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Abstract
This paper proposes a model-free solution for solving the optimal regulation problem for a discrete-time linear time-invariant 
system that unlike previous methods, presents a guaranteed convergence rate of the state variables as is needed in a group of 
problems. Initially, the Linear Quadratic Regulation problem (LQR) with a guaranteed convergence rate of the state is for-
mulated for a system with known dynamics and the associated Riccati equation is derived. Solving the Riccati equation and 
finding the state feedback gain requires full knowledge of the dynamics of the system. To overcome this problem, the Policy 
Iteration (PI) Reinforcement Learning (RL) algorithm is formulated to solve the LQR problem with a guaranteed convergence 
rate, and the optimal state feedback gain is derived without having any knowledge about the dynamics of the system and 
only through the measurement of the states of the system. Eventually, the validity of the results is shown through simulation.

Keywords Model-free optimal control · Reinforcement learning · Policy iteration · Convergence rate · Degree of stability

1 Introduction

Optimal control theory is a mature mathematical field that 
finds optimal control policies for dynamic systems by the 
means of optimization of the cost function that is defined by 
the user. Primarily, there are two general methods for solving 
optimal control problems, the Pontryagin method, and the 
dynamic programming method, that respectively state neces-
sary and sufficient conditions for optimality. In the dynamic 
programming methods, usually, the problem is solved from 
end to beginning and in the case of discrete-time systems 

it yields the Bellman equation and in the case of continu-
ous systems, it leads to the HJB equation and eventually, 
the optimal control signal and the optimal value function is 
derived from its solution.

The solution of the classic optimal control, are offline, 
and require full knowledge of the dynamics of the system, 
moreover, for a nonlinear system solving HJB and Bellman 
equations and finding the optimal control signal and the 
optimal value function in the general form, proves to be dif-
ficult; And only in certain cases such as linear systems and 
quadratic cost functions leads to Riccati equations. Given 
the fact that ARE is nonlinear, it is often hard to solve it 
through a direct approach, particularly in the case of high 
dimensional matrices.

To solve this problem, several great algorithms have been 
proposed, such as the well-known Kleinman algorithm [1]. 
Based on the Kleinman algorithm, the solution of the Riccati 
equation can be numerically approximated through itera-
tive solving of the Lyapunov equations. Notwithstanding, 
the Kleinman algorithm requires full information about 
the system. The main approach, when full information of 
the system is not available, is the adaptive optimal control 
design, such that initially parameters of the system are iden-
tified then the Riccati equation is solved. These algorithms, 
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however, respond slowly to the changes in the parameters 
of the system [2].

By the means of inspiration from the learning behavior in 
biological systems, Reinforcement learning theories and its 
more recent formulation known as "Adaptive/Approxima-
tive Dynamic Programming" or “ADP”, for solving optimal 
control problems for systems with uncertainty are generating 
considerable interest in recent years [3–5].

Reinforcement learning originates from computer science 
and is a branch of machine learning methods, that makes 
an agent learn in an interactive environment through trial 
and error and using the feedback of its actions and its expe-
riences. Even though both supervised learning and Rein-
forcement learning use mapping between input and out-
put, Reinforcement learning, unlike supervised learning, 
rewards, and punishments are used as signals for positive 
and negative behaviors [6]. For the recent past years, Rein-
forcement learning methods have been used in control theory 
in which the performance of a dynamic system is measured 
by a scalar function that is indicative of expended costs by 
the system over time. [7, 15–22].

For the past decades, the RL and the ADP has been one 
of the powerful methods to design a control protocol based 
on data. From the perspective of a control engineer, RL 
and ADP may be seen as a bridge between classic optimal 
control and adaptive control methods. The ADP method, 
unlike classic optimal Control methods, yields a real-time 
approximation of the solution of the HJB differential equa-
tion. On the other hand, despite adaptive control in which 
no cost function is minimized, the ADP algorithms perform 
optimally from this point of view [6, 8, 9].

Generally, there are two fundamental parts in RL algo-
rithms: evaluation of the policy and improvement of the 
policy. In the policy evaluation, the cost function (the value 
function) regarding the current policy is calculated. In the 
policy improvement stage, the resulting cost function value 
is evaluated and updates the current policy. It is worth men-
tioning that the policy has come to be used to refer to the 
control signal.

The two main classes of RL algorithms used for these two 
steps are Policy Iteration (PI) and Value Iteration (VI). The 
VI and PI algorithms perform policy evaluation and policy 
improvement iteratively until finding an optimal solution. PI 
Methods are initialized by a stabilizer control policy (control 
signal) [23, 24]. And solve a series of Bellman equations to 
find an optimal control policy. Compared to the PI method, 
the VI does not require a stable control policy. Whereas the 
majority of RL based control algorithms are PI, some VI algo-
rithms have been employed to find optimal control solutions.

In recent years, the RL algorithms in control have been 
used in solving problems. Satisfying a criterion of optimality 
and the lack of requirement of full knowledge of the dynamic 
of the system, have gained this method a growing interest in 

solving the control problem of dynamic systems. The optimal 
regulation problem aims to design an optimal controller to 
assure that states or outputs of the system go to the origin 
or near the origin [4, 9, 10]. While in optimal tracking con-
trol problems, it is desired that the controller makes states or 
outputs of the system follow the desired trajectory [11, 12, 
25–30]. The purpose of an optimal synchronization problem 
in multi-agent systems is the design of distributed control 
protocols based on local information available in agents so 
that agents achieve team goals [13, 14, 31–36].

There are some studies related to optimal control with 
guaranteed convergence rate and these studies are based on 
the system models, such as minimal energy control with 
guaranteed convergence rate and Linear-quadratic optimal 
observers with guaranteed convergence rate and so on. Devel-
oping off-policy RL algorithms for discrete-time systems is 
not straightforward because of the appearance of both system 
matrix A and control matrix B in the policy update equa-
tion. In [37], an off-policy RL algorithm is presented to solve 
the H∞ control of linear discrete-time systems. This paper 
aims at generalizing the main result of [37] to computational 
adaptive optimal control with guaranteed convergence rate 
of the discrete-time linear systems with completely unknown 
dynamics. With the help of reinforcement learning.

2  Problem description

Consider the discrete-time linear system in Eq. (1):

where x(k) ∈ Rn and u(k) ∈ Rm represent the state of the 
system and the control input, respectively. This paper aims 
to solve the optimal regulation problem with a guaranteed 
convergence rate. In other words, the state feedback gain 
(F) must be found such that in addition to the optimality, it 

(1)x(k + 1) = Ax(k) + Bu(k)

Table 1  Online PI algorithm to solve model-based LQR problem

Algorithm 1: Online PI algorithm for solving the LQR problem with 
a guaranteed prescribed degree of stability

1: procedure
2: Given the stabilizing feedback gain � and applying it to the system
3: Solve the Bellman Eq. (13) for the value Pi+1

xT (k)Pi+1x(k) −
1

�
2
xT (k + 1)Pi+1x(k + 1) = xT (k)Qx(k) + uiT (k)Rui(k) 

                                                                                                      (13)
4: Update the control signal using:
ui+1(k) = −Fi+1x(k) = −

(
�
2R + BTPi+1B

)−1
BTPi+1Ax(k)        (14)

5: If ||Fi+1 − Fi|| < 𝜖 then end of the algorithm, else i = i + 1 and go to 
step 1

6: end procedure
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guarantees that the eigenvalues of the closed-loop system 
are placed inside the radius � of the unit circle, without hav-
ing any knowledge about matrices of the dynamics of the 
system.

The goal of optimal regulation is to design an optimal 
control input to stabilize the system in Eq. (1) while mini-
mizing a predefined cost function. Such energy-related cost 
functional can be defined as:

where Q ≥ 0 and R = R^T > 0. The following lemma is used 
in order to obtain the optimal state feedback gain.

Lemma 1 Consider the discrete-time linear system with 
known dynamics in Eq. (1) and the cost function in Eq. (3) 
( 0 ≤ � ≤ 1 ). In this case, the state feedback gain F satisfying 
formula in Eq. (4), in addition to minimizing the cost func-
tion in Eq. (3), guarantees that the states of the system con-
verge to zero with the rate of �k , in other words, 
lim
k→∞

�
kx(k) = 0.

where P is derived from solving the following Riccati 
equation:

Proof Followed by a change of variables ̄u(k) =
u(k)

𝛼
k

 and 
x̄(k) =

x(k)

𝛼
k
 we can rewrite Eqs. (1) and (3) as:

If we divide both sides by �k+1:

where Ā =
A

𝛼

, B̄ =
B

𝛼

.
Using the optimal control theory, the solution of the LQR 

problem for the system in Eq. (7) and the cost function in 
Eq. (3) is described as follows:

where:

And P is the solution to the following Riccati Equation:

(2)u(k) = Fx(k)

(3)J(x(k)) =

∞∑

k=0

1

�
2k

(
xT (k)Qx(k) + uT (k)Ru(k)

)

(4)F = −
(
�
2R + BTPB

)−1
BTPA

(5)ATPA − �
2P + ATPB

(
�
2R + BTPB

)−1
BTPA + �

2Q = 0

(6)𝛼
k+1x̄(k + 1) = A𝛼kx̄(k) + B𝛼kū(k)

(7)x̄(k + 1) = Āx̄(k) + B̄ū(k)

(8)ū∗(k) = Fx̄(k)

(9)F = −
(
R + B̄TPB̄

)−1
B̄TPĀ

(10)ĀTPĀ − P + ĀTPB̄
(
R + B̄TPB̄

)−1
B̄TPĀ + Q = 0

We will have: lim
k→∞

x̄(k) = 0 . Since x̄(k) = 𝛼
−kx(k) we have: 

lim
k→∞

�
−kx(k) = 0 . Since 0 ≤ � ≤ 1 , the term �−k is increasing 

exponentially, on the other hand, we have �−kx(k) → 0 hence 
x(k) goes to zero with the minimum rate of �−k.

If we replace Ā =
A

𝛼

 and B̄ =
B

𝛼

 in Eqs. (9) and (10):

Remark 1 The Eq. (5) is non-linear with respect to P, there-
fore solving it directly proves to be difficult particularly in 
the case of high-dimensional matrices. In order to solve 
this problem, we use the PI algorithm to solve the regula-
tion problem with a guaranteed convergence rate deriving 
through an iterative process.

3  Online PI Algorithm for Solving the LQR 
Problem with a Guaranteed Prescribed 
Degree of Stability

The PI algorithm for solving the model-based regulation 
problem with guaranteed convergence rate is summarized 
in Table 1 (i and j indicate the iteration number and time 
sample respectively.)

Remark 2 In order to implement algorithm  1, the 
Bellman Eq.  (13) can be rewritten as Eq.  (15) using 
aTwb = (bT ⊗ aT )vec(w).

4  Off‑policy RL Ö the LQR problem 
with a guaranteed prescribed degree 
of stability

In order to derive the off-policy RL algorithm, we rewrite 
the system in Eq. (1) as follows:

where Ak = A − BFi.
We refer to ui(k) = −Fix(k) as a target policy or an esti-

mated policy in Eq. (16), (the policies that are trained and 
updated), while u(k) is the policy that is applied to the sys-
tem and upon which the data is generated which we refer to 

(11)F = −
(
�
2R + BTPB

)−1
BTPA

(12)
ATPA − �

2P + ATPB
(
�
2R + BTPB

)−1
BTPA + �

2Q = 0◻

(15)

(
xT
k
⊗ xT

k
−

1

𝛼
2
xT
k+1

⊗ xT
k+1

)
vec

(
Pi+1

)
= xT

k
Qxk + uiT

k
Rui

k

(16)
x(k + 1) = Ax(k) + Bu(k) ± BFix(k) = Akx(k) + B(Fix(k) + u(k))
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as the behavior policy. Considering Bellman Eq. (13) and 
replacing Eq. (1) we have:

After expanding the left side of Eq. (17) we have:

We require the precedent relation as follows:

We subtract 1
�
2
(uT

k
BTPi+1Buk + 2ukB

TPi+1Axk) from both 
sides of Eq. (20):

After performing a series of mathematical operations:

(17)
xT
k
Pi+1xk −

1

�
2
xT
k

(
A − BFi

)T
Pi+1

(
A − BFi

)
xk = xT

k
Qxk + xT

k
FiTRFixk

(18)
xT
k
Pi+1xk −

1

�

2

xT
k
ATPi+1Axk +

2

�
2
xT
k
FiTBTPi+1Axk

−
1

�
2
xT
k
FiTBTPi+1BFixk = xT

k
Qxk + xT

k
FiTRFixk

(19)

xT
k
Pi+1xk −

1

�
2
xT
k
ATPi+1Axk

= −
2

�
2
xT
k
FiTBTPi+1Axk

+
1

�
2
xT
k
FiTBTPi+1BFixk

+ xT
k
Qxk + xT

k
FiTRFixk

(20)

xT
k
Pi+1xk −

1

�
2
xT
k
ATPi+1Axk = −

1

�
2
xT
k
FiTBTPi+1Axk

−
1

�
2
xT
k
FiTBTPi+1(A − BFi)xk + xT

k
Qxk + xT

k
FiTRFixk

(21)

xT
k
Pi+1xk −

1

�
2
xT
k
ATPi+1Axk

−
1

�
2
(uT

k
BTPi+1Buk + 2ukB

TPi+1Axk)

= −
1

�
2
xT
k
FiTBTPi+1Axk

−
1

�
2
xT
k
FiTBTPi+1(A − BFi)xk + xT

k
Qxk + xT

k
FiTRFixk

−
1

�
2
(uT

k
BTPi+1Buk + 2ukB

TPi+1Axk)

Replacing xk+1 = Axk + Buk and Ak = A − BFi into 
Eq. (22) we will have:

The off-policy algorithm for solving the model-based reg-
ulation problem with guaranteed convergence rate is sum-
marized in Table 2 (i and j indicate the iteration number and 
time sample respectively.)

Remark 3 The off-policy RL Algorithm 2 converges to the 
optimal control solution given by Eq. (11) where the matrix 
P satisfies the GARE (12). The convergence proof is similar 
to Theorem2 in [37].

In order to implement the model-free off-policy method 
similar to the on-policy method, the Bellman Eq. (24) is 
convertible to a linear equation. The Bellman Eq. (24) can 
be rewritten as follows using Eq. (16):

Through having the data of the system over different time 
steps, the Eq. (25) can be written as follows:

where:

(22)

xT
k
Pi+1xk −

1

�
2

(
Axk + Buk

)T
Pi+1(Axk + Buk)

= −
1

�
2

(
uk + Fixk

)T
BTPi+1(A − BFi)xk

−
1

�
2

(
uk + Fixk

)T
BTPi+1(Axk + Buk) + xT

k
Qxk + xT

k
FiTRFixk

(23)

xT
k
Pi+1xk −

1

�
2
xT
k+1

Pi+1xk+1

= −
1

�
2

(
uk + Fixk

)T
BTPi+1Akxk

−
1

�
2

(
uk + Fixk

)T
BTPi+1xk+1 + xT

k
Qxk + xT

k
FiTRFixk

(25)

(
xT
k
⊗ xT

k
−

1

𝛼
2
xT
k+1

⊗ xT
k+1

)
vec

(
Pi+1

)

+
2

𝛼
2

(
xT
k
⊗

(
uk + Fixk

)T)
vec

(
BTPi+1A

)

−
1

𝛼
2

((
Fixk − uk

)
⊗

(
uk + Fixk

)T)
vec

(
BTPi+1B

)

= xT
k
Qxk + xT

k
FiTRFixk

(26)�
i

[
vec

(
Pi+1

)
vec

(
BTPi+1A

)

vec
(
BTPi+1B

)
]

= �
i
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In the precedent relations, matrices �i and �i are given. 
Hence, we can solve the Eq. (25) using the sum of squared 
errors method and come up with a unique solution for 
BTPi+1B,BTPi+1A , and Pi+1.

Assumption 1 For each i = 0, 1,… there is an integer value 
sufficiently large s such that �i is full rank.

Remark 4 In order for �i to be full rank, in addition to suf-
ficiently large s data measurement, appropriate choice of 
probe noise plays an essential role.

The off-policy algorithm for solving the model-free regula-
tion problem with guaranteed convergence rate is summarized 
in Table 3 (i and j indicate the iteration number and time sam-
ple respectively.)

(27)𝜙
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�
xT
k
⊗ xT

k
−

1

𝛼
2
xT
k+1

⊗ xT
k+1

�
2

𝛼
2

�
xT
k
⊗

�
uk + Fixk

�T�
−

1

𝛼
2

��
Fixk − uk

�
⊗

�
uk + Fixk

�T�

�
xT
k+1

⊗ xT
k+1

−
1

𝛼
2
xT
k+2

⊗ xT
k+2

�
2

𝛼
2

�
xT
k+1

⊗

�
uk+1 + Fixk+1

�T�
−

1

𝛼
2

��
Fixk+1 − uk+1

�
⊗

�
uk+1 + Fixk+1

�T�

⋮ ⋮ ⋮�
xT
k+s−1

⊗ xT
k+s−1

−
1

𝛼
2
xT
k+s

⊗ xT
k+s

�
2

𝛼
2

�
xT
k+s−1

⊗

�
uk+s−1 + Fixk+s−1

�T�
−

1

𝛼
2

��
Fixk+s−1 − uk+s−1

�
⊗

�
uk+s−1 + Fixk+s−1

�T�

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(28)�
i =

⎡
⎢
⎢
⎢
⎣

xT
k
Qxk + xT

k
FiTRFixk

xT
k+1

Qxk+1 + xT
k+1

FiTRFixk+1
⋮

xT
k+s−1

Qxk+s−1 + xT
k+s−1

FiTRFixk+s−1

⎤
⎥
⎥
⎥
⎦

5  Simulation results

In this section, in order to simulate the proposed method, the 
discrete-time plant model of an aircraft dynamics [37], is used 
as Eq. (30) and it is assumed that matrices A and B are not 
given.

The following matrices are assumed for the simulation:

and the simulation time step is 1 ms.

(30)xk+1 = Axk + Buk

A =

⎡
⎢
⎢
⎣

0.9064 0.0816 −0.0005

0.0743 0.9012 −0.0007

0 0 0.1326

⎤
⎥
⎥
⎦

B =

⎡
⎢
⎢
⎣

−0.0015

−0.0096

0.8673

⎤
⎥
⎥
⎦

Table 2  Off-Policy algorithm to solve model-based LQR problem

Algorithm 2: Off-Policy RL algorithm for solving the LQR problem with a guaranteed prescribed degree of stability

1: procedure
2: Given the stabilizing feedback gain � and applying it to the system
3: Solve the Bellman Eq. (24) for the value Pi+1  and Fi+1 simultaneously
xT
k
Pi+1xk −

1

�
2
xT
k+1

Pi+1xk+1 = −
1

�
2

(
uk + Fixk

)T
BTPi+1Akxk −

1

�
2

(
uk + Fixk

)T
BTPi+1xk+1 + xT

k
Qxk + xT

k
FiTRFixk        (24)

5: If ||Fi+1 − Fi|| < 𝜖 then end of the algorithm, else i = i + 1 and go to step 1
6: end procedure

Table 3  Off-policy algorithm to 
solve model-free LQR problem

Algorithm 3: The off-policy algorithm for solving the model-free regulation problem with guaranteed convergence rate

1: procedure
2: Given the stabilizing feedback gain � and applying it to the system

3: Solve the Bellman Eq. (25) for the value BTPi+1B, BTPi+1A , and Pi+1

4: Update the control signal using:
Fi+1 =

(
�
2R + BTPi+1B

)−1
BTPi+1A (29)

5: If ||F
i+1 − Fi|| < 𝜖 then end of the algorithm, else i = i + 1 and go to step 1

6: end procedure
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Fig. 1  P matrix convergence to 
the optimal P∗ in Off-Policy RL 
algorithm

Fig. 2  Control gain convergence 
to the optimal value in Off-
Policy RL algorithm
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The purpose of the design is to find a state feedback con-
trol law for an unknown system in Eq. (30) such that the 
following cost function is minimized:

where � = 0.9,Q = diag(1, 1, 1), and R = 1.
For comparison, if the matrices of the system are given, 

P∗ is the solution of the Riccati Eq. (5) and F∗ is derived 
from the Eq. (4) as follows:

P∗ =

⎡
⎢
⎢
⎣

1.944e3 1.989e3 −2.439

1.989e3 2.016e3 −2.466

0 − 2.439 −2.466 1.003

⎤
⎥
⎥
⎦

F∗ =

⎡
⎢
⎢
⎣

−12.77

−12.93

0.016

⎤
⎥
⎥
⎦

T

The simulation results using the proposed method in 
Algorithm 3 are as follows. Initially, the applied control 
signal to the system is with the probe noise in order to guar-
antee �i to be full rank, then after 200 initial step time (equal 
to 0.2 s) the probe noise will be removed. It is obvious from 
Figs. 1 and 2, that matrix P and the state feedback gain F 
derived from Algorithm 3 converge to their optimal value 
after about 6 iterations (each iteration is assumed to be equal 
to 25 time steps). Figure 3 shows the states of the system 
go to zero, as well. The control signal u has been depicted 
in Fig. 4, where the probe noise can be seen clearly in the 
beginning.

In order to inspect the convergence speed, the eigenvalues 
of the closed-loop system have been compared in two cases 
� = 1 and � = 0.8.

All of the eigenvalues of the closed-loop system with the 
optimal feedback gain F derived for � = 0.8 are placed inside 
the unit circle and are closer than 0.96 from the center of 
the circle, while some of the eigenvalues of the closed-loop 
system for � = 1 are placed outside the circle with the radius 
of 0.96 . Therefore, the convergence rate of the states of the 
system is higher for � = 0.8.

(30)J(x(k)) =

∞∑

k=0

1

�
2k
(xT (k)Qx(k) + uT (k)Ru(k))

Fig. 3  System’s state variables in Off-Policy RL algorithm

Fig. 4  Control Signal for the regulation problem in Off-Policy RL 
algorithm
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The system states trajectories of the controlled system 
according to off-policy model-free algorithm presented in 
Table 3 are depicted in Fig. 5. It can be seen that the degree 
of stability for a smaller � causes a better convergence rate to 
the equilibrium point. In optimal control method the settling 
time is about 0.12 s, in convergence rate control strategy, 
states converge to zero with settling time less than 0.02 s.

6  Conclusion

In this paper, a model-free solution for solving the optimal 
regulation problem for discrete-time linear time-invariant 
system was proposed. Unlike previous methods it also guar-
antees the convergence rate of the states of the system. In 
order to achieve this goal, the new cost function and related 
Riccati equation was derived. The iterative solution of the 
Riccati Equation and finding the optimal state feedback gain 
without requiring any knowledge about the dynamics of the 

system was derived. An example of the optimal problem for 
an F-16 aircraft with completely unknown dynamics was 
given. It was seen that the system states trajectories of the 
controlled system according to off-policy model-free algo-
rithm, converge to the equilibrium point with prescribed 
convergence rate. The proposed method in this paper can 
also be used for reaching a consensus algorithm in multi-
agent systems with guaranteed convergence rate. Moreover, 
the next step in order to develop this method is to consider 
a set of conditions in which all of the states of the system 
are not available.
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Fig. 5  Comparing states in simple control against convergence rate control strategy
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