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Abstract

Large language models (LLMs) have rapidly improved text embeddings for a grow-
ing array of natural-language processing tasks. However, their opaqueness and
proliferation into scientific domains such as neuroscience have created a growing
need for interpretability. Here, we ask whether we can obtain interpretable em-
beddings through LLM prompting. We introduce question-answering embeddings
(QA-Emb), embeddings where each feature represents an answer to a yes/no ques-
tion asked to an LLM. Training QA-Emb reduces to selecting a set of underlying
questions rather than learning model weights.

We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel
responses to language stimuli. QA-Emb significantly outperforms an established
interpretable baseline, and does so while requiring very few questions. This paves
the way towards building flexible feature spaces that can concretize and evaluate
our understanding of semantic brain representations. We additionally find that
QA-Emb can be effectively approximated with an efficient model, and we explore
broader applications in simple NLP tasks. '

1 Introduction

Text embeddings are critical to many applications, including information retrieval, semantic clustering,
retrieval-augmented generation, and language neuroscience. Traditionally, text embeddings leveraged
interpretable representations such as bag-of-words or BM-25 [1]. Modern methods often replace these
embeddings with representations from large language models (LLMs), which may better capture
nuanced contexts and interactions [2—7]. However, these embeddings are essentially black-box
representations, making it difficult to understand the predictive models built on top of them (as well
as why they judge different texts to be similar in a retrieval context). This opaqueness is detrimental
in scientific fields, such as neuroscience [8] or social science [9], where trustworthy interpretation
itself is the end goal. Moreover, this opaqueness has debilitated the use of LLM embeddings (for
prediction or retrieval) in high-stakes applications such as medicine [10], and raised issues related to
regulatory pressure, safety, and alignment [11-14].

To ameliorate these issues, we introduce question-answering embeddings (QA-Emb), a method that
builds an interpretable embedding by repeatedly querying a pre-trained autoregressive LLM with a
set of questions that are selected for a problem (Fig. 1). Each element of the embedding represents

' All code for QA-Emb is made available on Github at €) github.com/csinva/interpetable-embeddings.
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Figure 1: QA-Emb produces an embedding for an input text by prompting an LLM with a series
of yes/no questions. This embedding can then be used in downstream tasks such as fMRI response
prediction or information retrieval.

the answer to a different question asked to an LLM, making the embedding human-inspectable. For
example, the first element may be the answer to the question Does the input mention time? and the
output would map yes/no to 1/0. Training QA-Emb requires only black-box access to the LLM (it
does not require access to the LLM internals) and modifies only natural-language prompts, rather
than LLM parameters. The learning problem is similar to the optimization faced in natural-language
autoprompting [15, 16] or single-neuron explanation [17, 18], but seeks a set of questions rather than
an individual prompt.

We focus on a single neuroscience problem in close collaboration with neuroscientists. Grounding in a
neuroscience context allows us to avoid common pitfalls in evaluating interpretation methods [19, 20]
that seek to test “interpretability” generally. Additionally, this focus allows to more realistically
integrate domain knowledge to select and evaluate the questions needed for QA-Emb, one of its core
strengths. Nevertheless, QA-Emb may be generally applicable in other domains where it is important
to meaningfully interpret text embeddings.

In our neuroscience setting, we build QA-Emb representations from natural-language questions that
can predict human brain responses measured by fMRI to natural-language stimuli. This allows for
converting informal verbal hypotheses about the semantic selectivity of the brain into quantitative
models, a pressing challenge in fields such as psychology [21]. We find that predictive models built on
top of QA-Embs are quite accurate, providing a 26% improvement over an established interpretable
baseline [22] and even slightly outperforming a black-box BERT baseline [23]. Additionally, QA-
Emb yields concise embeddings, outperforming the interpretable baseline (that consists of 985
features) with only 29 questions.

We investigate two major limitations of QA-Emb in Sec. 5. First, with regards to computational
efficiency, we find that we can drastically reduce the computational cost of QA-Emb by distilling it
into a model that computes the answers to all selected questions in a single feedforward pass by using
many classification heads. Second, we evaluate the accuracy of modern LLMs at reliably answering
diverse yes/no questions. Finally, Sec. 6 explores broader applications for QA-Emb in a simple
information retrieval setting and text-clustering setting.

2 Methods

QA-Emb is an intuitive method to generate text embeddings from a pre-trained autoregressive LLM
(Fig. 1). Given a text input, QA-Emb builds an interpretable embedding by querying the LLM with a
set of questions about the input. Each element of the embedding represents the answer to a different
question asked to an LLM. This procedure allows QA-Emb to capture nuanced and relevant details in
the input while staying interpretable.



Learning a set of yes/no questions QA-Emb requires specifying a set of yes/no questions () €
Qyesino that yield a binary embedding v (z) € {0, 1} for an input string . The questions are chosen
to yield embeddings that are suitable for a downstream task. In our fMRI prediction task, we optimize
for supervised linear regression: given a list of n input strings X and a multi-dimensional continuous
output Y € R™*¢, we seek embeddings that allow for learning effective ridge regression models:

Q = argmin | min > " |[Y® —0Tvo(XD)[| + A[[0]]2 | , 6

QE Qyesino OER? z,b: ?
where 6 is a learned coefficient vector for predicting the fMRI responses and ) is the ridge regulariza-
tion parameter.

Directly optimizing over the space of yes/no questions is difficult, as it requires searching over a
discrete space with a constraint set Qyeyno that is hard to specify. Instead, we heuristically optimize
the set of questions (), by prompting a highly capable LLM (e.g. GPT-4 [24]) to generate questions
relevant to our task, e.g. Generate a bulleted list of questions with yes/no answers that is relevant for
{{task description}}. Customizing the task description helps yield relevant questions. The prompt
can flexibly specify more prior information when available. For example, it can include examples
from the input dataset to help the LLM identify data-relevant questions. Taking this a step further,
questions can be generated sequentially (similar to gradient boosting) by having the LLM summarize
input examples that incur high prediction error to generate new questions focused on those examples.
While we focus on optimizing embeddings for fMRI ridge regression in Eq. (1), different downstream
tasks may require different inner optimization procedures, e.g. maximizing the similarity of relevant
documents for retrieval.

Post-hoc pruning of ). The set of learned questions () can be easily pruned to be made compact
and useful in different settings. For example, in our fMRI regression setting, a feature-selection
procedure such as Elastic net [25] can be used to remove redundant/uninformative questions from the
specified set of questions (). Alternatively, an LLM can be used to directly adapt @) to yield task-
specific embeddings. Since the questions are all in natural language, they can be listed in a prompt,
and an LLM can be asked to filter the task-relevant ones, e.g. Here is a list of questions:{{question
list}} List the subset of these questions that are relevant for {{task description}}.

Limitations: computational cost and LLM inaccuracies. While effective, the QA-Emb pipeline
described here has two major limitations. First, QA-Emb is computationally intensive, requiring d
LLM calls to compute an embedding. This is often prohibitively expensive, but may be worthwhile
in high-value applications (such as our fMRI setting) and will likely become more tenable as LLM
inference costs continue to rapidly decrease. We find that we can dramatically reduce this cost by
distilling the QA-Emb model into a single LLM model with many classification heads in Sec. 5.1.
Otherwise, LLM inference costs are partially mitigated by the ability to reuse the KV-cache for
each question and the need to only generate a single token for each question. While computing
embeddings with QA-Emb is expensive, searching embeddings is made faster by the fact that the
resulting embeddings are binary and often relatively compact.

Second, QA-Emb requires that the pre-trained LLM can faithfully answer the given yes-no questions.
If an LLM is unable to accurately answer the questions, it hurts explanation’s faithfulness. Thus,
QA-Emb requires the use of fairly strong LLMs and the set of chosen questions should be accurately
answered by these LLMs (Sec. 5.2 provides analysis on the question-answering accuracy of different
LLMs).

Hyperparameter settings For answering questions, we average the answers from
Mistral-7B  [26] (mistralai/Mistral-7B-Instruct-v0.2) and LLaMA-3 8B [27]
(meta-llama/Meta-Llama-3-8B-Instruct) with two prompts. All perform similarly and
averaging their answers yields a small performance improvement (Table A2). For generating
questions, we prompt GPT-4 [24] (gpt-4-0125-preview). Experiments were run using 64 AMD
MI210 GPUs, each with 64 gigabytes of memory, and reproducing all experiments in the paper
requires approximately 4 days (initial explorations required roughly 5 times this amount of compute).
All prompts used and generated questions are given in the appendix or on Github.



3 Related work

Text embeddings Text embeddings models, which produce vector representations of document
inputs, have been foundational to NLP. Recently, transformer-based models have been trained to
yield embeddings in a variety of ways [2—7], including producing embeddings that are sparse [28]
or have variable lengths [29]. Recent works have also leveraged autoregressive LLMs to build
embeddings, e.g. by repeating embeddings [30], generating synthetic data [6, 31], or using the last-
token distribution of an autoregressive LLM as an embedding [32]. Similar to QA-Emb, various works
have used LLM answers to multiple prompts for different purposes, e.g. text classification [33-35],
learning style embeddings [36], or data exploration [37].

Interpreting representations A few works have focused on building intrinsically interpretable
text representations, e.g. word or ngram-based embeddings such as word2vec [38], Glove [39],
and LLM word embeddings. Although their dimensions are not natively interpretable, for some
tasks, such as classification, they can be projected into a space that is interpretable [40], i.e. a
word-level representation. Note that it is difficult to learn a sparse interpretable model from these
dense embeddings, as standard techniques (e.g. Elastic net) cannot be directly applied.

When instead using black-box representations, there are many post-hoc methods to interpret embed-
dings, e.g. probing [41, 42], categorizing elements into categories [43—46], categorizing directions
in representation space [47-50], or connecting multimodal embeddings with text embeddings/text
concepts [51-55]. For a single pair of text embeddings, prediction-level methods can be applied to
approximately explain why the two embeddings are similar [56, 57].

Natural language representations in fMRI Using LLM representations to help predict brain
responses to natural language has recently become popular among neuroscientists studying language
processing [58—63] (see [64, 65] for reviews). This paradigm of using “encoding models” [66] to
better understand how the brain processes language has been applied to help understand the cortical
organization of language timescales [67, 68], examine the relationship between visual and semantic
information in the brain [69], and explore to what extent syntax, semantics, or discourse drives brain
activity [22, 70-77, 18]. The approach here extends these works to build an increasingly flexible,
interpretable feature space for modeling fMRI responses to text data.

4 Main results: fMRI interpretation

A central challenge in neuroscience is understanding how and where semantic concepts are represented
in the brain. To meet this challenge, we extend the line of study that fits models to predict the response
of different brain voxels (i.e. small regions in the brain) to natural language stimuli. Using QA-Emb,
we seek to bridge models that are interpretable [ 1, 22] with more recent LLM models that are accurate
but opaque [58-60].

4.1 fMRI experimental setup

Dataset We analyze data from two recent studies [78, 79] (released under the MIT license), which
contain fMRI responses for 3 human subjects listening to 20+ hours of narrative stories from podcasts.
We extract text embeddings from the story that each subject hears and fit a ridge regression to predict
the fMRI responses (Eq. (1)). Each subject listens to either 79 or 82 stories (consisting of 27,449
time points) and 2 test stories (639 time points); Each subject’s fMRI data consists of approximately
100,000 voxels; we preprocess it by running principal component analysis (PCA) and extracting the
coefficients of the top 100 components.

Regression modeling We fit ridge regression models to predict these 100 coefficients and evaluate
the models in the original voxel space (by applying the inverse PCA mapping and measuring the
correlation between the response and prediction for each voxel). We deal with temporal sampling
following [22, 60]; an embedding is produced at the timepoint for each word in the input story and
these embeddings are interpolated using Lanczos resampling. Embeddings at each timepoint are
produced from the ngram consisting of the 10 words preceding the current timepoint. We select the
best-performing hyperparameters via cross-validation on 5 time-stratified bootstrap samples of the
training set. We select the best ridge parameters from 12 logarithmically spaced values between 10



and 10,000. To model temporal delays in the fMRI signal, we also select between adding 4, 8, or 12
time-lagged duplicates of the stimulus features.

Generating QA-Emb questions To generate the questions underlying QA-Emb, we prompt GPT-4
with 6 prompts that aim to elicit knowledge useful for predicting fMRI responses (precise prompts
in Appendix A.3). This includes directly asking the LLM to use its knowledge of neuroscience, to
brainstorm semantic properties of narrative sentences, to summarize examples from the input data,
and to generate questions similar to single-voxel explanations found in a prior work [18]. This process
yields 674 questions (Fig. | and Table A1 show examples, see all questions on Github). We perform
feature selection by running multi-task Elastic net with 20 logarithmically spaced regularization
parameters ranging from 1073 to 1 and then fit a Ridge regression to the selected features.” See
extended details on the fMRI experimental setup in Appendix A.l and all prompts in Appendix A.3.

Baselines We compare QA-Emb to Eng1000, an interpretable baseline developed in the neuro-
science literature specifically for the task of predicting fMRI responses from narrative stories [22].
Each element in an Eng1000 embedding corresponds to a cooccurence statistic with a different word,
allowing full interpretation of the underlying representation in terms of related words. We additionally
compare to embeddings from BERT [23] (bert-base-uncased) and LLaMA models [81, 27]. For
each subject, we sweep over 5 layers from LLaMA-2 7B (meta-1lama/Llama-2-7b-hf, layers
6, 12, 18, 24, 30), LLaMA-2 70B (meta-llama/Llama-2-70b-hf, layers 12, 24, 36, 48, 60),
and LLaMA-3 8B (meta-1lama/Meta-Llama-3-8B, layers 6, 12, 18, 24, 30), then report the test
performance for the model that yields the best cross-validated accuracy (see breakdown in Table A3).

4.2 fMRI predictive performance

We find that QA-Emb predicts fMRI responses fairly well across subjects (Fig. 2A), achieving
an average test correlation of 0.116. QA-Emb significantly outperforms the interpretable baseline
Eng1000 (26% average improvement). Comparing to the two transformer-based baselines (which
do not yield straightforward interpretations), we find that QA-Emb slightly outperforms BERT (5%
improvement) and worse than the best cross-validated LLaMA-based model (7% decrease). Trends
are consistent across all 3 subjects.

To yield a compact and interpretable model, Fig. 2B further investigates the compressibility of the two
interpretable methods (through Elastic net regularization). Compared to Eng1000, QA-Emb improves
performance very quickly as a function of the number of features included, even outperforming
the final Eng1000 performance with only 29 questions (mean test correlation 0.122 versus 0.118).
Table A1 shows the 29 selected questions, which constitute a human-readable description of the
entire model.

Fig. 2C-D further break down the predictive performance across different brain regions for a particular
subject (S03). The regions that are well-predicted by QA-Emb (Fig. 2C) align with language-specific
areas that are seen in the literature [59, 82]. They do not show any major diversions from transformer-
based encoding models (Fig. 2D), with the distribution of differences being inconsistent across
subjects (see Fig. Al).

4.3 Interpreting the fitted representation from QA-Emb

The QA-Emb representation enables not only identifying which questions are important for fMRI
prediction, but also mapping their selectivity across the cortex. We analyze the QA-Emb model which
uses 29 questions and visualize the learned regression weights for different questions. Fig. 3 shows
example flatmaps of the regression coefficients for 3 of the questions across the 2 best-predicted
subjects (S02 and S03). Learned feature weights for the example questions capture known selectivity
and are highly consistent across subjects. In particular, the weights for the question "Does the
sentence involve a description of a physical environment or setting?" captures classical place areas
including occipital place area [83] and retrosplenial complex [84], as well as intraparietal sulcus [85].
The weights for the question "Is the sentence grammatically complex?" bear striking similarity to the
language network [82, 86], which is itself localized from a contrast between sentences and nonwords.
Other questions, such as "Does the sentence describe a physical action?", which has strong right

2We run Elastic net using the MultiTaskElasticNet class from scikit-learn [80].
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Figure 2: Predictive performance for QA-Emb compared to baselines. (A) Test correlation for QA-
Emb outperforms the interpretable Eng1000 baseline, is on par with the black-box BERT baseline,
and is worse than the best-performing LLaMA model. (B) Test correlation for method quickly grows
as a function of the number of included questions. (C) Test correlation per voxel for QA-Emb. (D)
Difference in the test correlation per voxel for subject between QA-Emb and BERT. Error bars for
(A) and (B) (standard error of the mean) are within the points (all are below 0.001). (B), (C), and (D)
show results for subject S03.

Table 1: Mean test correlation when comparing QA-Emb computed via many LLM calls to QA-Emb
computed via a single distilled model. Distillation does not significantly degrade performance. All
standard errors of the mean are below 1073,

QA-Emb  QA-Emb (distill, binary) QA-Emb (distill, probabilistic) Eng1000

UTSO01 0.081 0.083 0.080 0.077
UTS02 0.124 0.118 0.118 0.096
UTS03 0.136 0.132 0.142 0.117
AVG 0.114 0.111 0.113 0.097

laterality, do not have a strong basis in prior literature. These questions point to potentially new
insights into poorly understood cortical regions.

5 Evaluating the limitations of QA-Emb

5.1 Improving computational efficiency via model distillation

To reduce the computational cost of running inference with QA-Emb, we explore distilling the
many LLM calls needed to compute QA-Emb into a single model with many classification heads.
Specifically, we finetune a ROBERTa model [87] (roberta-base) with 674 classification heads to
predict all answers required for QA-Emb in a single feedforward pass. We finetune the model on
answers from LLaMA-3 8B with a few-shot prompt for 80% of the 10-grams in the 82 fMRI training
stories (123,203 examples), use the remaining 20% as a validation set for early stopping (30,801
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Figure 3: Learned feature weights for 3 example questions capture known selectivity and are
consistent across subjects. All feature weights are jointly rescaled to the range (-1, 1) for visualization.
Abbreviations: Pr = precuneus, pTemp = posterior temporal cortex, PFC = prefrontal cortex, IPS =
intraparietal sulcus, RSC = retrosplenial complex, OPA = occipital place area, PPA = parahippocampal
place area, Broca = Broca’s area, sSPMv = superior premotor ventral speech area, AC = auditory
cortex.

examples), and evaluate on all 10-grams in the 2 testing stories (4,594 examples). We finetune using
AdamW [88] with a learning rate of 5 - 107

When evaluated on the fMRI prediction task, the distilled model (QA-Emb (distill, binary) in Table 1)
yields a performance only slightly below the original model. If we relax the restriction that the
finetuned model yields binary embeddings and instead use the predicted probability for yes, the
performance rises slightly to nearly match the original model (0.113 instead of 0.114 average
test correlation) and maintains a significant improvement over the Eng1000 baseline. Note that the
distilled model achieves an 88.5% match for yes/no answers on 10-grams for the test set. Nevertheless,
the fMRI prediction for any given timepoint is computed from many questions and ngrams, mitigating
the effect of individual errors in answering a question.

5.2 Evaluating question-answering faithfulness

We evaluate the faithfulness of our question-answering models on a recent diverse collection of 54
binary classification datasets [89, 90] (see data details in Table A4). These datasets are difficult, as
they are intended to encompass a wider-ranging and more realistic list of questions than traditional
NLP datasets.

Fig. 4 shows the classification accuracy for the 3 LLMs used previously along with GPT-3.5
(gpt-3.5-turbo-0125). On average, each of the LLMs answers these questions with fairly high
accuracy, with GPT-4 slightly outperforming the other models. However, we observe poor perfor-
mance on some tasks, which we attribute to the task difficulty and the lack of task-specific prompt
engineering. For example, the dataset yielding the lowest accuracy asks the question Is the input
about math research?. While this may seem like a fairly simple question for an LLM to answer, the
examples in the negative class consist of texts from other quantitative fields (e.g. chemistry) that
usually contain numbers, math notation, and statistical analysis. Thus the LLMs answer yes to most
examples and achieve accuracy near chance (50%). Note that these tasks are more difficult than
the relatively simple questions we answer in the fMRI experiments, especially since the fMRI input
lengths are each 10 words, whereas the input lengths for these datasets are over 50 words on average
(with some inputs spanning over 1,000 words).



Accuracy

0.0 T T T T
LLaMA-3 (8B) Mistral (7B) GPT-3.5 GPT-4
Question-answering LLM

Figure 4: Performance of question-answering for underlying LLMs on the D3 collection of binary
classification datasets. Each point shows an individual dataset and error bars show the 95% confidence
interval.

Table 2: Information retrieval results for different interpretable embedding models. QA-Emb in
combination with BM-25 achieves a slight improvement over the interpretable baselines. QA-Emb
additionally yields reasonably strong performance compared to its embedding size. "Note that
QA-Emb embeddings are binary, so the raw number of dimensions overrepresents the embedding’s
size relative to other methods. Error bars show standard error of the mean.

Mean reciprocal rank  Recall@l  Recall@5 \ Size
Bag of words 0.37£.01 0.28+.02 0.42+.02 27,677
Bag of bigrams 0.39+£.01 0.30+.02 0.44+.02 | 197,924
Bag of trigrams 0.39+£.02  0.30£.02 0.441+.02 | 444,403
QA-Emb 0.45+£.01 034401 0.50+.01 2,000
BM-25 0.77£.01  0.69£.01 0.82+.01 27,677
BM-25 + QA-Emb 0.80+.01  0.71+.01  0.84+.01 | 29,677

6 Secondary results: evaluating QA-Emb in simple NLP tasks

6.1 Benchmarking QA-Emb for information retrieval

In this section, we investigate applying QA-Emb to a simplified information retrieval task. We take a
random subset of 4,000 queries from the MSMarco dataset ([91], Creative Commons License) and
their corresponding groundtruth documents, resulting in 5,210 documents. We use 25% of the queries
to build a training set and keep the remaining 75% for testing. For evaluation, we calculate the cosine
similarity match between the embeddings for each query and its groundtruth documents using mean
reciprocal rank and recall.

To compute QA-Emb, we first generate 2,000 questions through prompting GPT-4 based on its
knowledge of queries in information retrieval (see prompts in the Github). We use a regex to slightly
rewrite the resulting questions for queries to apply to documents (e.g. Is this query related to a
specific timeframe? — Is this text related to a specific timeframe?). We then answer the questions
both for each query and for each corpus document, again using LLaMA-3 8B. Rather than fitting a
ridge regression as in Eq. (1), we use the training set to learn a scalar for each question that multiplies
its binary output to change both its sign and magnitude in the embedding (optimization details in
Appendix A.4).

Table 2 shows the information retrieval results. Combining BM-25 with QA-Emb achieves a
small but significant improvement over the interpretable baselines. QA-Emb on its own achieves
modest performance, slightly improving slightly over a bag-of-words representation, but significantly
underperforming BM-25. Nevertheless, its size is considerably smaller than the other interpretable
baselines making it quicker to interpret and to use for retrieval.



Table 3: Clustering scores before and after zero-shot adaptation (higher is better). Errors give standard
error of the mean.

. . . Embedding

Rotten tomatoes AG News Emotion Financial phrasebank  AVG size (AVG)

Original 0.12640.011 0.12440.007  0.046+0.007 0.0844-0.008 0.095 100
Adapted 0.248+0.016 0.166+0.012  0.057+0.010 0.292+0.017 0.191 | 25.75+0.95

6.2 Zero-shot adaptation in text clustering

We now investigate QA-Emb in a simplified text clustering setting. To do so, we study 4 text-
classification datasets: Financial phrasebank ([92], creative commons license), Emotion [93] (CC
BY-SA 4.0 license), AGNews [94], and Rotten tomatoes [95]. For each dataset, we treat each class as
a cluster and evaluate the clustering score, defined as the difference between the average inter-class
embedding distance and the average intra-class embedding distance (embedding distance is measured
via Euclidean distance). A larger clustering score suggests that embeddings are well-clustered within
each class.

In our experiment, we build a 100-dimensional embedding by prompting GPT-4 to generate 25 yes/no
questions related to the semantic content of each dataset (e.g. for Rotten tomatoes, Generate 25
yes/no questions related to movie reviews). We then concatenate the answers for all 100 questions to
form our embedding. These general embeddings do not yield particularly strong clustering scores
(Table 3 top), as the questions are diverse and not particularly selective for each dataset.

However, simply through prompting, we can adapt these general embeddings to each individual
dataset. We call GPT-4 with a prompt that includes the full list of questions and ask it to select a
subset of questions that are relevant to each task. The result embeddings (Table 3 bottom) yield higher
clustering scores, suggesting that QA-Emb can be adapted to each task in a zero-shot manner (in this
simplified setting). Moreover, the resulting task-specific embeddings are now considerably smaller.

7 Discussion

We find that QA-Emb can effectively produce interpretable and high-performing text embeddings.
While we focus on a language fMRI setting, QA-Emb may be able to help flexibly build an inter-
pretable text feature space in a variety of domains, such as social science [9], medicine [10], or
economics [96], where meaningful properties of text can help discover something about an underlying
phenomenon or build trust in high-stakes settings. Alternatively, it could be used in mechanistic
interpretability, to help improve post-hoc explanations of learned LLLM representations.

As LLMs improve in both efficiency and capability, QA-Emb can be incorporated into a variety of
common NLP applications as well, such as RAG or information retrieval. For example, in RAG
systems such as RAPTOR [97] or Graph-RAG [98], explanations may help an LLM not only retrieve
relevant texts, but also specify why they are relevant and how they may be helpful.

Learning text questions rather than model weights is a challenging research area, furthering work
in automatic prompt engineering [15, 16]. Our approach takes a heuristic first step at solving this
problem, but future work could explore more directly optimizing the set of learned questions () in
Eq. (1) via improved discrete optimization approaches and constraints. One possible approach may
involve having LLMs themselves identify the errors the current model is making and improving based
on these errors, similar to general trends in LLM self-improvement and autoprompting [99-102].
Another approach may involve improving the explanation capabilities of LLMs to help extract more
questions more faithfully from data [103, 104].

Broader Impacts QA-Emb seeks to advance the field of LLM interpretation, a crucial step to-
ward addressing the challenges posed by these often opaque models. Although LLMs have gained
widespread use, their lack of transparency can lead to significant harm, underscoring the importance
of interpretable Al. There are many potential positive societal consequences of this form of inter-
pretability, e.g., facilitating a better understanding of scientific data and models, along with a better
understanding of LLMs and how to use them safely. Nevertheless, as is the case with most ML
research, the interpretations could be used to interpret and potentially improve an LLM or dataset



that is being used for nefarious purposes. Moreover, QA-Emb requires substantial computational
resources, contributing to increased concerns over sustainability.
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A Appendix

A.1 fMRI question details

Table Al: Questions list for model with 29 questions. Importance denotes the average absolute
coefficient for each question (normalized by the importance of the top question).

Question Importance
Is the sentence expressing skepticism or disbelief towards something or someone? 1.000
Does the sentence include dialogue? 0.983
Does the sentence describe a relationship between people? 0.924
Does the sentence involve the mention of a specific object or item? 0.900
Does the sentence include technical or specialized terminology? 0.882
Does the sentence contain a proper noun? 0.861
Does the input involve planning or organizing”’ 0.861
Does the sentence include numerical information? 0.850
Is time mentioned in the input? 0.844
Is the sentence grammatically complex? 0.815
Does the sentence include dialogue or thoughts directed towards another character? 0.811
Does the sentence describe a physical action? 0.809
Does the sentence include a conditional clause”? 0.782
Does the sentence describe a visual experience or scene’ 0.771
Does the input include a philosophical or reflective thought? 0.759
Is the sentence conveying the narrator’s physical movement or action in detail” 0.749
Does the sentence describe a physical sensation? 0.744
Does the sentence involve a discussion about personal or social values? 0.739
Does the sentence reference a specific time or date” 0.719
Does the sentence express a philosophical or existential query or observation? 0.705
Does the sentence involve a description of physical environment or setting”? 0.693
Does the input describe a sensory experience’ 0.688
Does the sentence involve planning or decision-making? 0.684
Is the sentence a command”? 0.682
Does the sentence describe a specific sensation or feeling? 0.672
Does the sentence contain a cultural reference? 0.667
Does the input include dialogue between characters? 0.594
Does the sentence mention a specific location or place? 0.547
Does the sentence reference a specific location or place? 0.545
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A.2 fMRI prediction results extended
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Figure A1l: Predictive performance for QA-Emb (top row) and the difference between QA-Emb and
BERT (bottom row).

Table A2: Mean test correlation for QA-Emb with different settings: varying the underlying prompts
to source questions and the LLM used to answer the questions (fixing the number of time-lagged
delays to 8). Ensemble generally provides a small boost over other models and Mistral slightly
underperforms LLaMA-3 (8B).

Ensemble LLaMA-3 (8B) LLaMA-3 (8B)-fewshot Mistral (7B)
Subject  Questions

S01 Prompts 1-3 (376 questions) 0.081 0.078 0.078 0.076
Prompts 1-5 (518 questions) 0.089 0.085 0.085 0.082
Prompts 1-6 (674 questions) 0.084 0.081 0.085 0.076
S02 Prompts 1-3 (376 questions) 0.120 0.112 0.119 0.112
Prompts 1-5 (518 questions) 0.118 0.120 0.121 0.114
Prompts 1-6 (674 questions) 0.124 0.119 0.121 0.108
S03 Prompts 1-3 (376 questions) 0.132 0.131 0.127 0.126
Prompts 1-5 (518 questions) 0.137 0.136 0.135 0.129
Prompts 1-6 (674 questions) 0.141 0.136 0.136 0.132
AVG Prompts 1-3 (376 questions) 0.111 0.107 0.108 0.104
Prompts 1-5 (518 questions) 0.115 0.114 0.114 0.108
Prompts 1-6 (674 questions) 0.116 0.112 0.114 0.105
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Table A3: Mean test correlation for different baseline models as a function of hyperparameters
(number of time-lagged delays and layer for extracting embeddings)

Subject S01 S02 S03 AVG
Delays 4 8 12 4 8 12 4 8 12 4 8 12
BERT 0.084 0.080 0.075 0.114 0.108 0.107 0.136 0.139 0.136 0.111 0.109 0.106
Eng1000 0.079 0.067 0.077 0.096 0.092 0.082 0.110 0.117 0.116 0.095 0.092 0.092
LLaMA-2 (70B) (lay 12)  0.055 0.055 0.054 0.101 0.095 0.085 0.143 0.144 0.130 0.100 0.098 0.089
LLaMA-2 (70B) (lay 24)  0.075 0.059 0.049 0.097 0.104 0.092 0.149 0.153 0.152 0.107 0.105 0.098
LLaMA-2 (70B) (lay 36) 0.058 0.068 0.057 0.131 0.101 0.084 0.153 0.156 0.152 0.114 0.108 0.098
LLaMA-2 (70B) (lay 48) 0.093 0.060 0.052 0.114 0.094 0.091 0.148 0.151 0.149 0.118 0.102 0.098
LLaMA-2 (70B) (lay 60) 0.095 0.048 0.050 0.119 0.089 0.088 0.148 0.152 0.150 0.121 0.097 0.096
LLaMA-2 (7B) (lay 06) 0.074 0.067 0.039 0.120 0.088 0.084 0.138 0.144 0.133 0.111 0.100 0.085
LLaMA-2 (7B) (lay 12) 0.097 0.058 0.053 0.116 0.111 0.087 0.150 0.155 0.152 0.121 0.108 0.097
LLaMA-2 (7B) (lay 18) 0.079 0.076 0.042 0.123 0.103 0.090 0.143 0.153 0.150 0.115 0.111 0.094
LLaMA-2 (7B) (lay 24) 0.088 0.057 0.068 0.129 0.100 0.106 0.144 0.148 0.149 0.120 0.102 0.108
LLaMA-2 (7B) (lay 30) 0.057 0.045 0.045 0.130 0.098 0.099 0.139 0.149 0.148 0.109 0.097 0.097
LLaMA-3 (8B) (lay 06) 0.071 0.066 0.054 0.122 0.119 0.095 0.144 0.147 0.148 0.112 0.111  0.099
LLaMA-3 (8B) (lay 12) 0.089 0.073 0.050 0.110 0.099 0.095 0.146 0.151 0.153 0.115 0.108 0.099
LLaMA-3 (8B) (lay 18) 0.073 0.052 0.052 0.125 0.102 0.096 0.153 0.154 0.155 0.117 0.103 0.101
LLaMA-3 (8B) (lay 24) 0.090 0.053 0.047 0.106 0.113 0.095 0.146 0.149 0.148 0.114 0.105 0.097
LLaMA-3 (8B) (lay 30) 0.082 0.066 0.060 0.120 0.117 0.101 0.147 0.151 0.148 0.117 0.111 0.103

A.3 Prompts
A.3.1 Prompts for question generation

Prompt 1 Generate a bulleted list of 500 diverse, non-overlapping questions that can be used to
classify an input based on its semantic properties. Phrase the questions in diverse ways.

Here are some example questions:

{{examples}}
Return only a bulleted list of questions and nothing else

Prompt 2 Generate a bulleted list of 100 diverse, non-overlapping questions that can be used to
classify sentences from a first-person story. Phrase the questions in diverse ways.

Here are some example questions:

{{examples}}
Return only a bulleted list of questions and nothing else

Prompt 3 Generate a bulleted list of 200 diverse, non-overlapping questions that can be used to
classify sentences from a first-person story. Phrase the questions in diverse ways.

Here are some example questions:

{{examples}}

Return only a bulleted list of questions and nothing else

Prompt 4 Based on what you know from the neuroscience and psychology literature, generate a
bulleted list of 100 diverse, non-overlapping yes/no questions that ask about properties of a sentence
that might be important for predicting brain activity.

Return only a bulleted list of questions and nothing else

Prompt 5 # Example narrative sentences
{{example sentences from dataset}}

# Example yes/no questions
{{example questions already asked}}
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Generate a bulleted list of 100 specific, non-overlapping yes/no questions that ask about
aspects of the example narrative sentences that are important for classifying them. Focus on the
given narrative sentences and form questions that combine shared properties from multiple sentences
above. Do not repeat information in the example questions that are already given above. Instead,
generate complementary questions that are not covered by the example questions. Return only a
bulleted list of questions and nothing else.

Prompt 6 Generate more diverse questions that may occur for a single sentence in a first-person
narrative story

See exact prompts with examples in the Github repo.

A.3.2 Prompts for question answering

Standard prompt <User>: Input text: {example}
Question: {question}
Answer with yes or no, then give an explanation.

Few-shot prompt <System>: You are a concise, helpful assistant.
<User>: Input text: and i just kept on laughing because it was so
Question: Does the input mention laughter?

Answer with Yes or No.

<Assistant>: Yes

<User> Input text: what a crazy day things just kept on happening
Question: Is the sentence related to food preparation?

Answer with Yes or No.

<Assistant>: No

<User> Input text: i felt like a fly on the wall just waiting for
Question: Does the text use a metaphor or figurative language?
Answer with Yes or No.

<Assistant>: Yes

<User> Input text: he takes too long in there getting the pans from
Question: Is there a reference to sports?

Answer with Yes or No.

Answer with Yes or No.

<Assistant>: No

<User> Input text: was silent and lovely and there was no sound except
Question: Is the sentence expressing confusion or uncertainty?
Answer with Yes or No.

<Assistant>: No

<User> Input text: {example}

Question: {question}

Answer with Yes or No.

<Assistant>:

See exact prompts with examples in the Github repo.

A.4 Information retrieval details

Optimization details When fitting our QA-Emb model for information retrieval, we learn a single
scalar per-question that is multiplied by each embedding before computing a similarity. To learn
these scalars, we minimize a two-part loss. The first loss is the negative cosine similarity between
each query and its similar documents. The second loss is the cosine similarity between each query
and the remaining documents. We weight the first loss as 10 times higher than the second loss and
optimize using Adam [105] with a learning rate of 10~%. We run for 8 epochs, when the training loss
seems to plateau.

18



Table A4: 54 binary classification datasets along with their underlying yes/no question and corpus
statistics from a recent collection [89, 90].

Dataset name Dataset topic Underlying yes/no question Examples  Unique unigrams
0-irony sarcasm contains irony 590 3897
1-objective unbiased is a more objective description of what happened 739 5628
2-subjective subjective contains subjective opinion 757 5769
3-god religious believes in god 164 1455
4-atheism atheistic is against religion 172 1472
5-evacuate evacuation involves a need for people to evacuate 2670 16505
6-terorrism terrorism describes a situation that involves terrorism 2640 16608
7-crime crime involves crime 2621 16333
8-shelter shelter describes a situation where people need shelter 2620 16347
9-food hunger is related to food security 2642 16276
10-infrastructure infrastructure is related to infrastructure 2664 16548
11-regime change regime change describes a regime change 2670 16382
12-medical health is related to a medical situation 2675 16223
13-water water involves a situation where people need clean water 2619 16135
14-search rescue involves a search/rescue situation 2628 16131
15-utility utility expresses need for utility, energy or sanitation 2640 16249
16-hillary Hillary is against Hillary 224 1693
17-hillary Hillary supports hillary 218 1675
18-offensive derogatory contains offensive content 652 6109
19-offensive toxic insult women or immigrants 2188 11839
20-pro-life pro-life is pro-life 213 1633
21-pro-choice abortion supports abortion 209 1593
22-physics physics is about physics 10360 93810
23-computer science  computers is related to computer science 10441 93947
24-statistics statistics is about statistics 9286 86874
25-math math is about math research 8898 85118
26-grammar ungrammatical is ungrammatical 834 2217
27-grammar grammatical is grammatical 826 2236
28-sexis sexist is offensive to women 209 1641
29-sexis feminism supports feminism 215 1710
30-news world is about world news 5778 13023
31-sports Sports news is about sports news 5674 12849
32-business business is related to business 5699 12913
33-tech technology is related to technology 5727 12927
34-bad negative contains a bad movie review 357 16889
35-good good thinks the movie is good 380 17497
36-quantity quantity asks for a quantity 1901 5144
37-location location asks about a location 1925 5236
38-person person asks about a person 1848 5014
39-entity entity asks about an entity 1896 5180
40-abbrevation abbreviation asks about an abbreviation 1839 5045
41-defin definition contains a definition 651 4508
42-environment environmentalism  is against environmentalist 124 1117
43-environment environmentalism is environmentalist 119 1072
44-spam spam is a spam 360 2470
45-fact facts asks for factual information 704 11449
46-opinion opinion asks for an opinion 719 11709
47-math science is related to math and science 7514 53973
48-health health is related to health 7485 53986
49-computer computers related to computer or internet 7486 54256
50-sport sports is related to sports 7505 54718
51-entertainment entertainment is about entertainment 7461 53573
52-family relationships is about family and relationships 7438 54680
53-politic politics is related to politics or government 7410 53393
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A.5 Details on question-answering evaluation datasets

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are clearly stated that QA-Emb can generate flexible embeddings
using a pre-trained LLM (described in the Sec. 2) and that this experimentally improves
performance primarily for an fMRI prediction problem (Sec. 4).

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, limitations are discussed in the methods section (Sec. 2) as well as the
entirety of Sec. 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper includes no theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all details are fully provided in the paper (including extra details such as
prompts in the supplementary material).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and data are made openly available on Github at at https://
anonymous.4open.science/r/interpretable-embeddings-70ED/readme .md.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes all specifications are given in the Methods and the experimental setup
sections in the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes we give details about error bars in our results section. Note that Fig. 2
doesn’t directly show error bars since they are small enough that they are within the points
(see Fig. 2 caption).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Mentioned in the methods section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and found that the current paper
conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Given in the discussion section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks beyond those discussed in the Broader Impacts
above, as it releases no new data or models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We list the licenses in the main text for all datasets where they can be found
(the main fMRI data is released under the MIT license).

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects are involved in this study. The fMRI data analyzed here is
collected in previous studies following the appropriate IRB protocols.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved in this study. The fMRI data analyzed here is
collected in previous studies following the appropriate IRB protocols.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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