appendix The monotone increase of 2 f”(x) can be satisfied by a
broader divergence class besides a-divergence, including JS-divergence and Pearson 2.

Intuitive understanding. Optimization of exploratory bonus in Eq.[3|is a min-max bi-level objec-
tive as min, —k max;[E, yr7r(z,y) — BDkL(7||7rer)]. Due to the inner maximization max,, the
divergence constraint implicitly makes 7 close to 7 to avoid the divergence penalty. Considering
the outer minimization min,., r is forced to provide large rewards on region of high 7 to maximize
the reward expectation. Their combination implicitly makes r focus more on region of large 7.
Since samples with large ¢ is easily rolled out from scratch, previous exploratory bonuses merely
concentrate sampling on regions that are already easy to explore, contradictory to the optimism
principle, which requires encouraging responses y rarely sampled by the reference model.
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4 General Exploratory Bonus with Optimism Principle

Motivated by the failure of the existing exploratory bonus, we now propose a novel framework,
General Exploratory Bonus (GEB), and prove that it achieves optimism. We further show that prior
exploratory bonuses—and broader variants—emerge as special cases of our formulation.

Formulation of a novel exploratory bonus. As shown in Section [3] the failure of existing bonuses
arises because the divergence constraints in max, Jg, s(m,r) force 7 to align with 7y, biasing
exploration toward high-m¢ regions. To achieve optimistic exploration, the optimal 7 must instead
counteract this regularization and move away from 7.¢. Our key idea is to introduce an additional
reference-dependent regulation into the reward, which offsets the influence of divergence regular-
ization. The resulting exploratory bonus takes the form —x max, Ja, r(m, R(r, Tet)). Note that the
formulation of R(-,-) can be diverse. Since the reward R(r, mf) is now explicitly dependent on
Tret, the inner optimal policy of the bi-level problem is #(x)mef( )t (W), where Zg(x) is a

normalization term. Unlike previous cases, the optimal policy is no longer guaranteed to be positively
correlated with 7.¢, enabling the policy to deviate from the reference distribution.

As in Lemma[3.2] we can substitute the inner 7 by the closed-form solution, and then utilize the
reward reparameterization of a-divergence [25] as r = f’(7/mt) for a divergence instance f to
obtain the reparameterized exploratory bonus as

Acbonus(r(ﬂ)) = 5Ex~p,yw7rref(-\z) ZL(x)f/(U) - f(%(l‘))}’ (10)
where u = (f") 7Y (R(met(y|z), mefyifz))/ﬁ) and Zr(z) = Eyor (|»yu. Since the domain of

divergence class is generally (0, +00) while there are no additional constraints on the formulation of
R, u can be flexibly formulated with 7 and 7. unless u > 0.

Equivalence to a practical objective. In our proposed exploratory bonus, the normalization term
Zr(x) in Eq.|10|cannot be canceled. Fortunately, we prove the following lemma in Appendix@to
show the equivalence between the two training objectives, one with and the other without Zg(x),
which helps transform the objective to a succinct formulation for analyses and practical use.

Lemma 4.1 Denote two objectives as h(u) = Epopymm,uf'(u) — f(u) and h(u) =
Eenpy~my Z(zy "(u) — f(7tsy) where w is a function with 7 and ... When [f (u) + uf’(u) —
f’(Z?m))]/[Z(ac)uf”(u)] = A(x) is constant in y and A(x) > 0, minimizing the two objectives

min, —h(u) and min, —h(u) induce the same class of policies.

GEB successfully achieves optimism. Building on Lemma.T] we now prove that our proposed
framework indeed achieves the optimism requirement.

Theorem 4.2 For each iteration of online RLHF, if the policy is updated by m = arg max, Jg ¢(m,7)
while its reward is trained with v = argmin.[Lpr(D,r) — KLponus]-  When [ be-
longs to a-divergence class, and Lpopys = maxy Jg r(m, R(r, Tyy)), denote u(m, mpy) =

— — — 1)y,
Y (R(()HE ) ng) [B). Then, G < 0if Wz, y)s Gyl + O G o
0 and u > «, where « is a hyperparameter that defines a-divergence (Definition[3.2)).

Proof  First, substituting the optimal solution of the inner maximization and utilizing reward
reparameterization, we obtain the training objective as in Egq. By Lemma this can be
equivalently expressed as

Loonss = BEarpyomee |uf () = £(w)]. an

For a-divergences, the conditions in Lemma are satisfied. Since f'(u) + uf”(u) — f'(%) =

ua’l(Zk“ —a)/(1 — ) and uf"(u) = u**, the fraction Az) = (217 —a)/Z(1 — @) in
) >

Lemma 4.1 is independent of y. Since u > o, Zp = (oyu > 0, thus A(z 0 is also
satisfied. Finally, the mixed second-order derivative of Eq. @IS computed as

02 Lbonus _ mNpZ o 1 O%u (a — 1)71}&@ du

- re 5 12
DmOms J”r Ordme «  oron) <0 (12
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Table 2: General exploratory bonus under different divergence classes and design of u. Note all
u > a when 0 < m < 1. The presented bonus is simplified by removing constant coefficients or
biases.

Lbonus U

7 l4a-7 1/m arctanh(l — ) + «

reverse KL Eamp,ymme — T(y|2) Eorpyromat 7W(J|I) Egmp,y~myarctanh(l — w(y|x))
forward KL Eampymme 108(1 = 71(y|2)) | Eonpymme — log T(ylz) Eznp,ymme l0g arctanh(1 — 7 (y|x))
Hellinger Distance | Eyp yomey/1.5 — 7(y|T) Emwp,ywmefﬁ Epmpymmev/arctanh(l — w(ylz)) + 0.5
7(y|x

which achieves the optimism defined in Definition [3.1] O

In our formulation, u can be flexibly defined in terms of 7, 7. as long as it satisfies the derivative
condition in Theorem[.2]and u > c. This flexibility highlights the extensibility of our framework.
In particular, when u depends only on 7, any function with 4 > « and negative correlation with 7
qualifies. In Table[2] we list several such choices of u, along with their corresponding reparameterized
exploratory bonus under three different a-divergences.

From a practical standpoint, since Ly iS expressed as an expectation over 7, it does not require
additional sampling and can be seamlessly integrated into iterative online RLHF. To avoid unintended
decreases in the likelihood of preferred responses, however, we follow Chen et al. [23]] and restrict
computation of the bonus on rejected responses to ensure that the probability of preferred responses
continues to increase.

Prior exploratory bonuses are encompassed within GEB. Although we have shown that exist-
ing theoretical formulations of Lyonys fail to guarantee optimism, many practical implementations
have nevertheless been effective through various approximations and adaptations. These approx-
imations and adaptations are generally inextensible beyond the reverse KL divergence (detailed
in Appendix [B.2). In this subsection, we show that these practical implementations can be nat-
urally subsumed into our GEB framework, and even broader objectives can be reinterpreted as
instances of optimistic exploration. For example, Zhang et al. [12]] and Xie et al. [13] finally
implement their exploratory bonus as KE; ., y~m(y|z) 10g 7(y|x), which belongs to GEB when
u(m) = —logm + 1 and f is KL-divergence. Similarly, Cen et al. [14] implement the exploratory
bonus as KE;p ymre (|x) 108 7 Where 7eq is a fixed calibration distribution. This also falls
under GEB by setting © = —Z9]Jog ™=~ — ZalJog e + 1 and f is KL-divergence. The cor-

Tref Tref Tref
responding reparameterized exploratory bonus reduces to Eynpyr.,, — 1l0g 71— + C(z), where
C(z) = Exnpymme[— 72 log mer + 1]. Interestingly, even objectives not explicitly designed for
exploration can be reinterpreted through our GEB framework. For instance, Chen et al. [23] augment

the DPO loss with an additional term KE; y~r,,0(—/3log :E?(’yl"fgz) ), which was originally introduced

to control sample complexity. In our framework, this corresponds to optimistic exploration with

u = —o(—flog :EE’;TCZ)) + 1.

5 Experiments

5.1 Experimental Settings

Following prior works [[12, 13| 23], we adopt the same iterative online algorithm as in Algorithm T]
with three iterations, aiming to isolate the effects of different exploration bonuses. We adopt two LLM
backbones: Llama-3-8B-SFT [17] following prior works, and Mistral-Instruct-v0.3 [26]]. The training
prompt set is RLHFlow-UltraFeedback [17]] as in previous works. URM-LLaMa-3.1-8B [27] serves
as the preference oracle. We evaluate the outcome policies on both in-domain and out-of-domain
test sets. Specifically, for the in-domain test, we use a held-out test set from UltraFeedback [28]], and
sample 64 times per prompt with the outcome policy to compare the average reward and win-rates
against the base model. We use length-controlled AlpacaEval2 benchmark [29] with GPT-4 as a
judge for out-of-domain alignment test, and MATH-500 [30] to evaluate out-of-domain reasoning
ability.

Baselines. We adopt f-DPO [25]], which extends DPO to the f-divergence class, as the primary
baseline. We further compare GEB with three optimistic-exploration methods that incorporate
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Table 3: In-domain evaluation on different exploration bonuses. Boldface and underline indicate
the best and the second-best results, respectively. GEB-m, GEB-1/m, and GEB-arctanh(m — 1)
corresponds to 1 + o — m, 1/, and arctanh(1 — 7) + « as in Table[2]

KL (a=1) Hel. (a=0.5) f-KL (a=0) Avg.
WR AvgR  WR  AvgR  WR  AwvgR WR  AvgR

Mistral-Instruct-v0.3

f-DPO 7842 0.7480 72.69 0.6536 S51.11 0.5918 | 67.40 0.6645
SELM 77.56  0.7530 - - - - - -
XPO 79.71  0.7492 - - - - - -
VPO 78.57 0.7426 - - - - - -
FEB 7842 0.7480 71.54 0.6525 47.53 0.5928 | 65.83 0.6644
GEB-7m 81.00 0.7542 7548 0.6641 51.68 0.5976 | 69.39 0.6720
GEB-1/7 80.00 0.7554 7397 0.6541 52.26 0.6051 | 68.74 0.6715

GEB-arctanh(m — 1) | 79.71 0.7559 75.69 0.6614 52.76 0.5989 | 69.39 0.6721
LLaMA-3-8B-SFT

f-DPO 73.11 0.8050 71.11 0.7859 67.38 0.7579 | 70.53 0.7829
SELM 74.19 0.8126 - - - - - -
XPO 7240 0.8119 - - - - - -
VPO 71.61 0.7971 - - - - - -
FEB 73.11 0.8050 68.17 0.7591 67.95 0.7611 | 69.74 0.7751
GEB-7 7434 08156 71.68 0.7840 67.67 0.7681 | 71.23 0.7892
GEB-1/7 74.76 0.8102 72.25 0.7859 68.17 0.7591 | 71.73 0.7851

GEB-arctanh(m — 1) | 7498 0.8080 73.26 0.7877 68.89 0.7569 | 72.38 0.7842

Table 4: Out-of-domain evaluation on different exploration bonuses with LLaMA-3-8B-SFT. Bold-
face and underline indicate the best and the second-best results, respectively. GEB-7, GEB-1/7, and
GEB-arctanh(m — 1) corresponds to 1 + « — 7, 1/7, and arctanh(1 — 7) + « as in Table

KL(a=1) Hel.(a=0.5) f-KL(a=0) Avg.
Alpaca Math Alpaca Math Alpaca Math | Alpaca Math
f-DPO 2572 676 2473 690 1780 69.2 | 2275 68.6
FEB 2572 676 2375 686 19.62 68.6 | 23.03 683
GEB-7 2827 692 2587 696 20.05 71.6 | 2473 70.1
GEB-1/7 26.10 684 2528 702 19.80 69.2 | 2373 69.3
GEB-arctanh(m —1) | 2490 71.0 2596 67.6 19.62 69.2 | 2349 69.3

exploratory bonuses—SELM [12]], XPO [13]], and VPO [14]. Since the approximations or adaptations
in their implementations do not extend beyond the KL divergence, we report their results only under
KL. In contrast, we introduce a new baseline, Failed Exploratory Bonus (FEB), which removes these
approximations or adaptations, i.e., Eq.

5.2 Results & analyses

GEB delivers robust improvements across different loss designs, divergence classes, and lan-
guage model backbones. The experimental results are shown in Table 3] Across both backbones,
GEB generally outperforms f-DPO and FEB. Under the KL-divergence, GEB displays better or
at least on-par performance compared to prior exploratory-bonus methods. Notably, the win-rate
increases over 1.82% and 0.94% under the KL-divergence, over 2.36% and 1.29% under the Hellinger
Distance, compared with their f-DPO counterpart. GPT-4 evaluation on the Alpaca benchmark also
shows consistent performance gains on out-of-domain alignment task. While GEB maintains on par,
or usually better results in MATH, showing less performance degradation beyond alignment, known
as alignment tax 31} [32].

GEB effectively encourages exploration in small 7.¢ region, yielding more diverse sampling. In
Figure 2| we visualize the distribution of log m¢ for sampled responses in the last iteration under the
KL divergence. When trained with the GEB, the policy model consistently samples more trajectories



282
283
284
285

287
288
289
290
291
292
293
294

295

296
297
298
299
300
301
302

le-7 le—7 le—7

64 loss loss loss
f-DPO 44 f-DPO 44 f-DPO
59 GEB-$\pi$$ GEB-1/m GEB-arctanh(m — 1)
244 231 231
E B £
G 3 3 G
[a) 024 029
2
14 14
1
0 - T T T T 0 T T T T 0-— T T T T
—9000 -8000 -7000 -6000 —5000 —8000 —7000 —6000 —5000 —9000 -8000 -7000 -6000 -5000
log 1trer of sampled responses log e of sampled responses log mrer of sampled responses

Figure 2: Comparison of log ms of sampled response in the last iteration between the general
exploratory bonuses and vanilla iterative DPO. GEB-m, GEB-1/m, and GEB-arctanh(m — 1) corre-
sponds to 1 + a — m, 1/, and arctanh(1 — 7) + « as in Table 2]

70.0%

76.0% 72.0%

~ 74.0% 7 . 5 _ 68.0%

5 70.0%

= 72.0% L 66.0%
i} —o— GEB-r

—0— GEB-7 68.0%

K

—o— GEB-r

win-rate (Hel.)
win-rate (f-KL.)

3
£ 70.0% GEB-1/x GEB-lx 64.0% GEB-1/r
z 68.0% —4— GEB-arctanh(z— 1) 66.0% —— GEB-arctanh(z— 1) —— GEB-arctanh(z— 1)
62.0%
66.0% 64.0%
.
D P
1L ponus 1L dpol IKL ponus /1L dpol KL ponus V1L dpol

Figure 3: Experiments with different x. The three graphs are under KL divergence, Hellinger
Distance, and forward KL divergence from left to right, respectively. The p, f, tanh in the legends
correspond to 1 + a — 7, 1/, arctanh(1 — ) + « in Table 2| respectively.

Table 5: Dist-n of the sampled corpus in the last iteration under the KL divergence.

| dist-1 dist-2  dist-3 dist-4

f-DPO 0.0189 0.2700 0.6349 0.8418
GEB-7 0.0192  0.2694 0.6323  0.8420
GEB-1/7 0.0191 0.2738 0.6401 0.8448

GEB-arctanh(w — 1) | 0.0192 0.2730 0.6391  0.8447

with a smaller 7..f compared to the policy trained by f-DPO loss. This validates our motivation that
GEB can encourage sampling trajectories of small ¢ for optimistic exploration. In Table 5] we
further calculate the distinct-n (n = 1, 2, 3, 4) for the sampled responses in the last iterations under
the KL divergence, which measures the diversity of a corpus. GEB generally has higher diversity
scores, validating that GEB incentivizes qualitatively more diverse samples.

The choice of x. Since the formulation of « in Eq.[10|is flexible, the scale of the GEB term can
differ substantially across designs, hence the absolute value of the bonus is less informative. Instead,
we examine the relative ratio of the bonus term to the vanilla RL loss |kLponus|/|LrL|, Which
provides a more consistent basis for comparison and offers better practical guidance for tuning s
across diverse settings. As shown in Fig. 3] performance remains stable when the ratio lies within a
suitable range (le-2 to le-6 in our case). However, if the ratio is too large, it impedes optimization
of the RL objective and degrades performance; if too small, the exploration incentive in uncertain
regions diminishes and performance reverts to the vanilla baseline.

6 Conclusion

While recent work proposes exploratory bonuses to operationalize the “optimism in the face of
uncertainty” principle, our work shows that the existing theoretical frameworks of exploratory
bonuses fail under KL and a-divergence regularization. To address prior theoretical pitfalls, we
introduce General Exploratory Bonus (GEB), a novel theoretical framework for sample-efficient
RLHF. Our approach provably satisfies the optimism principle and unifies prior heuristic bonuses. We
empirically validate GEB on LLM alignment tasks with diverse bonus designs and LLM backbones,
showing improved performance and broad applicability across multiple divergence families.
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A Related Works

Alignment & RLHF. Alignment [33} 34,135,136, 137] aims to ensure Al systems act in accordance
with human values, preferences, and goals; and it has become a critical field in Al research. To
steer language models to match human preferences, reinforcement Learning from Human Feedback
(RLHF) [38}139] acheives great success and has become the standard alignment pipeline. However,
its computational complexity has motivated a family of Direct Preference Optimization (DPO)
[24! 140} 41] that forgo explicit reward modeling. Despite their efficiency, recent researchers 3} [1} [16]
reemphasize the significance of online sampling.

Optimistic exploration of RLHF. To address the computational overheads of passive exploration
in RLHF, which samples trajectories just based on randomness, some existing attempts have been
devoted to sample-efficient RL algorithms. Most of works [[7, 18] 42} 9} 22]] adhere to the principle
of optimism, proposing specialized prompt or response selection strategies to emphasize uncertain
samples. While some research [11, 27] propose uncertainty-aware reward models with epistemic
neural networks or bootstrap ensembles, these methods introduce additional cost. Some research
also addresses the sample efficiency with different theoretical foundations, such as information
theory [10]], preference-incentive exploration [23]]. Notably, several works [[12, |13} [14] introduce
different exploratory bonuses, which can implement optimism toward uncertainty without additional
computes. However, they only focus on KL-divergence and their theoretical framework cannot result
in real optimism as shown in Section [3.2]

Efficient RL for LLM. Beyond optimistic exploration, some research proposes fine-grained
signals for RL learning. For instance, several research propose segment-level [43| 44] or token-
level [45) 146l reward function for alignment or text control. Notably, for reasoning tasks, process
reward model [47, 48| 49] which provides step-wise feedback for solutions has shown promise
effectiveness. On the other hand, recent research [50} 51} 52]] on LLM reasoning reveal that high-
entropy tokens guide the model toward diverse reasoning paths. Training with only high-entropy
tokens are more beneficial for reasoning performance [53]]. While our approach is highly extensible,
we believe the orthogonal methods can be further incorporated with our general exploratory bonus.

B Optimism Failure of previous works

B.1 Extension beyond a-divergence

The following theorem formally proves that the exploratory bonus —k max, J3,¢(m,r) cannot
encourage optimism for more general divergence class.

Theorem 3.3 When [ belongs to f-divergence, and the reward function is obtained by ©+ =
arg min, [Lpr(Dy, ) — Kk max, Jg,f(m, r)] and the policy is updated by arg max, Ja ¢(m, 1), the
bonus term —k max, Jg, (7, 7) induces the policy model w to coincide with s when z f" () is a
monotone function.

Proof By Lemma.[3.2] we reparameterize the bonus term for optimistic reward-modeling to Eq.
Denote h(u) = wuf’(u) — f(u). For a fixed prompt x, we formulate the training process as a
constrained problem as follows,

7(y|z)

m s.t. Zﬁ(yh?) =1 and Vy’ﬂ'(y|x) > 0. (13)

Y

arg max Ey o (-|2) (

Then we can apply the Lagrange multiplier as

£=Ey~mefh(”(y|x))>—u(2 (yl) — 1) - >yl (14)

7Trn:f(y"r

where p, 1) are the dual variables. Then we utilize the Karush-Kuhn-Tucker (KKT) conditions for the
given optimization problem. The complementary slackness requires that Vy, n(y)w(y|z) = 0. The
stationary condition requires

oL _ . m(yle)
or(y|z) Tret(Y|)

) = —n(y) =0. (15)
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We denote S, = {y|r(y|zr) > 0}, we have Yy € S,,n(y) = 0. Since h'(u) = uf"(u) > 0 due to

% is a constant. Then applying the normalisation

1. Hence, the unique interior optimum is 7*(y|z) = mer(y|z). O

the convexity of f(-), we can obtain Vy € Sy,

m(ylz) _

constraint, Ky (.|2) 7 o =

The theorem implies that the reparameterized exploratory bonus attains its maximum only when 7
and s coincide. The condition that x f”(x) is a monotone function is satisfied by a-divergence
and beyond, e.g. Pearson y?. Hence, the exploratory bonus —x max, Jg, ¢(m,7) in the reward
training objective generally contradicts the optimism, since it cannot encourage trajectories with
small initialized possibility.

B.2 Prior adaptions & approximations cannot generalize

Though the theoretical framework of prior exploratory bonus fails, their empirically implemented
loss remains effective through different adaptions and approximations. However, in this subsection,
we show these adaptions and approximations are inextensible beyond KL-divergence class.

Zhang et al. [12] adapt the formulation of J3 ¢ (7, 7) in —x max, Jg, r(m, ) as
‘7,(§7f(71-7 7) = Epyrormy' mme (@, y) — 7(2,9")] — BD gL (70| Trer) (16)

which adds a bias in reward expectation term. Under KL-divergence, the original J3, ¢ (7, r) will
be zero after re-parameterization as shown in Lemma|[3.1] thus the sole reparameterized bias term
will remain as —&/r,, log m(y'|z). Since J3,¢(m,r) cannot be reparameterized to zero except
KL-divergence, this adaption cannot generalize then.

In the derivations of Cen et al. [14], it utilizes an ideal distribution 7., which should satisfy
Eyor,.,7(x,y) = 0. Since 7., is practically unobtainable, it uses the rejected responses to approx-
imate E__,, which does not satisfy the predefined condition of 7.,; thus not rigorously coherent
to the theory. While the regret decomposition of Xie et al. [13]] relies on the logarithm form of
KL-divergence, thus inextensible to broader divergence class.

In contrast, our general exploratory bonus can seamlessly incorporate iterative online RLHF algorithm
and can naturally extend to the entire a-divergence class. All prior bonuses mentioned above can be
encompassed by our theoretical framework.

C Regret Bound

In derivations, we utilize the theoretical tools in [12} [13}[14]. First, we make some standard statistical
assumptions following Cen et al. [14].

Assumption C.1 For a reward function r, and a random function R(-), and any trajectory T, we
have —Ryar < 17(7), R(r(7)) < Rpmax, where Ry,q. is a constant.

This is an assumption generally made for theoretical analyses of RLHF. Note that R,,,,, is measurable
and controllable in practice. Then we introduce the assumption of the reward class proposed in Cen
et al. [14], which offers a regularization mechanism to incorporate additional policy preferences in
the subsequent derivations.

Assumption C.2 We assume that r* € R, where
R = {T : EINP’TNWNZ(.‘I)T(QT,y) = 0}, (17)

where p is the prompt distribution and 7., is a fixed calibration distribution independent of the
algorithm.

We also introduce the preference generalized eluder coefficient proposed in Zhang et al. [[12], an

extension of the generalized eluder coefficient [54], which connects prediction error and in-sample
estimation error.
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Definition C.1 Let f,.(z,y,y’) = re(x,y) — r*(x,y). For a reward function class R, we define the
preference generalized eluder coefficient as the smallest dpgrc as

T
ZEm~p7y~7r‘(-\w),y’~Trcal [f’f‘t (337 Y, y/) - f?"* (33, Y, y/)}
t=1

T

< dPGECZEwNp,yw%t(-h:),y’Nﬂcal[frt(x7y7y) fre(x,y,9))% + 4/ dpcecT, (18)

t=1

With the above assumptions and the theoretical tool, we can have the following regret boundary.

Theorem C.1 Let Jp ¢ (7,7) = Eoopymr(|2)7 (%, Y) — BEamp ymmu(- JE)f( ) when the hy-

perparameter of the loss Eq. 3|k = M(SQRmme Rmaz)=1 \pith probability at least

Tw(u\w)

(vdpgrcT)
1 — 6, the regret can be bounded as follows,

T
D T g (@ r%) = Tp g (7', 1%) < O(Rpnaze e T/dparoylog(RIGT)),  (19)

where v = sup, , WLL r* and ™ are ground-truth reward function and corresponding optimal
policy with m* = arg max, Ja ¢(m,r").

Proof  First, we can decompose the regret function as in Cen et al. [[14]] as follows,
T

T
> (T (7 0%) = To g (7', i+ D [T (s r") = T p(wr7)] (20)

t=1 t=1

Term 1 Term 2

Then, we will bound term 1 and term 2 individually and combine them at last.

Bound term 1. First, we connect the term 1 with max, Jg, (7w, R(r:)) — max. Jg, (7, R(1*)).
When 7* is the optimal 7 for max, Jg (7, %), we have

Term 1 < Jg ¢(7*, ™) — Jg s(7", 1) < sup W—Emwpyywrt (r* — 7). 21
zy Tt

Similarly, we can obtain its lower bound as —2R,,,4,. Then, we have
T
Term 1<y {max Ts.5(m, R(re)) — max Jp s (1, R(r*))| + 4RpmasT. (22)
t=1

Bound term 2. First, we utilize the preference generalized eluder coefficient to connect the
prediction error to in-sample error.

T
Term 2 = Z Ew~p,y~7r‘(-\z),y’~ﬂ'caz [fo, (33, Y, y/) - f7'* (Z‘, Y, y/)] (23)
t=1
nl'd 1«
PGEC
< ——+4 dPGECT + 5 Z EmNp,yN%t(-\z),y’Nﬂmz [fn (J}, Y, y/) - fr" (J), Y, y/)]Q’ (24)
t=1

- 4

where the first equality uses the property of the reward class in Assumption|C.2] and the inequality
follows Definition[C.T| with Cauchy—Schwarz inequality. Then, we bound the squared in-sample error
as follows.

Eorp it Lre (@0, 8) = fre (2,00 S VBampirrrmi o (@,0,0)) = fre (20,9 (25)
< 7(32Rmax€ maz)Z]Ewwp}T,r’w%t [U(.fn, (ﬂ%yay )) - U(f?"* (17,.%31 ))] (26)
< 8’7(32Rmaze4Rmm)QEINP,T,TW%t('\I)D?{ (Pr, (¢, 7'/) | P (-7, 7'/))7 (27)
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where v = SUPy .y 7o and the second inequality utilizes the Lemma C.8 in Xie et al. [[13], the third
inequality uses (z — y)? < 4(z + y)(v/x — /y). Refer to the Lemma C.6 in Xie et al. [13], we have

S Eorpririnio(lay Do (Pry Clr, ) B (7, 7)) < LS (r) — LS0(%) + 210g(IR[67Y) (28)

i<t

where ng‘p(r) = ict Eyynp, —logo(fr(x,y,y')) is the vanilla BT loss for reward modeling.
Finally, the term 2 can be bounded by
Td
Term 2 < 4+\/dpgrcT + %—i—
il 4Rumae2(L,0) 1) () -1
;(32Rmaze ) (Lpp(re) — Ligp(r™) +2Tlog(|R[677)).  (29)

Bound the regret. Since the r; is optimized by Lg)T(rt) - Zilnmaxﬂ T, f(R(re), ),

we have r; = argmin.cr Lg)T(rt) - Zlenmaxﬂ Jp,f(R(r¢), ) Therefore, when n =

4,/ %(321%7,1&1643””) and Kk = %(32Rmaze4Rm“)72, the regret can be bounded
by

Regret < 4v/dpaecT + /23vdpaec 10g(|R[61) (32Rmazet s T) + 4Rypae T (30)
0

D Experiments

D.1 Implementation Details

Algorithm. Following prior works Zhang et al. [12], Xie et al. [[13], Chen et al. [23], we adopt
the same algorithmic backbone for empirical validation to explicitly show the effect of different
exploratory bonus in loss function. This algorithm bypasses the reward modeling in each iteration
through reward reparameterization, known as iterative DPO [17]]. Previous works further reparam-
eterizes the bonus term to incorporate the algorithm. Since iterative DPO can seamlessly extend
to f-divergence, we also follow prior works to reparameterize our general exploratory bonus. The
detailed algorithm can be formulated as in Algorithm [T}

Algorithm 1 Iterative Online Algorithm with Exploratory Bonus

Input: Reference model 7y, iteration number 7', prompt set for each interation Dy, . . ., D, reward
function r;
Output: Trained model 7p;
1: for iterationt=1,2,...,Tdo
2 for x € D, do
3: Y1, Y2 ~ Trer(+|x) and obtain the rewards 7(y1), 7(y2);
4 Rank the reward and denote T,y ™ as the preferred and dispreferred response between

Y1, Y2 and update Dy = {m7yw7yl};

5: ¢y = argmin, Lppo — KLponus ()
6: update ¢ with 7; (optional)

7 end for

8: end for

Hyperparameter settings and environments. All experiments are conducted on two NVIDIA
H200 GPUs. When training and sampling, the max length is set to 2048. For training, the batch
size per device is set to 2; we enable the gradient checkpointing and the gradient accumulation step
is set to 64; the learning rate is Se-7 with cosine scheduler, and the warm up ratio is 0.03. In main
experiments, we use the best performance with « with a suitable ratio range to f-dpo loss across
1,1e — 2,1e — 4, 1e — 6, 1le — 8. For sampling, the temperature is set to 1. For in-domain evaluation
and MATH evaluation, we set temperature to 0.6 and top-p to 0.9; we use the default setting of
alpaca-eval.
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E Proofs of Lemma 4.1

Lemma 4.1 Denote two objectives as h(u) = Egmpymr,uf (u) — f(u) and h(u) =
EmN,o,yNﬂmf%f’(u) — [(Z{m ), where u varies with @ and .. When [f'(u) + wf”(u) —
f’(Z?m))]/[Z(x)uf”(u)] = A(x) is constant in y and A(x) > 0, minimizing the two objectives

min, —h(u) and min, —h(u) induce the same class of policies.

Proof For a fixed z, with the Lagrange multiplier and KKT conditions, when m(y|z) > 0, we
obtain

Oh " awref(y|x)u($v y)
— = u(x, u(z,y))  ————————= = (), (31)
where 11 (x) is a dual variable with respective to . When f/(uHZuJ}/,E(UBL; 17 - A(x), we have
1, T Omret(y|z)u(z, y)
(@A) = )+ uf () = () - LD ()

which directly follows by the KKT conditions of h(z), i.e. % = ps(x) where po(x) is a dual
variable equals to p1(x)A(z). Hence, every policy that satisfies the stationary condition for & also
satisfies it for h. Since A(z) > 0, the second-order derivative 327?(2'%) and 627?(2 B have the same
sign, which indicates they share the same local minima. Hence, minimizing the two objectives

min, —h(u) and min, —h(u) induce the same class of policies.

O

F Statement & Limitations

We have included all implementation details, hyperparameters, and training procedures in the paper
and appendix. Our code and scripts for reproducing the experiments are available through the
anonymous GitHub repository to obey the double-blind policy, and will be further made publicly
available upon publication.

This work studies reinforcement learning from human feedback (RLHF) using only publicly available
or synthetic data, without new human subject collection. Here, by providing a rigorous theoretical
framework with strong empirical evidence, we pursue a high standard of scientific excellence. We
also take into account inclusiveness to make all our visualizations accessible to the unprivileged
group of people, by producing figures distinguished by light, shade, and marker. While RLHF has the
potential to amplify biases or harmful behaviors if misused, our work is intended solely to advance
safe and responsible research, and we encourage its application in alignment with ethical standards.

GEB is generally based on online iterative RLHF. This online RLHF backbone has an off-policy
instinct. We do not explore whether our GEB can also be seamlessly incorporated into more on-policy
algorithms. Meanwhile, our experiments only focuses on the alignment task; whether GEB can
benefit more general task is still mysterious. Nonetheless, our paper shows the failure of the existing
theoretical frameworks of exploratory bonuses, and introduce General Exploratory Bonus (GEB), a
novel theoretical framework for sample-efficient RLHF. Our approach provably satisfies the optimism
principle and unifies prior heuristic bonuses. The empirical results also show improved performance
and broad applicability across multiple divergence families.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The failure of existing theoretical framework is demonstrated in §3.2] The
theoretical framework is introduced in §4} The empirical studies are in §3

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in §F

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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77 Justification: We generally provide proofs directly after the lemma or theorem, while some

772 of proofs are supplemented in Appendix.

773 Guidelines:

774 * The answer NA means that the paper does not include theoretical results.

775  All the theorems, formulas, and proofs in the paper should be numbered and cross-
776 referenced.

777 * All assumptions should be clearly stated or referenced in the statement of any theorems.
778 * The proofs can either appear in the main paper or the supplemental material, but if
779 they appear in the supplemental material, the authors are encouraged to provide a short
780 proof sketch to provide intuition.

781 * Inversely, any informal proof provided in the core of the paper should be complemented
782 by formal proofs provided in appendix or supplemental material.

783 * Theorems and Lemmas that the proof relies upon should be properly referenced.

784 4. Experimental result reproducibility

785 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
786 perimental results of the paper to the extent that it affects the main claims and/or conclusions
787 of the paper (regardless of whether the code and data are provided or not)?

788 Answer: [Yes]

789 Justification: The implementation details can be found in §5|and §D.1 Moreover, we
790 provide the reproducible code and scripts here.

791 Guidelines:

792 * The answer NA means that the paper does not include experiments.

793 * If the paper includes experiments, a No answer to this question will not be perceived
794 well by the reviewers: Making the paper reproducible is important, regardless of
795 whether the code and data are provided or not.

796 * If the contribution is a dataset and/or model, the authors should describe the steps taken
797 to make their results reproducible or verifiable.

798 * Depending on the contribution, reproducibility can be accomplished in various ways.
799 For example, if the contribution is a novel architecture, describing the architecture fully
800 might suffice, or if the contribution is a specific model and empirical evaluation, it may
801 be necessary to either make it possible for others to replicate the model with the same
802 dataset, or provide access to the model. In general. releasing code and data is often
803 one good way to accomplish this, but reproducibility can also be provided via detailed
804 instructions for how to replicate the results, access to a hosted model (e.g., in the case
805 of a large language model), releasing of a model checkpoint, or other means that are
806 appropriate to the research performed.

807 * While NeurIPS does not require releasing code, the conference does require all submis-
808 sions to provide some reasonable avenue for reproducibility, which may depend on the
809 nature of the contribution. For example

810 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
811 to reproduce that algorithm.

812 (b) If the contribution is primarily a new model architecture, the paper should describe
813 the architecture clearly and fully.

814 (c) If the contribution is a new model (e.g., a large language model), then there should
815 either be a way to access this model for reproducing the results or a way to reproduce
816 the model (e.g., with an open-source dataset or instructions for how to construct
817 the dataset).

818 (d) We recognize that reproducibility may be tricky in some cases, in which case
819 authors are welcome to describe the particular way they provide for reproducibility.
820 In the case of closed-source models, it may be that access to the model is limited in
821 some way (e.g., to registered users), but it should be possible for other researchers
822 to have some path to reproducing or verifying the results.

823 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets we use are all open-sourced, and we have provided the repro-
ducible code and scripts here..

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details can be found in §5] and Moreover, we
provide the reproducible code and scripts here.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The repeated training on large-scale LLMs are computation-costly, but we
use multiple variants of GEB and experiments of different hyper-parameters to validate the
stability of GEB.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The implemented details are in
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research is conducted according to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In §H
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: A aim of RLHF is to reduce the occurrence of jailbreaking behaviors. Existing
safeguard strategies can be generally applied to our outcome policies.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The usage of outcome policies follows the standard usage of LLMs in the
huggingface package.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25


paperswithcode.com/datasets

1030 * We recognize that the procedures for this may vary significantly between institutions

1031 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1032 guidelines for their institution.

1033 * For initial submissions, do not include any information that would break anonymity (if
1034 applicable), such as the institution conducting the review.

1085 16. Declaration of LLM usage

1036 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1037 non-standard component of the core methods in this research? Note that if the LLM is used
1038 only for writing, editing, or formatting purposes and does not impact the core methodology,
1039 scientific rigorousness, or originality of the research, declaration is not required.

1040 Answer: [NA]

1041 Justification: The core method development in this research does not involve LLMs as any
1042 important, original, or non-standard components.

1043 Guidelines:

1044 * The answer NA means that the core method development in this research does not
1045 involve LLMs as any important, original, or non-standard components.

1046 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1047 for what should or should not be described.
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