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ABSTRACT

We present SCAFF-PD, a fast and communication-efficient algorithm for distribu-
tionally robust federated learning. Our approach improves fairness by optimizing a
family of distributionally robust objectives tailored to heterogeneous clients. We
leverage the special structure of these objectives, and design an accelerated primal
dual (APD) algorithm which uses bias corrected local steps (as in SCAFFOLD) to
achieve significant gains in communication efficiency and convergence speed. We
evaluate SCAFF-PD on several benchmark datasets and demonstrate its effective-
ness in improving fairness and robustness while maintaining competitive accuracy.
Our results suggest that SCAFF-PD is a promising approach for federated learning
in resource-constrained and heterogeneous settings.

1 INTRODUCTION

Federated learning is a popular approach for training machine learning models on decentralized data,
where data privacy concerns or other constraints prevent centralized data aggregation (McMahan
et al., 2017; Kairouz et al., 2021). In federated learning, model updates are computed locally on
each device (the client) and then aggregated to train a global model at the center (the server). This
approach has gained traction due to its ability to leverage data from multiple sources while preserving
privacy, security, and autonomy, and has the potential to make machine learning more participatory
in a range of interesting problem domains (Kulynych et al., 2020; Jones & Tonetti, 2020; Pentland
et al., 2021).
Federated learning is naturally most attractive when the participating clients have access to different
data, leading to data heterogeneity (du Terrail et al., 2022). This heterogeneity can lead to significant
fairness issues, where the performance of the global model can be biased towards the data distribution
of some clients over others (Dwork et al., 2012; Li et al., 2019; Abay et al., 2020). Heterogeneity can
also hurt the generalization of the global model (Quinonero-Candela et al., 2008; Mohri et al., 2019).
Specifically, if some clients have a disproportionate influence on the global model, the resulting model
is neither fair nor will it generalize well to new clients. Such disparities are especially prevalent and
detrimental in medical research, and have resulted in misdiagnosis and suboptimal treatment (Graham,
2015; Albain et al., 2009; Nana-Sinkam et al., 2021).
To address these challenges, distributionally robust objectives (DRO) explicitly account for the
heterogeneity across clients and seek to optimize performance under the worst-case data distribution
across clients, rather than just the average performance (Rahimian & Mehrotra, 2019). This approach
can lead to more robust models that are less biased towards specific clients and more likely to
generalize to new clients (Mohri et al., 2019; Duchi et al., 2023). However, such robust objectives are
significantly harder to optimize. Current algorithms have very slow convergence, potentially to the
point of being impractical (Ro et al., 2021). This leads to the central question of our work:

Can we design federated optimization techniques for the DRO problem with convergence
rates that match their average objective counterparts?

1.1 OUR CONTRIBUTIONS.

We summarize our contributions below.

(1) Framework. We present a general formulation for the cross-silo federated DRO problem:

min
x

max
�2⇤

n
F (x,�) :=

NX

i=1

�i · fi(x)�  (�)
o
, (1.1)
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Figure 1: (left) In federated learning, the data distribution across individual clients differ signifi-
cantly from one another. (right) When directly applying SOTA federated optimization algorithm
(SCAFFOLD), the learned global model is biased toward certain clients, leading to noticeably worse
performance when applied to a subset of participating clients. Our proposed algorithm—SCAFF-PD—
largely mitigates this bias via learning a distributionally robust global model, which significantly
enhances the performance of the most challenging subset of clients, specifically the worst 20%.

where fi(x) is the loss suffered by client i. Instead of minimizing a simple average of the client
losses, equation (1.1) incorporates weights using � 2 RN . The choice of � is made in a worst-case
manner, while being subject to the constraint set ⇤ and regularized with  (�). As we will show,
this formulation is a generalization of several specific fair objectives that have been proposed in the
federated learning literature (Mohri et al., 2019; Li et al., 2019; 2020a; Zhang et al., 2022a; Pillutla
et al., 2021).

Algorithm. The objective defined in equation (1.1) is a min-max problem and can be directly
optimized using well-established algorithms such as gradient descent ascent (GDA). However,
such approaches ignore the unique structure of our formulation, particularly the linearity of the
interaction term between � and x. We leverage this to design an accelerated primal-dual (APD) algo-
rithm (Hamedani & Aybat, 2021). Additionally, we propose to use control variates (à la SCAFFOLD)
to correct the bias caused by local steps, making optimal use of local client computation (Karimireddy
et al., 2020). Our proposed method, SCAFF-PD, combines these ideas to provide an efficient and
practical algorithm, compatible with secure aggregation.

Convergence. We provide strong convergence guarantees for SCAFF-PD when fi are strongly con-
vex. If  (�) is a generic convex function, we achieve an accelerated O

�
1/R2

�
rate of convergence.

Furthermore, if  is strongly convex, SCAFF-PD converges linearly at a rate of exp (�O(R)). This
represents the first federated approach for the DRO problem that achieves linear convergence, let
alone an accelerated rate. Finally, we extend our analysis to the stochastic setting, where we obtain
an optimal rate of O (1/R), and improve over the previous O(1/

p
R) rate. Thus, we show that the

sample complexity as well as the communication complexity for the DRO problem matches that of
the easier average objective.

Practical Evaluation. We conducted comprehensive simulations and demonstrate accelerated
convergence, robustness to data heterogeneity, and the ability to leverage local computations.

For deep learning models, we avail ourselves of a two-stage Train-Convexify-Train method (Yu et al.,
2022). First, we train a deep learning model using conventional federated learning methods, such as
FedAvg. Then, we apply SCAFF-PD to fine tune a convex approximation. To evaluate our algorithms,
we use several real-world datasets with various distributionally robust objectives, and we study the
trade-off between the mean and tail accuracy of these methods.

2 RELATED WORK

Cross-silo FL. Federated learning (FL) is a distributed machine learning paradigm that enables
model training without exchanging raw data. In cross-silo FL (which is our focus), valuable data is
split across different organizations, and each organization is either protected by privacy regulations
or unwilling to share their raw data. Such organizations are referred to as “data islands” and can
be found in hospital networks, financial institutions, autonomous-vehicle companies, etc. Thus,
cross-silo FL involves a few highly reliable clients who potentially have extremely diverse data.
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The most widely used federated optimization algorithm is Federated Averaging (FedAvg) (McMahan
et al., 2017), which averages the local model updates to produce a global model. However, FedAvg
is known to suffer from poor convergence when the local datasets are heterogeneous (Hsieh et al.,
2020; Li et al., 2020b; Karimireddy et al., 2020; Reddi et al., 2021; Wang et al., 2021; du Terrail
et al., 2022, etc.). Scaffold (Karimireddy et al., 2020) corrects for this heterogeneity, leading to more
accurate updates and faster convergence (Mishchenko et al., 2022; Li et al., 2022a; Yu et al., 2022).
However, all of these methods are restricted to optimizing the average of the client objectives.

Distributionally Robust Optimization. DRO is a framework for optimization under uncertainty,
where the goal is to optimize the worst-case performance over a set of probability distributions. See
Rahimian & Mehrotra (2019) for a review and its history in risk management, economics, and finance.
Fast centralized optimization methods have been developed when uncertainity is represented by
f -divergences (Wiesemann et al., 2014; Namkoong & Duchi, 2016; Levy et al., 2020) or Wasserstein
distances (Mohajerin Esfahani & Kuhn, 2018; Gao & Kleywegt, 2022). The former approach accounts
for changing proportions of subpopulations, relating it to notions of subpopulation fairness (Duchi
et al., 2023; Santurkar et al., 2020; Piratla et al., 2021; Martinez et al., 2021). Our work also
implicitly focuses on f -divergences. Deng et al. (2020) and Zecchin et al. (2022) adapt the gradient-
descent-ascent (GDA) algorithm to solve the federated and decentralized DRO problems respectively.
However, these methods inherit the slowness of both the GDA and FedAvg algorithms, making their
performance trail the state of the art for the average objective (Mishchenko et al., 2022).

Fairness in FL. While fairness is an extremely multi-faceted concept, here we are concerned with
the distribution of model performance across clients. Mohri et al. (2019) noted that minimizing the
average of the client losses may lead to unfair distribution of errors, and instead proposed an agnostic
FL (AFL) framework which minimizes a worst-case mixture of the client losses. Alternatives and
extensions to AFL have also been proposed subsequently Li et al. (2019; 2020a); Pillutla et al. (2021).
Again, the convergence of optimization methods for these losses (when analyzed) is significantly
slower than their centralized counterparts.

While all of these works demand equitable performance across all clients, others propose to scale
a client’s accuracy in proportion to their contribution (Sim et al., 2020; Blum et al., 2021; Xu
et al., 2021; Zhang et al., 2022a; Karimireddy et al., 2022). These methods are motivated by game-
theoretic considerations to incentivize clients and improve the quality of the data contributions. Our
framework (1.1) can be applied to such mechanisms by an appropriate choice of {fi},⇤, and  . For
example, Zhang et al. (2022a) show how to set these to recover the Nash bargaining solution (Nash Jr,
1950). Thus, our work can be seen as a practical optimization algorithm to implement many of the
mechanisms studied in FL.

Finally, personalization—serving a separate model to each client—has also been proposed as a
method to improve the distribution of client performance (Yu et al., 2020). However, personalized
models are sometimes not feasible either due to regulations (Vokinger et al., 2021) or because
the client may not have additional data. Further, personalization does not remove the differences
in performance (though it does reduce it) (Yu et al., 2020), nor does it solve the game-theoretic
considerations described above. Extending our work to this setting is an important question we leave
for future work.

3 PROBLEM SETUP

We consider the min-max optimization problem in the context of federated learning, where the
objective function, defined in Eq. (1.1), is distributed among N clients. Each fi : Rd ! R is the local
function on the i-th client, where fi(x) = E⇠⇠Di [f(x, ⇠)] and Di is the data distribution of the i-th
client. For example, we can define Di as the uniform distribution over the training dataset present on
the i-th client.

Notation. We use the notation xr 2 Rd to denote the global iterate at the r-th round, and use
ur
i,j 2 Rd to denote the local iterate at the j-th step on the i-th client (at the r-th round). We apply

� = [�1, . . . ,�N ]> 2 RN to denote the weight vector, where �i is the weight for client i, and we let
D(�,�0) = k���0k2/2. We let [N ] denote the set {1, . . . , N}. To facilitate clarity and presentation,
we let

�(x,�) =
NX

i=1

�i · fi(x). (3.1)
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For local gradients, we let gi(ui,j�1) denote the stochastic gradient of fi at iterate ui,j�1:

gi(u
r
i,j�1) = rfi(ur

i,j�1, ⇠
r
i,j�1). (3.2)

Choosing  and ⇤. We let  : RN ! R denote the regularization on the weight vector �. The �2

penalty (Levy et al., 2020) involves setting

 (�) = D�2(�) =
⇢

2N

NX

i=1

(N�i � 1)2, and ⇤ = �N
. (3.3)

When regularization is set to zero with ⇢ = 0, the DRO formulation (1.1) recovers the agnostic
federated learning (AFL) of Mohri et al. (2019). A non-zero value of ⇢ can be used to trade off the
worst-case loss against the average loss. In particular, setting ⇢!1 recovers the standard average
FL objective. While we will primarily focus on (3.3) in this work, other choices are also possible.
The DRO objective becomes the ↵-Conditional Value at Risk (CVaR) loss (Duchi & Namkoong,
2021), also known as super-quantile loss (Pillutla et al., 2021) by setting

 (�) = 0, and ⇤ = {� 2 �,�i  1/(↵N)} .

Finally, we can recover the Q-FL loss of Li et al. (2019) by setting

 (�) = k�k1+
1
q , and ⇤ = RN

.

Definitions and assumptions. In the convergence analysis of our proposed algorithms, we rely on
the following definitions and assumptions regarding the local functions and the regularization term  :

Definition 3.1 (Smoothness) f(·) is convex and differentiable, and there exists L � 0 such that for
any x1,x2 in the domain of fi(·),

krfi(x1)�rfi(x2)k  Lkx1 � x2k. (3.4)

Definition 3.2 (Strong convexity) f(·) is µ-strongly convex, i.e.,

f(x2) � f(x1) + hrf(x1),x2 � x1i+
µ

2
kx2 � x1k2. (3.5)

Assumption 3.3 (Smoothness w.r.t. �) �(x, ·) is concave and differentiable, and there exists
L�x � 0 such that for any x1,x2 in the domain of �(·,�) and �1,�2 in the domain of �(x, ·),

kr��(x1,�1)�r��(x2,�2)k  L�xkx1 � x2k. (3.6)

Assumption 3.4 (Bounded noise) There exist ⇣ � 0 such that for all i 2 [N ], the local gradient
gi(x) defined in Eq. (3.2) satisfies

E
⇥
kgi(x)�rfi(x)k2

⇤
 ⇣2, E [gi(x)] = rfi(x). (3.7)

4 SCAFF-PD: ACCELERATED PRIMAL-DUAL FEDERATED ALGORITHM WITH
BIAS CORRECTED LOCAL STEPS

In this section, we describe our proposed algorithm SCAFF-PD (Stochastic Controlled Averaging
with Primal-Dual updates) for solving the federated DRO problem (1.1). We present the pseudo-code
for SCAFF-PD in Algorithm 1 and algorithm used for local updates in Algorithm 2.

As described in Algorithm 1, SCAFF-PD comprises three main steps that are executed at each
communication round r: (1). Collecting loss vector [Lr

1, . . . , L
r
N ]> and gradients {gi(xr)}Ni=1 (for

bias correction); (2). Update to the dual variable by Eq. (4.1); (3). Local updates to each client
model, and aggregating the updates by using the updated dual variable, i.e., Eq. (4.1). We provide the
pseudo-code for local updates in Algorithm 2.

Extrapolated Dual Update. Based on the computed loss vector r��(xr
,�r) = [Lr

1, . . . , L
r
N ]>

in the first step, we update the weight vector �. Importantly, when ✓r > 0, we use both the dual
gradient from the current round (r��(xr

,�r)) as well as the past round (r��(xr�1
,�r�1)) to
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Algorithm 1 SCAFF-PD(x0
,�0)

for r = 1, 2, . . . , R do

# (1).Collect gradient and loss vector
Set parameters {⌧r,�r, �r, ✓r}
for i = 1, 2, . . . , N do

L
r
i = fi(xr), cri = gi(xr), Communicate (Lr

i , c
r
i ) to center

# (2).Update dual �

sr = (1 + ✓r)r��(x
r
,�r)� ✓rr��(x

r�1
,�r�1)

�r+1 = argmin�2⇤

⇢
 (�)� hsr

,�i+ 1
�r

D(�,�r)

� (4.1)

# (3).Update primal x
cr =

PN
i=1 �

r+1
i cri , Communicate cr to each client

for i = 1, 2, . . . , N do

�ur
i  LOCAL-UPDATE(xr

, cri , c
r), Communicate �ur

i to the center
Aggregate updates from different client via the weight vector �r+1

xr+1 = argminx

(
⌦ NX

i=1

�
r+1
i �ur

i ,x
↵
+

1
⌧r

D(x,xr)

)
(4.2)

Return: (xR+1, �R+1)

Algorithm 2 LOCAL-UPDATE(x, ci, c)

Input: optimization parameters (⌘`, J), model parameters (ci, c, x)
ui,0 = x
for j = 1, 2, . . . , J do

ui,j = ui,j�1 � ⌘` · (gi(ui,j�1)� ci + c)
�ui = (x� ui,J)/(⌘`J)
Return: �ui

obtain the extrapolated gradient sr. The gradient extrapolation step is widely used in primal-dual
hybrid gradient (PDHG) methods (Chambolle & Pock, 2016) for solving convex-concave saddle-
point problems, and it provides the key component in our algorithm for achieving acceleration. The
extrapolation step used in Eq. (4.1) is to Nesterov’s acceleration (Nesterov, 2003), which can lead to
faster convergence rate and has been widely utilized for achieving acceleration in solving various
optimization problems. (Chambolle & Pock, 2011; 2016; Zhang & Lin, 2015; Hamedani & Aybat,
2021).

Local Steps and Control Variates ci. Supposing that communication is not a limiting factor, each
client can compute its local gradient and transmit it to the server without any local steps. In this case,
the update to the primal variable x becomes

�ur
i = gi(x

r), argminx

n
h

NX

i=1

�
r+1
i gi(x

r),xi+ 1

⌧r
D(x,xr)

o
. (4.3)

This update performs the primal update with the unbiased gradientrxF (xr
,�r+1), which is equiv-

alent to the standard primal update in primal-dual-based algorithms (Chambolle & Pock, 2016;
Hamedani & Aybat, 2021; Zhang et al., 2022b). However, such an update does not effectively utilize
the local computational resources available on each client. Hence, we would like to perform multiple
local update steps. The catch is that performing multiple local steps is known to lead to biased
updates and “client-drift” (Karimireddy et al., 2020; Woodworth et al., 2020; Wang et al., 2020). We
explicitly correct for this bias using control variates {ci}i2[N ] similar to SCAFFOLD. As we will
demonstrate in the subsequent theoretical analysis, this correction allows SCAFF-PD to converge to
the saddle-point solution of the DRO problem regardless of the data heterogeneity.

While we use local updates on the primal variable, we do not perform any on the dual variable. This
is unlike general federated min-max optimization algorithms (Hou et al., 2021; Beznosikov et al.,
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2022). This design aligns well with the federated DRO formulation since it is impractical for each
client to update the weight vector at each local step due to their lack of knowledge regarding the loss
values of other clients. The aggregation of SCAFF-PD on the server resembles federated algorithms
used for solving minimization problems, with the key difference being the utilization of the updated
weight vector for primal aggregation.

5 THEORETICAL ANALYSIS

We now present the convergence results for SCAFF-PD in solving the min-max optimization problem
described in Eq. (1.1). Firstly, in Section 5.1, we introduce the results for the strongly-convex-concave
setting. Subsequently, in Section 5.2, we present the results for the strongly-convex-convex setting.

5.1 STRONGLY-CONVEX-CONCAVE SETTING

We first introduce how to choice the parameters for SCAFF-PD in when  is convex and {fi}i2[N ]
are strongly convex in Condition 5.1.

Condition 5.1 The parameters of Algorithm 1 are defined as

��1 = �0⌧̄, �r = �r⌧r, ✓r = �r�1/�r, �r+1 = �r(1 + µx⌧r). (5.1)

Next we present our convergence results in this setting.

Theorem 5.1 Supppose {fi}i2[N ] are µx-strongly convex and Lxx-smooth. If Assumption 3.3 and
Assumption3.4 hold, and we let the parameters {⌧r,�r, �r, ✓r} of Algorithm 1 satisfy Condition 5.1,
then the R-th iterate (xR

,�R) satisfies

E
⇥
kxR � x?k2

⇤
 C1

R2

⇥
kx? � x0k2 + k�0 � �?k2

⇤
+

C2

R
⇣
2
, (5.2)

where C1, C2 � 0 are non-negative constants.

Corollary 5.2 Under the assumptions in Theorem 5.1,

• (deterministic local gradient): If the local gradient satisfies gi(x) = rfi(x) for i 2 [N ], then
after O

⇣
kx?�x0k2+k�0��?k2

p
"

⌘
rounds, we have kxR � x?k2  ".

• (stochastic local gradient): If the local gradient satisfies Assumption 3.4 with � > 0, then after
O

⇣
kx?�x0k2+k�0��?k2

p
"

+ ⇣2

"

⌘
rounds, we have E

⇥
kxR � x?k2

⇤
 ".

Remark 5.3 As suggested by the Corollary 5.2, in the deterministic setting (⇣ = 0, when applying
SCAFF-PD for solving the min-max problems in the vanilla AFL and the super-quantile approach,
SCAFF-PD achieves the convergence rate of O(1/R2). The rate of SCAFF-PD is faster than existing
algorithms – the convergence rate is O(1/R) in both Mohri et al. (2019); Pillutla et al. (2021). In
addition, the algorithm with theoretical convergence guarantees introduced in Mohri et al. (2019)
does not apply local steps (i.e., number of local updates J = 1), resulting in inferior performance in
practical applications.
Remark 5.4 SCAFF-PD matches the rates (O(1/R2)) of the centralized accelerated primal-dual
algorithm (Hamedani & Aybat, 2021) when ⇣ = 0. Meanwhile, our proposed algorithm converges
faster compared to directly applying centralized gradient descent ascent (GDA) and extra-gradient
method (EG) for solving Eq. (1.1), which achieve a rate of O(1/R).

5.2 STRONGLY-CONVEX-STRONGLY-CONCAVE SETTING

We next present results for the strongly-convex-strongly-concave setting. Differing from the strongly-
convex-concave setting, the parameters of Algorithm 1 are fixed across different rounds, as follows.

Condition 5.2 The parameters of Algorithm 1 are defined as

µx⌧ = O

✓
1� ✓

✓

◆
, µ�� = O

✓
1� ✓

✓

◆
,

1
1� ✓

= O

0

@
 
Lxx

µx
+

s
L2

�x

µxµ�

!
_ ⇣

2

µx"

1

A . (5.3)
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Theorem 5.5 Suppose {fi}i2[N ] are µx-strongly convex and Lxx-smooth, and  is µy-strongly
convex. If Assumption 3.3 and Assumption3.4 hold, and we let the parameters {⌧,�, ✓} of Algorithm 1
satisfy Condition 5.2, then the R-th iterate (xR

,�R) satisfies

E
⇥
µxkxr � x?k2

⇤
 C1✓

R
⇥
kx0 � x?k2 + k�0 � �?k2

⇤
+ C2(1� ✓)

⇣
2

µx
, (5.4)

where C1, C2 � 0 are non-negative constants.

Corollary 5.6 Under the assumptions in Theorem 5.5,

• (deterministic local gradient): If the local gradient satisfies gi(x) = rfi(x) for i 2 [N ], then

after O

  
Lxx
µx

+
q

L2
�x

µxµ�

!
log
⇣

kx0�x?k2+k�0��?k2

"

⌘!
rounds, µxkxR � x?k2  ".

• (stochastic local gradient): If the local gradient satisfies Assumption 3.4 with ⇣ > 0, then after

O

  
Lxx
µx

+
q

L2
�x

µxµ�
+ ⇣2

µx"

!
log
⇣

kx0�x?k2+k�0��?k2

"

⌘!
rounds, E

⇥
µxkxR � x?k2

⇤
 ".

Remark 5.7 Our algorithm converges linearly to the global saddle point when each client applies a
noiseless gradient for local updates (i.e., ⇣ = 0) in the presence of data heterogeneity and client-drift
in federated learning. In contrast, previous approaches exhibit only sub-linear convergence. In the
strongly-convex-strongly-concave setting, DRFA (Deng et al., 2020) converges to the saddle-point
solution with rate O(1/R) when there is no data heterogeneity and ⇣ = 0.

Remark 5.8 By applying bias correction in local updates, the convergence rates of our algorithm
match those of the centralized accelerated primal-dual algorithm (Zhang et al., 2021) in both
deterministic and stochastic settings.

Remark 5.9 Compared to the standard minimization in federated learning, the DRO objective
results in a slightly worse condition number in terms of convergence rate. In comparison to the
standard minimization objective in federated learning, the DRO objective yields a slightly worse
condition number. Solving DRO with SCAFF-PD requires (

p
Lxx/µx +

p
L2
�x/(Lxxµ�)) times

more communication rounds compared to solving minimization problems with ProxSkip (Mishchenko
et al., 2022).

6 EXPERIMENTS

We now study the performance of SCAFF-PD for solving federated DRO problems on both synthetic
datasets and real-world datasets. Our primary objective when working with synthetic datasets is to
validate the convergence analysis of SCAFF-PD. On real-world datasets, we compare with existing
federated optimization algorithms for learning robust and fair models (DRFA (Deng et al., 2020),
AFL (Mohri et al., 2019), and q-FFL (Li et al., 2019)) as well as widely used federated algorithms for
solving minimization problems including FedAvg (McMahan et al., 2017) and SCAFFOLD (Karim-
ireddy et al., 2020). After conducting thorough evaluations, we have observed that our proposed
accelerated algorithms achieve fast convergence rates and strong empirical performance on real-world
datasets. We have provided supplementary experimental results in Appendix C, which includes
additional baseline methods, ablations on our algorithm, and other relevant findings.

6.1 RESULTS ON SYNTHETIC DATASETS

To construct the synthetic datasets, we follow the setup described in Eq. (1.1) and consider a
simple robust regression problem. Specifically, for the i-th client, the local function fi is defined as
fi(x) =

1
mi

Pmi

j=1(ha
j
i ,xi � y

j
i )

2 + µx

2 kxk
2, where j is sample index on this client and there are

mi training samples on client-i. We apply the �2 penalty for regularizing the weight vector �. To
generate the data, each input aj

i is sampled from a Gaussian distribution aj
i ⇠ N (0, Id⇥d). Then we

random generate bx ⇠ N (0, c2Id⇥d), and �xi ⇠ N (0,�2Id⇥d). Based on (bx, �xi ), we generate y
i
i

as yii = ha
j
i , bx+ �

x
i i. Therefore, there exist distribution shifts across different clients (i.e., concept
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(a) ⇢ = 0.01. (b) ⇢ = 0.05. (c) ⇢ = 0.1.
Figure 2: We compare our proposed algorithm with the existing method DFRA (Deng et al., 2020)
on synthetic datasets. ⇢ is the strength of regularization  (defined in Eq. (3.3)). X-axis represents
the number of communication rounds, and Y -axis represents the distance to optimal solution.
shifts). We set N = 5, d = 10, and mi = 100 for i 2 [N ]. To measure the algorithm performance,
we evaluate the distance between xR and the optimal solution x?: kxR � x?k2.

We compare SCAFF-PD with DRFA (Deng et al., 2020) on this synthetic dataset. The regularization
parameter ⇢ for  is varied from 0.01 to 0.1. For both algorithms, we set the number of local
steps to be 100 and select the algorithm parameters through grid search. The comparison results
are summarized in Fig 2. As shown in Fig 2, we observe that our proposed algorithm SCAFF-PD
achieves linear convergence rates in all three settings. In contrast, DRFA converges much more
slowly compared to SCAFF-PD. We have included more experimental results under this synthetic
setup in Appendix C, including results on the effect of local steps and data heterogeneity.

6.2 RESULTS ON REAL-WORLD DATASETS

Dataset setup. We evaluate the performance of various federated learning algorithms on CI-
FAR100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015). We follow the setup
used in Li et al. (2022b): we consider different degrees of data heterogeneity by applying Dirichlet
allocation, denoted by Dir(↵), to partition the dataset into different clients. Smaller ↵ values in
Dir(↵) leads to higher data heterogeneity. Additionally, after the data partition through the Dirichlet
allocation, we randomly sample 30% of the clients and remove 70% training samples from those
clients. Such a sub-sampling procedure can better model real-world data-imbalance scenarios. We
consider the number of clients N = 20 for both datasets. Results on larger number of clients and
other real-world datasets can be found in Appendix C.

Model setup. We consider learning a linear classifier by using representations extracted from pre-
trained deep neural networks. Previous studies have demonstrated the efficacy of this approach,
particularly in the context of data heterogeneity (Yu et al., 2022) as well as sub-group robust-
ness (Izmailov et al., 2022). For both datasets, we apply the ResNet-18 (He et al., 2016) pre-trained
on ImageNet-1k (Deng et al., 2009) as the backbone for extracting feature representations of the
image samples. To apply the pre-trained ResNet-18, we resize the images from CIFAR100 and
TinyImageNet to 3⇥224⇥224.

Comparisons with existing approaches. We consider three data heterogeneity settings for both
datasets. To measure the performance of different algorithms, besides the average classification
accuracy across clients, we also evaluate the worst-20% accuracy1 for comparing fairness and
robustness of different federated learning algorithms. Previous studies have employed this metric
for comparing different model in federated learning Li et al. (2019). The comparative results are
summarized in Table 1. We find that our proposed algorithm outperforms existing methods in most
settings, especially under higher heterogeneity. For example, when the level of data heterogeneity
is low (↵ = 0.1), applying SCAFF-PD does not yield very large improvements compared to the
existing algorithms. In the case of high data heterogeneity (↵ = 0.01), our proposed algorithm largely
improves the worst-20% accuracy performance on both datasets.

Effect of ⇢ in DRO. To gain a better understanding of the empirical performance of our algorithm, we
investigate the role of ⇢ in DRO when applying our algorithm. We consider ⇢ 2 {0.1, 0.2, 0.5} and
measure both the average and worst-20% accuracy during training. We present the results in Fig 3.

1First sort the clients by test accuracy, then select the lower 20% of clients and compute the mean from this
subset.
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Table 1: The average and worst-20% top-1 accuracy of our algorithm (SCAFF-PD) vs. state-of-the-
art federated learning algorithms evaluated on CIFAR100 and Tiny-ImageNet. The highest top-1
accuracy in each setting is highlighted in bold.

Datasets Methods Non-i.i.d. degree

↵ = 0.01 ↵ = 0.05 ↵ = 0.1

CIFAR-100

average worst-20% average worst-20% average worst-20%

SCAFFOLD 37.38 14.65 35.28 24.77 35.63 25.61
q-FFL (Li et al., 2019) 32.27 13.88 36.92 24.66 38.83 30.36

AFL 47.38 18.04 44.73 22.06 44.89 27.27
DRFA 46.47 26.77 41.61 27.66 43.20 32.04

AgnosticFedAvg (Ro et al., 2021) 46.02 21.52 37.06 27.97 38.81 29.31
SCAFF-PD 49.03 29.30 42.06 28.37 43.69 32.77

TinyImageNet

average worst-20% average worst-20% average worst-20%

FedAvg 33.66 18.18 31.53 23.46 35.08 27.61
SCAFFOLD 31.79 15.85 30.43 22.57 34.58 27.33

q-FFL (Li et al., 2019) 30.47 12.38 32.82 23.16 37.20 27.61
AFL 45.32 18.65 45.54 28.02 46.11 29.50

DRFA 36.80 22.32 37.39 28.38 37.39 28.38
AgnosticFedAvg (Ro et al., 2021) 35.42 21.80 37.86 28.52 38.03 28.60

SCAFF-PD 41.26 25.32 39.32 30.27 41.23 29.78

(a) Average accuracy. (b) Worst-20% accuracy.
Figure 3: We study the effect of regularization term ⇢ in our proposed algorithm SCAFF-PD. We
measure both the average test accuracy (a) and worst-20% accuracy (b) during training. In addition,
we include SCAFFOLD (orange dashed lines) as a baseline method for comparison.
We find that when ⇢ is small, SCAFF-PD can achieve better fairness/robustness—the worst-20%
accuracy significantly improves when we decrease the ⇢ in SCAFF-PD. Meanwhile, the experimental
results suggest that smaller ⇢ leads to faster convergence w.r.t. worst-20% accuracy for our algorithm.
On the other hand, when applying smaller ⇢, the condition number of the min-max optimization
problem becomes worse. Fortunately, our algorithm is guaranteed to achieve accelerated rates,
making it particularly beneficial in scenarios where µ� is small. As we have demonstrated in Fig 2,
our proposed algorithm still converges relatively fast when ⇢ is small.

In addition, we study the trade-off between average accuracy vs. worst-20% accuracy vs. best-20%
accuracy for different algorithms. The results are summarized in Fig 4 (in Appendix C). Without
sacrificing much on average accuracy and best-20% accuracy, our algorithm largely improves the
worst-20% accuracy.

7 CONCLUSIONS

We have demonstrated the ability of SCAFF-PD to address challenges of fairness and robustness
in federated learning. Theoretically, we obtained accelerated convergence rates for solving a wide
class of federated DRO problems. Experimentally, we demonstrated strong empirical performance
of SCAFF-PD on real-world datasets, improving upon existing approaches in both communication
efficiency and model performance. An interesting future direction is the integration of DRO and
privacy-preserving techniques in the context of federated learning, making SCAFF-PD applicable
for a wider range of real-world applications. Another exciting direction is to explicitly integrate
SCAFF-PD with game-theoretic mechanisms. Finally, studying the interplay between distributional
robustness and personalization is an important open problem.
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