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Figure 1: Motion Generalist is an versatile method for generating high-quality, controllable human
motion under multimodal conditions, including text queries, background music and a mix of both.

ABSTRACT

Conditional motion generation has been extensively studied in computer vision,
yet two critical challenges remain. First, while masked autoregressive methods
have recently outperformed diffusion-based approaches, existing masking models
lack a mechanism to prioritize dynamic frames and body parts based on given
conditions. Second, existing methods for different conditioning modalities often
fail to integrate multiple modalities effectively, limiting control and coherence in
generated motion. To address these challenges, we propose Motion Generalist,
a multimodal motion generation framework that introduces an Attention-based
Mask Modeling approach, enabling fine-grained spatial and temporal control over
key frames and actions. Our model adaptively encodes multimodal conditions,
including text and music, improving controllability. Additionally, we introduce
Text-Music-Dance (TMD), a new motion dataset consisting of 2,153 pairs of text,
music, and dance, making it twice the size of AIST++, thereby filling a critical
gap in the community. Extensive experiments demonstrate that Motion Generalist
surpasses state-of-the-art methods across multiple benchmarks, achieving a 15%
improvement in FID on HumanML3D and showing consistent performance gains
on AIST++ and TMD.

1 INTRODUCTION

Human motion generation (Zhu et al., 2023) has been widely explored in recent years due to its
broad applications in film production, video gaming, augmented and virtual reality (AR/VR), and
embodied Al for human-robot interaction. Recent advancements in conditional motion generation,
including text-to-motion (Pinyoanuntapong et al., 2024b; Yuan et al., 2024; Hosseyni et al., 2024)
and music-to-dance (Siyao et al., 2022; Li et al., 2024b) models have shown promising potential



Under review as a conference paper at ICLR 2026

in 3D motion generation. These developments mark significant progress in generating motion se-
quences directly from textual descriptions and background music. However, despite extensive re-
search in motion generation, the field still faces two significant challenges.

(1) Recently, masked autoregressive methods —,--------------------ooeeeoeoov RIS |
(Pinyoanuntapong et al., 2024a; Guo et al., Random Masking fandom Masking (Previows) Mask Restoration :
2024) have shown a promising trend, outper-

forming diffusion-based methods (Tevet et al.,
2022; Chen et al., 2023; Zhang et al., 2023b).
However, existing masking models have been
underexplored in generating motion that priori-
tizes dynamic frames and body parts in motion | Attention-based Masking (Ours)
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(2) Although specialized and multitask meth-
ods (Gong et al., 2023; Zhou & Wang, 2023;
Zhang et al., 2024e; Bian et al., 2024) exist
for different conditioning modalities, they of- | L L e

ten overlook the importance of integrating mul- -
tiple modalities to achieve more controllable
generation, as shown in Table 1. For example,
enhancing music-to-dance generation with pre-
cise text descriptions can improve control and
coherence, whereas relying on only a single modality as a condition leads to underperformance.

Temporal Adaptive

Figure 2: Masking strategy comparison. The
previous random masking (Guo et al., 2024) (top)
vs. our attention-based masking (bottom).

Our motivation is to address these challenges by presenting an innovative method that tackles them
in a nutshell. To overcome the first challenge, we designed a conditional masking approach within
an autoregressive generation paradigm across both spatial and temporal dimensions, enabling the
model to focus on key frames and actions corresponding to the given condition, as shown in Figure
2. The conditional masking strategy also dynamically adjusts based on the modality of the condition,
whether it is text or music. To tackle the second challenge, we design our architecture to handle mul-
timodal conditions adaptively and simultaneously. From a temporal perspective, our model aligns
different input modalities to control motion generation in a time-sensitive manner. Meanwhile, from
a spatial perspective, it maps action queries to specific body-part movements and aligns music gen-
res with corresponding dance styles. Moreover, since multi-conditioning in motion generation is
underexplored, there is no motion dataset with paired music and text available in the current com-
munity. Hence, we have curated a new motion dataset with paired music and text as a benchmark to
help advance the community’s exploration of multimodal conditioning in motion generation.

In general, our contributions can be summarized as follows:

* We present Motion Generalist, an versatile framework that can seamlessly and adaptively
encode multimodal conditions for more controllable motion generation. This fills the gap
of multimodal conditioning in previous motion generation research and represents a signif-
icant improvement.

» For generating more controllable motion, we design an Attention-based Mask Modeling
approach across both temporal and spatial dimensions, focusing on key frames and key
actions corresponding to the condition. We further customize the mask transformer to
adaptively handle different modalities of conditions, enhancing motion generation by inte-
grating multimodal conditioning.

* For exploring multi-conditioning motion generation, we introduce the new Text-Music-
Dance (TMD) dataset, which includes 2,153 paired samples of text, music, and dance,
making it twice as large as AIST++ (Li et al., 2021). We also conducted extensive ex-
periments on standard benchmarks across multiple motion generation tasks. Our method
achieved a 15% improvement in FID on HumanML3D (Guo et al., 2022a) and consistent
improvement on AIST++ (Li et al., 2021) and TMD datasets.

2 RELATED WORKS

Text-to-Motion Generation. Recent advancements in human motion generation have skillfully
combined diffusion and autoregressive models, achieving more realistic, versatile, and scalable mo-
tion synthesis. Foundational work like MDM (Tevet et al., 2022) introduced a transformer-based
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Table 1: Methods comparison. Either single-task or multi-task models can handle only one condi-
tion at a time, overlooking the importance of integrating multiple modalities for more controllable
generation. Our Motion Generalist introduces an innovative approach that encodes different modal-
ities simultaneously and adaptively for more controllable generation.

Models Text-to-Motion  Music-to-Dance  Text and Music to Dance
TM2D (Gong et al., 2023) v v X
UDE (Zhou & Wang, 2023) v v X
UDE-2 (Zhou et al., 2023b) v v X
MokFusion (Dabral et al., 2023) v v X
MCM (Ling et al., 2024) v v v
LMM (Zhang et al., 2024e) v v X
MotionCraft (Bian et al., 2024) v v X
MagicPose4D (Zhang et al., 2024c) X X X
STAR (Chai et al., 2024) v X X
TC4D (Bahmani et al., 2025) v X X
Motion Avatar (Zhang et al., 20241) v X X
Motion Generalist (Ours) v v v

diffusion approach for lifelike, text-driven motion generation. Expanding on this, MotionDiffuse
(Zhang et al., 2024d) added refined control and diversity mechanisms, while MLD (Chen et al.,
2023) boosted efficiency by operating within a latent space, reducing computational demands with-
out sacrificing quality. Motion Mamba (Zhang et al., 2025) addressed the challenge of generating
longer sequences, and ReMoDiffuse (Zhang et al., 2023b) further enriched motion variability by
incorporating retrieval-augmented diffusion. Meanwhile, autoregressive models like MoMask (Guo
et al., 2024) enhanced temporal coherence through generative masked modeling, selectively re-
vealing segments of the motion sequence. BAMM (Pinyoanuntapong et al., 2024a) introduced a
bidirectional model to capture detailed motion with forward and backward dependencies. Infini-
Motion (Zhang et al., 2024h) optimized transformer memory to support extended sequences, and
KMM (Zhang et al., 2024¢) prioritized essential frames to balance continuity and computational ef-
ficiency. MoGenTS (Yuan et al., 2024) added spatial-temporal joint modeling for further structural
consistency in generated motions.

Music-to-Dance Generation. Recent work in music-driven dance generation has leveraged autore-
gressive and diffusion-based models to achieve more synchronized, diverse, and controllable dance
motions. TSMT (Li et al., 2020) pioneered using transformer architectures to model complex dance
motions. Subsequently, early methods like DanceNet (Zhuang et al., 2022) and Dance Revolution
(Huang et al., 2021) customize autoregressive and sequence-to-sequence models to establish foun-
dational mappings between music and movement. FACT (Li et al., 2021) and Bailando (Siyao et al.,
2022) build upon this by incorporating 3D motion data and actor-critic memory models to capture
richer choreography, and Bailando++ (Siyao et al., 2023) enhances this framework further for re-
fined generation quality. EDGE (Tseng et al., 2023) introduces user-editable dance generation for
greater customization. In recent work, Lodge (Li et al., 2024b) and Lodge++ (Li et al., 2024a) apply
coarse-to-fine diffusion methods to extend sequence length and create vivid choreography patterns,
while Beat-It (Huang et al., 2024b) achieves beat-synchronized dance generation under multiple
musical conditions. Lastly, the BADM (Zhang et al., 2024a) merges autoregressive and diffusion
models, producing coherent, music-aligned dance sequences. Together, these works illustrate the
field’s progression toward high-fidelity dance generation tightly integrated with musical features.

Multi-Task Motion Generation. Human motion generation has evolved through multi-modal ap-
proaches, enabling contextually adaptive synthesis across diverse inputs like music, text, and visual
cues. TM2D (Gong et al., 2023) introduced a bimodal framework integrating music and text for
3D dance generation, using VQ-VAE to encode motion in a shared latent space for flexible con-
trol. MotionCraft (Bian et al., 2024) builds on this by offering whole-body motion generation with
adaptable multi-modal controls, from high-level semantics to specific joint details. MCM (Ling
et al., 2024) further employs a transformer-based model to process varied inputs—text, audio, and
video—generating motion that reflects both style and context. LMM (Zhang et al., 2024¢) extends
these capabilities by integrating large-scale pre-trained models for complex human motion across
modalities. Meanwhile, UDE (Zhou & Wang, 2023) provides a cohesive framework for motion
synthesis, and UDE-2 (Zhou et al., 2023b) expands this to synchronize multi-part, multi-modal
movements. MoFusion (Dabral et al., 2023) complements these advances with a diffusion-based
denoising framework focused on robustness and quality in diverse motion styles. These works col-
lectively guide the field toward adaptive, multi-modal, and context-aware human motion generation.
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Figure 3: Motion Generalist architecture. The multimodal architecture consists of several key
components: (a) temporal and (c) spatial attention-based masking, (b) motion generator, and (d) a
single block of motion generator. These components enable the model to learn key motions cor-
responding to the given conditions, and facilitate alignment between multi-modal conditions and

motion features.
3 METHODOLOGY

3.1 OVERVIEW

Motion Generalist presents an innovative ver-
satile approach that generates controllable hu-
man motion by focusing on the dynamic and
significant parts of human motion sequences
and adaptively aligning with different condition
modalities. As shown in Figure 3, Motion Gen-
eralist can take different modalities either sepa-
rately or simultaneously, enabling multimodal
conditioning to enhance controllable motion
generation instead of relying on a single condi-
tion. The conditions are first encoded by text
and audio encoders, then used to guide both
masking and motion generation. We propose
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Figure 4: Attention map. The attention map pro-
vides a direct visualization of our attention-based
masking approach, which selectively masks re-
gions in the motion sequence with high attention

an attention-based masking approach that iden- scores.

tifies the most significant parts of the motion corresponding to the conditions across both spatial
and temporal dimensions by selecting high-attention scores as masking guidance. The guided mask
tokens, along with condition embeddings, are then fed into a masked transformer for guided mask
restoration. We customize masked transformers into a Temporal Adaptive Transformer and a Spatial
Aligning Transformer to adaptively align overall control and specific actions to the motion sequence.

3.2 ARCHITECTURE

Attention-based Masking. The core of attention-based masking involves guiding the condition
modality to select key frames in the temporal dimension and key actions in the spatial dimension,
allowing for the masking of these motions. As shown in the attention map in Figure 4, both temporal
and spatial attention rely on either self-attention or cross-attention (Vaswani, 2017), depending on
the condition modality. The condition serves as query (), and motion serves as key K and value V,
where the condition can be text, audio, or a combination of both. This process highlights specific
regions in the attention map, indicating the key motions. We designed attention-based masking
on both temporal and spatial dimensions to ensure the model focuses on learning key frames and
joints in the motion sequence that correspond to the conditions, as shown in Figure 3 (a) and (c).
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This enables the model to learn more robust motion representations compared to traditional random
masking (Guo et al., 2024; Yuan et al., 2024).

As shown in Appendix B Algorithm 1, given a motion sequence M, a condition C, and a masking
ratio «, the model masks the top a% of attention scores, which represent the most important motions
that are also most relevant to the corresponding condition.

Temporal Adaptive Transformer. Table 2: Quantitative comparison on AIST++ (Li et al.,
The Temporal Adaptive Transformer 2021). The best and runner-up values are bold and
(TAT) aligns the temporal tokens of underlined. Multimodal motion generation methods are
the motion sequence with the tempo- highlighted in blue.

ral condition by dynamically adjust-

ing its attention calculation according Motion Quality _Motion Diversity
to the modality of the condition. This ~_Method FID | FID,{ Divif Div,t BAST
enables the TAT to align key frames ~_Croud Truth 1710 1060  8.19 745  0.2374
¢ . th s i 4 TSMT(ietal,2020) 8643 4346 685 332 0.1607
of motion with keywords 1n text an Dance Revolution (Huang et al., 2021) 7342 2592 352 487  0.1950
beats in music. DanceNet (Zhuang et al., 2022) 69.18 25.49 2.86 2.85 0.1430
MoFusion (Dabral et al., 2023) 50.31 - 9.09 - 0.2530
. . . EDGE (Tseng et al., 2023) 4216 2212 396 461 02334
As shown in Appendix B Algorithm 2 [ogge (i et 1. 20340) 37.09 1879 558 485 02423
and Figure 3 (d), after attention-based ~ FACT (Li ctal. 2021) 3535 2211 594 618 0.2209
. ’ Bailando (Siyao et al , 2022) 2816 962 783 634 02332
masking, the key frames of the mo-  T™2D (Gong et al., 2023) 2394 953 769 453 02127
820 676 02366

tion sequence are masked. The TAT ~ PADM (Zhane ctal, 20540

22?()8 21:97 9.85 6.72 0.2249

. 17.59 10.10 8.64 6.50 0.2720
by restoring the masked frames with ﬁ%&(ﬁ‘ﬂi S A S S s
guidance from the condition. If the  Motion Generalist (Ours) 17.22 856 991  6.79 02757
condition consists only of text, it con-

tains a single token in the temporal dimension from CLIP, making self-attention in the temporal
dimension more suitable. Otherwise, the motion sequence serves as (), and the condition serves as
KV, performing cross-attention to align the temporal information of the motion with music or the
combination of music and text. This enables the Temporal Adaptive Transformer to become more

adaptable and robust for different modalities of input conditions.

then learns the motion representation  Bailando++ (¢

Spatial Aligning Transformer. In the Spatial Aligning Transformer (SAT), both the condition
and motion embeddings are rearranged to expose the spatial dimension. As shown in Appendix
B Algorithm 3 and Figure 3 (d), during attention-based masking, the key action in each frame,
which refers to the key motion of a specific body part in the spatial dimension, is masked. The SAT
restores this feature with the guidance of the spatial condition. Aligning the spatial pose in each
frame with the spatial condition is essential, especially in text-to-motion generation, where certain
keywords describe specific body parts. In music-to-dance generation, the spectrum of each audio
frame indicates the music genre (Tzanetakis & Cook, 2002; Lee et al., 2009), which is crucial for
generating the appropriate type of dance.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

TMD Dataset. Our Text-Music-Dance (TMD) dataset introduces a pioneering benchmark with
2,153 pairs of text, music, and motion. We extract dance motions and corresponding text annotations
from Motion-X (Lin et al., 2024), including AIST++ (Li et al., 2021) and other datasets. For motion-
text pairs without music, we generate corresponding music by implementing Stable Audio Open
(Evans et al., 2024) with beat adjustment and evaluate the generated music through human expert
assessments, ensuring inter-rater reliability.

Public Benchmarks. To ensure a fair comparison, we evaluate our method against both specialized
and unified motion generation approaches on standard benchmarks including HumanML3D (Guo
et al., 2022a) and KIT-ML (Plappert et al., 2016) for text-to-motion generation, and AIST++ (Li
et al., 2021) for music-to-dance generation.

Evaluation Metrics. We adapt standard evaluation metrics to assess various aspects of our experi-
ments. For text-to-motion generation, we implement FID and R precision to quantify the realism and
robustness of generated motions, MultiModal Distance to measure motion-text alignment, and the
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Table 3: Quantitative comparison on HumanML3D (Guo et al., 2022a) and KIT-ML (Plappert
et al., 2016). The best and runner-up values are bold and underlined. The right arrow — indicates
that closer values to ground truth are better. Multimodal motion generation methods are highlighted
in blue.

Datasets Method R Precision 1 FID]  MultiModal Dist) Diversity— MultiModality?
Top 1 Top 2 Top 3
Ground Truth 0511008 ,703+003 07974002 g gp2+000 2.974+008 9.503%+065 -
TM2D (Gong et al., 2023) 0.319%:000 - - 1.021%:000 4.098%:000 9.513+000  4.139+000
MotionCraft (Bian et al., 2024) 0.501%093 06975003 (796002 (),173+:002 3.025+008 9.543+:098

2023b) 0.510%:095 0,698+ 006 (795001 (.103+001 2.974+016 9.018+07 1.795+:043
,2024b)  0.504%F003  0.696F003  0.794+002 0g0* 003 2.998+007 9.411%+058 1.164%+041

ReMoDiffuse (Z
MMM (Pinyoanuntay

P;I“L“;%‘ DiverseMotion (Lou et al., 2023) 0515500 0706002 0,802 0,072+ 2.941+:007 9.683+1% 1.869% 089
(Guoetal, 20220)  BAD (Hosseyni etal., 2024) 0.5175002 07135003 88008 0, 0p5E-008 2.901+:008 9.694+068 1.194%:044
’ BAMM (Pinyoanuntapong et al., 2024a)  0.5255002  0.720%003 (814003 ( 055%002 2.919+008 9.717+089 1.687+:051
MCM (Ling et al., 2024) 0.5025092  ,692+:004 (788006 () 053+:007 BI03EE00s 9.585% 082 0.810%023
MoMask (Guo et al., 2024) 0.521F002 (7135002 (. go7+002 (0454002 2.958+008 - 1.241+:040
LMM (Zhang et al., 2024e) 0.525%002  0.719%:002 (. 811F002 (040002 2.943+012 9.814+076 2.683%054
MoGenTS$ (Yuan et al., 2024) 0.520%093 0719002 819+002 33+ 001 2.867+006 9.570+077 -
Motion Generalist (Ours) 0.546%00%  0.735%002  .829%002 (,028%00 2.859%:010 @EPIE=ED 2.705%068
Ground Truth 0.424+005 0,649+ 006 0.779+006  ,031+004 2.788%+012 11.08+097 -
ReMoDiffuse (Zhang et al., 2023b) 0.427F 01 06415000 .765F0%  (.155+000 2.814%012 10.80%105 1.239+:028
MMM (Pinyoanuntapong et al., 2024b) ~ 0.404%00%  (,6215:005 (744001 316+:028 2.977+019 10.91%101 1.232+:039
DiverseMotion (Lou et al., 2023) 0.4165005  0.6375005  0.760%011  0.468%0% 2.892+041 10.87+:101 2.062+07
KIT- BAD (Hosseyni et al., 2024) 0.417+06  0,631%000  0.750%000  0.221%012 2.941+0% 11.00%100 1.170+047
BAMM (Pinyoanuntapong et al., 2024a)  0.438%009  0,661+009 (788005  (),183+:013 2,723+026 11.01+09 1.609%005
(Plappert et al., 2016)  MoMask (Guo etal,, 2024) 0433597 0.656%9°  0.781%9%°  (.204= 1" 2.779%022 - 11315043
’ LMM (Zhang et al., 2024e) 0.430%015 06535017 (.779F014  0.137+02 2.791%018 1124E103 1.885+127
MoGenTS$ (Yuan et al., 2024) 0.445%006 0 6715006 797005 5 143+004 2.711%+02 10.92%:090 -
Motion Generalist (Ours) 0.449%°07  0.678%01  0.802+ ¢ 0.131%003 2.705%:021 10.94%:098 il =

Table 4: Quantitative comparison on TMD. The best and runner-up values are bold and
underlined.

Motion Quality =~ Motion Diversity

Method FID, | FID,| Divyt Divy,t BAST MMDist, MModality?
Ground Truth 20.72 11.37 7.42 6.94 0.2105 5.07 -
TM2D (Gong et al., 2023) 26.78 12.04 6.25 4.41 0.2001 6.13 2.232
MotionCraft (Bian et al., 2024)  24.21 26.39 7.02 5.79 0.2036 5.82 2.481
Motion Generalist 21.46 1144 7.04 6.15 0.2094 5.34 2.424

diversity metric to calculate variance in motion features. Additionally, we apply the multi-modality
(MModality) metric to evaluate diversity among motions sharing the same text description. For
music-to-dance generation, we follow AIST++ (Li et al., 2021) to evaluate generated dances from
three perspectives: quality, diversity, and music-motion alignment. For quality, we calculate FID be-
tween the generated dance and motion sequence features (kinetic, FIDy, and geometric, FID) using
the toolbox in (Gopinath & Won, 2020). For diversity, we compute the average feature distance as
in AIST++ (Li et al., 2021). For alignment, we calculate the Beat Align Score (BAS) as the average
temporal distance between music beats and their closest dance beats.

4.2 MODEL AND IMPLEMENTATION DETAILS

Our model consists of 2 TAT and 2 SAT layers, with 12.65M parameters and 137.35 GFLOPs. The
learning rate increases to 2 x 10~# after 2000 iterations using a linear warm-up schedule for all
models. The mini-batch size is set to 512 for training the VQ-VAE tokenizer and 64 for training the
masked transformers. All experiments were conducted on an Intel Xeon Platinum 8360Y CPU at
2.40GHz, equipped with a single NVIDIA A100 40GB GPU and 32GB of RAM.

4.3 COMPARATIVE STUDY

Text-to-Motion. We compared our method with other state-of-the-art approaches on both Hu-
manML3D (Guo et al., 2022a) and KIT-ML (Plappert et al., 2016). The results in Table 3 demon-
strate that our method consistently outperforms specialized text-to-motion models and surpasses
recent multi-task methods.

Music-to-Dance. To highlight the music-to-dance capability of our method, we conducted evalua-
tions on AIST++ (Li et al., 2021). The results in Table 2 indicate that our method surpasses previous
state-of-the-art specialized and unified approaches, demonstrating superior motion quality, enhanced
diversity, and better beat alignment in music-to-dance generation.
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Figure 5: Qualitative evaluation on text-to-motion generation. We qualitatively compared the vi-
sualizations generated by our method with those produced by BAD (Hosseyni et al., 2024), BAMM
(Pinyoanuntapong et al., 2024a), and MoMask (Guo et al., 2024).

Table 5: Ablation study of the masking strategy on HumanML3D (Guo et al., 2022a). The best
and runner-up values are bold and underlined. The right arrow — indicates that closer values to
ground truth are better.

R Precision 1

Method FID| MM Dist|  Diversity— MModalityt
Top 1 Top 2 Top 3

Ground Truth 0.511%093  (,703%£:003  (.797+002 () 002+:000  2.974%-008 g 5(3+.065 -
Random Masking (Guo et al., 2024) 0.522+:004 (714003 (0 g18+006 () 0g9+:023 99458027 g 633+218 9 5384035
KMeans (Lloyd, 1982) 0.528F:003 (709004 (893006 (425032 9 g7 E035 g 59T 9 58023
GMM (Reynolds et al., 2009) 0.531+:002 7215004 g6+ 008 (39+:021 9 gR7E02M g gpat138 9 g8+ 031
Confidence-based Masking (Pinyoanuntapong et al., 2024b)  0.524%007  0,731%:000 818001 0,047%023  9.998%009 9 530+09% 9 574+.059
Density-based Masking (Zhang et al., 2024g) 0.538%005  .733%:002 (0 g19*F006 (31035 99138021 g 518F138 2608043
Attention-based Masking 0.546+09  0.735%002  .829+002 0,028+ 00% 2859F010 521+083 2 705+008

Text-and-Music-to-Dance. For paired text-and-music-to-dance (TM2D) generation, we evaluated
open-source multimodal motion generation methods by directly combining their condition embed-
dings and compared them with our approach on the TMD dataset. The results in Table 4 demonstrate
superior performance by our method when handling different modalities simultaneously.

4.4 ABLATION STUDY

Masking Strategy. To evaluate the effectiveness of our attention-based masking approach across
both temporal and spatial dimensions, we conducted comprehensive experiments on HumanML3D
(Guo et al., 2022a), comparing it to other masking strategies such as random masking (Guo et al.,
2024; Yuan et al., 2024), KMeans (Lloyd, 1982), GMM (Reynolds et al., 2009), confidence-based
masking (Pinyoanuntapong et al., 2024b), and density-based masking (Zhang et al., 2024g). The
results in Table 5 demonstrate that our attention-based masking outperforms these other strategies
in human motion generation, yielding promising results for learning robust motion representations.

Masking Ratio. To demonstrate the robustness of our method across various hyperparameters and
the impact of different masking ratios on overall performance, we conducted comprehensive ablation
studies with different attention-based masking ratios on HumanML3D (Guo et al., 2022a), as shown
in Table 6. We conducted an ablation study on the masking ratio for temporal and spatial attention-
based masking separately. The results show that our method is relatively robust across different
masking ratios, with 30% identified as the superior setting in our paper.

Cross-modal TAT for Text-to-Motion. To verify the necessity of self-attention in the Temporal
Adaptive Transformer (TAT) for text-to-motion generation, we modified a cross-modal attention
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Table 6: Ablation study of masking ratio on HumanML3D (Guo et al., 2022a). The best and
runner-up values are bold and underlined. The right arrow — indicates that closer values to ground
truth are better.

R Precision 1
Top 1 Top 2 Top 3
Ground Truth ~ 0.511%003  (.703+003  (.797+:002 (o 0p2+:000 2 g74+.008 g 5(3+.065

T:15% S:15%  0.523+095  0.7161:002  (.818F005 (0475034  2920%026  gg25t145 2 580+ 064
T:15% S:30%  0.529+:002  (.718+:005 (829003 ( 4q+046  9914+:023 g 573+163 9 371+.024
T:15% S:50%  0.530%:092  0.715%:007  (.820F007 (0455035  2.918+:019 g 632+217  9611%+:0%6

T:30% S:15%  0.535+:007  0.728+001  (,823+004  036+027  92.873+037 9527+ 116 9 709+027
T:30% S:30% 0.546=°03 0.735+002 (.829+:002 ( 028+005 2859+010 9p521+083 9 7(5+.068
T:30% S:50%  0.541%:004  0.7261003  (.821+005  ,033+:035  9926+051  9519+196 9 710+037

T:50% S:15%  0.525+:005  0.720%:003  (.820F 009  (,043%+028  2.940*04  9620F 134 2584063
T:50% $:30%  0.525%007  0.723%004 .819500T  0,040%042  2.937F0%8 9 17% 115 2.701%03
T:50% S:50%  0.524%:006  (.712+:003 (9 go9+006 () 48+025 9 gq3+.037 g g23+153 9 go025

Table 7: Ablation study of the TAT on HumanML3D (Guo et al., 2022a). The best values are
bold. The right arrow — indicates that closer values to ground truth are better.

Method FID| MM Dist]  Diversity— MModalityt

R Precision 1
Top 1 Top 2 Top 3
Ground Truth 0.511%F003  ,703+003 (797002 (,002%+:000 9 g74+:008 g 5()3+.065 -

Cross-modal Attention ~ 0.347+006  (.587%:007 (. 726%:005 583+ 024  3356%+022 g (32%153 9 153+:056
Motion Generalist 0.546%003 7355002 (. 829+002 (028+005 2859+010 95214083 g 75+068

Method FID] MM Dist|  Diversity— MModalityT

Table 8: Single-modal vs. multimodal generation on TMD dataset.

Motion Quality ~ Motion Diversity

Method FID, | FID,|] Divyt Divyt BAS{ MMDist] MModalityf
Ground Truth 20.72 11.37 7.42 6.94 0.2105 5.07 -
Motion Generalist w/o text ~ 25.07 14.23 6.95 6.01 0.2077 6.24 2.398
Motion Generalist 21.46 11.44 7.04 6.15 0.2094 5.34 2.424

layer in TAT to resemble the setup implemented for music-to-dance and text&music-to-dance gen-
eration. The results in Table 7 indicate that the cross-modal attention layer performs worse compared
to the self-attention layer in TAT for text-to-motion on HumanML3D (Guo et al., 2022a). This un-
derperformance can be attributed to the fact that the text embeddings from CLIP consist of only a
single token along the temporal dimension. Consequently, the temporal dimension does not align
with the motion embeddings, making it unsuitable for effective cross-modal fusion with motion in
the temporal context.

Effectiveness of Multimodal Conditioning. To evaluate the effectiveness of multimodal condition-
ing, we examine whether paired text descriptions enable more controllable music-to-dance genera-
tion and whether our versatile method can seamlessly leverage both conditions. We conduct ablation
studies on multimodal conditioning using our TMD dataset, comparing it with the single-condition
setting using only music. The results in Table 8 demonstrate that introducing multimodal condi-
tioning is more effective than using a single modality, and our model can effectively and adaptively
handle multimodal conditions.

Number of Layers. To investigate the impact of our model by varying the number of layers N
in masked transformers, we conduct ablation studies on HumanML3D. Table 9 demonstrates the
robustness of our model across different layer configurations.

4.5 QUALITATIVE EVALUATION

Text-to-Motion Generation. To qualitatively evaluate our performance in text-to-motion gener-
ation, we compare the visualizations generated by our method with those produced by previous
state-of-the-art methods specializing in text-to-motion generation, including BAD (Hosseyni et al.,
2024), BAMM (Pinyoanuntapong et al., 2024a), and MoMask (Guo et al., 2024). The text prompts
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Music Bailando Motion Generalist

Marshall Jefferson -
Move Your Body
(Chicago House)

Stardust - Music
Sounds Better With
You (French House)

Paul Kalkbrenner -
Sky and Sand (Tech
House)

Figure 6: Qualitative evaluation on music-to-dance generation. We qualitatively compared the
visualizations generated by our method with those produced by EDGE (Tseng et al., 2023), Lodge
(Li et al., 2024b), and Bailando (Siyao et al., 2022).

Table 9: Ablation study of number of layers on HumanML3D (Guo et al., 2022a).

R Precision 1

Method FID) MM Dist|  Diversity— MModality?
Top 1 Top 2 Top 3

Ground Truth ~ 0.511%+:003 (703003 (.797+:002 (9 p2+-000  9974+008 g 5()3+.065 -

N=2 0_521i.006 0.725i.008 0.819i'005 0.079:&,019 2_916i.033 9.598i'117 2_503i.024

N=4 0.5461003  0.735%:002  (g29+:002 ( 028+005 2859+010 9591083 9 7(5+.068

N=6 0.541%F007  .733%:002 896+ 010 (g 029+ 004 9 g61+010 g 517094 9 g73+019

N=8§ 0.544:(:009 0.734:(:.003 0.826i'007 0.028i‘014 2.851i‘011 9.519:(:.057 2'711:(:.032

are customized based on the HumanML3D (Guo et al., 2022a) test set. As shown in Figure 5 and
video demos, our method generates motions with superior quality, greater diversity, and better align-
ment between text and motion compared to the previous state-of-the-art methods.

Music-to-Dance Generation. To evaluate the quality of our music-to-dance generation, we com-
pare the dances generated by our method against those from state-of-the-art approaches, including
EDGE (Tseng et al., 2023), Lodge (Li et al., 2024b), and Bailando (Siyao et al., 2022). Training on
AIST++ (Liet al., 2021), we ensure the evaluation reflects diverse musical styles. As shown in Fig-
ure 6 and demonstrated in the accompanying videos, our method produces dances with better visual
quality and achieves superior alignment with the beat and genre of the music, surpassing previous
state-of-the-art techniques.

5 CONCLUSION

In conclusion, Motion Generalist presents a significant forward to motion generation by enabling
adaptive and controllable multimodal conditioning. Our model introduces the attention-based mask-
ing within an autoregressive framework to focus on key frames and actions, addressing the challenge
of prioritizing dynamic frames and body parts. Additionally, it bridges the gap in multimodal motion
generation by aligning different input modalities both temporally and spatially, enhancing control
and coherence. To further advance research in this area, we introduce the Text-Music-Dance (TMD)
dataset, a pioneering benchmark with paired music and text. Extensive experiments demonstrate
that our method outperforms prior approaches, achieving substantial improvements across multiple
benchmarks. By tackling these challenges, Motion Generalist establishes a new paradigm for motion
generation, offering a more versatile and precise framework for motion generation.
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APPENDIX

A LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.

B ALGORITHMS

Algorithm 1 Attention-based Masking

1: Input: Motion M, Condition C, Masking Ratio «
Define: T: Text space, D: Audio space
Step 1: Define temporal Qlemp> K temp Memp and Spatial Qspatiala K spatial y VvspaliaI
if C € T then
Qtemp7 Ktemp7 V;emp — (C7 M)7 (C7 M)7 (C7 M)
Qspaliab Kspatiala ‘/;palial «— C7 M7 M
else if C € D or C € TN D then
Qtemp7 Ktemp7 VIemp — C> M, M
Qspalialv Kspatiala V;palial «— C7 M7 M
10: end if
11: Step 2: Compute Attention Scores
12: Aiemp = AttentionScore(Qiemp, Kiemp)
13: Aspatial = Attentionscore(Qspatiala Kspatial)
14: Step 3: Apply Masking
15: Sort Aemp and mask top a percent: maskiemp = {7 | Atemp,s in top a%}
16: Sort Agpaiia and mask top o percent: masKgpaciat = {% | Aspatiar,; in top %}
17: Output: Masked motion sequence M, sked

2

Algorithm 2 Temporal Adaptive Transformer

1: Input: Motion M, Condition C, Mask Ratio «
Define: T: Text space, A: Audio space
Step 1: Apply Attention-based Masking to M
Mnasked < Attention-based Masking(M, C, «)
Step 2: Define Q, K, V
if C € T then

Qa K7 V o+ (07 Mmasked)» (07 Mmasked)y (07 Mmasked)
elseif C € A or C € TN A then

Q7 Ka V Mmasked; Ca C
10: end if
11: Step 3: Compute Temporal Attention
12: Miestorea = Attention(Q, K, V)
13: Qutput: Restored Motion Sequence M egtored

A A ol

b

Algorithm 3 Spatial Aligning Transformer

1: Input: Motion M’, Condition C’, Mask Ratio «
Step 1: Apply Attention-based Masking to M’
M asked < Attention-based Masking(M/, C’, a)
Step 2: Define Q, K, V

Qa K7 Vi« Mlmasked; C/a c’

Step 3: Compute Spatial Attention

M (estored = Attention(Q, K, V)

Output: Restored Motion Sequence M/ egtored
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Table 10: Comprehensive comparison on HumanML3D (Guo et al., 2022a) and KIT-ML (Plap-
pert et al., 2016). The best and runner-up values are bold and underlined. The right arrow —
indicates that closer values to ground truth are better. Multimodal motion generation methods are
highlighted in blue

R Precision

Datasets Method FID| MultiModal Dist| ~ Diversity—  MultiModality?
Top 1 Top 2 Top 3
Ground Truth 0.511%:003  0.703+003  0.797+:002  (,002+-000 2.974+:008 9.503+-005 -
TEMOS (Pum\mh etal., 2022) 0.424%:002 0 6125002 7225002 3 7345028 3.703+:008 8.973+071 0.368+:018
TM2T (Guo et al., 2022b) 0.424+003 06185003 7295002 1,501%017 3.467+011 8.580F 076 9.494%098
T2M (Guo et al., 2022a) 0457002 0,639+003 (740003 1 067002 3.340+:008 9.188:+:002 2.090+:083
TM2D (Gong et al., 2023) 0.319+:000 - - =D 4.098+000 9.513+E000  4.139+000
MotionGPT (Zhang et al.) (Zhang et al., 2024f) ~ 0.364=005 (5335003 ( 629=004  ( go5+=002 3.914F013 9.972+:026 2.473+041
MotionDiffuse (Zhang et al., 2024d) 04915000 0,6815001  ,782%:001  (0,630%-001 3.113%001 9.410%04 1.553+:042
MDM (Tevet et al., 2022) 0.3205:005 04985004 06115007 0 54q=044 5.566+027 9.559%+:050 2.799%:072
MotionLLM (Wu et al., 2024) 0482004 06725003 0770002 (.491+019 3.138=010 9.838+:244
MLD (('h“] et a 202 ;) D_qxll 003 U.ﬁ73l 003 0.772% 002 [j_473i’('13 &lm\»“L.mO ‘.).724i 082
1()27;) 0.497 +.003 0.682 +.002 0.763% 003 3.134 +.010
,2024) 0.5025:003,698+:002  (.798+:002 3.012+:007 9.607°+:000 2
ang et al., 2025) 0.5025005 6935002 ,792%:002 u 2814009 3.060%0%% 9.871H08 9 9gq.058
Human Fg-T2M (Wang et al., 2023b) 04925002 0,683500% 0,783 002 243019 3.109%007 9.2785072 1,614%019
ML3D MotionGPT (Jiang et : ctal, 2023a) 04925098 0,681500% 778002, 239%.008 3.096+00% 9.5285071 9,008+ 08
(Guoetal,, 20222)  MotionGPT-2 ( 04964002 0,691£:00% 0782001 ,191+00 3.080%013 9.860+020 21374022
MotionCraft (Bian et al., 2024) 0.501509% 0,697500%  0.796=°02  0.173*0% 3.025%008 9.543%09% =
FineMoGen (Zhang et al., 2023¢) 0.504%002 0,690002  0.7845002  0,151%0%% 2.998+008 92635090 26067
T2M-GPT (Zhang et al., 2023a) 04925005 0,679%002 07755002 (,141%00 3.121%:00 9.72250%2 1831048
GraphMotion (Jin et al., 2024) 0.504%00%0,699%:002 07855002 0,116+ 3.070%00% 9.60250°T  2.766%09
EMDM (Zhou et al., 2023a) 04985007 0,6845006 07865000 0.112%01 3.110%0%7 9.551507 16415078
AUT2M (Zhong et al., 2023) 0499005 0,690%002  0.786=°02  0.112*0% 3.038%007 9.700%0 45201
GUESS (Gao et al., 2024) 0.5035005 06885002 0.7875002 (109007 3.006%007 9.826+ 101 0100
ParCo (Zou et al., 2024) 0.515500% 0,706+ 0.109%0% 2.927+:008 9.576+ 0% 2:+060
ReMoDiffuse (Zhang et al., 2023b) 0.5105095  (,698+:000 0.103%:004 2.974+016 9.018%+07 1.795%043
MotionCLR (Chen et al., 20242) 0.542%:001 (733002 0.099%:003 2.981+01 - 2.1455043
StableMoFusion (Huang 2024a) 05535003 7485002 (gq1E002 () og 003 - 9.748%:092 1.774%051
MMM (Pinyoanuntapong et al., 2024b) 05045003 0,696+500%  .7945002  (0,080+003 2.998+:007 1.164* 041
DiverseMotion (Lou et al., 7“‘77;) 0_515L 003 U.706l 002 0.802% 002 0_[)72L 004 29411“007 l_gsgt,osﬁ
BAD (Hosseyni et al., 2024) 0.5175:002 (7135005 (. gpg* 003 ( 065+ 003 2.901+:008 4 1.194%014
BAMM (Pinyoanuntapong et al., 2024a) 0.525%:002(,720%003 (814003 (055002 2.919%:008 0 717‘ 089 1.687+051
MCM (Lln 202 0_502i 002 0.692* 004 0_788:.006 0. 0031 007 3'0371;.00.1 9.085* 082 0_81('i,023
MoMask (Guo et 0.5215:002 7135002 . gp7+:002 () 045+002 2.958°+:008 - 1.241+:010
LMM (/ 2 0. dzri 002 0_719i.(\()2 0.811:'"“2 0_0401 002 2»9431.012 9.8141 076 Zﬁgsi 054
MoGenTS (Yuan et al. 0.529F:003 (.719%002 8125002 (033001 2.867+000 9.570%+077 -
Motion Generalist (Ours) Mt.uu:& 0.7355002 (899002 0.028%005 2.859+ 010 9.521%083 2.705+-068
Ground Truth 0.424+095  0.649%006  0.779%006  ,031%004 2.788+ 012 11.08%097 -
TEMOS (Petrovich et al., 2022) 0.353+5006 .5615007 6875005 3.717+:051 3.417+019 10.84*:100 0.532+:034
TM2T (Guo et al., 2022b) 0.280%:005  .463+:006 . 587+:005 3 599153 4.591+:026 9473+ 117 3.202% 081
T2M (Guo et al., 2 0.3705005 0,569 2.770%:109 3.401+008 10.91%119 1.482%:065
MotionDiffuse (Zhang et al., 2024d) 0.4175:001 0 621004 1.954%:062 2.958+:005 11.10%113 0.753%:013
0.164%004  (,291+:004 0.497+:02 9.190%+:022 10.85%109 1.907%:214
OL 003 0.609* 003 0_404L 013 3,204‘1"“]0 10_801 082 2 192L 079
SL 003 U.ﬁzf)* 005 [J_F,OQ‘L'(M(J 3,012‘4““]5 11_381 079 SL 045
al., 2025) 9006 (), 45%005 0.307+:041 3.021+0% 11.02%09% 1.678%061
Fg—T2M(\\ngul ;n.,zoth) 0.4185:005  ,626+00¢ 0.571%:047 3.114%:015 10.93+083 1.019%029
MotionGPT (Zhang et al.) (I 2024f) 0340002 ,570+003 0.868+032 3721018 9.972%:026 2.296+022
MotionGPT (Jiang et al.) (Jiz A, 20232)  0.366500°  0.5585001 0.510%016 3.527+:021 10.35%084 2.328+117
MotionGPT-2 (\\zu\g etal 0.427+003  (,627+:002 0.614%+:005 3.164%013 11.26+026 2.357+022
KIT- FineMoGen (Zhar 0.432%5:006 0 649%:005 0.178%:007 2.869+014 10.85%112 1.877+:093
ML ng 202 0.4165:006 0,6275:006 7455006 514+020 3.007+028 10.92%108
(Plappert etal., 2016)  GraphMotion (Jin ¢ 0.4175008 06355006 004 962+:021 3.085%031 11.21%:106
EMDM (Zhou ¢ 0.660%:006  0.780%:005  (.261+014 2.874+015 10.96+09%
AUT2M (Zho 0.6324:006.751+:006 870i 039 3.039+:02 10.96+123
GUESS (Gao et al., 2024) 0.6325:007 (. 751+:005 2.421+022 10.93%110
ParCo (Zou et al., 2024) 0.649%:007 (. 772%:006 2.820+028 10.95%094 1.24F
ReMoDiffuse (Zhang et al., 2023b) 0.641%:004 0.765* 2.814%:012 10.80+10% 239+ 028
StableMoFusion (Huang et al., 20242) 0.660%:00 0.782"""“ - 10.94%077 24062
MMM (Pinyoanuntapon ,2024b) o 04045005 (6215005 () 744%004 2.977%:019 1091101
DiverseMotion (Lou et al., 2023) 0.416%:006 0.760%01 2.892%041 10.87%101 2. uozi 079
BAD (Hosseyni et al., 2024) 0.417%:006 0.750%+:006 2.941%:025 11.00%100 1.170%=047
BAMM (Pinyoanuntapong et al., 2024a) 0.438+:009 0.788%:005 2.723%:026 11.01+094 1.609+ 065
MoMask (Guo et al., 2024) 0.433%:007 0.781+:005 2.779%:022 - 1.131%043
LMM (Zhang et a mm 0.430%015 0.779%014 0137 O 11.24%:103 1.885%127
MoGenTS$ (Yuan ot al., 2024) 0.44550% 0,671 0.797505  (.143%:004 2.711+024 10.92+:09 -
Motion Generalist (Ours) 0.449%%°7 0,678 0.802%%%% 0.131F9% 2.705% 0% 10.94098 1.374%069

C FuLL COMPARISON FOR TEXT-TO-MOTION

To comprehensively showcase our method’s performance in text-to-motion generation, we present a
full comparison with previous T2M approaches in Table 10. The results demonstrate that our method
consistently outperforms others, achieving state-of-the-art performance on both HumanML3D (Guo
et al., 2022a) and KIT-ML (Plappert et al., 2016) datasets.

D USER STUDY

This study provides a comprehensive evaluation of our motion generation. We assessed the real-
world applicability of four motion videos generated by Motion Generalist and baseline models, as
evaluated by 50 participants through a Google Forms survey. Figure 7 displays the User Interface
(UI) used in our user study, showcasing 3—4 videos (Video 1 to 3/4), each featuring distinct motion
animations from the same model, and four videos for comparing different models (Video A to D).
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Participants evaluate these animations based on aspects such as motion accuracy and overall user
experience. They rate each aspect from 1 (Ilow) to 3 (high) to assess how well the animations mirror
real-world movements and their engagement level. In the comparison section, participants select the
model with the best performance. This evaluation aims to determine the realism and engagement
effectiveness of each motion. The evaluation consisted of three groups of motions: text-to-motion,
music-to-dance, and text-and-music-to-dance. The results are as follows:

Text-to-Motion:

* Our motion quality rating is 2.84. Additionally, 86% of participants believe that our
method demonstrates high-quality motion generation with minimal jitter, sliding, and un-
realistic movements.

* Our motion diversity rating is 2.68. Additionally, 72% of participants believe that our
method generates complex and diverse motions.

* Our text-motion alignment rating is 2.74. Additionally, 76% of participants believe that
our method generates motion that is well-aligned with their text condition.

* 88% of participants believe that our method outperforms other methods.

Music-to-Dance:

* Our dance quality rating is 2.82. Additionally, 82% of participants believe that our method
demonstrates high-quality dance generation with minimal jitter, sliding, and unrealistic
movements.

* Our dance diversity rating is 2.88. Additionally, 88% of participants believe that our
method generates complex and diverse dance.

* Our music-dance alignment rating is 2.66. Additionally, 70% of participants believe that
our method generates dance that is well-aligned with the music genre and beats.

* 74% of participants believe that our method outperforms other methods.

Text and Music to Dance:

* Our dance quality rating is 2.74. Additionally, 76 % of participants believe that our method
demonstrates high-quality dance generation with minimal jitter, sliding, and unrealistic
movements.

* Our multimodal condition rating is 2.88. Additionally, 88 % of participants believe that text
enhances music’s conditioning in dance generation.

* Our text&music-dance aligment rating is 2.76. There are 80% participants believe that our
method generates dance that is well-aligned with the both music and text.

* 78% of participants believe that our method outperforms other methods.

Comparisons on FID and Inference Cost

E MODEL EFFICIENCY

T™2T
FID: 150 AIT: 0.76

We evaluate the inference efficiency of mo-

tion generation compared to various methods.
The inference cost is calculated as the aver-
age inference time over 100 samples on one
NVIDIA GeForce RTX 2080 Ti device. Com-
pared to baseline methods, Motion Generalist
achieves an outstanding balance between gen-
eration quality and efficiency, as shown in Fig-
ure 8.

F APPLICATION:
4D AVATAR GENERATION

o MLD
FID: 047 AIT: 0.22
4 T2M-GPT

T2M
FID: 1.09 AIT: 0.03

MotionDiffuse
FID: 0.63 AIT: 10.89

[ ]
FID: 054 AIT: 1820 | ®
FID: 0.12 AIT: 0.38

MoMask
FID: 0.04 AIT: 0.12

Motion Generalist
3 FID: 0028 AIT: 0.095

0 2 4 6 8 0 12 14 6 18

AIT (Average Inference Time, s)

Figure 8: Comparisons on FID and AIT. All
tests are conducted on the same NVIDIA GeForce
RTX 2080 Ti. The closer the model is to the ori-
gin, the better.

One of the most significant applications for
conditional motion generation is 4D avatar gen-
eration. Previous methods (Li et al., 2024¢; Ren
et al., 2023; Wu et al., 2025; Yin et al., 2023;
Jiang et al., 2023b; Ren et al., 2024; Zeng et al.,
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Figure 7: User study form. The User Interface (UI) used in our user study.
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2025; Wang et al., 2024a; Hu et al., 2024; Chen et al., 2024b) for 4D avatar generation reconstruct
dynamic avatars using 4D Gaussians to model both spatial and temporal dimensions from video
data. Other approaches (Zhang et al., 2024b; Zheng et al., 2024; Bahmani et al., 2024; Zhao et al.,
2023) integrate video diffusion (Wang et al., 2023a; Blattmann et al., 2023) with geometry-aware
diffusion models (Shi et al., 2023) to ensure spatial consistency and achieve a visually appealing ap-
pearance. However, these methods face two significant challenges: (1) limited diversity and control
over motion (Li et al., 2024c; Wu et al., 2025; Jiang et al., 2023b), and (2) inconsistencies in the
mesh appearance at different time points (Ren et al., 2023).

Therefore, we propose a comprehensive feed-
forward approach for 4D avatar generation with
only a single prompt, leveraging both Motion
Generalist and off-the-shelf tools, as illustrated
in Figure 10. A single prompt serves as the
input, when music is not provided as a condi-
tion, Stable Audio Open (Evans et al., 2024)
generates background music as the audio con-
dition. The text and audio conditions are then
processed by the multimodal motion genera-
tor to create a high-quality motion sequence.
Simultaneously, 3D avatar generation employs
Tripo AI 2.0 (tri, 2024) to produce candidate
meshes, as shown in Figure 9, and the Selective
Rigging Mechanism (SRM) identifies the opti-
mal rigged mesh. The motion sequence is then
retargeted to the avatar meshes, resulting in a
complete 4D avatar.

3D Avatars

Figure 9: 3D Avatars. This figure shows exam-
ples of 3D avatars generated by Tripo AI 2.0 (tri,
2024). These avatars will later serve as candidates
for our Selective Rigging Mechanism.

As shown in the Figure 10, automatic rigging
is crucial for 4D generation, directly affect-
ing the precision and realism of avatar move-
ments (Zhang et al., 2024c;i). Although numer-

-

ous optimization-based approaches (Baran & (ks | Pt one Musie 1 Render
Popovi¢, 2007; Feng et al., 2015; Borosdn et al., ! swistsside | f i~

2012; Pantuwong & Sugimoto, 2011) have | s —»D H “K\ﬂ N ﬁ
been proposed to achieve fully automated rig- <o o HAM R e
ging, the outcomes are often unsatisfactory due | " R

to the diverse appearances of meshes. Hence,
achieving high-quality automatic rigging has
become an important challenge to address in
skeleton-based avatar generation. To improve
the underperformance of automatic rigging in

| forward.
]

Text Queries

- 8% 3%

Candidate Avatar

Candidate Rigged Avatar

generated avatars, we introduced a straightfor-
ward yet effective Selective Rigging Mecha-
nism that selects the best-rigged 3D avatar from
multiple candidates, enhancing the realism of

Figure 10: 4D Avatar Generation. This approach
enables 4D avatar generation conditioned on mul-
timodal inputs, achievable with just a single text
prompt.

the avatar’s motion visualization.

F.1 SELECTIVE RIGGING MECHANISM

To improve automatic rigging performance and reduce the need for human-in-the-loop adjustments,
the Selective Rigging Mechanism (SRM) presents a two-stage selection process with constraints.
This mechanism identifies the optimal rigging from a set of candidate avatars, as shown in Figure
10.

Stage 1: Centroid-Based Filtering. The purpose of this stage is to identify point clouds with cen-
troids positioned within a balanced and plausible bounding region for rigging. Each animated point
cloud is defined by a set of 3D coordinates P = {p1, p2, ..., Pn}, Where p; = (7, ;, 2;) € R3,
representing the character’s surface. The centroid Gjoug Of the point cloud, serving as an approxi-
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mate center of mass, is calculated as

L | X | X
Geloud = (N;ffinZ;yu NE_;ZJ .

The bounding box and stability filters ensure that Gjouq falls within a spatial region aligned with
the character’s rigging needs. Specifically, the bounding box constraint requires —1 < Xg < 1,
-1 < Ys <1, -1 < Zg < 1, while the stability constraint approximates balance by enforcing
|X¢| =0, |Ye|~0,and Zg > 0.

These constraints are physically motivated: (1) Minimal lateral displacement, represented by
|X¢| ~ 0 and |Yg| ~ 0, keeps the center of mass near the z-axis, avoiding lateral imbalances.
(2) Ensuring Zg > 0 places the centroid above the ground plane, maintaining a logical upright
character orientation.

Stage 2: Joint Weight Optimization. This stage’s goal is to select the point cloud configuration
with the best joint weight distribution to support stable, smooth deformation during animation. Each
vertex ¢ has joint weights w;1, w;2, . . . , w;y,, where each w;; denotes the influence of joint j on vertex
1. To achieve realistic deformation, these weights must sum to 1 across all joints for each vertex, as
specified by (Le & Deng, 2012). The weight normalization condition is expressed as:

n
Y wiy=1, Vie{l,2,...,N}
j=1

where N is the total number of points in P.

To evaluate and select the optimal point cloud from M candidates, we define a loss function based
on the average deviation from the ideal weight sum. For each point cloud, we calculate the average
weight sum S as

1 N n
S = NZZU)U

i=1 j=1

Our loss function, defined as the absolute difference |S — 1], quantifies how close each point cloud’s
weight distribution is to the ideal configuration. Minimizing |S — 1| allows us to select the point
cloud whose joint weights best satisfy the normalization condition. Thus, the optimal point cloud
P optimat s chosen as:

Poptimal = arg HFI'II’I ‘Sk - ]-| )
Kk

where k € {1,2,..., M}, Py is the k-th candidate point cloud, and Sy, is the average weight sum
for P. By selecting the configuration with the smallest |S — 1|, we ensure a joint weight distribution
close to ideal, supporting stable, natural rigging and deformation in animation.

To showcase our improvement and efficiency in rigging . .
with SRM on TMD dataset, we create 200 avatar de- Table 11: SRM evaluation.
scriptions along with text randomly selected from TMD  Method S—=1 AIT(s) |

to generate corresponding avatars using TripoAl 2.0 (tri, = MagicPose4D 1.93 0.138
2024). We then evaluate our SRM with different candi- SRM (k = 1) 1.78 0.094
date numbers k based on the average weighted sum S in ~ SRM (k = 3) 1.36 0.105
terms of rigging quality, where a value of S closerto 1 in- ~ SRM (k = 5) 1.06 0.117
dicates better performance. The results show in in Table
11. Video demos of the generated 4D avatars can also be found in the supplementary materials.

G QUALITATIVE EVALUATION

In the main text, we have already demonstrated the qualitative evaluation of fext-fo-motion gener-
ation and music-to-dance generation. Here, we showcase some examples of the visualization of
text-and-music-to-dance generation.
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Algorithm 4 Selective Rigging Mechanism

1: Input: M point clouds {Py,...,Pys}, each with N
3D vertices and joint weights {w;1, ..., w;,} for each
vertex ¢

2: Stage 1: Centroid Filtering

3: for each Py, do

4:  Compute centroid ¢, = (X, Yk, Zi)

5. if cg is outside —1 < X, Y, Z; < 1 or not close to
(0,0,Z > 0) then

6: Discard Py,

7. endif

8: end for

9: Stage 2: Weight Optimization

10: for each remaining P do

11:  Calculate S, = & SN | > i Wij
12:  Compute deviation Ay, = |Sy, — 1]
13: end for

14: Select Popima = arg minp, Ay

15: Output: Optimal point cloud P gyimal

Text Music Motion Generalist

MotionCraft

A man is doing groove
and swaying steps
along with the beat.

Daft Punk - Get Lucky
(Disco)

A man is dancing
along the beats while
use both hands to
touch legs and swing
back and forth.

Daft Punk - One More
Time (French House)

Human Music

Generated Music

An energetic dance

A man is doing street
dance, kick side step
along the beats.

A man alternates
lifting his arms
overhead, following
the beats.

track with 120-130
BPM, vibrant synths,
punchy beats, and
uplifting melodies.

An energetic dance
track with 120-130
BPM, dynamic bass
lines, punchy beats,
and modern electronic
elements.

Figure 11: Qualitative evaluation on text-&-music-to-dance generation. We qualitatively com-
pared the visualizations generated by our method with those produced by TM2D (Gong et al., 2023)
and MotionCraft (Bian et al., 2024).

G.1 TEXT-&-MUSIC-TO-DANCE
To evaluate the quality of our text-and-music-to-dance generation, we compare the dances generated

by our method against those from open-source state-of-the-art multi-task models, including TM2D
(Gong et al., 2023) and MotionCraft (Bian et al., 2024). Similar to Section 4.3 in the main text,
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despite these multi-task models lacking the ability to simultaneously take two modalities of condi-
tions, we combined their condition embeddings and compared them with our approach. Trained on
our TMD dataset, we ensure that the evaluation reflects diverse musical styles. As shown in Figure
11 and demonstrated in the accompanying videos, our method produces dances with better visual
quality and achieves superior alignment with both text description, beat, and genre of the music,
surpassing previous state-of-the-art techniques.

23



	Introduction
	Related Works
	Methodology
	Overview
	Architecture

	Experiments
	Datasets and Evaluation Metrics
	Model and Implementation Details
	Comparative Study
	Ablation Study
	Qualitative Evaluation

	Conclusion
	LLM Use Declaration
	Algorithms
	Full Comparison for Text-to-Motion
	User Study
	Model Efficiency
	Application: 4D Avatar Generation
	Selective Rigging Mechanism

	Qualitative Evaluation
	Text-&-Music-to-Dance


