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Abstract—The Least Squares method is the oldest ML algo-
rithm but remains the most popular and ubiquitous across do-
mains. Now, with powerful, cheap technology and the popular
open-source language Python, users of every sort have access
to various libraries, all serving ordinary least squares. In this
work, we ask the question of whether users can count on the
different implementations ceteris paribus producing the same
results. We conduct a comprehensive survey of current Python
implementations of the Least Squares method, providing a
comparative analysis of their features and performance (time
and space). Additionally, we test models over cumbersome
real-world datasets to examine behavior in this decade of
very big data. Our investigation covers the most popular and
well-established libraries: TensorFlow, PyTorch, scikit-learn,
and MXNet. Our results unexpectedly show that sufficient
significant differences exist such that users must scrutinize
their choices and not confine themselves to a single library.

1. Introduction

Significant improvements in technology–cheaper, faster,
with more memory–have led to a boom in open-source ma-
chine learning (ML) algorithms. Interestingly, amidst these
changes, the oldest [1], the Least Squares (LS) method [2],
remains the most popular and widely used [3] algorithm.
As a versatile and efficient optimization technique, LS has
undergone improvements, giving rise to a number of variants
where many are associated with particular domains [4]. With
the increasing interest in data science that leverages big
data, software engineering, statistics, and machine learning,
many versions of this original algorithm have been created.
A natural question arose: given these different packages, did
their ordinary LS (OLS) produce uniform results? Outside of
experts, people would, understandably, assume there exists
no difference. Our aim was to find the truth.

In this paper, we present a comprehensive survey of
the current Python implementations of OLS. We highlight
their similarities and differences and benchmark their per-
formance. By evaluating these implementations, we aim to
provide a valuable resource to the data science community,
enabling practitioners and researchers to make informed de-

cisions when selecting the most suitable implementation for
their specific needs. Furthermore, this study contributes to
the understanding of the OLS method’s role in contemporary
ML and helps pave the way for future developments and
improvements. We chose Python due to its popularity for
open-source ML algorithms. Python has become the go-
to choice for most practitioners and researchers due to its
readability, flexibility, and vast ecosystem of freely available
libraries and tools [5].

The remainder of this paper is organized as follows:
Section 2 provides an overview of popular Python ML
libraries for the OLS method. Section 3 presents a detailed
review of the current Python implementations, covering
well-established libraries such as TensorFlow [6], PyTorch
[7], scikit-learn [8] and MXNet [9]. Section 4 offers a
comparative analysis of the surveyed implementations, in-
cluding run-time and memory comparisons and performance
on degenerate data. Section 5 concludes with a summary of
the key findings and our future research directions.

2. Background

We do not fully develop the topic here because of
space constraints, but instead point to [10] and give the
following: for data D = {(x1, y1), . . . , (xN , yN )} the aim
is to minimize the residual sum of squares (RSS)
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where |x| = p and � are coefficients to be determined.
While there exist analytic solutions (shown using calculus
or linear algebra), implementations, on the other hand, face
real-world problems as we will see with a few different
approaches.

2.1. Popular Machine Learning Libraries

TensorFlow is an end-to-end ML platform for producing
artificial neural networks (ANN). Thanks to TensorFlow’s
flexibility and robust computation model, it has quickly be-
come the most popular ML library in the Python ecosystem,



Algorithm Library Time Complexity (flops)

Cholesky Decomposition (NE-CD) TensorFlow O(mn2 + n3)
Complete Orthogonal Decomposition (COD) TensorFlow O(2mnr � r2(m+ n) + 2r3/3 + r(n� r))

QR with Column Pivoting (QRCP) PyTorch O(4mnr � 2r2(m+ n) + 4r3/3)
QR Factorization (QR) PyTorch O(2mn2 � 2n3/3)

Singular Value Decomposition (SVD) PyTorch O(4mn2 + 8n3)
SVD Divide-and-Conquer (SVDDC) scikit-learn, MXNet, PyTorch O(mn2)

Table 2: The computational complexity of least squares algorithms implemented by popular Python ML libraries [19] [20] [21] [22]. In keeping with ML formalism, we use
m to indicate the number of rows in the input matrix, n as the number of columns and r as the rank.

widely used in both academia and industry [11]. TensorFlow
implements its own linear algebra library in which regres-
sion algorithms can be created. PyTorch is a high-level ML
framework with two primary features: a NumPy-like tensor
computation suite and a module to handle the creation of
ANNs. Beyond ANNs, PyTorch also offers a linear algebra
library that can be used to construct regression algorithms.
Scikit-learn deploys 80+ ML algorithms, including 40+ for
regression, and is one of the most widely-used Python
libraries in commercial and academic applications [12]. As
with most Python packages that require fast computation,
scikit-learn largely relies on NumPy and SciPy (array math
and scientific computing, respectively). Scikit-learn builds
on top of these libraries with their own implementations
of optimized regression algorithms. MXNet is an open-
source ML library intended to support the generation and
deployment of ANNs by blending the advantages of pre-
ceding ML software [9]. MXNet is built for scalability, fast
computation, and usage across a breadth of platforms [13]. It
relies on NumPy and SciPy for its linear regression routines
as well.

2.2. Selection Process

It is estimated that 85% of data scientists use Python
[14], so our paper is focused on widely-used ML packages
in the Python ecosystem. To identify the most popular
machine learning libraries in Python with sufficient rigor,
we conducted an extensive exploration using the Libraries.io
dataset, a project from Tidelift [15]. The dataset contains in-
formation on 4,612,919 software packages that are publicly
available on the internet, last updated on January 12, 2020.

Library Creator ? Rank

TensorFlow Google Brain 173,880 11
PyTorch Meta AI 66,165 73

scikit-learn Cournapeau 54,076 109
MXNet Chen et al. 20,397 373

Table 1: Most popular Python ML libraries [6] [7] [8] [9]. Popularity is determined
via Github stars. When a user wants to show appreciation for a repository or mark
it for later use, they will ‘star’ (?) the repository [16]. The star ranking is relative to
all repositories on Github [17].

We trim the set of packages to those relevant to ML by
only including packages with ML-related keywords in their
description (e.g. “artificial intelligence”, “big data”). This

filter narrows our search to 187,886 packages. From these,
we filter again to yield only those with 10,000 or more stars
on Github at the date of the dataset’s publication. Although
impossible to completely validate, stars reflect popularity
and, thus, usage. We then comb through the remaining
48 packages to find only well-maintained software with
modeling capabilities and a Python API. We credit Li and
Bezemer for inspiration for this search process [18]. Our
paper will focus on the Python ML packages that fit our
criteria with the greatest amount of stars on Github as of
May 7, 2023.

3. Least Squares Implementations

TensorFlow implements its own linear algebra package
and the least squares function from this module computes
solutions to least squares problems using one of two al-
gorithms. One routine solves the normal equations using
Cholesky decomposition (NE-CD) and the other performs
an optimized complete orthogonal decomposition (COD)
algorithm [23]. PyTorch provides several options for the
least squares solver in its linear algebra package. The default
setting is a LAPACK (standard linear algebra routines in
Fortran) driver ‘gelsy’ that performs QR factorization with
column pivoting (QRCP). If the feature matrix A is full rank
(i.e., rank(A) = min(rows, columns)), then PyTorch recom-
mends LAPACK driver ‘gels’, a QR factorization (QR) to
solve the least squares problem. This is the default setting
when PyTorch has access to a GPU. PyTorch also provides
two other options for solvers, ‘gelsd’ and ‘gelss’. The
‘gelsd’ LAPACK routine implements Householder Bidiago-
nalization and singular value decomposition with a divide-
and-conquer method (SVDDC), and the ‘gelss’ driver per-
forms complete singular value decomposition (SVD). Scikit-
learn’s linear regression model is a wrapper for SciPy’s least
squares function which, in its default setting, also makes use
of LAPACK’s ‘gelsd’ solver. MXNet does not implement its
own linear algebra package, but instead directly interfaces
with NumPy’s linear algebra package. The NumPy linear
algebra library is a lightweight version of SciPy’s linear
algebra library [24] and the least squares function uses the
same LAPACK driver, ‘gelsd’. MXNet was omitted from
most experiments in this paper due to dependency conflicts.
The theoretical computational complexity of these various
least squares algorithms is recorded in Table 2.



Tensorflow PyTorch scikit-learn

Rows NE-CD COD QRCP QR SVD SVDDC SVDDC

101 1763.713 958.242 2608.284 274.621 40.926 836.778 2520.289
102 44.961 29.567 18.142 16.044 6.975 35.279 94.538
103 5.238 3.86 1.633 1.63 0.888 3.78 8.87
104 0.833 1.592 0.313 0.289 0.148 0.608 1.7
105 0.583 1.358 0.167 0.154 0.074 0.308 0.982
106 0.649 3.036 0.279 0.262 0.131 0.525 1.726
107 0.661 3.466 0.363 0.326 0.161 0.645 1.867
108 0.664 3.778 0.391 0.368 0.195 0.783 2.004
109 0.766 5.982 0.436 0.396 0.2 0.798 2.179

Table 3: Runtime ratio Actual
Theoretical on Quartz with M = 109 rows. Values greater than one have been highlighted to indicate unfaithfulness to a theoretical runtime bound, calling

attention to poor performers scikit-learn (SVDDC) and TensorFlow (COD).

4. Methodology and Experimental Results

4.1. Runtime Comparison

The complexity analysis of LS is well-known, but en-
gineering requirements can affect these bounds. In this part
of our work, we investigate whether runtimes deviate from
what is known about complexity. We settled on the usage
of synthetic data for profiling these solvers, since it gives
us much more control in terms of data properties. The only
specifications for the data are M rows and N columns, and
all points are drawn from a standard normal distribution. In
this experiment, N = 10 to focus on the effect that M has on
the implementation’s runtime. This decision is supported by
the prevalence of datasets in ML where M � N . Assuming
that the upper bound for M is 10L, the row counts m for
the experiment are [101, 101.5, 102, . . . , 10L].

An algorithm’s actual runtime is measured with the pro-
cess time ns function from the Python standard library [25].
We decided prior to experimentation to record process time
rather than total time. This is an attempt to prevent external
loads on the system from influencing our measurements.
While the use of Python’s process time ns prevents us from
considering non-CPU operations such as input/output and
data transfer, we’ve deemed this to be an acceptable conces-
sion to draw accurate conclusions across platforms. While
actual runtimes are measured in seconds, time complexities
for regression algorithms are measured in the number of
mathematical operations that are required for the algorithm
(floating point operations a.k.a. flops). In order to determine
the theoretical runtime in seconds, it is necessary to establish
both the time complexity of the algorithm and the speed at
which the computer can perform those operations, measured
in flops per second. This information is used in the simple
equation T = O · P , where T is the estimated runtime
in seconds (s), O is the time complexity of the algorithm
in flops, and P is the speed of the processor in flops per
second (flop/s). O is shown for each algorithm in Table
2 and P is shown for each relevant processor in Table
7. We selected the Linpack Benchmark [26] for profiling
because it is the standard method of determining the speed
of a processor in flop/s. The test consists of recording the

time to solve large, dense matrices, a process for which
the time complexity is well-established. In this paper, the
C version of the test is compiled with the default options
on each system to establish the processor’s average speed
in flop/s. The Linpack test produces output in million flop/s
(MFLOPS). In this paper, we present results for experiments
conducted on Indiana University’s Quartz supercomputer
[27], with most of our experiments being performed on one
core of one node. This core was clocked at 870 MFLOPS in
testing and detailed information about each processor tested
can be found in the Supplementary Materials.

Figures 1, 2, 3, and 4 demonstrate how the ac-
tual runtimes of different OLS implementations relate to
their theoretical bounds. This relationship is also captured
in Table 3. Our experiment was able to check runtime
claims made by the respective libraries. TensorFlow claims
that their NE-CD implementation is six to seven times
faster than their COD implementation [23]. Our results
are consistent with that claim. SciPy mentions that the
LAPACK solver ‘gelsy’, the solver for PyTorch (QRCP)
is “faster on many problems” than OLS with LAPACK
solver ‘gelsd’, the solver for PyTorch (SVDDC) and scikit-
learn (SVDDC). PyTorch (SVDDC) performed better than
PyTorch (QRCP) in our experiment, but scikit-learn’s imple-
mentation of SVDDC performed much worse. Scipy also
states that LAPACK solver ‘gelss’ is generally slow [28].
PyTorch (SVD) makes use of this LAPACK solver, and we
observe that it performs among the quickest of the solvers.
The actual runtimes for all solvers on the Quartz system are
visualized in Table 9 in Supplementary Materials.

4.2. Memory Comparison

As big data becomes actually big, ML algorithms face
system challenges that, a decade ago, seemed distant. Con-
ducting experiments to test how size affects regression is,
therefore, necessary.

Recording the memory usage of a program requires the
use of specialized tools that track the memory allocated
by the program during its execution. Memray is a Python-



Figure 1: Actual vs. Theoretical runtime on a log scale
makes the initial non-least squares operations apparent.
See failure to adhere to expected runtime when M <
103.

Figure 2: Actual vs. Theoretical runtime for a solver that
outperforms its stated time complexity by some constant.
This occurs in both PyTorch (QR) and PyTorch (QRCP)
as well, though to a lesser extent.

Figure 3: Actual vs. Theoretical runtime for a solver that
approximately matches its stated time complexity. This
occurs in PyTorch (SVDDC) as well.

Figure 4: Actual vs. Theoretical runtime for a solver that
fails to meet its expected runtime. This occurs in scikit-
learn (SVDDC) as well, though the difference is not as
drastic.

Figure 5: Maximal memory usage (GB) of each imple-
mentation is given for a number of rows. Each of the
PyTorch algorithms performs identically in this regard
and with significantly lower memory usage than the other
solvers.

Figure 6: Maximal memory usage (bytes) of each solver
is given for a number of rows on a log scale. Similar to
the time complexity experiment, a small amount of mem-
ory overhead is visible for non-least squares allocations.
This is apparent for regression when M < 102.

specific memory profiling tool capable of recording a pro-
gram’s maximal memory usage by tracing the allocations
made not only from within Python but also from within
the external functions called by the Python program [29]. It
allows for the individual allocations made by C and Fortran
code to be tracked. We apply the same experimental design
as before. Unfortunately, with the lack of documentation
available, no explicit comparison can be made between
actual and expected memory usage. We report, therefore,
only actual memory usage. The upper limit is determined by
physical memory availability: the largest system available to
us is Indiana University’s Quartz, with 512 gigabytes of sys-
tem memory per node limiting datasets to 109 rows. Figure 6
shows that, for a small dataset, there are varying amounts of
startup memory associated with each OLS implementation.
As the dataset size increases, the algorithms approach a
consistent ratio, with TensorFlow (COD) consuming the
most memory, followed by scikit-learn (SVDDC), Tensor-
Flow (NE-CD), and lastly every OLS algorithm offered in
PyTorch. It is interesting to observe that PyTorch (SVDDC)
and PyTorch (SVD) consume the same amount of memory
in this experiment despite PyTorch’s recommendation to use
SVD if memory usage issues arise while running SVDDC

[30]. Memory usage is also visualized in Figure 5 and
recorded explicitly for all tested processors in Supplemen-
tary Materials.

4.3. Performance on Subsections of Circular Data

We designed this experiment to test the hypothesis that
the OLS algorithms we gathered would respond differently
to modifications in degenerate input data. The underlying
assumption in linear regression modeling is linearity in the
data; to stress the solvers, we generate data that represents
evenly-spaced points along the perimeter of a circle with
a diameter of 10 units in 2D Euclidean space. The circle
is then partitioned into n arcs of equal length, forming the
set S. Subsequently, to capture every possible combination
of arcs, the powerset of the set S is generated (excluding
the empty set). The powerset is then pruned so that the
elements representing less than half of a circle are removed.
The remaining elements e are

{e | e 2 2S ^ |e| � 1

2
n}

For each element of the remaining set, a dataset is con-
structed to represent the corresponding partial circle. This



Data Rotation

Full Circle 0� 5� 15� 30� 60� 90�

50.00 50.00 50.00 50.00 50.00 50.00

3 Arcs 0� 5� 15� 30� 60� 90�

60.43 60.23 58.47 53.53 43.39 39.57

43.49 42.35 40.66 39.68 43.29 53.22

43.32 44.63 47.77 53.27 60.32 53.49

4 Arcs 0� 5� 15� 30� 60� 90�

47.69 49.51 53.35 58.45 58.55 47.81

29.62 33.28 43.40 65.98 66.57 29.86

47.81 46.11 43.21 40.36 40.31 47.69

50.00 50.00 50.00 50.00 50.00 50.00

50.00 50.00 50.00 50.00 50.00 50.00

50.00 50.00 50.00 50.00 50.00 50.00

47.69 49.51 53.35 58.45 58.55 47.81

50.00 50.00 50.00 50.00 50.00 50.00

47.81 46.11 43.21 40.36 40.31 47.69

29.86 26.87 22.62 19.19 19.14 29.62

Table 4: OLS performance over circular data composed of non-overlapping arcs (# of
arcs - 0, 3, 4). The partial circle data with overlaid regression line is depicted in the
leftmost column, and MSE of the regression line is recorded as function of rotation
in the other columns.

Data Rotation

5 Arcs 0� 5� 15� 30� 60� 90�

51.14 52.85 56.05 59.14 55.25 45.60

36.92 39.33 45.41 57.18 69.43 47.82

51.30 49.92 47.30 44.21 42.32 46.50

51.27 49.57 46.44 42.83 40.67 45.50

41.84 41.22 40.58 41.09 47.22 56.88

57.80 57.65 56.43 52.96 45.29 42.20

29.59 29.71 30.76 34.54 52.21 70.41

62.35 58.31 50.11 40.06 30.37 31.29

62.07 65.70 70.11 66.56 43.64 31.36

59.46 59.27 57.70 53.31 44.09 40.54

51.20 52.59 55.14 57.55 54.51 46.58

41.79 42.58 44.7 49.12 58.25 56.97

37.08 35.04 32.01 29.79 32.68 47.55

43.34 42.81 42.24 42.69 47.96 55.79

43.30 43.99 45.84 49.54 56.86 55.86

Table 5: OLS performance over circular data composed of non-overlapping arcs (#
of arcs - 5). The best performance is observed when the gaps in the circular data are
positioned at the top or bottom of the circle.



TensorFlow PyTorch scikit-learn MXNet

Data NE-CD COD QRCP QR SVD SVDDC SVDDC SVDDC

Blog Feedback [31] Failed 926.9 3439.907 Failed 937.748 937.747 926.9 926.921
Communities and Crime [32] 0.019 0.019 0.104 899.167 0.076 0.076 0.019 0.019

Facebook Comment Volume [33] Failed 10900.276 27776.551 Failed 13029.275 13029.275 10900.276 10900.276
Geographical Origin of Music [34] Failed 2376.676 2615.101 Failed 2376.675 2376.673 2376.676 2376.676

Hailstone [35] Failed 0.254 0.403 7.894 ⇥ 106 0.262 0.262 0.254 0.254
Hourly Energy Demand [36] Failed 87.04 149.759 Failed 141.445 141.445 87.04 87.04

KEGG Metabolic Pathway [37] Failed 5.737 2.888 ⇥ 105 5.737 628.818 628.818 5.737 5.737
Online News Popularity [38] Failed 1.341 ⇥ 108 2.826 ⇥ 108 3.618 ⇥ 109 1.348 ⇥ 108 1.348 ⇥ 108 8.075 ⇥ 1017 1.341 ⇥ 108

Residential Building [39] Failed 1653.68 4.568 ⇥ 105 8.856 ⇥ 1011 4078.649 4086.893 1653.68 1653.68
Superconductivity [40] 310.574 310.574 832.526 310.574 503.458 503.458 310.574 310.574

Table 6: Performance of OLS algorithms over high-dimensional datasets, measured in MSE. If an OLS implementation failed to fit a model on any CV fold, the algorithm is
said to have ‘Failed’ for that dataset. A cell is shaded according to that OLS algorithm’s performance relative to the performance of the other OLS implementations on that
particular dataset; lighter shading indicates better performance.

process is carried out for each value of n 2 {3, 4, 5}. Finally,
each of the generated datasets is multiplied by a rotation
matrix for every rotation r 2 {0�, 5�, 15�, 30�, 60�, 90�}.
The OLS algorithms are then applied to each of the 168
resulting datasets. The training error are recorded in Tables 4
and 5 for each dataset, along with a plot of each partial circle
and its regression line. We note that for approximately 83%
of the datasets, a rotation introduced a change in the error,
which is to be expected. There was no notable difference in
error observed between the OLS algorithms we tested for
any combination of rotations or subsections, which leads us
to reject the prenominate hypothesis.

4.4. Performance on High-Dimensional Data

As data grows, so do features. In this experiment, we
explore how feature size affects OLS. Ten publicly available
datasets were selected for both regression suitability and
number of features (> 25). Non-numerical features were
removed, and missing values were imputed with zeros. We
thought this simple protocol would least perturb the find-
ings. The eight OLS algorithms were then trained on these
datasets. The validation Mean Squared Error (MSE) was
computed for each of the ten models produced in CV train-
ing and then averaged to yield one error metric for the entire
dataset. This process was completed for each dataset, and
the results are displayed in Table 6. On several occasions,
while attempting to train a model on a dataset, a library
would raise a non-descriptive error and cease training. These
failures to generate a model over a particular dataset are
also recorded in 6. TensorFlow (NE-CD) failed to generate
a model for eight out of the ten datasets. PyTorch (QR)
failed to generate a model for four datasets and generated
highly inaccurate models for three other datasets. On each
dataset, several of the models achieve the same, low error.
TensorFlow (COD) and MXNet (SVDDC) achieved this low
error in each of our experiments, performing well relative to
other algorithms, and scikit-learn (SVDDC) performed well
on all data except the Online News Popularity dataset. This
is surprising, given that MXNet and scikit-learn rely on the
same LAPACK solver.

5. Summary and Conclusions

In this paper, we asked what appeared to be a straight-
forward question: given the simplicity of OLS, do the most
popular libraries’ various implementations behave the same?
The results make apparent the value of this question. We
observe that TensorFlow (COD) and scikit-learn (SVDDC)
do not adhere to their respective theoretical bounds for
runtime. We approximate the constant value asymptote of
the ratio between actual runtime and theoretical runtime for
each solver in the bottom row of Table 3. We observe that
memory usage scales similarly for each OLS implementa-
tion, with PyTorch algorithms performing best.

Most puzzling is the disagreement among the implemen-
tations for high-dimensional data. There are a number of in-
teresting possibilities: the original algorithm needs attention,
the implementations have differing innate limitations, the OS
is affecting the answers, etc. TensorFlow (COD) and MXNet
(SVDDC) consistently perform well, and PyTorch (QRCP)
and TensorFlow (NE-CD) may not be well-equipped to
handle high-dimensional data.

Rather than a single library with a single implemen-
tation, a number of different OLS implementations should
be used to get a consensus of results. Perhaps validating
open-source datasets will help with OLS verification. Our
rather mundane question has yielded a number of others–
perhaps some general survey of the top ten most popular
ML algorithms and their respective implementations should
be conducted. Future work includes applying our profiling
framework to algorithms relevant in deep learning, such
as backpropagation and stochastic gradient descent. The
performance of OLS implementations of lesser-known ML
libraries could also be measured. Additionally, we want to
develop a more rigorous memory profiling experiment at
the level of numerical computation libraries. We conclude
with what is likely the most controversial: perhaps a new set
of time and memory complexities that reflect contemporary
technology as it works in the wild is needed rather than
relying solely on traditional ones–then users could gauge
more effectively the increasing choices for ML.
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System Processor Mem. (GB) MFLOPS

Quartz⇤ AMD EPYC 7742 64-Core Processor 512 870
Carbonate⇤ Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz 256 750

2020 MacBook Pro† Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz 32 1250

Table 7: System details for the processors used in the experiment.⇤ for more details, see iu.edu. † for more details, see apple.com

TensorFlow PyTorch scikit-learn

Rows NE-CD COD QRCP QR SVD SVDDC SVDDC

101 0.006 0.007 0.005 0.005 0.005 0.011 0.01
102 0.03 0.027 0.014 0.013 0.013 0.018 0.025
103 0.198 0.228 0.086 0.085 0.085 0.09 0.186
104 1.516 2.244 0.806 0.805 0.805 0.81 1.77
105 14.476 22.404 8.006 8.005 8.005 8.01 17.61
106 144.076 224.004 80.006 80.005 80.005 80.01 176.01
107 1440.076 2240.004 800.006 800.005 800.005 800.01 1760.01
108 14400.076 22400.004 8000.006 8000.005 8000.005 8000.01 17600.01
109 144000.076 224000.004 80000.006 80000.005 80000.005 80000.01 176000.01

Table 8: Maximal Memory Usage (in MB) for each implementation on Quartz with M = 109 rows.

TensorFlow PyTorch scikit-learn

Rows NE-CD COD QRCP QR SVD SVDDC SVDDC

101 4.055 0.734 3.996 0.421 0.564 0.962 2.897
102 0.568 0.328 0.403 0.357 0.385 0.406 1.087
103 0.608 0.442 0.374 0.373 0.417 0.434 1.02
104 0.958 1.829 0.72 0.664 0.681 0.699 1.954
105 6.702 15.607 3.85 3.551 3.399 3.536 11.283
106 74.646 348.966 64.039 60.296 60.363 60.361 198.403
107 759.359 3983.838 834.784 750.175 738.807 741.29 2145.786
108 7631.434 43425.057 8991.294 8466.698 8974.244 9001.976 23028.82
109 88077.922 687569.091 100164.22 91116.327 91747.932 91761.323 250507.101

Table 9: Raw runtime (in ms) of OLS implementations on Quartz with M = 109 rows.

Package Version

scikit-learn 1.2.2
PyTorch 1.12.1

TensorFlow 2.10.0
MXNet 1.9.1

Table 10: Package versions used. These may have conflicting dependencies. If so, the experiments can be completed using separate environments for the packages.

6. Supplementary Results

Table 7 contains detailed information on various types
for each system that was used in the Runtime and Mem-
ory experiments. The results of these experiments can
be found at https://github.com/sej2020/are-they-what-they-
claim-supplementary-materials. Table 8 depicts Maximal
Memory Usage on the Quartz supercomputer, and Table 9
displays the actual runtime of OLS implementations on the
Quartz supercomputer.

iu.edu
apple.com

