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Abstract
Vovk (2015) introduced cross-conformal predic-
tion, a modification of split conformal designed to
improve the width of prediction sets. The method,
when trained with a miscoverage rate equal to α
and n ≫ K, ensures a marginal coverage of at
least 1− 2α− 2(1−α)(K − 1)/(n+K), where
n is the number of observations and K denotes
the number of folds. A simple modification of
the method achieves coverage of at least 1− 2α.
In this work, we propose new variants of both
methods that yield smaller prediction sets without
compromising the latter theoretical guarantees.
The proposed methods are based on recent results
deriving more statistically efficient combination
of p-values that leverage exchangeability and ran-
domization. Simulations confirm the theoretical
findings and bring out some important tradeoffs.

1. Introduction
Conformal prediction has emerged as a general and versatile
framework for constructing prediction sets in regression and
classification tasks (Shafer & Vovk, 2008). Unlike tradi-
tional methods, which often depend on rigid distributional
assumptions, conformal prediction transforms point pre-
dictions from any prediction (or black-box) algorithm into
prediction sets that guarantee valid finite-sample marginal
coverage. Originally introduced by Saunders et al. (1999), it
has become increasingly influential, with numerous methods
and extensions being proposed since its introduction.

In particular, full conformal prediction by Vovk et al. (2005),
demonstrates favorable properties regarding the coverage
and the size of the prediction set. However, these advantages
are counterbalanced by a substantial computational cost,
which limits its practical application. In fact, the method
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requires one to train the model for every possible value of
the response, and this procedure is usually computationally
burdensome. To alleviate this problem, split conformal pre-
diction (Papadopoulos et al., 2002; Lei et al., 2018) has been
proposed as a solution. The procedure involves a random
partition of the data into two subsets: the first subset is used
to train the prediction algorithm, while the remaining part is
used to calibrate the predictions and to obtain the prediction
interval. Although this variant proves to be computationally
efficient, it suffers from reduced efficiency in terms of the
width of the resulting prediction set; this is due to the fact
that only a fraction of the data is used to train the model.

Several “hybrid” solutions have been proposed in the liter-
ature, which can be considered between split conformal
prediction and full conformal prediction. Examples in-
clude cross-conformal prediction (Vovk, 2015; Vovk et al.,
2018), multi-split conformal prediction (Solari & Djord-
jilović, 2022), the jackknife+ (Barber et al., 2021) and out-
of-bag conformal prediction (Linusson et al., 2020; Gupta
et al., 2022). These techniques generally result in smaller
prediction intervals compared to split conformal prediction
and involve less computational effort than full conformal
prediction. However, one of the main drawbacks of these
methods is the reduced marginal coverage guarantee, which
is less than the usual 1− α level.

In this work, we focus the attention on cross-conformal
prediction and we prove that the method can be improved
without altering the coverage guarantee. In other words,
we are able to obtain smaller prediction sets while ensuring
the same (worst-case) miscoverage rate. Starting from a
modification of the method (Vovk et al., 2018; Barber et al.,
2021), the new results are obtained using recent findings on
the combination of dependent p-values derived in Gasparin
et al. (2025). Importantly, these results are obtained in a
fully general manner, and do not need any specific prediction
model or ensemble method to be used.

The structure of the paper is as follows. In Section 2 we
illustrate the problem setup and related work. In Section 3
cross-conformal prediction is described while the new meth-
ods and results are presented in Section 4. Section 5 presents
some empirical results. In particular, Section 5.1 contains
some simulation results, while an application to a real-world
dataset is presented in Section 5.2.

1



Improving the Statistical Efficiency of Cross-Conformal Prediction

2. Problem Setup and Related Work
Assume we have independent and identically distributed
(iid) training samples Zi = (Xi, Yi) ∈ X × Y, i =
1, . . . , n, drawn from a probability distribution Q, where
X represents the feature space and Y the response space.
Using these training data, our goal is to obtain a prediction
set for the response variable Yn+1 based on the covariates
Xn+1, under the assumption that the test pair (Xn+1, Yn+1)
is independently sampled from the same distribution Q. In
what follows, the results will be shown to hold more gener-
ally under the assumptions of exchangeability of the n+ 1
data points with the iid assumption as a special case. A
typical scenario involves applying a prediction algorithm to
the training data in order to find a prediction for the response
value. In particular, let µ̂ : X → Y ′ be a regression function
obtained by applying an algorithm A to the training points,
where Y ′ is the prediction space (in regression problems
we usually have X = Rp and Y = Y ′ = R). Formally, A
is a mapping from ∪d≥1(X × Y)d (the set of all possible
training datasets of any size d ≥ 1), to the space of func-
tions X → Y ′. Starting from the regression function µ̂, we
aim to construct a prediction set Ĉ(Xn+1) that contains the
point Yn+1 with high probability. Since no assumptions
are made about the distribution Q, the method is said to be
distribution-free.

Before proceeding with the remainder of the paper, we
define the score function s = s((x, y);D), which quantifies
the non-conformity of a point in the sample space with
respect to the dataset D ∈ (X × Y)d used to train the
prediction model. In particular, we assume that the score
function s adheres to a symmetry property:

s
(
(x, y);D

)
= s
(
(x, y);Dπ

)
, (1)

where π is any permutation of the indices [d] := {1, . . . , d}
and Dπ refer to the dataset whose elements are permuted by
π. For example, when considering residual scores |y−µ̂(x)|
in a regression problem, the symmetry of the score function
is satisfied if the prediction algorithm is symmetric, which
means that A(D) = A(Dπ). In addition, we denote the
dataset containing the observations in the set I as DI =
(Zi : i ∈ I).

2.1. Related Work

As outlined in the Introduction, conformal prediction was
first introduced and formalized by Saunders et al. (1999)
and Vovk et al. (2005). Several influential contributions
to the framework include the works of Lei et al. (2018),
Romano et al. (2019), and Barber et al. (2021). Extensions
and generalizations of the methods have been proposed by
Kim et al. (2020) and Gupta et al. (2022), among others.
Other works extend conformal prediction to settings where
the standard assumptions may not hold, such as Tibshirani

et al. (2019), Prinster et al. (2022), Barber et al. (2023)
and Stutz et al. (2023). Our work is based on the cross-
conformal prediction method introduced in Vovk (2015) and
later extended in Vovk et al. (2018). We refer to Fontana et al.
(2023) and Angelopoulos & Bates (2023) for an overview
of conformal prediction and its extensions.

The solutions proposed here are based on recent results on
the combination of p-values that exploit exchangeability
and randomization (Gasparin et al., 2025). The combination
of p-values is not new in the statistical literature and dates
back at least to Fisher (1948). Fisher’s method is based
on the assumption of independence among the p-values,
an assumption frequently violated in practical applications.
Other works propose combination rules valid for arbitrar-
ily dependent p-values; some examples are Rüger (1978),
Morgenstern (1980), Rüschendorf (1982), Vovk & Wang
(2020), and more recently Vovk et al. (2022b). Clearly, these
rules valid under arbitrary dependence come with a price in
terms of statistical power. In other words, these methods for
combining p-values are usually conservative since they have
to protect against the worst-case scenario of dependence.
The results in Gasparin et al. (2025) are able to improve
these rules valid under arbitrary dependence exploiting the
exchangeability of the starting p-values and/or randomiza-
tion. Their results are derived using extensions of Markov’s
inequality introduced in Ramdas & Manole (2025).

In the framework of conformal prediction, the combination
(or ensembling) of p-values is used in Carlsson et al. (2014),
Toccaceli & Gammerman (2017) and Linusson et al. (2017).
Their empirical results indicate that Fisher’s method is not
a valid rule for combining p-values obtained from differ-
ent splits or algorithms, whereas using rules valid under
arbitrary dependence tends to be generally conservative. In
particular, Linusson et al. (2017) provides some intuitions
suggesting that the empirical coverage of cross-conformal
prediction depends on the degree of dependence between the
conformal p-values (that it is strictly related to the stability
of the underlying prediction algorithm). In a similar spirit,
the solutions in Cherubin (2019) and Solari & Djordjilović
(2022) aim to combine dependent conformal prediction sets
(rather than p-values) derived from different random splits or
prediction algorithms. In particular, their approach relies on
a majority vote strategy. Gasparin & Ramdas (2024) further
extended their approach by introducing a weighting system
and incorporating randomization. Other works aim to select
or combine conformal prediction sets; see for example Yang
& Kuchibhotla (2024) and Liang et al. (2024).

3. (Modified) Cross-Conformal Prediction
This section will recap two methods: cross-conformal pre-
diction, and modified cross-conformal prediction. We let
K denote the number of folds, and we focus on the (prac-
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tical) case when K is small like K = 5 or K = 10. We
will always assume that m = n/K is an integer, which is
achievable by only throwing away less than K points from
the original dataset. However, we point out in Appendix C
that both methods have guarantees without this assumption
(which is new to the best of our knowledge, though minor).

3.1. Cross-Conformal Prediction

Cross-conformal prediction, introduced by Vovk (2015),
is a method to obtain distribution-free prediction intervals.
It can be considered as a combination of split conformal
prediction (see Appendix A) and cross-validation. It works
as follows: data are divided into K disjoint subsets (or folds)
I1, . . . , IK of size m = n/K. The (cross-validation) scores
are defined as:

SCV
i = s

(
(Xi, Yi);D[n]\Ik(i)

)
i = 1, . . . , n, (2)

where Ik(i) is the subset containing the i-th data point. The
cross-conformal prediction set is simply defined as

Ĉcross
n,K,α(Xn+1) =

{
y ∈ Y :

1 +
∑n

i=1 1
{
s
(
(Xn+1, y);D[n]\Ik(i)

)
≤ SCV

i

}
n+ 1

> α

}
.

(3)

Vovk et al. (2018) proves that the interval in (3) is such that

P
(
Yn+1 ∈ Ĉcross

n,K,α(Xn+1)

)
≥ 1− 2α− 2(1− α)

1− 1/K

n/K + 1
,

(4)

where the probability is marginal and is computed with
respect to (X1, Y1), . . . , (Xn+1, Yn+1). In particular, when
K is small compared to n (that is, n ≫ K), the additional
term is negligible and the coverage is essentially at least
1− 2α. To prove the result in (4), it is useful to define for
each subset, k ∈ [K], the quantity

Pk(y) =
1 +

∑
i∈Ik

1
{
s
(
(Xn+1, y);D[n]\Ik

)
≤ SCV

i

}
m+ 1

,

(5)

that is a discrete p-value if computed using the response
test value Yn+1 and if data (Xi, Yi), i ∈ [n + 1], are iid
or at least exchangeable (i.e., P(Pk(Yn+1) ≤ α) ≤ α).
This is due to the fact that the scores in Ik ∪ {n + 1} are
exchangeable, since the prediction algorithm is trained only
on the training points in [n] \ Ik, so (5) can be seen as a
rank-based p-value. It is possible to relate the set defined in

(3) with the cross-conformal p-values in (5). In particular, a
point y is included in Ĉcross

n,K,α(Xn+1) if and only if

1

K

K∑
k=1

Pk(y) > α+ (1− α)
K − 1

K + n
. (6)

The multiplicative factor of two in the coverage statement
in (4) arises from the fact that the average of arbitrarily
dependent p-values remains a p-value up to a factor of 2
(Rüschendorf, 1982; Vovk & Wang, 2020):

P

(
1

K

K∑
k=1

Pk(Yn+1) ≤ α

)
≤ 2α. (7)

This implies that the statement in (4) can be proved by com-
bining the results in (6) and (7). For a detailed discussion
on cross-conformal prediction see, for example, Chapter 4.4
of Vovk et al. (2022a).
Remark 3.1. The coverage statement in (4) is meaningless
when K is large. In fact, Barber et al. (2021) proves a
different bound for the miscoverage rate valid for large K.
However, in practical applications, the number of splits is
usually small if compared with the number of observations
(e.g., K = 5 or K = 10) and the bound in (4) is the one
that applies. We discuss the two different bounds and the
connection with the CV+ method by Barber et al. (2021) in
Appendix B.
Remark 3.2. In a regression setting, there are no guarantees
that Ĉcross

n,K,α(Xn+1) will be an interval; in fact, there are
particular cases where it can be a union of intervals. This
property is shared by other “hybrid” methods mentioned
in Section 1. One can avoid having a union of intervals by
taking the convex hull of the set (the interval formed by the
furthest endpoints) as explained in Gupta et al. (2022). In
addition, when the residual score is chosen as score function,
the prediction set Ĉcross

n,K,α(Xn+1) is a subset of the CV+ set
that is guaranteed to be an interval (see Appendix B).

3.2. Modified Cross-Conformal Prediction

It is clear from the previous section that we can obtain a set
with coverage at least equal to 1− 2α using a modification
of the cross-conformal prediction set defined in (3). We
define the modified cross-conformal prediction interval (the
same name is used in Barber et al. (2021)) as

Ĉmod-cross
n,K,α (Xn+1) =

{
y ∈ Y :

1

K

K∑
k=1

Pk(y) > α

}
.

(8)
Using the result stated in (7), we have

P
(
Yn+1 ∈ Ĉmod-cross

n,K,α (Xn+1)
)
≥ 1− 2α.

The intervals defined in (3) and (8) usually have inflated
coverage. In other words, with typically employed levels
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of α, the coverage obtained using these methods often fluc-
tuates between the levels 1 − α and 1. This is due to the
fact that the rule in (7) is valid under arbitrary dependence
and it has to take into account the “worst-case” scenario
of dependence, which typically differs from the scenario
observed in the data. However, in some situations where
the regression algorithm is unstable or with some particular
distribution Q, the coverage can oscillate between the guar-
anteed level 1− 2α and 1−α. Linusson et al. (2017) offers
some empirical observations regarding the miscalibration
of the average of p-values obtained from different folds. In
particular, since the p-values are dependent, the distribution
of the averaged p-values is in between the Bates distribution
and the uniform distribution, and this strictly depends on
the stability of the underlying algorithm.

Since p-values take discrete values, in order to avoid having
noninformative sets identical to Y , the inequality 1 < α(m+
1) must hold. A slightly improvement can be obtained
using randomized p-values P1(Yn+1; τ), . . . , PK(Yn+1; τ)
defined by

Pk(y; τ) =

=
τ +

∑
i∈Ik

τ1
{
s
(
(Xn+1, y);D[n]\Ik

)
= SCV

i

}
m+ 1

+

+

∑
i∈Ik

1
{
s
(
(Xn+1, y);D[n]\Ik

)
< SCV

i

}
m+ 1

,

(9)

where τ is a uniform random variable in the interval (0, 1)
drawn independently from the data. In this case, the p-
values (for y = Yn+1) are uniformly distributed in the
interval (0, 1), rather than taking discrete values. However,
the dependence among the p-values obtained from different
folds is not broken.

4. New Variants of Cross-Conformal
Prediction

In this section, we improve the prediction set in (8) using
recent results regarding the combination of p-values. In
particular, the combination rules that will be used are more
powerful than the combinations valid under arbitrary de-
pendence of the p-values. The results are obtained in a
completely general manner and do not require the use of
expensive computational procedures (Carlsson et al., 2014)
or the use of specific models (Boström et al., 2017).

4.1. Exchangeable Modified Cross-Conformal
Prediction

The interval in (8) can be improved using recent results on
the combination of exchangeable p-values. Before proceed-
ing, we state a useful result.
Proposition 4.1. Let P1(Yn+1), . . . , PK(Yn+1) be the

(cross-conformal) p-values obtained using data Zi =
(Xi, Yi), i = [n + 1], then P1(Yn+1), . . . , PK(Yn+1) are

exchangeable, meaning that P d
= Pπ, where d

= represents
equality in distribution, P = (P1(Yn+1), . . . , PK(Yn+1)),
Pπ = (Pπ(1)(Yn+1), . . . , Pπ(K)(Yn+1)) and π : [K] →
[K] is any permutation of the indices.

A formal proof of the result is based on the following lemma
and is provided in Appendix F.

Lemma 4.2 (Dean & Verducci (1990); Kuchibhotla (2020)).
Suppose W = (W1, . . . ,Wn) ∈ Wn is a vector of ex-
changeable random variables. Fix a transformation G :
Wn → (W ′)m. If for each permutation π1 : [m] → [m]
there exists a permutation π2 : [n] → [n] such that

π1G(w) = G(π2w), for all w ∈ Wn,

then G(·) preserves exchangeability.

Remark 4.3. The assumption that n/K = m is crucial to
prove the result in Proposition 4.1. In fact, if the subsets
I1, . . . , IK have different sample sizes, then the result in
Proposition 4.1 does not hold. Notice that the p-values in
(5) take discrete values {1/m, 2/m, . . . , 1}. If the sample
sizes differ, then the p-values assume values in different
grids of values, and therefore the marginal distributions of
P1(Yn+1), . . . , PK(Yn+1) are different. This implies that
p-values cannot be exchangeable. In addition, with different
sample sizes the proof of the result breaks down and a
permutation π2 that satisfies the condition in Lemma 4.2
does not exist. In Appendix C, we will see how to extend
the result to the case where the folds have different sizes
using a simple trick.

An improved version of the set in (8) can be defined as:

Ĉe-mod-cross
n,K,α (Xn+1) =

{
y ∈ Y : min

ℓ∈[K]

1

ℓ

ℓ∑
k=1

Pk(y) > α

}
,

(10)

where, for a given y, the combination of the different Pk(y)
is asymmetric and depends on the order of the p-values.

Theorem 4.4. It holds that Ĉe-mod-cross
n,K,α (Xn+1) ⊆

Ĉmod-cross
n,K,α (Xn+1). In addition, if data are exchangeable,

P
(
Yn+1 ∈ Ĉe-mod-cross

n,K,α (Xn+1)
)
≥ 1− 2α. (11)

The proof of this and subsequent results is provided in Ap-
pendix F.

The theorem indicates that one can derive a set smaller than
the modified cross-conformal prediction set while maintain-
ing the same coverage guarantee. The same results hold if
the p-values in (9) are used. Specifically, the randomized p-
values are still exchangeable if τ is common across the folds.
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Indeed, conditional on τ the p-values are exchangeable due
to Proposition 4.1. In particular, using the p-values in (9) we
obtain a smaller set since Pk(y; τ) ≤ Pk(y) almost surely.

Remark 4.5. Once K exchangeable (or more generally de-
pendent) p-values are obtained, there are several methods
to combine them. The proposed solution is to use the mini-
mum (over ℓ) of the mean obtained using the first ℓ p-values,
which is related to the valid combination rule “twice the aver-
age” used by Vovk et al. (2018; 2022a) to prove the coverage
guarantee of cross-conformal prediction. However, similar
results apply to other merging functions like quantiles (for
example “twice the median” is also a valid combination
rule) and generalized averages (e.g., geometric mean or har-
monic mean). However, it is important to emphasize that,
as explained in Section 6 of Vovk & Wang (2020), the mean
is an effective method of combining strongly dependent
p-values, which is often the case for rank-based p-values ob-
tained by cross-conformal prediction. Other merging rules,
such as the Bonferroni method, are more appropriate near
independence. For instance, Lei et al. (2018, Section 2.3)
shows, under some assumptions, that the Bonferroni rule is
overly conservative in the context of multisplit conformal
prediction.

4.2. Randomized Modified Cross-Conformal Prediction

In the previous paragraph, we leveraged the exchangeability
of p-values to obtain a smaller set. In this section, we move
in a different direction and improve the set (8) using a sim-
ple “randomization trick” (introducing a uniform random
variable). Indeed, in this case, the exchangeability of the
p-values is not necessary. As before, the improvement does
not alter the marginal validity of the set, but the new result
is obtained in a different way. Although randomization is
avoided in some statistical applications due to the extra ran-
domness it introduces, in this case, it does not pose a major
issue. Indeed, cross-conformal prediction is, by definition,
a randomized method. More precisely, data are randomly
divided into K different subsets in the first step, which
means that the procedure inherently includes randomness
(see Remark 4.8 for further discussion).

We can define a “randomized” improvement of the interval
in (8) as follows:

Ĉu-mod-cross
n,K,α (Xn+1) ={

y ∈ Y :
1

2− U

1

K

K∑
k=1

Pk(y) > α

}
,

(12)

where U is a uniform random variable in the interval (0, 1)
independent of all the data.

Theorem 4.6. It holds that Ĉu-mod-cross
n,K,α (Xn+1) ⊆

Ĉmod-cross
n,K,α (Xn+1). In addition, if data are exchangeable,

P
(
Yn+1 ∈ Ĉu-mod-cross

n,K,α (Xn+1)
)
≥ 1− 2α. (13)

Even in this case, the guaranteed marginal coverage remains
at least 1− 2α, but the set size is enhanced using a simple
result based on randomization.

4.3. Exchangeable and Randomized Modified
Cross-Conformal Prediction

The results in Section 4.1 and in Section 4.2 can be “com-
bined” in order to obtain a prediction set that improves the
one defined in (10). In this case as well, the exchangeability
property outlined in Proposition 4.1 is crucial.

We define a randomized improvement of the conformal
prediction set defined in (10):

Ĉeu-mod-cross
n,K,α (Xn+1) =

{
y ∈ Y :

min

{
1

2− U
P1(y), min

ℓ∈[K]

1

ℓ

ℓ∑
k=1

Pk(y)

}
> α

}
,

(14)

where U is a uniform random variable in the interval (0, 1)
independent of all the data.

Theorem 4.7. It holds that Ĉeu-mod-cross
n,K,α (Xn+1) ⊆

Ĉe-mod-cross
n,K,α (Xn+1) ⊆ Ĉmod-cross

n,K,α (Xn+1). In addition, if
data are exchangeable,

P
(
Yn+1 ∈ Ĉeu-mod-cross

n,K,α (Xn+1)
)
≥ 1− 2α. (15)

The set in (14) can be considered an improvement of the
set described in (10) but not of the (randomized) set in (12),
since only the first p-value of the sequence is randomized.
Remark 4.8 (Randomization and “interval-hacking”). A
direct use of external randomization is present in both pro-
cedures described in Section 4.2 and Section 4.3. The use of
randomization is often avoided in statistical methods, as it
can pose challenges to the reproducibility of results. Clearly,
randomization becomes problematic when a human is in the
loop and runs the procedure multiple times until the desired
result is achieved (for example, in the described cases, one
can sample U many times until it reaches a value close to
zero). Some recommendations aimed at solving this prob-
lem are proposed, for example, in Ramdas & Manole (2025,
Section 10). Actually, in the data pipeline of split and cross-
conformal prediction methods, randomization comes into
play in different parts: by default in the division of data into
their respective folds; to smoothen p-values as described
in (9); and potentially to improve the conditional cover-
age as described in Hore & Barber (2024). In particular,
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there exists a trade-off between reproducibility and statis-
tical efficiency, and it is not always evident which should
be prioritized. In other words, randomized procedures tend
to be more efficient than standard procedures but may lack
in terms of reproducibility, and vice versa. For instance,
our methods may be particularly well-suited in industrial
settings, where hundreds or thousands of predictions are
made daily, and efficiency may be more important.

4.4. Improving Cross-Conformal Prediction

The improvements proposed in the previous subsections are
valid for modified cross-conformal prediction; in particular,
the new variants are able to produce smaller prediction sets
while preserving the same marginal coverage. Specifically,
the marginal coverage does not depend on the number of
folds K and the number of observations n. When the folds
have the same size, the techniques can be used to enhance
cross-conformal prediction (Vovk, 2015): in particular, by
examining (6), one can observe that it is possible to improve
cross-conformal prediction simply by replacing the thresh-
old α with α+ (1− α)(K − 1)/(K + n) in the prediction
sets defined in (10), (12), and (14).

Theorem 4.9. It holds that

Ĉe-mod-cross
n,K,α′ ⊆ Ĉcross

n,K,α,

Ĉu-mod-cross
n,K,α′ ⊆ Ĉcross

n,K,α,

Ĉeu-mod-cross
n,K,α′ ⊆ Ĉe-mod-cross

n,K,α′ ⊆ Ĉcross
n,K,α,

where α′ = α + (1 − α)(K − 1)/(K + n). If data are
exchangeable, the marginal coverage of the conformal pre-
diction sets Ĉe-mod-cross

n,K,α′ (Xn+1), Ĉu-mod-cross
n,K,α′ (Xn+1) and

Ĉeu-mod-cross
n,K,α′ (Xn+1) is at least 1− 2α′.

In practice, when n ≫ K, the prediction sets
Ĉcross

n,K,α(Xn+1) and Ĉmod-cross
n,K,α (Xn+1) are similar. How-

ever, for moderate values of n, we will see that the sets
defined in (10), (12), and (14) are typically narrower than
Ĉcross

n,K,α(Xn+1), even though Ĉcross
n,K,α(Xn+1) assures theo-

retically a lower coverage guarantee. Clearly, the proposed
improvements are valid as long as the marginal coverage
level 1−2α′ is meaningful, which in practical applications is
the most common case. It follows that the improvements are
not valid, for example, in the extreme case of leave-one-out
conformal prediction (the case K = n).

An experiment using the threshold α′ is reported in Ap-
pendix E.

5. Empirical Results
We study the effectiveness of the proposed methods through
a simulation study and real data examples. In all experi-
ments, the score function used is the residual score, defined

as:
s ((x, y);D) = |y − µ̂D(x)|, (16)

where µ̂D is the regression function obtained by applying
the regression algorithm A on D.

The code to reproduce the experiments is available at
github.com/matteogaspa/EffCrossCP.

5.1. Simulation Study

We examine the performance of the proposed methods on
simulated data using least squares as our regression algo-
rithm. Data are simulated as in Barber et al. (2021, Section
6); in particular, the number of observations is n = 100 and
we let the number of regressors vary p = {5, 10, . . . , 200}.
The training data points are iid from

Xi ∼ Np(0, Ip) and Yi | Xi ∼ N (X⊤
i β, 1),

where the vector of coefficients is drawn as β =
√
10 v for a

uniform random unit vector v ∈ Rp. Ordinary least squares
is employed as regression method (if the linear system is
underdetermined, then we take the solution that minimizes
the ℓ2-norm). Formally, given the training data (Xi, Yi), i ∈
[n], we estimate the regression function µ̂(x) = x⊤β̂, where
β̂ = X†

matYvec, Yvec is the response vector, Xmat is the
matrix of covariates of dimension n × p and † denotes
the Moore-Penrose inverse. The nominal miscoverage rate
equals α = 0.1, the number of replications (for each p) is
1000 and for each replication, we generate a single test point
(Xn+1, Yn+1). The number of folds for cross-conformal
prediction and its extensions is K = 5.

From Figure 1, we can see a spike in the size observed at
p = 80. This is due to the fact that the prediction algorithm
is unstable when the number of training points is equal (or
almost equal) to the number of covariates (Hastie et al.,
2022). Since the number of folds equals 5, the peak is
observed at p = 80.

The smaller size is often observed by the exchangeable
and randomized variant of cross-conformal prediction.
Cross-conformal prediction (Vovk, 2015), is usually over-
conservative, and in some cases, its coverage is closer
to one rather than to the guaranteed level. This behav-
ior is not shared by the proposed e-mod-cross and
eu-mod-cross. The coverage of these methods lies be-
tween the levels 1− 2α and 1− α, and remains essentially
constant with respect to the number of covariates p. The cov-
erage of the randomized variant u-mod-cross depends
on p and exhibits a behavior similar to that of standard cross-
conformal prediction. In general, our proposals outperform
standard cross-conformal prediction in terms of set size.

For additional comparisons, we evaluate our proposed
eu-mod-cross method with split conformal prediction

6
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Figure 1. Simulation results, showing the size and coverage of
the predictive sets for cross-conformal prediction and its vari-
ants. In the left plot, peaks are observed at 404, 102, 286, 100
and 307 for mod-cross, e-mod-cross, u-mod-cross,
eu-mod-cross and cross, respectively. The parameter
α is set to 0.1. The smaller sets are often obtained using
eu-mod-cross that has coverage between 1 − 2α and 1 − α.
The randomized method (u-mod-cross) performs similarly to
cross-conformal prediction.

trained at levels α and 2α. In particular, we note that the
marginal coverage of the exchangeable and randomized
variant is at least 1 − 2α. From Figure 2, we can observe
that for some values of p ∈ [25, 60], when the prediction
algorithm is not stable for the split conformal prediction
method, the average length of the eu-mod-cross sets is
smaller than that of split conformal prediction trained at
level 2α. Described differently, both techniques ensure the
same coverage level. However, there is no single method
that performs best for all values of p. When p is sufficiently
small compared to n and the algorithm is stable, split con-
formal prediction trained at level α performs well, although
it uses half the points to train the model.

Additional results, comparing the proposed variants with
other conformal prediction methods, such as jackknife+ and
full conformal prediction, are reported in Appendix D.

5.2. Real Data Application

We apply the proposed methods to the “Online News Popu-
larity” dataset (Fernandes et al., 2015). The dataset contains
information on n = 39 797 articles published by the online
news blog Mashable. After some preprocessing operations,
the number of covariates is p = 55 and the covariates con-
tain information about the text of the article. The goal is
to predict the number of times the article was shared on a
logarithmic scale. Three different regression algorithms are
used, specifically: linear regression (as described in Sec-
tion 5.1), lasso regression with penalty parameter set to 0.2
and random forest with 200 trees grown for each forest.

Figure 2. Simulation results, showing the size and coverage of the
predictive intervals obtained using 4 methods. The parameter α is
set to 0.1. Split conformal prediction is trained at levels α and 2α
and it is compared with mod-cross and eu-mod-cross. The
modified cross-conformal prediction method always overcovers
and tends to produce large prediction sets. Its exchangeable and
randomized variant gives good results in terms of size. When
p ∈ [25, 60], the average size of the eu-mod-cross method is
smaller than that of the split conformal prediction method trained
at level 2α.

Conformal prediction methods are applied to 10 000 data
points randomly sampled without replacement; while other
2500 observations chosen at random from those not part of
the training set are used as the test set. The miscoverage
rate is set to α = 0.1 and the procedure is repeated 100
times to remove the randomness of the split. The method
used are cross-conformal prediction and its variants (with
K = 10) and split conformal prediction. In particular, split
conformal prediction is trained both at levels α and 2α. The
averages over 100 trials are reported as results in Figure 3
and Table 1.

From Figure 3, it is possible to note that cross-conformal pre-
diction and its modified version give very similar results in
terms of size and are usually slightly better than split confor-
mal prediction trained at level α. The randomized methods
u-mod-cross and eu-mod-cross show a significant
improvement in terms of size. The improvement is not as
evident for the e-mod-cross method, which turns out to
be slightly better than the modified method. The smaller sets
are obtained using split conformal prediction trained at level
2α. The level of coverage of cross-conformal prediction
(and mod-cross) is around 1 − α and the two methods
tend to overcover (indeed, they guarantee a miscoverage
rate smaller than 2α). The e-mod-cross method ex-
hibits similar performance to cross-conformal prediction in
terms of coverage; while the coverage of u-mod-cross
and eu-mod-cross is between the levels 1 − 2α and
1 − α. Clearly, there exists a direct relationship between
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Figure 3. Empirical size obtained using different regression algorithms and different conformal prediction methods. The methods
mod-cross and cross give similar results. The variants that use randomization (u-mod-cross and eu-mod-cross) have a
smaller size with respect to the other methods trained at level α. The smaller sets are obtained using split conformal prediction trained at
level 2α.

Table 1. Empirical coverage for the News Popularity Dataset using different regression algorithms and different conformal prediction
methods. The α-level is set to 0.1. Mod-cross and cross have empirical coverage around 1− α (while guaranteeing a coverage level
of at least 1− 2α). The coverage for the randomized methods lies between 1− 2α and 1− α. The e-mod-cross variant has coverage
≈ 1− α. Coverage variability is reported through the minimum and maximum values across the 100 replications, together with their
difference.

Method Metric mod-cross e-mod-cross u-mod-cross eu-mod-cross cross split split(2α)

LM

Mean 0.902 0.896 0.851 0.852 0.901 0.900 0.801
Min 0.884 0.876 0.834 0.826 0.884 0.885 0.777
Max 0.917 0.915 0.874 0.881 0.916 0.916 0.831

Range 0.032 0.039 0.040 0.055 0.032 0.030 0.054

Lasso

Mean 0.901 0.896 0.851 0.845 0.900 0.900 0.800
Min 0.888 0.872 0.831 0.826 0.887 0.884 0.772
Max 0.916 0.914 0.870 0.876 0.915 0.915 0.822

Range 0.028 0.042 0.039 0.050 0.028 0.030 0.050

RF

Mean 0.903 0.892 0.853 0.847 0.903 0.900 0.801
Min 0.885 0.870 0.832 0.815 0.885 0.882 0.778
Max 0.918 0.915 0.875 0.881 0.917 0.918 0.819

Range 0.032 0.045 0.042 0.066 0.032 0.036 0.042

set size and coverage, with smaller prediction sets attaining
coverage values closer to 1 − 2α. The coverage of split
conformal prediction is essentially equal to the target levels
1− α or 1− 2α (see Appendix A for further details on the
coverage properties of the method). As a final remark, the
eu-mod-cross method demonstrates a higher degree of
variability in coverage, while the remaining methods exhibit

comparable and more stable variability levels.

Additional experiments on real-world datasets are reported
in Appendix E.
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Table 2. Comparison of the properties of different conformal prediction methods. The first two columns regards the marginal coverage.
The theoretical guarantees are valid in finite sample. The last column counts the number of times that the algorithm A is run on a data set
containing n training points, for obtaining a prediction set for a new test point. The parameter ngrid represents the number of different
possible y values.

Method Theoretical guarantee Typical empirical coverage Model training cost
Split ≥ 1− α ≈ 1− α 1
Full ≥ 1− α ≈ 1− α or > 1− α if µ̂ overfits ngrid

Jackknife+ ≥ 1− 2α ≈ 1− α n
Cross ≥ 1− 2α− 2/

√
n ≥ 1− α K

Mod-cross ≥ 1− 2α > 1− α K
e/u/eu-mod-cross ≥ 1− 2α ∈ [1− 2α, 1− α] K

6. Discussion
We present new variants of cross-conformal prediction that
can achieve smaller prediction sets while maintaining valid
coverage guarantees. The achievements are based on recent
results on the combination of dependent and exchangeable
p-values (Gasparin et al., 2025). In particular, starting from
a target miscoverage rate equal to α, the new methods guar-
antee a marginal coverage of at least 1 − 2α. The same
coverage is guaranteed by other methods, such as the jack-
knife+ introduced by Barber et al. (2021) or multi-split
conformal prediction (with threshold set to a half) by Solari
& Djordjilović (2022).

Specifically, similar to cross-validation, the proposed ap-
proaches require training the models only K times, unlike
n times for the jackknife+ or even potentially an infinite
number of times for full conformal prediction (see Table 2).
The empirical coverage of the proposed methods usually
oscillates between levels 1− 2α and 1− α, while for stan-
dard cross-conformal prediction the empirical coverage is
usually around the nominal 1− α level. As reported in the
experimental results, the size of the sets is smaller than that
obtained by split conformal prediction and cross-conformal
prediction. Since the results depend on randomized or
asymmetric combinations of p-values, the size is gener-
ally, though not consistently, more variable compared to
cross-conformal prediction. In particular, while randomiza-
tion and asymmetric combination improve efficiency of the
prediction sets, they add an extra-layer of randomness to
the procedure. The results presented in Sections 4.1, 4.2
and 4.3 can also be extended to the case where the number
of observations in the folds are different. Cross-conformal
prediction can be improved using the same techniques, as
shown in Section 4.4.

The question of which variant of cross-conformal prediction
to use in practice is a subtle one. If it is crucial to obtain a
1− α guarantee against worst-case distributions and unsta-
ble algorithms (for example, when downstream decisions
critically depend on the provided theoretical guarantees),
then it makes sense to run our methods at level α/2. On the

other hand, if conformal prediction is used merely as “weak
guidance” for downstream decisions, meaning the user is
willing to tolerate violations of the 1 − α target, then we
recommend running the proposed cross-conformal variants
at level α (where the worst-case coverage is 1 − 2α, but
actual coverage lies between 1− 2α and 1− α). Finally, if
the situation is intermediate, where conformal prediction is
neither applied extremely rigorously nor used as loose guid-
ance, and the goal is to achieve 1− α coverage for “typical”
datasets and algorithms, while accepting both overcoverage
and undercoverage for unusual distributions or algorithms,
then (modified) cross-conformal prediction may be the most
appropriate choice.

In general, the sets presented in Section 4 show good prop-
erties in terms of size and coverage, both in simulations and
in applications. The methods can be especially useful in
settings where full conformal prediction or jackknife+ are
computationally prohibitive.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are some potential societal
consequences of our work, some of these have been care-
fully considered and are explicitly outlined and emphasized
within the text of the paper.
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A. Split Conformal Prediction
We briefly describe the split (or inductive) conformal prediction method introduced in Papadopoulos et al. (2002); Lei et al.
(2018). We assume that we are in the same setup described in Section 2 and the goal is to obtain a prediction set for the
response value Yn+1 given the training data and covariates in Xn+1. In this case, data are divided into two disjoint subsets
Dtrain and Dcal. The algorithm is trained using the data points in Dtrain, while the scores Si := s ((Xi, Yi);Dtrain) , i ∈
Dcal, are obtained from the observations in the calibration set. The split conformal prediction set is simply defined as

Ĉsplit
n,α (Xn+1) =

{
y ∈ Y : s ((Xn+1, y);Dtrain) ≤ q̂

}
, (17)

where q̂ := quantile
(
S1, . . . , S|Dcal|; (1− α)(1 + 1/|Dcal|)

)
.1 The set in (17) can be re-written as

Ĉsplit
n,α (Xn+1) =

{
y ∈ Y : P (y) > α

}
,

where

P (y) =
1 +

∑
i∈Dcal

1 {s ((Xn+1, y);Dtrain) ≤ s ((Xi, Yi);Dtrain)}
|Dcal|+ 1

,

that is a p-value when calculated in Yn+1 similar to the one defined in (5). This implies that, if the data are iid, the marginal
coverage of the set Ĉsplit

n,α (Xn+1) is at least 1− α. In addition, if the residuals have no ties (they have a continuous joint
distribution) then

P
(
Yn+1 ∈ Ĉsplit

n,α (Xn+1)
)
≤ 1− α+

1

|Dcal|+ 1
.

The proof of the result can be found in Lei et al. (2018), and the result states that the marginal coverage is essentially 1− α
when the number of observations is sufficiently large.

One of the attractive properties of split conformal prediction is that the computational cost of the procedure is low compared
to that of full (or transductive) conformal prediction. In fact, the model only needs to be trained once, and the predictions
are then calibrated using the data points in Dcal.

B. Marginal Coverage of Cross-Conformal Prediction and Connection with CV+
As stated in Remark 3.1, it is possible to establish an alternative bound for the marginal coverage of cross-conformal
prediction, distinct from the one shown in (4). In particular, Barber et al. (2021) proves that

P
(
Yn+1 ∈ Ĉcross

n,K,α(Xn+1)
)
≥ 1− 2α− 2(1− α)

1−K/n

K + 1
. (18)

The proof technique is completely different from the technique presented in Section 3 based on p-values and relies on
counting arguments applied to tournament matrices (Barber et al., 2021; Angelopoulos et al., 2024). Combining the results
in (4) and (18), we obtain

P
(
Yn+1 ∈ Ĉcross

n,K,α(Xn+1)
)
≥ 1− 2α− 2(1− α)min

{
1− 1/K

n/K + 1
,
1−K/n

K + 1

}
≥ 1− 2α− 2/

√
n. (19)

The two bounds are compared in Figure 4 and it is possible to see that the two bounds have opposite behaviors. As depicted
in Figure 4, even for small or moderate n, the bound in (4) is the one that applies to commonly employed values of K.

In addition, in a regression setting, cross-conformal prediction (Vovk, 2015) is closely related to K-fold CV+ introduced in
Barber et al. (2021). In particular, both methods can be used to obtain prediction sets with finite sample coverage guarantees.
Cross-conformal prediction is covered in Section 3; here, we introduce CV+ and explain its connection to cross-conformal
prediction. In this case as well, the data points are divided into K disjoint folds I1, . . . , IK of size m = n/K, and µ̂−Ik

refers to the regression function trained using data in [n] \ Ik, k ∈ [K]. The K-fold CV+ prediction set is defined as

ĈCV+
n,K,α(Xn+1) =

[
− quantile

((
−
(
µ̂−Ik(i)

(Xn+1)− SCV+
i

))
i∈[n]

; (1− α)(1 + 1/n)
)
,

quantile
((

µ̂−Ik(i)
(Xn+1) + SCV+

i

)
i∈[n]

; (1− α)(1 + 1/n)
)]

,

(20)

1We define quantile(z; γ) = inf{a : n−1 ∑n
i=1 1{zi ≤ a} ≥ γ}, for any z ∈ Rn.
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Figure 4. Comparison of the bounds in (4) and (18) for different values of K with α = 0.1. Dashed lines represent the levels 1−2α−2/
√
n

and 1− 2α.

where SCV+
i = |Yi − µ̂−Ik(i)

(Xi)|, i ∈ [n], are the residual scores (or absolute residuals). An attractive property of the set
in (20) is that it is interpretable, since it is always an interval (rather than, possibly, a union of intervals). In particular, when
n = K, it corresponds to the jackknife+ interval by Barber et al. (2021).

At first glance, the sets Ĉcross
n,K,α(Xn+1) and ĈCV+

n,K,α(Xn+1) can appear distinct; however, Barber et al. (2021, Appendix B.2)
proves that, when the score function in (3) is the residual score, then

Ĉcross
n,K,α(Xn+1) ⊆ ĈCV+

n,K,α(Xn+1).

As a corollary, it follows that the marginal coverage guarantee in (19) also holds for the CV+ method. This implies that the
marginal coverage guarantee for the jackknife+, the case K = n, is at least 1− 2α. The empirical coverage often exceeds
the stated 1− 2α− 2/

√
n, typically aligning closer to the level 1−α, and sometimes approaching one. In fact, the value 2α

can be considered as the worst-case scenario for the method. Under some assumptions about the stability of the prediction
algorithm, a modified version of the jackknife+ is shown to have marginal coverage close to 1− α. A similar problem is
studied in Steinberger & Leeb (2023), where the authors prove a conditional coverage probability statement for K-fold
cross-validation (a set similar to the one in (20)) valid under some assumptions on the algorithm and the distribution of the
data. We refer to Angelopoulos et al. (2024, Ch. 6) for a detailed discussion of the properties of cross-conformal prediction
and jackknife+.

C. Cross-Conformal Prediction with Varying Fold Sizes
In this Section we treat the case where the number of observation in each fold can differ. We consider the same setup as at
the beginning of Section 3, and we allow different sizes among the subsets. Let mk denote the number of observations in
subset Ik, k ∈ [K]. By definition, the sum m1 + · · ·+mK equals the number of observations n. In this case, the definition
of conformal p-values in (5) change slightly, allowing for dependence on mk in the denominator:

Pk(y) =
1 +

∑
i∈Ik

1
{
s
(
(Xn+1, y);D[n]\Ik

)
≤ SCV

i

}
mk + 1

, (21)

where SCV
i is defined in (2). However, P(Pk(Yn+1) ≤ α) ≤ α, still holds for any α ∈ (0, 1). In addition, we define the

weights

wk =
mk + 1

n+K
, (22)
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where we note that the weights are positive, sum to one and it holds that wk = 1/K if m1 = · · · = mK .

It is now possible to prove that the marginal coverage of cross-conformal prediction with varying fold sizes remains the
same.
Lemma C.1. Suppose that mk = |Ik| , k ∈ [K], then the set Ĉcross

n,K,α(Xn+1) in (3), is such that

P
(
Yn+1 ∈ Ĉcross

n,K,α(Xn+1)
)
≥ 1− 2α− 2(1− α)

1− 1/K

n/K + 1
.

Proof. According to the definition of the cross-conformal prediction set in (3), we can see that y ∈ Ĉcross
n,K,α(Xn+1) if and

only if

1 +
∑n

i=1 1
{
s
(
(Xn+1, y);D[n]\Ik(i)

)
≤ SCV

i

}
n+ 1

> α ⇐⇒
K∑

k=1

wkPk(y) > α+ (1− α)
K − 1

n+K
, (23)

where wk and Pk(y) are defined in (22) and (21), respectively. To complete the proof, we apply the fact that the weighted
average of p-values provides a quantity that is a p-value up to a factor of 2 (Vovk & Wang, 2020).

At this point, one may wonder whether the validity of the sets defined in Sections 3.2, 4.1, 4.2 and 4.3 can also be
extended to the case where the fold sizes vary. Since twice the (simple) average of p-values is itself a p-value under arbitrary
dependence of the starting p-values, it follows that the coverage guarantee of sets Ĉmod-cross

n,K,α (Xn+1) and Ĉu-mod-cross
n,K,α (Xn+1)

is preserved even if P1(y), . . . , PK(y) are obtained using different mk.

The coverage guarantee for sets Ĉe-mod-cross
n,K,α (Xn+1) and Ĉeu-mod-cross

n,K,α (Xn+1) is valid when the underlying p-values are
exchangeable, and this is related to the number of data points in each fold, as stated in Remark 4.3. However, p-values can
be made exchangeable through a random permutation of the indices. For example, assume n = 101 and K = 5; in this case,
the subset with 21 observations does not always have to be the same, but should be randomly selected among the 5 folds.
This implies that the coverage guarantees for the sets Ĉe-mod-cross

n,K,α (Xn+1) and Ĉeu-mod-cross
n,K,α (Xn+1) can still hold.

More attention should be paid to Section 4.4. In fact, as seen on the right side of (23), y belongs to the set only if the weighted
average of the conformal p-values exceeds a certain threshold. However, the weighted average is an asymmetric function,
and results on the combination of exchangeable p-values do not hold in this case. Only the result using randomization
remains valid.

D. Additional Results Related to Section 5.1
We compare the results obtained in Section 5.1 with split conformal, full conformal prediction, and jackknife+. In addition,
eu-mod-cross conformal prediction is added for comparison. Full and split conformal prediction are fitted using the
package R conformalInference. The simulation scenario considered is the same as that described in Section 5.1 and all
methods are trained at level α = 0.1. The theoretical and empirical guarantees and the computational cost of the methods
are reported in Table 2 (Section 6). The different methods will be compared in terms of coverage and interval size.

Also in Figure 5, we can see some spikes in the width of the sets at different levels of p. Since split conformal prediction uses
n/2 data points to train the model, the peak is observed at p = 50; while for the jackknife+ this peak is observed at p = 100.
However, the peak for the jackknife+ is smaller than that observed for split conformal prediction and the eu-mod-cross
method. The smaller sets are usually obtained using eu-mod-cross conformal prediction (or jackknife+). It is important
to note that the jackknife+ has the same coverage guarantee as eu-mod-cross conformal prediction; however, the
empirical coverage for the jackknife+ is around the level 1−α while for our method it lies between levels 1− 2α and 1−α.
As reported in Table 2, the computational cost of the jackknife+ is higher than that of cross-conformal prediction methods:
it requires n calls to the prediction algorithm (versus the K required by cross-conformal methods). However, the method is
non-randomized, since it can be seen as an extension of cross-conformal prediction to the extreme case K = n.

As observed in Barber et al. (2021), when p > n, full conformal prediction results in intervals of infinite length because for
each possible value of the response, all residuals are equal to zero. In practice, the interval is truncated to a finite range,
which has a minimal effect on the marginal coverage (Chen et al., 2018). Split conformal prediction and jackknife+ have
similar coverage, but the intervals obtained from jackknife+ are usually smaller (except when the algorithm proves to be
unstable).
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Figure 5. Simulation results, showing the size and the coverage of the predictive intervals for jackknife+, split conformal prediction and
full conformal prediction. The eu-mod-cross method is added for comparison and the α-level is set to 0.1. The smaller sets are
usually observed by eu-mod-cross conformal prediction. Split conformal prediction and jackknife+ have empirical coverage ≈ 1−α.

E. Additional Experiments
Communities and Crime dataset. We apply the proposed methods to the Communities and Crime dataset (Redmond,
2002). The dataset contains information on n = 1994 communities in the United States and the goal is to predict the
per capita violent rate. After removing the columns containing missing values and categorical variables, the number of
regressors is p = 99. Two regression algorithms are used, specifically lasso regression with penalty parameter set to 0.01
and random forest with 50 trees grown for each forest.

The α-level is set to 0.1 and the conformal prediction methods are applied on 1000 data points randomly sampled without
replacement. The remaining part is used as a test set to compute the metrics. The procedure is repeated 100 times to
remove the randomness of the split and we report the averages over these 100 trials. The methods used are cross-conformal
prediction and its variants (with K = 10), and split conformal prediction is added for comparison.

The results are reported in Figure 6, where it is possible to see that the smaller sets are obtained using the eu-mod-cross
method. The modified variants using exchangeability and randomization exhibit higher variability in interval width, likely
due to the use of randomization and the asymmetry of the combination rules. All proposed methods have an empirical
coverage of at least 1 − 2α. We remark that cross-conformal prediction guarantees a coverage of at least 1 − 2α, but is
usually conservative. The coverage of the new methods is closer to the level 1 − 2α and the new variants outperform
cross-conformal prediction in terms of set size.

Boston Housing dataset. We apply conformal prediction methods on a dataset of moderate dimensions, with p = 13 and
n = 506. The aim is to predict the cost of a house in Boston given some information on the neighborhood. The algorithm
used is standard linear regression. We apply conformal prediction methods using 200 training points, the remaining part is
used as test set. The number of different subsets for cross-conformal prediction is set to K = 5 and the miscoverage rate is
α = 0.1. The procedure is repeated 100 times, and we report the averages over the 100 replications.

From Table 3, we see that smaller sets are obtained using eu-mod-cross conformal prediction, while larger ones are
produced by split conformal prediction, which exhibits high variability in set size. The methods e-mod-cross and
u-mod-cross have an empirical coverage slightly lower than 1 − α, with an average size generally smaller than that
obtained using cross-conformal prediction. Full conformal prediction exhibits low variability in terms of size, with the sets
typically being smaller than those produced by split conformal prediction and cross-conformal prediction. However, as
already seen, these advantages are counterbalanced by a high computational cost.
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Figure 6. Results for the “Communities and Crime” dataset. Empirical size and empirical coverage of different conformal prediction
algorithms are reported. The α-level is set to 0.1. The smaller sets are obtained using eu-mod-cross whose empirical coverage is
around 0.85. Cross-conformal prediction is conservative, but it tends to produce stable sets.

Table 3. Results for the “Boston Housing” dataset using OLS as regression algorithm. The results refer to set size, except for the last
row, which refers to the marginal coverage. The α-level is set to 0.1. The smaller sets are obtained using eu-mod-cross conformal
prediction. The variability is especially high when using split conformal prediction.

mod-cross e-mod-cross u-mod-cross eu-mod-cross cross split full
Mean 17.303 14.920 14.143 13.370 15.753 16.357 14.516

Sd 1.440 1.998 1.152 1.899 1.307 2.751 1.244
Median 17.188 14.692 14.113 13.128 15.679 16.041 14.656

Min 13.883 10.068 11.551 8.822 12.766 11.730 11.998
Max 20.935 20.537 17.150 18.339 19.101 27.469 17.756

Coverage 0.927 0.888 0.878 0.855 0.908 0.897 0.888

UPDRS dataset. We tested our methods on a dataset containing information on patients with early-stage Parkinson’s
disease (Tsanas & Little, 2009). The goal is to predict the total UPDRS (Unified Parkinson’s Disease Rating Scale) using a
range of biomedical voice measurements. In particular, after some preprocessing operations, the data set includes n = 5875
points and p = 13 covariates. The two regression algorithms used are lasso regression (with penalty parameter equal to
0.01) and random forest (with 25 trees grown for each forest). The α-level is set to 0.1, the number of folds is K = 10 and
the conformal prediction methods are applied on 3000 data points randomly sampled without replacement. The remaining
part is used as a test set to compute the metrics. The procedure is repeated 100 times to remove the randomness of the split.
The results reported are the averages over these 100 trials. We compare our proposals with cross-conformal prediction. In
addition, split conformal prediction with miscoverage rate set to α and 2α is added for comparison.

The results are reported in Table 4 and Table 5. In Table 4, we can see that for lasso regression the smaller sets are obtained
using split conformal with miscoverage rate set to 2α. Overall, our approaches typically yield smaller sets compared to
those obtained using standard cross-conformal prediction and split conformal prediction. However, we can observe a higher
variability derived from the use of randomization (or sequential processing of the p-values). Interestingly, when the random
forest is used as a regression algorithm (Table 5), the smaller sets are obtained using the exchangeable and randomized
cross-conformal prediction method. In particular, on average, the method also outperforms the split conformal prediction
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trained at level 2α. In both cases, the marginal coverage of the proposed methods fluctuates between levels 1 − 2α and
1− α. On the other hand, from Table 5 it is possible to see that cross conformal is conservative with coverage higher than
the nominal 1− α.

Table 4. Results for the UPDRS dataset using lasso as regression algorithm. The results refer to set size, except for the last row, which
refers to the marginal coverage. The α-level is set to 0.1. On average the smaller sets are obtained using split conformal with miscoverage
rate 2α. The marginal coverage of the proposed methods lies between 1− 2α and 1− α.

mod-cross e-mod-cross u-mod-cross eu-mod-cross cross split split (2α)
Mean 29.965 28.956 26.427 26.252 29.686 29.901 23.773

Sd 0.404 1.019 1.744 1.942 0.383 0.878 0.402
Median 29.946 29.175 26.202 26.092 29.725 29.703 23.734

Min 11.450 10.019 8.477 9.248 11.340 28.539 22.913
Max 32.808 30.826 31.267 30.716 32.698 32.318 25.223

Coverage 0.904 0.892 0.854 0.850 0.901 0.901 0.800

Table 5. Results for the UPDRS dataset using random forest as regression algorithm. The results refer to set size, except for the last row,
which refers to the marginal coverage. The α-level is set to 0.1. On average the smaller sets are obtained using the exchangeable and
randomized version of cross-conformal prediction. The marginal coverage of the proposed methods lies between 1− 2α and 1− α.

mod-cross e-mod-cross u-mod-cross eu-mod-cross cross split split (2α)
Mean 17.180 15.186 14.737 13.718 17.015 19.210 14.550

Sd 0.918 1.058 1.481 1.370 0.908 0.825 0.638
Median 17.175 15.303 14.643 13.762 16.954 19.232 14.541

Min 8.697 7.376 6.716 5.725 8.697 16.842 13.079
Max 23.890 17.945 22.129 17.725 23.560 20.954 16.551

Coverage 0.931 0.883 0.887 0.846 0.929 0.900 0.802

Abalone dataset. The proposed methods are applied to the abalone dataset (Nash et al., 1994). The goal is to predict the
age of abalones (the number of rings) using p = 8 physical measurements. The dataset contains n = 4177 observations
where 4000 observations are used as training points, while the remaining part is used as a test set. In this experiment, we
directly modify the cross-conformal prediction as described in Section 4.4 (indeed, we remove the word mod from the labels
in Tables 6, 7 and 8). The procedure is repeated 100 times to remove the randomness of the split and the results reported are
the average over the 100 trials. The α-level is set to 0.1 and we use different number of folds, in particular, K = {5, 10, 20}.
The regression algorithm used is a random forest with 25 trees grown for each forest.

The results are reported in Tables 6, 7 and 8. The coverage level for the proposed method oscillates between levels 1− 2α
and 1− α. The smaller sets are obtained on average by split conformal prediction with a miscoverage rate equal to 2α. The
suggested methods improve quite significantly the performance of cross-conformal prediction in terms of set size, although
the variability is generally higher. There is a slight decrease in the size of sets, and a slight increase in variability, of the e
and eu-mod-cross methods as K increases. The results for the split conformal conformal prediction are essentially the
same for all tables as a different number of folds is applicable just for cross conformal prediction and its variants.

Table 6. Results for the “Abalone dataset” using random forest as regression algorithm. The results refer to set size, except for the last row,
which refers to the marginal coverage. The number of folds is K = 5 and the α-level is set to 0.1. The marginal coverage of the proposed
methods lies between 1− 2α and 1− α.

cross e-cross u-cross eu-cross split split (2α)
Mean 6.864 6.372 5.708 5.477 6.730 4.617

Sd 0.074 0.255 0.040 0.316 0.155 0.103
Median 6.858 6.332 5.713 5.390 6.703 4.583

Min 6.798 6.049 5.659 5.195 6.512 4.516
Max 6.986 6.762 5.755 6.015 6.912 4.777

Coverage 0.911 0.890 0.873 0.854 0.903 0.803
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Table 7. Results for the “Abalone dataset” using random forest as regression algorithm. The results refer to set size, except for the last
row, which refers to the marginal coverage. The number of folds is K = 10 and the α-level is set to 0.1. The marginal coverage of the
proposed methods lies between 1− 2α and 1− α.

cross e-cross u-cross eu-cross split split (2α)
Mean 6.869 6.323 5.695 5.444 6.816 4.741

Sd 0.060 0.225 0.069 0.258 0.171 0.110
Median 6.865 6.360 5.692 5.450 6.815 4.750

Min 6.725 5.559 5.545 4.667 6.351 4.419
Max 7.030 6.800 5.878 6.061 7.235 5.060

Coverage 0.910 0.886 0.863 0.843 0.899 0.798

Table 8. Results for the “Abalone dataset” using random forest as regression algorithm. The results refer to set size, except for the last
row, which refers to the marginal coverage. The number of folds is K = 20 and the α-level is set to 0.1. The marginal coverage of the
proposed methods lies between 1− 2α and 1− α.

cross e-cross u-cross eu-cross split split (2α)
Mean 6.855 6.210 5.649 5.379 6.817 4.717

Sd 0.062 0.340 0.063 0.381 0.190 0.089
Median 6.850 6.283 5.642 5.403 6.837 4.728

Min 6.648 4.992 5.520 4.321 6.396 4.503
Max 7.032 6.760 5.787 6.315 7.358 4.971

Coverage 0.909 0.879 0.862 0.839 0.899 0.795

Electricity consumption dataset. We additionally analyze a real dataset on electricity consumption, where accurate
uncertainty quantification is crucial as the supplier’s revenue depends on customer energy use. The dataset contains 35 411
observations and 20 covariates; 30 000 observations are used for training, while the remaining ones are used for testing. The
splitting is repeated 100 times, and the algorithm used is a random forest (with ntree = 100). In this case, methods
such as full conformal prediction or jackknife+ can be computationally expensive due to the relatively large number of
observations, making sample-splitting-based methods preferable.

The results are presented in Table 9. The column “uneven split” represents split conformal prediction, where the training set
comprises a (K − 1)/K fraction of the data points. This corresponds to split conformal prediction with the same fraction of
training data points used by a single round of cross conformal prediction. The last two columns represent cases where the
p-values are combined using the Bonferroni rule at level α (i.e., Kmin(p)) or at level 2α (i.e., K/2min(p)) rather than
the simple average. This implies that the corresponding prediction sets have coverage at least equal to 1− α and 1− 2α,
respectively.

The smaller sets are obtained by the eu-mod-cross method, and in general there is an improvement in the set size if we
use cross conformal prediction instead of split conformal prediction. Bonferroni method produces very large prediction sets
and this is expected since the Bonferroni rule is not powerful when p-values (or sets) are highly dependent. Indeed, the
Bonferroni correction is tightest when the p-values are nearly independent, while the conformal p-values across folds are
highly dependent. On the other hand, the rule “twice the mean” used in cross conformal prediction is more powerful when
p-values are dependent; see Section 6.1 Vovk & Wang (2020) for a discussion. This aligns with Theorem 4 in Lei et al.
(2018), which states that the use of multisplit conformal prediction in conjunction with the Bonferroni rule produces wide
sets (specifically, under some assumptions, sets are wider than “single split” conformal prediction). The average set size of
“uneven” split conformal prediction is smaller than that of split conformal prediction but slightly larger than that of cross
conformal prediction. Moreover, its variability (Sd) is higher.
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Table 9. Results for the “Electricity consumption dataset” using random forest as regression algorithm. The results refer to set size, except
for the last row, which refers to the marginal coverage. The number of folds is K = 10 and the α-level is set to 0.1. The marginal
coverage of the proposed methods lies between 1− 2α and 1− α. The Bonferroni method gives large prediction sets.

mod-
cross

e-mod-
cross

u-mod-
cross

eu-mod-
cross cross split

uneven
split

split
(2α) Bonf

Bonf
(2α)

Mean 50.85 47.10 33.78 32.27 50.71 59.59 52.25 26.52 196.68 149.63
Sd 0.49 1.66 0.31 1.54 0.49 1.64 2.97 0.54 6.51 2.92

Median 50.83 47.38 33.80 32.47 50.69 59.64 52.12 26.47 197.46 149.71
Min 49.73 41.97 32.99 27.74 49.60 56.54 44.45 25.25 174.87 141.06
Max 52.38 49.67 34.41 36.20 52.25 64.95 59.84 27.96 210.94 157.85

Coverage 0.91 0.89 0.86 0.85 0.90 0.90 0.90 0.80 0.98 0.97

F. Proofs of the Results
Proof of Proposition 4.1. Let G : (X × Y)n+1 = Zn+1 → [0, 1]K be the transformation that takes as input the n+ 1 iid
(and thus exchangeable) data points Z1, . . . , Zn+1 and returns as output the p-values P1(Yn+1), . . . , PK(Yn+1). In other
words, the i-th element of G is computed by training the algorithm A using the dataset D[n]\Ii and then computing the
scores and the corresponding p-value defined in (5) using data points in DIi∪{n+1}. It is important to note that the score
function s satisfies the condition in (1), and so the scores do not depend on the order of the data points in D[n]\Ii . Let
σ1 : [n] → [K] be the function that assigns the training data points to the K different folds and σ2 : [n] → [m] be the
function that assigns the positions of the training data points within the assigned folds. In words, each point i ∈ [n] is
assigned a unique pair {σ1(i), σ2(i)} that identifies its fold and its position inside the fold. For example, if σ1(1) = 2 and
σ2(1) = 3 then the first data point in the original dataset is the third data point in the second fold. Let π1 : [K] → [K] be a
permutation of the indices, then for all z ∈ Zn+1,

π1G(z1, . . . , zn, zn+1) = G(π2(z1, . . . , zn, zn+1)),

where π2 : [n+ 1] → [n+ 1] is such that

π2(i) =

{
[π1(σ1(i))− 1] ·m+ σ2(i), i ̸= n+ 1,

n+ 1, i = n+ 1.

In words, π2 permutes the training data points into their respective permuted folds (i.e., i ∈ Iπ1(σ1(i))), while the test point
remains in the (n+ 1)-th position. It holds that G(·) preserves exchangeability and this concludes the proof.

Proof of Theorem 4.4. By definition

min
ℓ∈[K]

1

ℓ

ℓ∑
k=1

Pk(y) ≤
1

K

K∑
k=1

Pk(y),

so less points will be included in the set. From Proposition 4.1 we have that the conformal p-values are exchangeable.
The coverage property in (11) is a direct consequence of the result stated in Gasparin et al. (2025), which states that
minℓ∈[K](1/ℓ)

∑ℓ
k=1 Pk(Yn+1) is a valid p-value up to a factor of 2 if p-values P1(Yn+1), . . . , PK(Yn+1) are exchangeable.

Proof of Theorem 4.6. By definition
1

2− U

1

K

K∑
k=1

Pk(y) ≤
1

K

K∑
k=1

Pk(y),

since 1/(2− U) ≤ 1 almost surely. The result implies that less points will be included in the set. The coverage property in
(13) is a consequence of Gasparin et al. (2025), which states that

2

2− U

1

K

K∑
k=1

Pk(Yn+1)
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is a valid p-value. In particular, the result holds under arbitrary dependence of the starting p-values P1(Yn+1), . . . , PK(Yn+1).

Proof of Theorem 4.7. By definition

min

{
1

2− U
P1(y), min

ℓ∈[K]

1

ℓ

ℓ∑
k=1

Pk(y)

}
≤ min

ℓ∈[K]

1

ℓ

ℓ∑
k=1

Pk(y).

The result implies that less points will be included in the set and so Ĉeu-mod-cross
n,K,α (Xn+1) ⊆ Ĉe-mod-cross

n,K,α (Xn+1). The fact
that Ĉe-mod-cross

n,K,α (Xn+1) ⊆ Ĉmod-cross
n,K,α (Xn+1) is outlined in Theorem 4.4.

From Proposition 4.1 we have that the conformal p-values are exchangeable. The coverage property in (15) is a consequence
of the fact that

min

{
1

2− U
P1(Yn+1), min

ℓ∈[K]

1

ℓ

ℓ∑
k=1

Pk(Yn+1)

}
is a p-value up to a factor of two if p-values P1(Yn+1), . . . , PK(Yn+1) are exchangeable (Gasparin et al., 2025, Appendix
B).

Proof of Theorem 4.9. Comparing Equation (6) with the set defined in Equation (8) we have that Ĉmod-cross
n,K,α′ (Xn+1) coin-

cides with Ĉcross
n,K,α(Xn+1). The same result is obtained, for example, in Vovk et al. (2022a, Chapter 4.4). The coverage

statement and the properties regarding the size of the sets are corollaries of Theorems 4.4, 4.6 and 4.7, applied with threshold
α′.
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