
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Does weighting improve matrix factorization for
recommender systems?

Anonymous Author(s)

Abstract
Matrix factorization is a widely used approach for top-N recom-

mendations and collaborative filtering. When it is implemented on

implicit feedback data (such as clicks), a common heuristic is to

upweight the observed interactions. This strategy has been shown

to improve the performance of certain algorithms. In this paper,

we conduct a systematic study of various weighting schemes and

matrix factorization algorithms. Somewhat surprisingly, we find

that the best performing methods, as measured by the standard

(unweighted) ranking accuracy on publicly available datasets, are

trained using unweighted data. This observation challenges the

conventional wisdom in the literature. Nevertheless, we identify

cases where weighting can be beneficial, particularly for models

with lower capacity and certain regularization schemes. We also

derive efficient algorithms for minimizing a number of weighted

objectives which were previously unexplored due to the lack of effi-

cient optimization techniques. Our work provides a comprehensive

analysis of the interplay between weighting, regularization, and

model capacity in matrix factorization for recommender systems.

Keywords
Recommender Systems, Collaborative Filtering, Matrix Factoriza-

tion

ACM Reference Format:
Anonymous Author(s). 2024. Does weighting improve matrix factorization

for recommender systems?. In . ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Recommender systems are an integral part of the Web. In a typical

recommender system, we observe how a set of users interact with

a set of items, and our goal is to recommend each user previously

unseen items that they would like. In this paper we consider user

interactions (click, purchase, viewing, etc.) as implicit feedback

(Hu et al. [14]). Unlike explicit feedback (ratings), implicit feed-

back is organically generated as part of the users’ interaction with

the recommender systems, and hence more easily accessible and

prevalent.

Traditionally, matrix factorization has been the go-to choice for

modeling implicit feedback data (Hu et al. [14], Liang et al. [17], Pan

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

et al. [21], Rendle et al. [24], Steck [27]). At its core, matrix factor-

ization involves decomposing the user-item interaction matrix into

a product of two matrices, capturing latent patterns among users

and items via low-dimensional representations. The simplicity and

robustness offered by matrix factorization techniques makes them a

strong baseline in the literature. Even with the recent emergence of

the powerful deep-learning-based approaches, simple linear models,

including matrix factorization, when carefully tuned, can still stay

competitive or even outperform their neural network counterparts

(Ferrari Dacrema et al. [10], Rendle et al. [25], Steck [30]).

A unique challenge presented with implicit feedback for matrix

factorization is how to handle the zeros in the user-item interaction

matrix. Intuitively, we expect the interacted items to convey more

information about a user’s preference. The reason a user did not

interact with a particular item could be either a lack of interest or,

more likely, a lack of awareness/exposure (Liang et al. [17]). Con-

sequently, a common approach used in the literature is to weight

the data differently based on whether their value is zero or one

([14, 21]), specifically, up weighting the interactions (ones) to reflect

our prior belief that we are more certain about these observations.

Empirically it has been demonstrated that such weighting generally

helps with recommendation accuracy in previous studies (Hu et al.

[14], Liang et al. [17], Pan et al. [21], Steck [27]).

Curiously, a notable exception to this weighting strategy is the

EASE model (Steck [30]), which learns an item-item similarity ma-

trix from unweighted data. Even though EASE model is a full-rank

model, as opposed to the low-rank matrix factorization which is

the main focus of this paper, the fact that EASE can outperform

not only the weighted matrix factorization, but also powerful deep-

learning-based approaches suggests there is more to be uncovered

here.

In this paper, we take a systematic look at various weighting

schemes and matrix factorization algorithms and find that, some-

what surprisingly, the conventional wisdom on up weighting the

observed interactions carries more nuance. Specifically, we ob-

served that the best performing methods, as measured by (un-

weighted) ranking accuracy on publicly available datasets, are gen-

erally trained using unweighted data. On the other hand, there are

cases where weighting can be beneficial, especially for models with

lower capabilities. This is in parallel with observations made with

deep models (Byrd and Lipton [5]).

We highlight the following contributions of our paper:

(1) We provide experimental evidence that unweighted methods

outperform their weighted counterparts on standard bench-

marks in recommender systems, which undermines the con-

ventional wisdom in the literature.

(2) We derive efficient algorithms for minimizing weighted objec-

tives for various matrix factorization models. To the best of our

knowledge, most of these objectives were never studied in the

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

literature due to the lack of efficient optimization algorithms.

Our work fills in this gap.

(3) We systematically study the interplay between weighting, reg-

ularization, and model capacity by running exhaustive experi-

ments over a wide range of methods.

2 Preliminaries
In this paper we consider the problem of top-N recommendation

[9, 19] with implicit feedback data [14, 21]. We assume access to a

matrix (typically sparse and binary) of user-by-item interactions

𝑋 ∈ R |U |× |I | where U = {1, 2, · · · ,𝑈 } and I = {1, 2, · · · , 𝐼 }
denotes the set of users and items respectively. If 𝑋𝑢𝑖 is positive,

then we say a user 𝑢 has interacted with an item 𝑖 . If 𝑋𝑢𝑖 is zero,

then we say a user 𝑢 has no interaction with item 𝑖 .

Following the standard settings [10, 18, 30], we “binarize” the

user-by-item interaction matrix so that all the positive entries of 𝑋

take value 1 and the zero entries of 𝑋 remain unchanged. This is

done to facilitate the use of standard ranking metrics such as the

truncated normalized discounted cumulative gain (NDCG@𝑅) ([15])

and Recall@𝑅. In top-N recommendation, we aim to provide 𝑁

recommendations for each user and our goal is to have the heldout

items an user actually interacted with rank as high as possible.

We outline a few important model building blocks that will be

used throughout this paper, starting with the standard weighted

matrix factorization:

Weighted matrix factorization. In weighted matrix factoriza-

tion (WMF) (Hu et al. [14], Pan et al. [21]), we learn 𝑑-dimensional

user and item factors 𝑈 ∈ R |U |×𝑑 , 𝑉 ∈ R | I |×𝑑 via the following

objective:

min

𝑈 ,𝑉

√𝑊 ⊙ (𝑋 −𝑈𝑉𝑇)
2

𝐹
+ 𝜆∥𝑈 ∥2𝐹 + 𝜆∥𝑉 ∥

2

𝐹 , (1)

where 𝑑 ≤ |I|, 𝜆 is the regularizer strength, and𝑊 ∈ R |U |× |I |
>0

is

a set of positive weights. Typically𝑊 is set such that the weights

for 𝑋𝑢𝑖 = 1 is larger than the weights for 𝑋𝑢𝑖 = 0, for example

𝑊𝑢𝑖 = (𝛼 − 1)𝑋𝑢𝑖 + 1 for 𝑎 > 0 as used in Hu et al. [14], Pan et al.

[21], and Steck [27]. With such a weighting function, WMF can be

efficiently optimized via alternating least squares (Hu et al. [14]).

In this paper, we follow the same weighting function in all our

experiments.

Asymmetrical (weighted) matrix factorization. Asymmetri-

cal matrix factorization (AWMF) Paterek [22] is a closely-related

approach with the following objective
1
:

min

𝑈 ,𝑉 ∈R|I |×𝑑

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆∥𝑈 ∥2𝐹 + 𝜆∥𝑉 ∥

2

𝐹 (2)

Note that with AWMF, both of the learned matrices 𝑈 and 𝑉 are

of the size |I | × 𝑑 . Comparing the first term in eq. (2) with eq. (1),

we can interpret AWMF as having a constrained latent user factor.

Specifically, the user factor for user𝑢 in AWMF is implicitly defined

as the sum of the latent item factors (in 𝑈) of the interacted items

by user 𝑢. Assuming |U| ≫ |I| (which is often the case in many

recommendation scenarios), compared to an unconstrained latent

user factor that has to be learned for each individual user in the

1
The original A(W)MF of Paterek [22] does not have weights.

WMFmodel, the constraint results in a considerable reduction in the

number of model parameters. AWMF also has strong connections

to autoencoder models (Liang et al. [18], Steck [28]).

Another variate of AWMF optimizes the following objective:

min

𝑈 ,𝑉 ∈R|I |×𝑑

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆∥𝑈𝑉⊤∥2𝐹 (3)

The unweighted version of eq. (2) and eq. (3) are studied in Steck

[31]. It is noted that eq. (2) is a “weight-decay” style regularization,

while eq. (3) corresponds asymptotically to a “dropout/denoising”

style regularization [6]. The results in Steck [31] demonstrate that

the unweighted version of eq. (3) tends to perform better with a

fairly sizable margin.

Finally, we consider a full-rank version of eq. (3):

min

𝐵∈R|I |×|I|

√𝑊 ⊙ (𝑋 − 𝑋𝐵)2

𝐹
+ 𝜆∥𝐵∥2𝐹 . (4)

This is similar to the objective of EASE Steck [30], except that

we introduce a weighting matrix𝑊 and drop the zero-diagonal

constraint. Note that we made the latter choice as to be consistent

with the other models for a fair comparison, even though this results

in slightly reduced accuracy as shown in Steck [29]. We expect the

full-rank model to generally outperform its low-rank counterparts.

Several further comments are in order:

• We choose the square loss (here ∥ · ∥𝐹 denotes the Frobenius

norm), as is standard in the literature when applying matrix

factorization to collaborative filtering/top-𝑁 recommendations

(Hu et al. [14], Ning and Karypis [19], Steck [30, 31]). De Pauw

and Goethals [8], Liang et al. [18] observe that training with

alternative loss functions such as the logistic loss yield better

ranking accuracy over the unweighted square loss, as the logistic

loss reweights the data (Ayoub et al. [2]). However, as our exper-

iments demonstrate, training on unweighted data can give the

best performance.

• We test various forms of ℓ2 regularization. As was observed by

Steck [31], Steck and Garcia [32] and Jin et al. [16], for an item-

similarity matrix with low rank, i.e. 𝐵 = 𝑈𝑉⊤, choosing the right
regularization scheme can have a significant impact on ranking

accuracy. Note that this adds an additional hyperparameter 𝜆,

which needs be selected — using a held-out validation set —

separately for each regularizer.

Note that even though we explicitly write the weighting matrix

in all of the objectives in this section, we can recover the unweighted

versions by setting𝑊 to be all 1’s. For most of these objectives,

specifically for eqs. (2) to (4) with general weightingmatrix, the chal-

lenge lies in efficient optimization with large-scale recommendation

datasets. To the best of our knowledge, none of these objectives

have been studied in the literature. In the subsequent sections, we

dive into the details on how we design optimization algorithms.

3 Optimization
In this section, we derive closed-form solutions for the optimization

problems given in eqs. (2) to (4). In section 4, these solutions will

be paired with the conjugate gradient method to produce efficient

algorithms for the various optimization problems.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Does weighting improve matrix factorization for
recommender systems? Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3.1 Closed-Form Solution: Unregularized
In this section, we show that the objective functions for learning

the item similarity matrices𝑈𝑉⊤ and 𝐵 in eqs. (2) and (3) and eq. (4)

can be solved in closed form when 𝜆 = 0. The choice to first present

the results for the unregularized case is done solely to simplify the

exposition, and the proceeding section contains the extension to

𝜆 > 0.

Our results refute a claim made by Jin et al. [16], Steck [29],

specifically that a closed form solution to eqs. (2) to (4) does not

exist for an arbitrary weight matrix𝑊 ∈ R |U |× |I |
>0

. Thus we resolve

an open question by giving a closed form solution to the weighted

objectives in eqs. (2) to (4). The derivation requires reviewing the

definition of the Kronecker product.

Definition 3.1 (Kronecker product). The Kronecker product of

matrices 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑝×𝑞
is denoted by 𝐴 ⊗ 𝐵 and defined

to be the block matrix

𝐴 ⊗ 𝐵 =

𝑎11𝐵 𝑎12𝐵 · · · 𝑎1𝑛𝐵

𝑎21𝐵 𝑎22𝐵 · · · 𝑎2𝑛𝐵

.

.

.
.
.
.

. . .
.
.
.

𝑎𝑚1𝐵 𝑎𝑚2𝐵 · · · 𝑎𝑚𝑛𝐵

.

We refer the reader to Chapter 4.2 of Horn and Johnson [13] for

a summary of elementary properties of the Kronecker product,

some of which will be used below. We will also need the following

“vectorization” lemma.

Lemma 3.2 (Lemma 4.3.1 of Horn and Johnson [13]). Let ma-
trices 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑝×𝑞 and 𝐶 ∈ R𝑚×𝑞 be given and 𝑋 ∈ R𝑛×𝑝

be unknown. The matrix equation

𝐴𝑋𝐵 = 𝐶

is equivalent to the system of 𝑞𝑚 equations in 𝑛𝑝 unknowns given by

(𝐵⊤ ⊗ 𝐴) vec(𝑋) = vec(𝐶) .
That is, vec(𝐴𝑋𝐵) = (𝐵⊤ ⊗ 𝐴) vec(𝑋), where vec(𝐴) is the𝑚𝑛 × 1

column vector obtained by stacking the columns of𝐴 with the leftmost
column on top2.

The vectorization lemma has historically been used to reason

about and compute solutions to Sylvester’s equation of the form

𝐴𝑋 +𝑋𝐵 = 𝐶 and Lyapunov equation of the form𝐴𝑋𝐴⊤−𝑋 +𝐵 = 0,

which arise naturally when studying linear dynamical systems in

control theory. In this context the vectorization lemma is used to

“linearize” these seemingly nonlinear matrix equations, and our

closed-form solution takes inspiration from this technique.

We will also employ the following proposition in our derivations,

so as to avoid repetitive calculations and streamline the presenta-

tion.

Proposition 3.3. For matrices 𝐴,𝑊 ∈ R𝑢×𝑖 and 𝐵,𝐶 ∈ R𝑖×𝑑 ,

vec(𝐴𝑇 (𝑊 ⊙ (𝐴𝐵𝐶⊤))𝐶) = (𝐶 ⊗ 𝐴)⊤�̄� (𝐶 ⊗ 𝐴) vec(𝐵) (5)

where �̄� = diagMat(vec(𝑊)). Furthermore, we also have that

vec((𝑊 ⊤ ⊙ (𝐶𝐵⊤𝐴⊤))𝐴𝐵) = (𝐴𝐵 ⊗ 𝐼𝑖)⊤�̂� (𝐴𝐵 ⊗ 𝐼𝑖) vec(𝐶) , (6)

where �̂� = diagMat(vec(𝑊 ⊤)).
2
vec(𝐴) = 𝐴.flatten("F") in NumPy.

Proof. We start the proof by showing eq. (5). Employing lemma 3.2,

we have that

vec(𝐴𝑇 (𝑊 ⊙ (𝐴𝐵𝐶⊤))𝐶)
= (𝐶 ⊗ 𝐴)⊤ vec(𝑊 ⊙ (𝐴𝐵𝐶⊤))
= (𝐶 ⊗ 𝐴)⊤ (vec(𝑊) ⊙ vec(𝐴𝐵𝐶⊤))
= (𝐶 ⊗ 𝐴)⊤ diagMat(vec(𝑊)) vec(𝐴𝐵𝐶⊤)
= (𝐶 ⊗ 𝐴)⊤�̄� (𝐶 ⊗ 𝐴) vec(𝐵) ,

where the first and last equalities use lemma 3.2 and the third

equality uses the fact that for vectors 𝑥,𝑦, it holds that 𝑥 ⊙ 𝑦 =

diagMat(𝑥)𝑦.
Now we turn our attention to showing eq. (6). Again employing

lemma 3.2, we have that

vec((𝑊 ⊤ ⊙ (𝐶𝐵⊤𝐴⊤))𝐴𝐵)
= (𝐴𝐵 ⊗ 𝐼𝑖)⊤ vec(𝑊 ⊤ ⊙ (𝐶 (𝐴𝐵)⊤))
= (𝐴𝐵 ⊗ 𝐼𝑖)⊤ (vec(𝑊 ⊤) ⊙ vec(𝐶 (𝐴𝐵)⊤))
= (𝐴𝐵 ⊗ 𝐼𝑖)⊤ diagMat(vec(𝑊 ⊤)) vec(𝐶 (𝐴𝐵)⊤)
= (𝐴𝐵 ⊗ 𝐼𝑖)⊤�̂� (𝐴𝐵 ⊗ 𝐼𝑖) vec(𝐶) ,

where the first and last equalities use lemma 3.2 and the third

equality uses the fact that for vectors 𝑥,𝑦, it holds that 𝑥 ⊙ 𝑦 =

diagMat(𝑥)𝑦. This completes the proof. □

With these preliminary results in hand, we are ready to tackle

eqs. (2) to (4) with 𝜆 = 0.

Solving eq. (4), unregularized: We start by solving the opti-

mization problem given in eq. (4) as it is the simplest to solve and

thus provides the cleanest presentation of our analysis. We start

taking its derivative and setting it to be zero,

𝑋𝑇 (𝑊 ⊙ (𝑋𝐵 − 𝑋)) = 0 .

Previous attempts at finding a closed form solution failed due to

the presence of the Hadamard (element-wise) product ⊙, which
does not allow the order of operations to be exchanged. Employing

operations to be exchanged. Employing eq. (5) of proposition 3.3

and rearranging, we can rewrite the above matrix equation as

vec(𝑋⊤ (𝑊 ⊙ 𝑋))

= vec

(
𝑋𝑇 (𝑊 ⊙ (𝑋𝐵))

)
= (𝐼 | I | ⊗ 𝑋⊤)�̄� (𝐼 | I | ⊗ 𝑋) vec(𝐵) = 𝐻 (𝐵, 0) vec(𝐵) ,

where we defined𝐻 (𝐵, 0)3 = (𝐼 | I | ⊗𝑋⊤)�̄� (𝐼 | I | ⊗𝑋). Rearranging
the above equation gives the following closed form for 𝐵

vec(𝐵) = 𝐻 (𝐵, 0)−1
vec(𝑋⊤ (𝑊 ⊙ 𝑋)) . (7)

We remark 𝐻 (𝐵, 0) is guaranteed to be invertible so long as 𝑋 has

full column rank, i.e. 𝑋⊤𝑋 is invertible. Finally, we note the while

a closed form solution for 𝐵 was given in terms of𝑊 and 𝑋 , this

method can be used for finding a closed form solution for any

optimization problem of the form

min

𝐵∈R|I |×|I|

√𝑊 ⊙ (𝑋 ′ − 𝑋𝐵)2

𝐹
, (8)

3
we slightly abuse notation here by writing H(B,0) since H is not a function of 𝐵 but

is a function of 0.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

which may be of independent interest. An interesting extension

would be to leverage our analysis and derive a closed form solution

for the case when 𝐵 is constrained to be a zero-diagonal matrix, as

was done explicitly in Steck [30] and implicitly in Ning and Karypis

[19]. We believe the use of the vectorization lemma will facilitate

such an analysis and we highlight this as potential future work.

Solving eqs. (2) and (3), unregularized: We now apply propo-

sition 3.3 to eqs. (2) and (3) with 𝜆 = 0 using a similar procedure.

Since we will employ alternating minimization for solving eqs. (2)

and (3), we first fix 𝑉 and compute the closed form solution for𝑈

and then do the converse. Taking the derivative of the expression

to the left of the sum in eq. (3) with respect to𝑈 and setting it to

be zero gives

𝑋⊤ (𝑊 ⊙ (𝑋𝑈𝑉⊤ − 𝑋))𝑉 = 0 .

Employing eq. (5) of proposition 3.3 and rearranging the above

display gives

vec(𝑋⊤ (𝑊 ⊙ 𝑋)𝑉)
= vec(𝑋⊤ (𝑊 ⊙ (𝑋𝑈𝑉⊤))𝑉)
= (𝑉 ⊗ 𝑋)⊤�̄� (𝑉 ⊗ 𝑋) vec(𝑈)
= 𝐻𝐷 (𝑈 , 0) vec(𝑈) = 𝐻𝑊 (𝑈 , 0) vec(𝑈) ,

where𝐻𝐷 (𝑈 , 0) = 𝐻𝑊 (𝑈 , 0) = (𝑉 ⊗𝑋)⊤�̄� (𝑉 ⊗𝑋).We let𝐻𝐷 (𝑈 , 0)
denote the Gram matrix of unregularized AWMF with dropout with

respect to𝑈 and 𝐻𝑊 (𝑈 , 0) denote the Gram matrix of unregular-

ized AWMF with weight decay. In later sections when we consider

𝜆 > 0, the utility of these shorthands will become more apparent.

Rearranging the above equation gives the following closed-form

expression for computing𝑈

vec(𝑈) =
(
(𝑉 ⊗ 𝑋)⊤�̄� (𝑉 ⊗ 𝑋)

)−1

vec(𝑋⊤ (𝑊 ⊙ 𝑋)𝑉) . (9)

So long as both 𝑉 and 𝑋 have full column rank, the inverse above

is guaranteed to exist. Repeating the same calculations for 𝑉 and

using eq. (6) of proposition 3.3, we get that

vec(𝑉) =
(
(𝑋𝑈 ⊗ 𝐼 | I |)⊤�̂� (𝑋𝑈 ⊗ 𝐼 | I |)

)−1

vec((𝑊 ⊤ ⊙ 𝑋⊤)𝑋𝑈) .
(10)

Here 𝑋𝑈 must have full column rank for the inverse to exist. In

the future we will also use the shorthand 𝐻𝐷 (𝑉 , 0) = 𝐻𝑊 (𝑉 , 0) =
(𝑋𝑈 ⊗ 𝐼 | I |)⊤�̂� (𝑋𝑈 ⊗ 𝐼 | I |). This concludes our analysis of the case
𝜆 = 0, and we are ready for the generalization to regularization.

3.2 Closed-Form Solution: Regularized
In this section, we show that the regularized objective functions for

learning 𝐵,𝑈 and 𝑉 in eqs. (2) to (4) can be solved in closed form.

Solving eq. (4), regularized: Taking the derivative of the opti-

mization problem in eq. (4) and setting it to be zero, we get

𝑋𝑇 (𝑊 ⊙ (𝑋𝐵 − 𝑋)) + 𝜆𝐵 = 0 .

Rearranging the above equation and employing proposition 3.3, we

write

vec(𝑋⊤ (𝑊 ⊙ 𝑋))

= vec

(
𝑋𝑇 (𝑊 ⊙ (𝑋𝐵)) + 𝜆𝐵

)
= 𝐻 (𝐵, 0) vec(𝐵) + 𝜆(𝐼 | I | ⊗ 𝐼 | I |) vec(𝐵)
= 𝐻 (𝐵, 𝜆) vec(𝐵) .

Thus we get the following closed form expression for 𝐵 when

solving eq. (4) for 𝜆 > 0,

𝐵 = 𝐻 (𝐵, 𝜆)−1
vec(𝑋⊤ (𝑊 ⊙ 𝑋)) . (11)

Solving eqs. (2) and (3), regularized: We now optimization

problems in eqs. (2) and (3), we first fix 𝑉 and find the closed form

expressions for 𝑈 . Taking the derivative of eq. (3) with respect to

𝑈 and setting it to be zero gives

𝑋⊤ (𝑊 ⊙ (𝑋𝑈𝑉⊤ − 𝑋))𝑉 + 𝜆𝑈𝑉⊤𝑉 = 0 .

Again, rearranging and employing proposition 3.3 gives

vec(𝑋⊤ (𝑊 ⊙ 𝑋)𝑉)
= vec(𝑋⊤ (𝑊 ⊙ (𝑋𝑈𝑉⊤))𝑉 +𝑈𝑉⊤𝑉)
= (𝐻𝐷 (𝑈 , 0) + 𝜆(𝑉⊤𝑉 ⊗ 𝐼)) vec(𝑈)
= 𝐻𝐷 (𝑈 , 𝜆) vec(𝑈) .

Thus when employing dropout style regularization as in eq. (3), we

have that

𝑈
dropout

= 𝐻𝐷 (𝑈 , 𝜆)−1
vec(𝑋⊤ (𝑊 ⊙ 𝑋)𝑉) . (12)

Now taking the derivative of eq. (2) with respect to𝑈 and repeating

the above calculations gives us the following closed-form solution

for 𝑈 when employing a weight decay style of regularization as in

eq. (2)

𝑈
weight decay

= 𝐻𝑊 (𝑈 , 𝜆)−1
vec(𝑋⊤ (𝑊 ⊙ 𝑋)𝑉) . (13)

Repeating the above calculations but for the matrix 𝑉 gives

𝑉
dropout

= 𝐻𝐷 (𝑉 , 𝜆)−1
vec((𝑊 ⊤ ⊙ 𝑋⊤)𝑋𝑈) (14)

for eq. (3) and

𝑉
weight decay

= 𝐻𝐷 (𝑉 , 𝜆)−1
vec((𝑊 ⊤ ⊙ 𝑋⊤)𝑋𝑈) (15)

for eq. (2). Thus we have derived the closed form solutions for the

minimization problems defined in eq. (4), eq. (3) and eq. (2).

With the closed form solutions for eqs. (2) to (4) in place, we

now turn our attention to computation

3.3 Computational Considerations
In this section, we address some of the computational issueswith the

closed form solutions given in the previous sections. The main issue

with our closed form solution is that the memory requirements for

computing the gram matrices 𝐻 , 𝐻𝐷 and 𝐻𝑊 is often prohibitively

large. For example, suppose one wants to compute 𝐻𝐷 (𝑈 , 𝜆) on
the MovieLens 20 Million (ML- 20M) dataset (Harper and Konstan

[11]), which has 136, 677 users and 20, 108 items (movies) with

around 10 million interactions. A quick calculation gives us that

the sparse “binarized” click matrix for ML-20M, i.e. 𝑋 , has density

0.003, meaning about 0.3 percent of the matrix 𝑋 is nonzero. If we

let 𝑑 = 10 in eqs. (2) and (3) and let 𝑉 ∈ R | I |× be a dense matrix,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Does weighting improve matrix factorization for
recommender systems? Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: Preconditioned Conjugate Gradient Method

Input: 𝐴: symmetric positive definite matrix, 𝑏: vector, 𝑥0:

initial guess,𝑀−1
: preconditioner, 𝜖 : tolerance,

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 : maximum iterations

Output: 𝑥 : solution to 𝐴𝑥 = 𝑏

𝑟0 ← 𝑏 −𝐴𝑥0;

𝑧0 ← 𝑀−1𝑟0;

𝑝0 ← 𝑧0;

for 𝑘 ← 0 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 − 1 do
if ∥𝑟𝑘 ∥2 ≤ 𝜖 then

return 𝑥𝑘 ;

end
𝛼𝑘 ← (𝑟𝑇𝑘 𝑧𝑘)/(𝑝

𝑇
𝑘
𝐴𝑝𝑘);

𝑥𝑘+1 ← 𝑥𝑘 + 𝛼𝑘𝑝𝑘 ;
𝑟𝑘+1 ← 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘 ;
𝑧𝑘+1 ← 𝑀−1𝑟𝑘+1;
𝛽𝑘 ← (𝑟𝑇𝑘+1𝑧𝑘+1)/(𝑟

𝑇
𝑘
𝑧𝑘);

𝑝𝑘+1 ← 𝑧𝑘+1 + 𝛽𝑘𝑝𝑘 ;
end
return 𝑥𝑘

then computing the matrix𝑉 ⊗𝑋 , which is needed to compute 𝐻𝑈 ,

would require more than 1, 000GB of storage.

4 An Efficient Algorithm
In this section, we give an efficient algorithm for solving eqs. (11)

to (15). The design is based on the following two key insights:

• The regularized Gram matrices (𝐻,𝐻𝐷 and 𝐻𝑊) corresponding

to the aforementioned equations are symmetric positive definite.

• While computing and storing these matrices is prohibitively

expensive, computing and storing their product with a vector is

(relatively) inexpensive, and indeed is tractable for problems of

the scale considered in our experiments.

In order to understand the second insight more concretely, define

a matrix 𝑃 ∈ R | I |× |I | and let 𝑝 = vec(𝑃). Then eq. (5) of propo-

sition 3.3, reveals the equivalence between computing 𝐻 (𝐵, 𝜆)𝑝
and

vec

(
𝑋⊤ (𝑊 ⊙ (𝑋𝑃)) + 𝜆𝑃

)
.

If insteadwe have 𝑃 ∈ R | I |×𝑑 then computing𝐻𝐷 (𝑈 , 𝜆)𝑝,,𝐻𝐷 (𝑉 , 𝜆)𝑝 ,
𝐻𝑊 (𝑈 , 𝜆)𝑝 and 𝐻𝑊 (𝑉 , 𝜆)𝑝 can be done efficiently by invoking

eqs. (5) and (6) of proposition 3.3 in an analogous way.

Therefore, since the Gram matrices are symmetric positive defi-

nite and their products with arbitrary vectors are inexpensive to

compute, the natural algorithm for solving eqs. (11) to (15) is the

conjugate gradient method of Hestenes and Stiefel [12] with pre-

conditioning (Axelsson [1]), which is detailed in algorithm 1. The

conjugate gradient method is an iterative method for solving posi-

tive definite linear systems of equations. The main computational

bottleneck in algorithm 1 is computing matrix vector products but,

as we argued above, this can be done (relatively) cheaply. Another

pleasing property of algorithm 1 is that it converges to the solution

of eqs. (11) to (15) in at most |I |𝑑 iterations, see Theorem 5.1 of

Nocedal and Wright [20].

However, algorithm 1 may identify a solution in fewer than |I |𝑑
iterations when the regularized Gram matrices (𝐴 in the algorithm)

are well behaved. Specifically, let the conditioning number of 𝐴 be

defined by 𝜅 (𝐴) = 𝜆max (𝐴)/𝜆min (𝐴), where 𝜆max (𝐴) and 𝜆min (𝐴)
are the maximum and minimum eigenvalues of 𝐴 respectively.

Then the values of 𝑥𝑘 for 𝑘 = 0, . . . ,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 − 1, as computed by

algorithm 1, satisfy

∥𝑥𝑘 − 𝑥 ∥𝐴 ≤ 2 exp

(
− 2𝑘

𝜅 (𝐴)

)
∥𝑥0 − 𝑥 ∥𝐴 .

Thus algorithm 1 converges exponentially fast to the solution of any

positive definite linear system with a reasonably small conditioning

number.

In order to control the conditioning number of the various Gram

matrices, we will employ a preconditioner𝑀−1
which will help to

speed up the convergence of algorithm 1 without increasing the

computational complexity. At a high level, preconditioning trans-

forms the linear system𝐴𝑥 = 𝑏 to the linear system𝑀−1𝐴𝑥 = 𝑀−1𝑏

for an invertiblematrix𝑀 . The goal is to choose𝑀 so that𝑀−1𝐴 has

a lower conditioning number than 𝐴, and thus the conjugate gradi-

ent method has a fast convergence rate on the transformed system.

Empirically we found the Gram matrix corresponding to𝑊 = 1,

e.g. for 𝐻 (𝐵, 𝜆) we would use 𝑀−1 = ((𝐼 | I | ⊗ 𝑋⊤𝑋) + 𝜆𝐼 | I |)−1 =

(𝐼 | I | ⊗ (𝑋⊤𝑋 +𝜆𝐼 | I |)−1). This is because the conditioning number

of 𝑀−1𝐻 is of order max(𝑊), which in our experiments is con-

trolled by 𝛼 . Also, the 𝑀−1
corresponding to eqs. (11) to (15) can

be computed efficiently via proposition 3.3.

5 Numerical Experiments
In this section, we apply the models derived in Section 3, as well

as the celebrated weighted matrix factorization model (Hu et al.

[14], Pan et al. [21]), to collaborative filtering and recommendation

problems. We focus on weighted linear autoencoders to better un-

derstand the interplay between weighting (𝑊), regularization (𝜆)

and model-dimension (𝑑).

5.1 Experimental Setup
We follow the experimental setup detailed in Liang et al. [18], using

their publicly available code, as well as the same three standard

datasets:

• MovieLens 20Million (ML-20M) (Harper andKonstan [11]) which

consists of 136, 677 users, 20, 108 items and about 10 million in-

teractions,

• Netflix Prize (Netflix) (Bennett and Lanning [3]) which consists

of 463, 435 users, 17, 769 items and about 57 million interactions,

• Million Song Data (MSD) (Bertin-Mahieux et al. [4]) which con-

sists of 571, 355 users, 41, 140 items and about 34 million interac-

tions.

We also employ the same data preprocessing as in Liang et al. [18].

The user-by-item matrix 𝑋 is “binarized” with 1 denoting that a

user interacted with an item (e.g., the user watched a movie and

gave a rating above 3) and 0 denoting that a user has not interacted

with an item. In this work we compare the following five models:

(1) Asymmetrical Weighted Matrix Factorization (AWMF) with

weight decay (Steck [31]). This corresponds to the optimization

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Ranking accuracies (Recall@20, Recall@50 and nDCG@100 as given in Liang et al. [18]) for linear autoencoders of
model-rank 𝑑 = 1000 trained with different regularizers and weightings 𝛼 , on three standard datasets, ML-20M, Netflix, and
MSD, each with standard errors of 0.002, 0.001, 0.001 respectively. Note that we report that results for both the best performing
weighted model (and it’s weight 𝛼) and best performing unweighted model 𝛼 = 1. Note that each model has an additional
hyperparameter 𝜆 which controls the various ℓ2 regularizers.

ML-20M Netflix MSD

Recall Recall nDCG

𝛼
Recall Recall nDCG

𝛼
Recall Recall nDCG

𝛼
Model @20 @50 @100 @20 @50 @100 @20 @50 @100

1.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.344 0.476 0.378 2 0.311 0.395 0.345 5 0.228 0.314 0.277 10𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.348 0.466 0.381 1 0.302 0.376 0.334 1 0.189 0.251 0.230 1

2.

√𝑊 ⊙ (𝑋 −𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.377 0.512 0.409 3 0.292 0.376 0.329 2 0.268 0.371 0.322 21𝑋 −𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.328 0.443 0.360 1 0.318 0.406 0.352 1 0.189 0.251 0.231 1

3.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆

𝑈𝑉⊤2

𝐹
0.355 0.491 0.388 2 0.337 0.419 0.370 2 0.227 0.311 0.277 10𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆

𝑈𝑉⊤2

𝐹
0.378 0.511 0.407 1 0.337 0.417 0.369 1 0.216 0.296 0.266 1

4.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑋𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.356 0.491 0.383 2 0.263 0.355 0.303 2 0.231 0.322 0.283 10𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑋𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.326 0.441 0.358 1 0.314 0.401 0.348 1 0.190 0.251 0.231 1

5. Full Rank

√𝑊 ⊙ (𝑋 − 𝑋𝐵)2

𝐹
+ 𝜆(∥𝐵∥2

𝐹
) 0.360 0.499 0.389 2 0.338 0.421 0.370 2 0.277 0.377 0.338 2𝑋 − 𝑋𝐵⊤2

𝐹
+ 𝜆(∥𝐵∥2

𝐹
) 0.376 0.511 0.407 1 0.335 0.417 0.368 1 0.284 0.384 0.344 1

Table 2: Ranking accuracies for linear autoencoders of model-rank 𝑑 = 100.

ML-20M Netflix MSD

Recall Recall nDCG

𝛼
Recall Recall nDCG

𝛼
Recall Recall nDCG

𝛼
Model @20 @50 @100 @20 @50 @100 @20 @50 @100

1.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.339 0.472 0.374 2 0.309 0.392 0.343 5 0.167 0.241 0.210 10𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.348 0.466 0.381 1 0.302 0.376 0.334 1 0.129 0.182 0.163 1

2.

√𝑊 ⊙ (𝑋 −𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.364 0.497 0.399 6 0.316 0.396 0.348 3 0.178 0.265 0.223 21𝑋 −𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.319 0.434 0.350 1 0.312 0.388 0.344 1 0.126 0.179 0.160 1

3.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆

𝑈𝑉⊤2

𝐹
0.320 0.454 0.361 2 0.316 0.396 0.348 2 0.167 0.239 0.208 10𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆

𝑈𝑉⊤2

𝐹
0.336 0.466 0.368 1 0.318 0.395 0.348 1 0.132 0.186 0.167 1

4.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑋𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.344 0.475 0.374 2 0.304 0.384 0.338 2 0.171 0.247 0.213 20𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑋𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.315 0.430 0.346 1 0.312 0.388 0.343 1 0.128 0.180 0.161 1

problem detailed in eq. (2). The regularization here encourages

the entries of𝑈 and 𝑉 to be close to zero.

(2) Weighted Matrix Factorization (WMF) (Hu et al. [14], Pan et al.

[21]). A linear model that learns a user embedding matrix 𝑈

and item embedding matrix 𝑉 that minimize min𝑈 ,𝑉 ∥
√
𝑊 ⊙

(𝑋 −𝑈𝑉⊤)∥ + 𝜆(∥𝑈 ∥2
𝐹
+ ∥𝑉 ∥2

𝐹
). This method also employs a

weight-decay style of regularization, encourages the entries of

𝑈 and 𝑉 to be near zero.

(3) Asymmetrical Weighted Matrix Factorization (AWMF) with

dropout (Cavazza et al. [6], Steck [31]). This corresponds to the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Does weighting improve matrix factorization for
recommender systems? Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Ranking accuracies for linear autoencoders of model-rank 𝑑 = 10.

ML-20M Netflix MSD

Recall Recall nDCG

𝛼
Recall Recall nDCG

𝛼
Recall Recall nDCG

𝛼
Model @20 @50 @100 @20 @50 @100 @20 @50 @100

1.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.305 0.426 0.338 5 0.259 0.339 0.293 2 0.086 0.134 0.114 20𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.297 0.415 0.332 1 0.258 0.335 0.290 1 0.074 0.111 0.099 1

2.

√𝑊 ⊙ (𝑋 −𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.305 0.427 0.339 3 0.258 0.340 0.293 3 0.082 0.130 0.111 21𝑋 −𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.289 0.401 0.322 1 0.259 0.337 0.292 1 0.074 0.110 0.099 1

3.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆

𝑈𝑉⊤2

𝐹
0.303 0.425 0.336 5 0.260 0.340 0.293 2 0.085 0.129 0.111 10𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆

𝑈𝑉⊤2

𝐹
0.298 0.415 0.331 1 0.258 0.334 0.290 1 0.075 0.110 0.098 1

4.

√𝑊 ⊙ (𝑋 − 𝑋𝑈𝑉⊤)2

𝐹
+ 𝜆(∥𝑋𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.293 0.412 0.324 2 0.260 0.339 0.294 2 0.083 0.129 0.110 20𝑋 − 𝑋𝑈𝑉⊤2

𝐹
+ 𝜆(∥𝑋𝑈 ∥2

𝐹
+ ∥𝑉 ∥2

𝐹
) 0.290 0.407 0.321 1 0.260 0.338 0.293 1 0.074 0.110 0.098 1

optimization problem detailed in eq. (3). The regularization here

encourages 𝑈 to be orthogonal to 𝑉⊤, that is 𝑈𝑉⊤ ≈ 0. This

style of weighting was inspired by the regularizer originally

employ by EASE in Steck [30].

(4) Asymmetrical Weighted Matrix Factorization (AWMF) with

“data/weight decay”. This model employs the regularization

used in WMF with the training objective used by AWMF, i.e.,

min𝑈 ,𝑉 ∥
√
𝑊 ⊙(𝑋−𝑋𝑈𝑉⊤)∥+𝜆(∥𝑋𝑈 ∥2

𝐹
+∥𝑉 ∥2

𝐹
), where we let

𝑋𝑈 be the user embedding in WMF. This encourages learning

a matrix𝑈 such that the elements of 𝑋𝑈 are close to zero.

(5) Full Rank AWMF. This corresponds to the optimization problem

detailed in eq. (4). This model learns a single full rank matrix 𝐵

and can be seen as the model induced by let𝑈 and𝑉 in AWMF

be full rank.

Each numbered model in the above list corresponds to the model in

tables 1 to 3. We determine the optimal training hyper-parameter

𝜆 and 𝛼 by performing a grid search. All models reported in ta-

bles 1 to 3 swept over 𝜆 ∈ {0.0001, 0.01, 1, 100, 10, 000} and 𝛼 ∈
{1, 2, 5, 10, 20} similar to the sweep used by Liang et al. [18] when

computing the optimal hyperparameters for WMF. If the highest

validation performance occurred either at 𝜆 = {0.0001, 10, 000} or
at 𝛼 = 20 then we increased the grid until validation performance

dropped. All models in tables 1 to 3 were implemented using Python,

Numpy and Scipy. Models 1, 3, 4, 5 in table 1 were implementing

using algorithm 1 and preconditioner corresponding to their respec-

tive unweighted Gram matrix 𝐺 . WMF (model 2) was computed

using the publicly available code provided by the authors
4
of Liang

et al. [18] though we remark WMF could also be implemented

with algorithm 1. To evaluate the ranking accuracy of the various

learned models on the withheld test set, we employed the evalu-

ation scheme given in Liang et al. [18] as well as the normalized

4
Their code adds one to all the values of 𝛼 as is consistent with Hu et al. [14]. This is

reflected in tables 1 to 3

Discounted Cumulative Gain (nDCG@100) and Recall (@20 and

@50) detailed therein.

5.2 Experimental Results
Tables 1 to 3 gives the ranking accuracies obtained by various

models with matrix ranks 𝑑 = 1000, 100 and 10, respectively, and

for the various regularization and weighting schemes detailed in

our paper. Table 1 also contains the ranking accuracies for the full

rank model where 𝑑 = |I |.
First, let us consider the main finding of our paper: that (one

of) the best performing ranking accuracies on each of the three

datasets all belong to unweighted methods. To clarify the previous

statement, unweighted methods either get the best performance or

have performance within the standard error of the best performing

weighted method. We can see from table 3 that weighting generally

benefits models with lower rank. As the model-rank gets larger,

weighting begins to hurt the performance of model in terms of the

ranking accuracies as shown in table 1. For the full rank model,

we see that the unweighted model either beats or matches the

performance of its weighted variant across all three datasets and

ranking metrics. We also note that 𝛼 = 2 (the smallest weights we

grid-searched) performed best for the weighted full rank model.

That the ranking accuracy increases with model rank is consistent

with the findings in Steck [31], who highlight a similar trend for

unweighted models.

The results on MSD might appear to be an outlier at first glance

as all the weighted low-rank models outperform the unweighted

ones. However, the performance of full-rank model provides a fuller

picture: i) The unweighted full-rank model outperforms the best

low-rank model (WMF with 𝑑 = 1000) by a wide margin; ii) The

significantly more rapid performance degradation with smaller 𝑑

suggests the underlying structure of the MSD dataset is much more

complex than the other two. This is in line with the observation

in Steck and Garcia [32], Steck and Liang [33] that MSD has a

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

much longer-tailed distribution. This is also consistent with our

observation that weighting matters less when the capacity of a

low-rank model is getting close to the full-rank one.

Now let us turn our attention to the different ℓ2 regularizers.

Our findings corroborate those of Steck [31], Steck and Garcia

[32]. Namely that dropout (line 3 table 1) seems to outperform the

weight decay (line 1 table 1) in terms of ranking accuracy for the

unweighted models for larger model-ranks. When the model-rank

is smaller as in tables 2 and 3 our findings seems to suggest that

neither method is conclusively better. Specifically, when the model-

rank is 𝑑 = 100, dropout outperforms weight decay on Netflix but

under performs on ML-20M.

The hybrid regularizer given in line 4 of the tables was chosen

to help understand why weighting benefits WMF. As mentioned

earlier, if we let 𝑋𝑈 be the user embedding matrix in WMF then

we end up with the hybrid regularizer. This regularizer encourages

learning a 𝑈 such that 𝑋𝑈 ≈ 0. Thus we expect up weighting

the nonnegative elements of 𝑋 to benefit this method as we do

not want to predict zero for the nonnegative entries of 𝑋 . For this

method, the best choices of 𝜆 where values very close to zero, i.e.,

10
−6

and 10
−8
. This is expected as we do not want to predict zero

when 𝑋𝑢𝑖 = 1. As 𝜆 took larger values, it was often very beneficial

to the method to use larger weights to compensate for the larger

values of 𝜆. We believe these experimental findings corroborate our

intuition that weighting benefited WMF precisely because WMF

was implicitly regularizing the user embedding to predict zero when

𝑋 took nonnegative values.

In summary, we find that as the model-rank of AWMF grows the

effects of up weighting the positive values of 𝑋 is detrimental to

the performance of the model as measured by ranking-accuracy.

Weighted does indeed help WMF, which is in accordance with the

previous literature (Hu et al. [14], Pan et al. [21], Saito et al. [26],

Steck [27]). We believe our experimental findings for AWMF with

data/weight decay give some intuition into why this phenomena

seems to occur.

6 Related Work
Weighted matrix factorization for implicit feedback data was intro-

duced in Hu et al. [14], Pan et al. [21].Based on this seminal work,

in many practical applications, the observed/positive user-item in-

teractions were up-weighted relative to the unobserved/missing

user-item interactions, all with the same weight, hence resulting

in a single scalar weight as an additional hyperparameter that can

be tuned during training by optimizing the (unweighted) ranking

metric on the validation set. Over the years, it has become common

wisdom that up-weighting the positive user-item interactions is

key to obtaining improved recommendation accuracy. It also made

intuitive sense, as up-weighting the positive user-item interactions

can be understood in several ways: (i) it corresponds to a reduced

uncertainty of the positive data points, and (ii) due to the spar-

sity of the positive data points, up-weighting them makes the data

more balanced, a common practice when dealing with unbalanced

data sets. Instead of up-weighting the positive samples, the nega-

tive data-points are down-sampled for computational efficiency in

practice. A recent paper proposes a combination of sampling and

weighting (Petrov and Macdonald [23]).

The MF model was typically trained iteratively, either by sto-

chastic gradient descent or alternating least squares (e.g., Hu et al.

[14], Pan et al. [21], Rendle et al. [25]). As we noticed in our current

work, finding a near-optimum solution is not trivial even for such

bi-linear models, but it is crucial for better understanding the effect

of weighting the data-points, as shown in this paper.

While the matrix factorization model decomposes the user-item

interaction matrix into a product of low-rank user and item latent

factors, similar to (unweighted) singular value decomposition (or

pureSVD in the recommendation literature (Cremonesi et al. [7]),

other variants were proposed in the literature as well, most notably

asymmetric MF (Paterek [22]), where two (different) item-factor

matrices are learned, reducing the number of model-parameters

considerably (in case of |U| ≫ |I|). Training this model with a

weighting scheme was also typically beneficial.

In contrast, the full-rank models called SLIM (Ning and Karypis

[19]), and its simplified variant called EASE (Steck [30]) are trained

on unweighted data, yet obtain competitive results. These models

also use a different variant of L2-norm regularization, related to

dropout/denoising instead of weight decay (Steck [31]).

Finally, it is argued in Byrd and Lipton [5] that the effect of

weighting diminishes as the capacity of the (deep learning) model

increases such that is able to fit the data, e.g, in a classification

task the data may become separable. Interestingly, this paper also

argues that weight-decay regularization may prevent large-norm

solutions, which hence may require weighted training–in contrast,

dropout-regularization does not have this effect and hence may

require less/no weighting.

All this related work indicates that there is more to uncover as

to how the weighting is affected by the model capacity as well as

the regularization, which motivated this paper.

7 Conclusion
Our systematic study of weighting schemes for matrix factorization

models on implicit feedback data revealed several key findings.

Unweighted methods often outperform their weighted coun-

terparts, especially as model capacity increases. The benefits of

weighting diminish with increasing model rank. The choice of regu-

larization scheme interacts with weighting, with dropout-style reg-

ularization generally outperforming weight decay for unweighted

higher-rank models as reported by Steck [31].

We provided efficient algorithms for optimizing weighted objec-

tives for various matrix factorization formulations. These results

challenge the conventional wisdom of upweighting observed in-

teractions, particularly for higher-capacity models. Our findings

have important implications for recommender system design, sug-

gesting that practitioners should carefully evaluate the necessity of

weighting for their specific models and datasets.

Future work could explore the theoretical foundations of these

observations and investigate their applicability to deep learning

models for recommendation. Overall, our work underscores the

need to reassess common assumptions in recommender systems as

model architectures evolve.

References
[1] Owe Axelsson. 1972. A generalized SSOR method. BIT Numerical Mathematics

(1972).

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Does weighting improve matrix factorization for
recommender systems? Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[2] Alex Ayoub, Kaiwen Wang, Vincent Liu, Samuel Robertson, James McInerney,

Dawen Liang, Nathan Kallus, and Csaba Szepesvari. 2024. Switching the loss

reduces the cost in batch reinforcement learning. In International Conference

on Machine Learning (ICML).

[3] J. Bennett and S. Lanning. 2007. The Netflix Prize. In Proceedings of the KDD

Cup Workshop 2007.

[4] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman,

and Paul Lamere. 2011. The Million Song Dataset. In

International Conference on Music Information Retrieval (ISMIR).

[5] Jonathon Byrd and Zachary Lipton. 2019. What is the effect of importance

weighting in deep learning?. In International conference on machine learning.

PMLR, 872–881.

[6] Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane, Vittorio

Murino, and Rene Vidal. 2018. Dropout as a Low-Rank Regularizer for Matrix Fac-

torization. In International Conference on Artificial Intelligence and Statistics

(AISTATS).

[7] Paolo Cremonesi, Yedhuda Y. Koren, and Roberto Turrin. 2010. Performance of

Recommender Algorithms on top-N recommendation tasks. In ACM Conference

on Recommender Systems. 39–46.

[8] Joey De Pauw and Bart Goethals. 2024. The role of unknown interactions in

implicit matrix factorization — A probabilistic view. In ACM Conference on

Recommender Systems (RecSys).

[9] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-

tion algorithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004),

143–177.

[10] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we

really making much progress? Aworrying analysis of recent neural recommenda-

tion approaches. In Proceedings of the 13th ACM conference on recommender

systems. 101–109.

[11] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens datasets: History

and context. ACM Trans. Interact. Intell. Syst. (2015).

[12] M. R. Hestenes and E. Stiefel. 1952. Methods of conjugate gradients for solving

linear systems. J. Res. Nat. Bur. Standards (1952).

[13] Roger A. Horn and Charles R. Johnson. 1991. Topics in matrix analysis. Cam-

bridge University Press.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for

implicit feedback datasets. In International Conference on Data Mining.

[15] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluationmethods for retrieving

highly relevant documents. In International ACM SIGIR Conference on Research

and Development in Information Retrieval.

[16] Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, and Yang Zhou. 2021. Towards

a better understanding of linear models for recommendation. In ACM SIGKDD

Conference on Knowledge Discovery & Data Mining.

[17] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Model-

ing user exposure in recommendation. In Proceedings of the 25th international

conference on World Wide Web. 951–961.

[18] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.

Variational autoencoders for collaborative filtering. In The World Wide Web

Conference (WWW).

[19] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n

recommender systems. In International Conference on Data Mining (ICDM).

[20] Jorge Nocedal and Stephen J Wright. 1999. Numerical optimization. Springer.

[21] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin

Scholz, and Qiang Yang. 2008. One-class collaborative filtering. In International

Conference on Data Mining.

[22] Arkadiusz Paterek. 2007. Improving regularized singular value decomposition

for collaborative filtering. In Proceedings of KDD cup and workshop, Vol. 2007.

5–8.

[23] Aleksandr Vladimirovich Petrov and Craig Macdonald. 2023. gSASRec: Reducing

Overconfidence in Sequential Recommendation Trained with Negative Sampling.

In ACM Conference on Recommender Systems.

[24] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback.

In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence. 452–461.

[25] Steffen Rendle, Walid Krichene, Li Zhang, and Yehuda Koren. 2022. Revisiting

the performance of iALS on item recommendation benchmarks. In Proceedings

of the 16th ACM Conference on Recommender Systems. 427–435.

[26] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased recommender learning from missing-not-at-random implicit

feedback. In International Conference on Web Search and Data Mining.

[27] Harald Steck. 2010. Training and testing of recommender systems on data miss-

ing not at random. In ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD).

[28] Harald Steck. 2015. Gaussian ranking by matrix factorization. In Proceedings of

the 9th ACM Conference on Recommender Systems. 115–122.

[29] Harald Steck. 2019. Collaborative filtering via high-dimensional regression.

arXiv preprint arXiv:1904.13033 (2019).

[30] Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In

The World Wide Web Conference (WWW).

[31] Harald Steck. 2020. Autoencoders that don't overfit towards the Identity. In

Advances in Neural Information Processing Systems (NeurIPS). Curran Asso-

ciates, Inc.

[32] Harald Steck and Dario Garcia Garcia. 2021. On the regularization of autoen-

coders. arXiv preprint arXiv:2110.11402 (2021).

[33] Harald Steck and Dawen Liang. 2021. Negative interactions for improved col-

laborative filtering: Don’t go deeper, go higher. In Proceedings of the 15th ACM

Conference on Recommender Systems. 34–43.

9

	Abstract
	1 Introduction
	2 Preliminaries
	3 Optimization
	3.1 Closed-Form Solution: Unregularized
	3.2 Closed-Form Solution: Regularized
	3.3 Computational Considerations

	4 An Efficient Algorithm
	5 Numerical Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

