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Abstract

Doubly robust estimators present a promising
methodology for estimating treatment effects in
observational studies. This paper provides a finite
sample analysis of the doubly robust estimators for
both the back-door model (where treatment, out-
come, and covariates are observed) and the general-
ized front-door model (which includes unmeasured
confounding). Our approach establishes PAC-style
guarantees of the deviation of the estimators in
term of the divergence of probability distributions.
These bounds demonstrate that minimizing the es-
timation error of the treatment effect in terms of
Chi-square distance is crucial for minimizing the
variance between true and estimated model.

1 INTRODUCTION

Estimating the causal effect of a treatment on an outcome
is a fundamental task across empirical sciences [Winship
and Morgan, 1999, Funk et al., 2011, Lechner et al., 2011,
Lopez and Gutman, 2017, Fernández-Loría and Provost,
2022]. The problem of causal effect identification in the
literature asks whether the causal effect of a treatment A
on an outcome Y , Pr(y|do(a∗)), can be computed from
a combination of observational data and a causal diagram
represented by a directed acyclic graph (DAG). Methods
have been developed for solving the identification problem
and its extensions including celebrated Pearl’s do-calculus
[Pearl, 1995] and complete identification algorithms [Tian
and Pearl, 2003, Shpitser and Pearl, 2006, Huang and Val-
torta, 2006, Lee et al., 2019, Correa et al., 2021]. These
identification algorithms assume perfect knowledge of the
observational distribution, and they express the target in-
terventional distribution as a function of the observational
distribution. In practice, however, one only has in hand es-
timates of the observational distribution, and the goal is to

obtain the best possible approximation of the interventional
distribution. Therefore, developing robust estimators for
causal estimands is a problem of significant and sustained
interest in the causal inference community [Jung et al., 2021,
Xia et al., 2021, 2022, Bhattacharya et al., 2022, Jung et al.,
2023].

One of the most popular methods for estimating causal
effects is via covariate adjustment. If a set of covariates X
satisfies the back-door (BD) criterion [Pearl, 1995] relative
to (A, Y ), then the causal effect ofA on Y can be computed
by the covariate adjustment formula

Pr(y|do(a∗)) =
∑
x

Pr(y|a∗, x) Pr(x) = Ex[Pr(y | a∗, x)],

also called the g-formula [Robins, 1986]. There exists an
extensive literature on estimating the BD formula from finite
samples including doubly robust estimators for addressing
model misspecification [Bang and Robins, 2005, Robins
et al., 2009, van der Laan and Gruber, 2012, Rotnitzky
et al., 2017, Luedtke et al., 2017, Díaz et al., 2023] and dou-
ble/debiased machine learning (DML) estimators [Robins
et al., 1994, Van der Laan and Rose, 2011, Díaz and van der
Laan, 2013, Benkeser et al., 2017, Kennedy et al., 2017,
Chernozhukov et al., 2018, Rotnitzky and Smucler, 2019,
Smucler et al., 2020, Colangelo and Lee, 2020].

Despite the popularity of covariate adjustment for causal
effect estimation, its applications are limited to the settings
where there are no unobserved confounders between X and
Y . For example, in the causal diagram in Fig. 1(b), there
exist no covariates to adjust for the confounding due to the
unobserved confounder U . It turns out, another classical
identification strategy, the front-door (FD) criterion [Pearl,
1995], is applicable in Fig. 1(b) to obtain the following
(generalized) FD adjustment equation:

Pr(y|do(a∗)) =
∑
a,z,x

Pr(z|a∗, x) Pr(y|a, z, x) Pr(a, x).

Glynn and Kashin [2017, 2018] discussed practical applica-
tions of FD adjustment for estimating causal effects. Fulcher
et al. [2020] have developed a doubly robust (DR) estimator



for estimating the generalized FD estimand from finite sam-
ples. Guo et al. [2023] extended the work of Fulcher et al. to
provide targeted minimum loss based estimators (TMLEs)
of the FD adjustment.

While Fulcher et al. [2020] provided asymptotic analysis
and established asymptotic normality of their DR estimator,
the finite sample behavior of their estimator is unknown.
More broadly, while there have been previous works estab-
lishing finite sample guarantees for doubly robust estimators
(e.g., Mou et al. [2022], Chernozhukov et al. [2023]), they
have focused on Gaussian approximation and do not explic-
itly formulate the sample complexity in terms of standard
notions of divergence between the estimate of the observa-
tional density and the true observational density.

In this paper, we provide a finite sample analysis of the dou-
bly robust estimators for the BD and FD settings. We frame
the finite sample complexity bounds in terms of divergence
measures between the model distributions and the true dis-
tributions. In particular, our sample complexity bound is
presented in terms of the natural measure of χ2 distance
and its generalizations. We first provide a PAC-style finite
sample complexity bounds for the standard DR estimator
for the BD adjustment. We then provide finite sample bound
for Fulcher’s DR estimator for the FD adjustment.

2 OUR RESULTS

Back-door adjustment We revisit the well-known dou-
ble/debiased machine learning (DML) estimator for covari-
ate adjustment in the BD setting [Robins and Rotnitzky,
1995, Chernozhukov et al., 2017] and analyze the mean-
squared error in the finite sample setting. The novelty of our
result is that we express the mean-squared error explicitly
in terms of the errors in the estimates of the treatment and
outcome distributions. These errors are formulated in terms
of χ2-divergence, roughly as follows:

Assumption 2.1. Assume for all x, the following condition
holds:

E
Y (a∗,x)

Y 2 ≤ V, Pr[A(x) = a∗] ≥ µ, and Pr[Â(x) = a∗] ≥ µ.

Theorem 2.2. Under Assumption 2.1, for any ε > 0:

Pr[|ψn − ψ∗| > ε]

<
1

nε2
OV,µ

(
1 + E

x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
+ E

x
χ2
(
Â(x)||A(x)

))
+

1

ε2
OV,µ

(
E
x
χ2
(
Ŷ (a∗, x)∥Y (a∗, x)

)
· χ2

(
Â(x)∥A(x)

))
where Y (a, x) is the conditional distribution of Y given
A = a,X = x, and A(x) is the conditional distribution of
A given X = x, and their hatted versions are the model
estimates. Hence, as the number of samples n for the dou-
bly robust estimator goes to infinity, the remaining error is

due to the mismatch measured in χ2 between the model
estimates and the truth, for the propensity and outcome dis-
tributions. Note that this is an expectation of the product
of the two divergences, demonstrating the mixed-bias or
product rate phenomenon of the doubly robust estimators
[Chernozhukov et al., 2020]. Our bound can be used to get
guidance on how to construct the estimators Ŷ and Â; learn-
ing a distribution that minimizes a particular divergence is a
question in distribution learning. For example, the problem
of learning a distribution minimizing the χ2 divergence was
explicitly studied in [Kamath et al., 2015].

Front-door adjustment We extend our analysis to
Fulcher’s DR estimator for the generalized front door adjust-
ment. Our formulation is inspired by a distribution learning
framework. We frame the bounds in terms of divergences
measures between the model distributions and the true dis-
tribution. In particular, our sample complexity bound is
presented as the natural measure of χ2 distance error in the
estimates. The succinct form of our result can be gleaned
from the statement below which we prove.

Assumption 2.3. Assume ∀a, z, x,

E
Y (a,z,x)

Y 2 ≤ V, Pr[Z(a, x) = z] ≥ µZ · 1[Pr[Z(a∗, x) = z] ̸= 0],

and Pr[A(x) = a∗] ≥ µA

Theorem 2.4. Under Assumption 2.3

Pr[|ψn − ψ∗| > ε]

<
1

nε2
OV,µZ ,µA

(
1 + E
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)
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Â(x)∥A(x)

)
+ E

x
χ2
(
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+
1

ε2
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((√
Ea,z,xχ4(Ŷ (a, z, x)∥Y (a, z, x)) +

√
Exχ4(Â(x)∥A(x))

+

√
Exχ4(Ẑ(a∗, x)∥Z(a∗, x)) +

√
Ea,xχ4(Ẑ(a, x)∥Z(a, x))

)2)

Again, the mixed bias phenomenon can be seen in the part
of the bound above that is independent of n.

3 CONCLUSION

In conclusion, we provide a finite sample analysis of dou-
bly robust estimators for BD and FD settings, establishing
PAC-style guarantees for the estimator’s deviation based
on divergence measures between model and true distribu-
tions. Our results highlight that minimizing the divergence
of probability estimation error is essential for reducing the
variance between true and estimated models.
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A RELATED WORK

Causal identification and estimation constitute a vast and crucial area of research within many fields including statistics,
econometrics, and computer science. Despite its importance, the machine learning community has only recently begun to
rigorously apply PAC (Probably Approximately Correct) style finite sample guarantees to causal inference. Double ML has
emerged as a promising approach for the robust estimation of causal effects in observational studies. The integration of
machine learning algorithms allows for handling high-dimensional data while maintaining robustness against model mis-
specification. Finite sample analysis of Doubbly Robust Back Door estimator has recently been developed by Chernozokov
et al. in Chernozhukov et al. [2022]. Fulcher et al. extended these ideas by providing a doubly robust estimator for the
generalized Front Door estimand from finite samples and provided asymptotic analysis Fulcher et al. [2020]. There has been
some progress on establishing PAC style guarantee on Pearl’s graphical causal identification model Pearl [1995]. The works
by Bhattacharyya et al. [2020] and Bhattacharyya et al. [2022] are particularly notable, offering PAC guarantees within the
framework of causal identification algorithms initially characterized by Tian and Pearl [2003], Shpitser and Pearl [2008],
and Huang and Valtorta [2006]. The present work contributes to this important and evolving area by focusing on PAC-style
guarantees on sample complexity for estimating treatment effects in observational studies. We present PAC style analysis of
double robust Back Door and Generalized Front Door estimators by examining their performance in terms of distribution
divergence, providing new insights into finite sample behavior in causal inference.

B MODEL DESCRIPTION

X

A Y

(a) G1: Back-door

A Z Y

X

U

(b) G2: Front door

Figure 1: Causal inference with backdoor adjustment (a) and generalized front door adjustments (b)

B.1 BACK-DOOR ADJUSTMENT

For three variables A,X, Y in G1 Fig. 1(a), represent the directed edges between these three variables are X → A, X → Y ,
A→ Y , where A denote the treatment, X denote the covariate, and Y represent the outcome.



We are given the following models: For any x, a random variable Â(x) which is supposed to be the model for the distribution
of A conditioned on X = x. Besides, Â(a;x) denote the conditional probability distribution Pr[Â(x) = a]. Similarly, for
any x, and a, a random variable Ŷ (a, x) which is supposed to be the model for the distribution of Y conditioned on A = a,
and X = x, and we apply Ŷ(y; a, x) to represent the conditional probability distribution Pr[Ŷ (a, x) = y].

We want to estimate the causal effect of A on Y , denote as:

ψ∗ = E[Y | do(A = a∗)].

and ψn as the fimite sample estimator of ψ∗,

ψn =
1

n

n∑
i=1

ϕ(ai, xi, yi).

where ϕ(a, x, y) can be estimated as follows:

ϕ(a, x, y) = E
Ŷ (a∗,x)

Ŷ +
1[a = a∗]

Â(a;x)

(
y − E

Ŷ (a,x)
Ŷ

)
,

Our objective is, given finite samples, we want to deviate PAC-style guarantees with a high probability bound of the estimator
on ψn − ψ∗ in term of divergence of probability distributions.

B.2 FRONT-DOOR ADJUSTMENT

As shown in Fig. 1(b) G2, we have 4 observable: X,A,Z, Y . A represent the treatment, Z represent the mediator variable,
X be a set of observed pre-exposure covariates, and Y represent the outcome. The directed edges are X → A, X → Z,
X → Y , A → Z, and Z → Y . There is also a bi-directed arrow between A and Y represent the effect of unobserved
confounder. Note there is no direct arrow from A to Y .

We are given the following models:

• For any x, a random variable Â(x) which is supposed to be the model for the distribution of A conditioned on X = x.

• For any x, a, a random variable Ẑ(a, x) which is supposed to be the model for the distribution of Z conditioned on
A = a and X = x.

• For any x, a, and z, a random variable Ŷ (a, z, x) which is supposed to be the model for the distribution of Y conditioned
on A = a, Z = z, and X = x.

• Let Â(a;x) denote Pr[Â(x) = a]. Similar for Ẑ(z; a, x) and Ŷ(y; a, z, x).

Define the following quantity:

ϕ(a, z, y, x) = E
Ẑ(a∗,x)

[
E

Ŷ (a,Ẑ,x)
Ŷ

]
+

1[a = a∗]

Â(a;x)
E

Â(x)

(
E

Ŷ (Â,z,x)
Ŷ − E

Ẑ(a,x)

[
E

Ŷ (Â,Ẑ,x)
Ŷ

])

+

(
y − E

Ŷ (a,z,x)
Ŷ

)
· Ẑ(z; a∗, x)

Ẑ(z; a, x)

Let

ψn =
1

n

n∑
i=1

ϕ(ai, zi, yi, xi)

for independent observations (a1, z1, y1, x1), . . . , (an, zn, yn, xn). From above, E[ψn] = ψ∗ whenever two of Â, Ẑ, Ŷ are
correct.

Our goal is to bound the RMS error of the estimator on ψn − ψ∗ in term of divergence of probability distributions.
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