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Abstract

Word alignment has proven to benefit many-to-001
many neural machine translation (NMT). How-002
ever, high-quality ground-truth bilingual dic-003
tionaries were used for pre-editing in previous004
methods, which are unavailable for most lan-005
guage pairs. Meanwhile, the contrastive objec-006
tive can implicitly utilize automatically learned007
word alignment, which has not been explored008
in many-to-many NMT. This work proposes009
a word-level contrastive objective to leverage010
word alignments for many-to-many NMT. Em-011
pirical results show that this leads to 0.8 BLEU012
gains for several language pairs. Analyses re-013
veal that in many-to-many NMT, the encoder’s014
retrieval performance highly correlates with015
the translation quality, which explains when016
the proposed method impacts translation. This017
motivates future exploration for many-to-many018
NMT focusing on improving the encoder re-019
trieval performance.020

1 Introduction021

Many-to-many neural machine translation022

(NMT) (Firat et al., 2016; Johnson et al., 2017;023

Aharoni et al., 2019; Sen et al., 2019; Arivazhagan024

et al., 2019; Lin et al., 2020; Pan et al., 2021b)025

jointly trains a translation system for multiple026

language pairs and obtain significant gains027

consistently across many translation directions.028

Previous work (Lin et al., 2020) shows that word029

alignment information helps improve pre-training030

for many-to-many NMT. However, cleaned031

high-quality ground-truth bilingual dictionaries are032

used to pre-edit the source sentences, which are033

unavailable for most language pairs.034

Recently, contrastive objectives (Clark et al.,035

2020; Gunel et al., 2021; Giorgi et al., 2021; Wei036

et al., 2021) have been shown to be superior at lever-037

aging alignment knowledge in various NLP tasks038

by contrasting the representations of positive and039

negative samples in a discriminative manner. This040

objective, which implicitly utilizes word alignment041

learned by any toolkit refraining the constraints of 042

using manually constructed dictionaries, has not 043

been explored in the context of leveraging word 044

alignment for many-to-many NMT. 045

An existing contrastive method (Pan et al., 046

2021b) (mRASP2) for many-to-many NMT re- 047

lies on sentence-level alignments. Given that the 048

incorporation of word alignments has led to im- 049

provements in previous work, we believe that fine- 050

grained contrastive objectives focusing on word 051

alignments should help improve translation. There- 052

fore, this paper proposes word-level contrastive 053

learning for many-to-many NMT using the word 054

alignment extracted by automatic aligners. We 055

conduct experiments on three many-to-many NMT 056

systems covering general and spoken language do- 057

mains. Results show that our proposed method 058

achieves significant BLEU gains in the general do- 059

main compared to previous word alignment based 060

methods and the sentence-level contrastive method. 061

We then analyze how the word-level contrastive 062

objective affects NMT training. Inspired by pre- 063

vious work (Artetxe and Schwenk, 2019) train- 064

ing sentence retrieval model using many-to-many 065

NMT, we speculate that our contrastive objectives 066

affect the sentence retrieval performance and sub- 067

sequently impact the translation quality. Further 068

investigation reveals that in many-to-many NMT, 069

the sentence retrieval precision of the multilingual 070

encoder for a language pair strongly correlates with 071

its translation quality (BLEU), which provides in- 072

sight about when contrastive alignment improves 073

translation. This revelation emphasizes the impor- 074

tance of improving the retrieval performance of the 075

encoder for many-to-many NMT. 076

2 Word-level Contrastive Learning for 077

Many-to-many NMT 078

Inspired by the contrastive learning framework 079

(Chen et al., 2020) and the sentence-level con- 080

trastive learning objective of mRASP2, we pro- 081
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pose a word-level contrastive learning objective082

to explicitly guide the training of the multilingual083

encoder to obtain well-aligned cross-lingual repre-084

sentations. Specifically, we use word alignments,085

obtained using automatic word aligners, to super-086

vise the training of the multilingual encoder by a087

contrastive objective alongside the NMT objective.088

Alignment Extraction Two main approaches for089

automatically extracting aligned words from a sen-090

tence pair are: using a bilingual dictionary and091

using unsupervised word aligners. The former ex-092

tracts fewer but precise alignments, whereas the lat-093

ter extracts more but noisy alignments. We extract094

word-level alignments by both methods and explore095

how they impact NMT training. For the former ap-096

proach, we use word2word (Choe et al., 2020) to097

construct bilingual lexicons and then extract word098

pairs from parallel sentences. The extracted word099

pairs are combined to form a phrase if words are100

consecutive in the source and target sentence. For101

the latter approach, we use FastAlign (Dyer et al.,102

2013) and use only 1-to-1 mappings for training.103

Word-level Contrastive Learning With the ex-104

tracted alignments, we propose a word-level con-105

trastive learning objective for the multilingual en-106

coder by the motivation that the aligned words107

within a sentence pair should have a similar con-108

textual representation. We expect the supervision109

of the contrastive objective on the corresponding110

contextual word representation leads to a robust111

multilingual encoder. Assume that the tokenized112

source and target parallel sentences in i− th batch113

areDi = {srcij , tgtij}Bj=1, and the extracted align-114

ments from all the sentence pairs in each batch are115

Ai = {sik, tik}Nk=1, where B and N denote the116

batch-size and the number of alignments, respec-117

tively. Note that sik and tik may contain several118

tokens after the word combination for word2word119

or subword tokenization for NMT. Then the word-120

level contrastive loss in a batch is:121

L(i)align = −
N∑
k=1

(log
exp (sim(sik, tik)/T )∑N

m=1 exp (sim(sik, tim)/T )

+ log
exp (sim(sik, tik)/T )∑N

m=1 exp (sim(sim, tik)/T )
)

(1)122

where T denotes a similarity scaling temperature.123

The similarity between two words is measured by:124

sim(wordx, wordy) = cos(g(x̄), g(ȳ)) (2)125

where g(x) = W2σ(W1x) and x̄ denotes the av-126

erage of contextual hidden states of the correspond-127

La. pair Source Size N (w2w) N (FA)
en-et WMT18 1.9M 5,762,977 38,454,477
en-it IWSLT17 231k 603,032 3,000,011
en-ja IWSLT17 223k 684,583 2,797,882
en-kk WMT19 124k 124,511 279,429
en-my ALT 18k 75,383 377,392
en-nl IWSLT17 237k 564,697 2,836,873
en-ro WMT16 612k 3,271,848 13,092,240
en-tr WMT17 207k 770,873 2,885,102
en-vi IWSLT15 133k 354,167 2,120,755

Table 1: Data Source and number of the extracted
word pairs. La. pair, N (w2w) and N (FA) denote the
language pair, the number of the word pairs extracted
by word2word and FastAlign, respectively. Refer to
Appendix B for details of the dataset splits.

ing subword positions on top of the multilingual 128

encoder. Following (Chen et al., 2020), we use an 129

MLP between contrastive loss and the contextual 130

representation for NMT loss. ReLU activation is 131

used for σ, W1 is d× d and W2 is d× d′, where 132

d is the encoder’s hidden dimension and d′ < d . 133

Finally, to jointly train with the NMT loss, we 134

use the following equation to combine our pro- 135

posed word-level contrastive loss for a batch: 136

L(i) = 1

B
(L(i)NMT + w

NT

2N
L(i)align) (3) 137

where NT is the number of the tokens within a 138

batch, NT
2N is a multiplier that scales the contrastive 139

loss to be consistent with NMT loss, and w is a 140

weight to balance the joint training. 141

3 Experimental Settings 142

Datasets and Preprocessing We selected ten lan- 143

guages, including English (en), Estonian (et), Ital- 144

ian (it), Japanese (ja), Kazakh (kk), Burmese (my), 145

Dutch (nl), Romanian (ro), Turkish (tr), Viet- 146

namese (vi) from different language families to 147

train the NMT systems. We used the parallel 148

datasets from different domains for the selected 149

nine language pairs, including IWSLT, WMT, and 150

ALT. We followed mBART (Liu et al., 2020) for 151

tokenization. Details are given in Appendix A. 152

For each parallel dataset, we implemented two ap- 153

proaches as stated in Section 2 to extract word 154

pairs for the contrastive training objective. Data 155

source and the number of the extracted word pairs 156

are shown in Table 1. To ensure high alignment 157

quality, we used large-scale out-of-domain (see Ap- 158

pendix B) parallel corpora with FastAlign. 159
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Methods 222_en-ja 626_I 626_II

MLSC 13.90 23.76 13.55
+align 13.90 23.67 13.39
+w2w (ours) 13.85 23.44 13.69
+FA (ours) 13.30 23.68 13.48

mBART FT 18.90 29.11 20.64
+align 18.55 28.87 20.42
+w2w (ours) 18.80 29.08 20.89
+FA (ours) 18.65 29.01 20.87

Table 2: Overall average BLEU of all the systems.
626_I and 626_II denote “626_en-it-ja-nl-tr-vi” and
“626_en-tr-ro-et-my-kk,” respectively. Results better
than MLSC or mBART FT are marked bold. Refer to
Appendix D for the detailed scores of all the systems.

Many-to-many NMT systems We established160

three many-to-many NMT systems as follows:161

222_en-ja: Bidirectional en-ja NMT model us-162

ing en-ja parallel corpus.163

626_en-it-ja-nl-tr-vi: 6-to-6 multilingual NMT164

model using spoken language domain corpora for165

en-it, en-ja, en-nl, en-tr and en-vi.166

626_en-tr-ro-et-my-kk: 6-to-6 multilingual167

NMT model using general domain corpora for en-tr,168

en-ro, en-et, en-my and en-kk.169

Baselines and Ours For each language group170

setting above, we conducted NMT experiments171

on both the multilingual training from scratch172

(MLSC) (Johnson et al., 2017; Aharoni et al., 2019)173

and the mBART multilingual fine-tuning (mBART174

FT) (Tang et al., 2020) as baselines. We applied our175

proposed word-level contrastive learning in both176

MLSC and mBART FT, and compared with another177

strong baseline, word alignment based joint NMT178

training (+align) (Garg et al., 2019). For applying179

our method, we investigated the performance of180

joint training with word pairs extracted by both181

word2word (+w2w) and FastAlign (+FA).182

Implementation We used mBART-large for183

mBART FT and transformer-base (Vaswani184

et al., 2017) for MLSC. See Appendix C for details.185

4 Results and Analyses186

BLEU Results We report case-sensitive tokenized187

BLEU (Papineni et al., 2002) results in Table 2188

and 3. In Table 2, we observe that with our pro-189

posed training objectives, BLEU scores are compa-190

rable in 222_en-ja and 626_en-it-ja-nl-tr-vi while191

they are slightly improved in 626_en-tr-ro-et-my-192

kk. However, “+align” performs comparable or193

even worse compared with the baseline. Referring194

Methods
en-tr en-ro en-et
→ ← → ← → ←

MLSC 9.3 12.6 25.0 26.2 10.8 15.1
+align 9.0 12.4 24.6 26.5 10.7 14.6
+w2w (ours) 9.4 12.6 24.8 26.8 10.8 15.1
+FA (ours) 9.1 12.2 24.8 26.7 10.7 14.8

mBART FT 17.7 22.2 33.8 37.1 14.5 24.3
+align 17.5 21.9 33.8 36.7 15.2 24.3
+w2w (ours) 17.6 22.2 34.2 37.5 15.0 25.0
+FA (ours) 17.5 22.2 34.3 37.5 14.9 25.1

Methods
en-kk en-my
→ ← → ←

MLSC 0.5 5.3 15.1 15.6
+align 0.4 5.4 15.0 15.3
+w2w (ours) 0.5 5.8 15.2 15.9
+FA (ours) 0.3 5.6 15.0 15.6

mBART FT 1.8 14.1 17.8 23.1
+align 1.8 14.0 16.9 22.1
+w2w (ours) 1.2 14.1 18.3 23.8
+FA (ours) 1.3 14.4 17.9 23.6

Table 3: BLEU scores of 626_en-tr-ro-et-my-kk sys-
tem. Significantly better scores (Koehn, 2004) are in
cyan and marginal improvements are in lightcyan.

to Table 3 for specific BLEUs on each language 195

pair, we find that with our methods, translation per- 196

formances are significantly improved for mBART 197

FT while nontrivial improvements can merely be 198

observed on en-ro and en-kk direction for MLSC. 199

Latent Encoder Alignment Property We now 200

inspect which aspect of alignment-based meth- 201

ods impacts the translation performance. Previous 202

work (Artetxe and Schwenk, 2019) show that the 203

encoder of a strong multilingual NMT system is an 204

ideal model for the bilingual sentence retrieval task. 205

Inspired by this, we speculate that alignment-based 206

objectives affect sentence retrieval performance, 207

which further impacts the translation quality. We 208

train MLSC and mBART FT and report the sen- 209

tence retrieval precision and NMT loss during the 210

training. Results are reported in Figure 2. We ob- 211

serve that the validation retrieval precision show 212

the similar trend as the NMT loss. This indicates 213

that during the normal many-to-many NMT train- 214

ing, encoder-side sentence-level retrieval precision 215

is optimized along with the NMT loss. 216

Sentence Retrieval P@1 Correlates with BLEU 217

According to the investigation of the encoder align- 218

ment property above, we verify the relationship 219

between BLEU score and sentence retrieval preci- 220

sion on the validation set for each language pair. 221

Results are shown in Figure 1. Cross-referencing 222
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Figure 1: Sentence retrieval P@1 on the validation set for each language pair. Left and middle are the results on
626_en-tr-ro-et-my-kk. “626” in right subfigure denote 626_en-it-ja-nl-tr-vi. Refer to Appendix E for details.
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Figure 2: NMT loss, sentence retrieval P@1 of the
encoder in MLSC and mBART FT. Average of the
contextual embeddings on top of the encoder is used as
the sentence embedding. We report the average score of
forward and backward in-batch retrieval precisions.

the BLEU score in Table 3, we found that BLEU223

scores are improved when the encoder achieves224

gains on the sentence retrieval precision.1 For ex-225

ample, we see increases of the retrieval P@1 on en-226

ro, en-et, and en-my on mBART FT (the middle of227

Figure 1) while BLEU scores are significantly im-228

proved on these three language pairs (Table 3). We229

further calculate the Pearson correlation coefficient230

between the BLEU changes and sentence retrieval231

P@1 changes for mBART+align, mBART+w2w,232

and mBART+FA in the 626_en-tr-ro-et-my-kk set-233

ting. Results are 0.79, 0.93, 0.90, respectively,234

demonstrating a strong correlation between transla-235

tion quality and sentence retrieval precision.236

Word-level Contrastive Objective and Sentence237

Retrieval P@1 With the word-level contrastive238

objective, we observed significant BLEU score im-239

provements on language pairs such as en-ro, en-et240

and en-my as presented in Table 3. However, due241

1222_en-ja MLSC setting can hardly learn a well-aligned
encoder while our methods improve the encoder sentence-
level alignment quality without sacrificing BLEU scores.

to the noises of extracted word pairs (Pan et al., 242

2021a) from word alignment toolkits that leads to 243

insufficient supervision for improving sentence re- 244

trieval P@1, some language pairs such as en-kk 245

do not show BLEU improvements. We found that 246

for en-kk, numbers of extracted word pairs per sen- 247

tence by word2word and FastAlign are 1.0 and 2.2, 248

respectively. In contrast, the numbers are 4.2 and 249

20.7 for improved language pairs, calculated from 250

Table 1. We expect this finding to provide new 251

perspectives for improving many-to-many NMT. 252

Sentence-level Contrastive Objective We con- 253

ducted the experiments for sentence-level con- 254

trastive objective (mRASP2) (Pan et al., 2021b) 255

on 626_en-tr-ro-et-my-kk mBART FT. The aver- 256

age BLEU score of our +w2w is 20.89, which sig- 257

nificantly outperforms mRASP’s 20.47 (last line 258

in Table 8). Our word-level method outperforms 259

the sentence-level method, indicating the sentence- 260

level objective’s limitation. Moreover, we checked 261

the sentence retrieval P@1 for mRASP2 (last line 262

in Table 10) and found that it correlates with BLEU 263

changes, indicating that sentence-level contrastive 264

objective is suboptimal for language pairs with de- 265

creased retrieval precision.2 266

5 Conclusion 267

We proposed a word-level contrastive learning ob- 268

jective for many-to-many NMT. Experimental re- 269

sults showed that our proposed method leads to 270

significantly better translation for several language 271

pairs, which is then explained by analyses showing 272

the relationship between BLEU scores and sen- 273

tence retrieval performance of the NMT encoder. 274

Future work can focus on: (1) further improving the 275

encoder’s retrieval ability in many-to-many NMT; 276

(2) contrastive objective’s feasibility in a massively 277

multilingual scenario. 278

2Note that the sentence-level contrastive objective incor-
porates sentences in multiple languages for contrastive loss. It
does not necessarily improve the pair-wise retrieval precision.

4



References279

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.280
Massively multilingual neural machine translation.281
In Proceedings of the 2019 Conference of the North282
American Chapter of the Association for Computa-283
tional Linguistics: Human Language Technologies,284
Volume 1 (Long and Short Papers), pages 3874–3884,285
Minneapolis, Minnesota. Association for Computa-286
tional Linguistics.287

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,288
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,289
Mia Xu Chen, Yuan Cao, George F. Foster, Colin290
Cherry, Wolfgang Macherey, Zhifeng Chen, and291
Yonghui Wu. 2019. Massively multilingual neural292
machine translation in the wild: Findings and chal-293
lenges. CoRR, abs/1907.05019.294

Mikel Artetxe and Holger Schwenk. 2019. Mas-295
sively multilingual sentence embeddings for zero-296
shot cross-lingual transfer and beyond. Transactions297
of the Association for Computational Linguistics,298
7:597–610.299

Ting Chen, Simon Kornblith, Mohammad Norouzi, and300
Geoffrey E. Hinton. 2020. A simple framework for301
contrastive learning of visual representations. In Pro-302
ceedings of the 37th International Conference on303
Machine Learning, ICML 2020, 13-18 July 2020, Vir-304
tual Event, volume 119 of Proceedings of Machine305
Learning Research, pages 1597–1607. PMLR.306

Yo Joong Choe, Kyubyong Park, and Dongwoo Kim.307
2020. word2word: A collection of bilingual lexi-308
cons for 3,564 language pairs. In Proceedings of309
the 12th Language Resources and Evaluation Confer-310
ence, pages 3036–3045, Marseille, France. European311
Language Resources Association.312

Christos Christodoulopoulos and Mark Steedman. 2015.313
A massively parallel corpus: the bible in 100 lan-314
guages. Lang. Resour. Evaluation, 49(2):375–395.315

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and316
Christopher D. Manning. 2020. ELECTRA: pre-317
training text encoders as discriminators rather than318
generators. In 8th International Conference on319
Learning Representations, ICLR 2020, Addis Ababa,320
Ethiopia, April 26-30, 2020. OpenReview.net.321

Chenchen Ding, Hnin Thu Zar Aye, Win Pa Pa,322
Khin Thandar Nwet, Khin Mar Soe, Masao Utiyama,323
and Eiichiro Sumita. 2020. Towards burmese (myan-324
mar) morphological analysis: Syllable-based tok-325
enization and part-of-speech tagging. ACM Trans.326
Asian Low Resour. Lang. Inf. Process., 19(1):5:1–327
5:34.328

Chris Dyer, Victor Chahuneau, and Noah A. Smith.329
2013. A simple, fast, and effective reparameteriza-330
tion of IBM model 2. In Proceedings of the 2013331
Conference of the North American Chapter of the332
Association for Computational Linguistics: Human333
Language Technologies, pages 644–648, Atlanta,334
Georgia. Association for Computational Linguistics.335

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016. 336
Multi-way, multilingual neural machine translation 337
with a shared attention mechanism. In Proceedings 338
of the 2016 Conference of the North American Chap- 339
ter of the Association for Computational Linguistics: 340
Human Language Technologies, pages 866–875, San 341
Diego, California. Association for Computational 342
Linguistics. 343

Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy, 344
and Matthias Paulik. 2019. Jointly learning to align 345
and translate with transformer models. In Proceed- 346
ings of the 2019 Conference on Empirical Methods 347
in Natural Language Processing and the 9th Inter- 348
national Joint Conference on Natural Language Pro- 349
cessing (EMNLP-IJCNLP), pages 4453–4462, Hong 350
Kong, China. Association for Computational Linguis- 351
tics. 352

John M. Giorgi, Osvald Nitski, Bo Wang, and Gary D. 353
Bader. 2021. Declutr: Deep contrastive learning for 354
unsupervised textual representations. In Proceedings 355
of the 59th Annual Meeting of the Association for 356
Computational Linguistics and the 11th International 357
Joint Conference on Natural Language Processing, 358
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual 359
Event, August 1-6, 2021, pages 879–895. Association 360
for Computational Linguistics. 361

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin 362
Stoyanov. 2021. Supervised contrastive learning for 363
pre-trained language model fine-tuning. In 9th In- 364
ternational Conference on Learning Representations, 365
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 366
OpenReview.net. 367

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim 368
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, 369
Fernanda Viégas, Martin Wattenberg, Greg Corrado, 370
Macduff Hughes, and Jeffrey Dean. 2017. Google’s 371
multilingual neural machine translation system: En- 372
abling zero-shot translation. Transactions of the As- 373
sociation for Computational Linguistics, 5:339–351. 374

Philipp Koehn. 2004. Statistical significance tests for 375
machine translation evaluation. In Proceedings of the 376
2004 Conference on Empirical Methods in Natural 377
Language Processing, pages 388–395, Barcelona, 378
Spain. Association for Computational Linguistics. 379

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, 380
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre- 381
training multilingual neural machine translation by 382
leveraging alignment information. In Proceedings 383
of the 2020 Conference on Empirical Methods in 384
Natural Language Processing (EMNLP), pages 2649– 385
2663, Online. Association for Computational Lin- 386
guistics. 387

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey 388
Edunov, Marjan Ghazvininejad, Mike Lewis, and 389
Luke Zettlemoyer. 2020. Multilingual denoising pre- 390
training for neural machine translation. Transac- 391
tions of the Association for Computational Linguis- 392
tics, 8:726–742. 393

5

https://doi.org/10.18653/v1/N19-1388
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://aclanthology.org/2020.lrec-1.371
https://aclanthology.org/2020.lrec-1.371
https://aclanthology.org/2020.lrec-1.371
https://doi.org/10.1007/s10579-014-9287-y
https://doi.org/10.1007/s10579-014-9287-y
https://doi.org/10.1007/s10579-014-9287-y
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.1145/3325885
https://doi.org/10.1145/3325885
https://doi.org/10.1145/3325885
https://doi.org/10.1145/3325885
https://doi.org/10.1145/3325885
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://doi.org/10.18653/v1/N16-1101
https://doi.org/10.18653/v1/N16-1101
https://doi.org/10.18653/v1/N16-1101
https://doi.org/10.18653/v1/D19-1453
https://doi.org/10.18653/v1/D19-1453
https://doi.org/10.18653/v1/D19-1453
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://openreview.net/forum?id=cu7IUiOhujH
https://openreview.net/forum?id=cu7IUiOhujH
https://openreview.net/forum?id=cu7IUiOhujH
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343


Hajime Morita, Daisuke Kawahara, and Sadao Kuro-394
hashi. 2015. Morphological analysis for unseg-395
mented languages using recurrent neural network396
language model. In Proceedings of the 2015 Con-397
ference on Empirical Methods in Natural Language398
Processing, pages 2292–2297, Lisbon, Portugal. As-399
sociation for Computational Linguistics.400

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-401
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-402
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian403
scientific paper excerpt corpus. In Proceedings of404
the Tenth International Conference on Language405
Resources and Evaluation (LREC’16), pages 2204–406
2208, Portorož, Slovenia. European Language Re-407
sources Association (ELRA).408

Lin Pan, Chung-Wei Hang, Haode Qi, Abhishek Shah,409
Saloni Potdar, and Mo Yu. 2021a. Multilingual410
BERT post-pretraining alignment. In Proceedings of411
the 2021 Conference of the North American Chapter412
of the Association for Computational Linguistics: Hu-413
man Language Technologies, pages 210–219, Online.414
Association for Computational Linguistics.415

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li.416
2021b. Contrastive learning for many-to-many mul-417
tilingual neural machine translation. In Proceedings418
of the 59th Annual Meeting of the Association for419
Computational Linguistics and the 11th International420
Joint Conference on Natural Language Processing421
(Volume 1: Long Papers), pages 244–258, Online.422
Association for Computational Linguistics.423

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-424
Jing Zhu. 2002. Bleu: a method for automatic evalu-425
ation of machine translation. In Proceedings of the426
40th Annual Meeting of the Association for Compu-427
tational Linguistics, pages 311–318, Philadelphia,428
Pennsylvania, USA. Association for Computational429
Linguistics.430

Sukanta Sen, Kamal Kumar Gupta, Asif Ekbal, and431
Pushpak Bhattacharyya. 2019. Multilingual unsu-432
pervised NMT using shared encoder and language-433
specific decoders. In Proceedings of the 57th Annual434
Meeting of the Association for Computational Lin-435
guistics, pages 3083–3089, Florence, Italy. Associa-436
tion for Computational Linguistics.437

Rico Sennrich, Barry Haddow, and Alexandra Birch.438
2016. Edinburgh neural machine translation systems439
for WMT 16. In Proceedings of the First Conference440
on Machine Translation: Volume 2, Shared Task Pa-441
pers, pages 371–376, Berlin, Germany. Association442
for Computational Linguistics.443

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-444
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-445
gela Fan. 2020. Multilingual translation with exten-446
sible multilingual pretraining and finetuning. CoRR,447
abs/2008.00401.448

Arseny Tolmachev, Daisuke Kawahara, and Sadao Kuro-449
hashi. 2018. Juman++: A morphological analy-450
sis toolkit for scriptio continua. In Proceedings451

of the 2018 Conference on Empirical Methods in 452
Natural Language Processing: System Demonstra- 453
tions, pages 54–59, Brussels, Belgium. Association 454
for Computational Linguistics. 455

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 456
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 457
Kaiser, and Illia Polosukhin. 2017. Attention is all 458
you need. In Advances in Neural Information Pro- 459
cessing Systems 30: Annual Conference on Neural 460
Information Processing Systems 2017, December 4-9, 461
2017, Long Beach, CA, USA, pages 5998–6008. 462

Xiangpeng Wei, Rongxiang Weng, Yue Hu, Luxi Xing, 463
Heng Yu, and Weihua Luo. 2021. On learning uni- 464
versal representations across languages. In 9th In- 465
ternational Conference on Learning Representations, 466
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 467
OpenReview.net. 468

6

https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.18653/v1/D15-1276
https://doi.org/10.18653/v1/D15-1276
https://aclanthology.org/L16-1350
https://aclanthology.org/L16-1350
https://aclanthology.org/L16-1350
https://doi.org/10.18653/v1/2021.naacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.20
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.18653/v1/W16-2323
http://arxiv.org/abs/2008.00401
http://arxiv.org/abs/2008.00401
http://arxiv.org/abs/2008.00401
https://doi.org/10.18653/v1/D18-2010
https://doi.org/10.18653/v1/D18-2010
https://doi.org/10.18653/v1/D18-2010
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=Uu1Nw-eeTxJ
https://openreview.net/forum?id=Uu1Nw-eeTxJ
https://openreview.net/forum?id=Uu1Nw-eeTxJ


La. pair Train Valid Test OD Size
en-et WMT18 WMT18 WMT18 10.7M
en-it IWSLT17 IWSLT15 IWSLT16 13.6M
en-ja IWSLT17 IWSLT15 IWSLT16 10.7M
en-kk WMT19 WMT19 WMT19 851k
en-my ALT ALT ALT 446k
en-nl IWSLT17 IWSLT15 IWSLT16 12.7M
en-ro WMT16 WWT16 WMT16 11.0M
en-tr WMT17 WWT16 WMT16 11.1M
en-vi IWSLT15 IWSLT13 IWSLT14 11.9M

Table 4: Dataset statistics for each language pair. “La.
pair” means language pair and “OD Size” denotes the
number of the out-of-domain sentence pairs used for
training FastAlign.

Methods en-ja ja-en

MLSC 15.9 11.9
+align 16.3 11.5
+w2w (ours) 16.0 11.7
+FA (ours) 15.6 11.0

mBART FT 19.8 18.0
+align 19.6 17.5
+w2w (ours) 19.4 18.2
+FA (ours) 19.5 17.8

Table 5: BLEU scores of 222_en-ja system. Signifi-
cantly better scores are in cyan and marginal improve-
ments are in lightcyan. The significance test is done
with Koehn (2004).

A Tokenization Settings469

For Japanese, we use Jumanpp (Morita et al., 2015;470

Tolmachev et al., 2018) for segmentation and we471

following the setting in mBART (Liu et al., 2020)472

for other languages: myseg.py (Ding et al., 2020)473

is used for Burmese, Moses tokenization and spe-474

cial normalization is used for Romanian follow-475

ing (Sennrich et al., 2016),3 and Moses tokeniza-476

tion for other languages.4477

B Datasets and Alignment Extraction478

The datasets used for NMT training, validation479

and test are shown in Table 4. For the word align-480

ment extraction using FastAlign, we also use out-481

of-domain parallel corpora to train the FastAlign482

jointly, aiming to obtain word alignments with483

less noise. The out-of-domain corpora for all the484

3https://github.com/rsennrich/
wmt16-scripts

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

Methods en-ja

MLSC 3.3
+align 3.5
+w2w (ours) 73.5
+FA (ours) 69.6

mBART FT 88.9
+align 87.4
+w2w (ours) 85.2
+FA (ours) 84.8

Table 6: Sentence retrieval P@1 on the validation
set for 222_en-ja. The average of the contextual em-
beddings on top of the encoder is used as the sentence
embedding. We report the average score of forward and
backward retrieval precisions.

language pairs contain Tatoeba, Europarl, Glob- 485

alVoices, NewsCommentary, OpenSubtitles, TED, 486

WikiMatrix, QED, GNOME, bible-uedin, and AS- 487

PEC (Nakazawa et al., 2016). We collect them 488

from the OPUS project (Christodoulopoulos and 489

Steedman, 2015) and WAT.5 The number of the 490

out-of-domain parallel sentences for each language 491

pair is shown in Table 4. 492

C Implementation Details 493

Following Tang et al. (2020), we set the oversam- 494

pling temperature of 1.5 for all the settings. For 495

MLSC, we set the dropout of 0.3 to avoid overfit- 496

ting on small-scale training data. We used the batch 497

size of 1,024 tokens for all the settings. For our 498

word-level contrastive learning, we set the weight 499

of 0.1, the temperature of 0.2, d′ of 128, and a 500

smaller dropout of 0.2 because our proposed objec- 501

tive serves as a regularization part. We followed 502

the hyperparameter setting of Garg et al. (2019) 503

for word alignment-based joint NMT training. We 504

used 8 NVIDIA A100 for mBART FT and 8 TI- 505

TAN Xp for MLSC model training. The model is 506

validated every 1000 steps for 222_en-ja and 2000 507

steps for both two 626 settings. We do the early 508

stopping if no improvement of the validation loss 509

is observed for 8 checkpoints. The model with the 510

best validation loss was used for evaluation. 511

D BLEU Scores 512

We report all the BLEU results of 222_en-ja, 513

626_en-it-ja-nl-tr-vi, and 626_en-tr-ro-et-my-kk in 514

5https://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/index.html
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Methods
en-ja en-vi en-it en-nl en-tr

Avg.→ ← → ← → ← → ← → ←
MLSC 15.4 11.8 29.6 28.6 27.5 32.7 29.1 36.4 11.6 14.9 23.76

+align 15.1 11.4 29.4 28.3 27.7 33.0 28.9 36.0 11.8 15.1 23.67
+w2w (ours) 15.3 11.6 29.7 28.2 27.6 32.4 28.6 35.8 10.8 14.4 23.44
+FA (ours) 15.5 11.6 29.6 28.0 27.8 33.2 29.1 35.9 11.2 14.9 23.68

mBART FT 17.8 17.0 34.1 35.7 32.5 38.0 32.6 41.6 18.7 23.1 29.11
+align 17.6 16.7 33.7 35.6 32.0 37.7 32.5 41.3 18.7 22.9 28.87
+w2w (ours) 17.6 17.2 34.2 35.7 32.5 38.2 32.1 41.7 18.7 22.9 29.08
+FA (ours) 17.5 17.7 34.0 35.2 32.4 37.9 32.3 41.4 18.6 23.1 29.01

Table 7: BLEU scores of 626_en-it-ja-nl-tr-vi system. Significantly better scores are in cyan and marginal
improvements are in lightcyan. The significance test is done with Koehn (2004).

Methods
en-tr en-ro en-et en-kk en-my Avg.
→ ← → ← → ← → ← → ←

MLSC 9.3 12.6 25.0 26.2 10.8 15.1 0.5 5.3 15.1 15.6 13.55
+align 9.0 12.4 24.6 26.5 10.7 14.6 0.4 5.4 15.0 15.3 13.39
+w2w (ours) 9.4 12.6 24.8 26.8 10.8 15.1 0.5 5.8 15.2 15.9 13.69
+FA (ours) 9.1 12.2 24.8 26.7 10.7 14.8 0.3 5.6 15.0 15.6 13.48

mBART FT 17.7 22.2 33.8 37.1 14.5 24.3 1.8 14.1 17.8 23.1 20.64
+align 17.5 21.9 33.8 36.7 15.2 24.3 1.8 14.0 16.9 22.1 20.42
+w2w (ours) 17.6 22.2 34.2 37.5 15.0 25.0 1.2 14.1 18.3 23.8 20.89
+FA (ours) 17.5 22.2 34.3 37.5 14.9 25.1 1.3 14.4 17.9 23.6 20.87
+Sent (mRASP2) 17.2 22.0 34.0 36.8 14.1 24.2 1.8 13.7 17.5 23.4 20.47

Table 8: BLEU scores of 626_en-tr-ro-et-my-kk system. Significantly better scores are in cyan and marginal
improvements are in lightcyan. The significance test is done with Koehn (2004).

Methods en-ja en-vi en-it en-nl en-tr Avg.

MLSC 52.7 84.6 91.0 85.7 89.7 80.9
+align 53.5 82.8 91.2 86.4 88.9 80.6
+w2w (ours) 73.4 85.7 91.4 84.7 83.1 83.7
+FA (ours) 71.3 84.9 91.3 83.8 82.0 82.7

mBART FT 87.1 96.2 97.3 94.6 98.5 94.7
+align 85.1 95.8 97.3 94.2 98.5 94.2
+w2w (ours) 81.6 91.4 94.7 90.8 89.6 89.6
+FA (ours) 82.6 92.3 95.0 91.7 90.4 90.4

Table 9: Sentence retrieval P@1 on the validation
set for 626_en-it-ja-nl-tr-vi. Average of the contextual
embeddings on top of the encoder is used as the sentence
embedding. We report the average score of forward and
backward retrieval precisions.

Table 5, 7 and 8, respectively.515

E Sentence Retrieval Precision516

We report the sentence retrieval precisions for all517

the systems in Table 6, 9 and 10.518

Methods en-tr en-ro en-et en-kk en-my Avg.

MLSC 86.2 84.0 85.4 64.4 72.4 78.5
+align 85.9 82.4 84.0 61.3 61.8 75.1
+w2w (ours) 79.6 88.1 76.8 77.4 83.7 81.1
+FA (ours) 77.0 86.1 69.8 75.7 73.4 76.4

mBART FT 98.0 92.7 96.0 92.9 94.7 94.9
+align 97.4 92.5 97.0 92.1 93.7 94.5
+w2w (ours) 94.3 95.6 96.8 86.0 96.2 93.8
+FA (ours) 94.3 96.3 97.3 87.9 96.2 94.4
+Sent (mRASP2) 94.6 95.5 89.0 89.6 95.6 92.9

Table 10: Sentence retrieval P@1 on the validation set
for 626_en-tr-ro-et-my-kk. Average of the contextual
embeddings on top of the encoder is used as the sentence
embedding. We report the average score of forward and
backward retrieval precisions.
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