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Abstract

Large language models (LLMs) show good performance on some complicated
reasoning tasks, yet could also make the most basic reasoning mistakes. This
contrasting behavior is puzzling when it comes to understanding the mechanisms
behind LLMs’ reasoning capabilities. One hypothesis is that the increasingly high
and nearly saturated performance on common reasoning benchmarks could be
due to the memorization of similar benchmark problems accidentally leaked into
the training data. In this paper, we systematically investigate this problem with
a measurement of memorization in reasoning tasks inspired by human behaviors,
and a dynamically generated logical reasoning benchmark based on Knights and
Knaves puzzles. We found that LLMs could interpolate the training puzzles
(achieving ∼ 100% accuracy) after fine-tuning, yet fail when those puzzles are
slightly perturbed, suggesting that the models heavily rely on memorization to
solve those training puzzles. On the other hand, we show that LLMs learn to
reason while interpolating the training set. At higher level of memorization, the
model not only solves more unseen test puzzles, but also solves them relatively
robustly under perturbation. This phenomenon suggests that LLMs exhibit a
complex interplay between memorization and genuine reasoning abilities, and
reveals an interesting direction for future research. Our code and data are available
at https://memkklogic.github.io/.

1 Introduction

Modern Large Language Models (LLMs) show impressive reasoning capabilities that allow them
to solve a wide range of problems including commonsense reasoning and mathematical reasoning.
In the meantime, LLMs also make mistakes on some of the most basic problems (e.g., comparing
which number is bigger – 13.11 or 13.8 [17], and counting the number of sisters that Alice’s brother
have [21]).

Their contrast of both superhuman reasoning capabilities and dumb mistakes is puzzling when it
comes to understanding how exactly LLMs perform reasoning tasks. This question is important both
scientifically and practically: understanding how LLMs reason could shed light on our understanding
of learning and generalization behaviors of LLMs; and is crucial for real-world applications where
robust reasoning is required to mitigate safety and trustworthiness concerns [25, 15, 26].

One hypothesis is that LLMs could be relying on memorization when solving those reasoning tasks,
especially when measured by popular benchmark datasets that could be accidentally leaked into
the massive internet-crawled pre-training datasets. Previous work [5, 24] show that LLMs could
indeed memorize the training data. However, most of those studies focus on analyzing memorization
from the perspective of privacy [6] or copyright [13, 27] concerns. Other papers focus on designing
dynamic benchmarks [32, 23, 22, 11] or alternative evaluation protocols [30, 31, 28, 23] that could
mitigate the issue of benchmark saturation potentially due to memorization. In this paper, we take
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a direct approach to quantify memorization in reasoning tasks and analyze the interplay between
memorization and reasoning. Specifically, we summarize our contributions below:

• To quantify memorization in reasoning tasks, we define a memorization metric based on the notions
of interpolation and the performance inconsistency under local perturbation that are inspired by
human behaviors.

• To facilitate the measurement, we propose a new logical reasoning benchmark based on the Knights
and Knaves (K&K) [12] puzzles, that support the automatic generation of new puzzles with
different difficulty levels and local perturbations of existing puzzles.

• We show that K&K puzzles are challenging and only the most advanced LLMs could consistently
solve them. The generally low accuracy observed across most off-the-shelf models indicates that
K&K puzzles are likely uncommon in internet-based training data. However, our analysis suggests
that certain models exhibit signs of memorization to solve the puzzles.

• By fine-tuning on K&K samples, we confirm that modern LLMs are capable of memorizing a large
collection of puzzles and their solutions when seen during training. Interestingly, when measuring
accuracy on the unseen test puzzles, we found that the models’ reasoning capabilities grow with
the amount of memorization as the models interpolate [3, 20, 2, 1] the training set1. Additionally,
these enhanced reasoning abilities transfer across different levels of puzzle difficulty.

2 How to Measure Memorization in Reasoning Tasks

2.1 Memorization Metrics for Reasoning Tasks

Memorization of LLMs has been studied in various contexts such as privacy, copyright [6, 13, 27], and
solving knowledge intensive tasks [3, 10]. In this paper, we are specifically interested in measuring
the level of memorization when solving reasoning tasks. This kind of behaviors can be observed
on humans. For example, when preparing for an exam / interview, people may not be able to fully
digest the underlying principles due to various reasons or constraints. But when (luckily) facing the
same problem one has prepared for, they would still be able to solve it. The key characteristics of this
type of memorization are: (A) high accuracy on observed problems; (B) low accuracy on unseen but
similar problems, due to the lack of deep understanding.

Based on this intuition, for a dataset D of reasoning puzzles, we measure the following two quantities:

1. To measure (A), we use the accuracy Acc(f ;D) to measure the percentage of the puzzles in
D that f can solve. We are especially interested in measuring on the set of observed puzzles,
i.e. the training set, Acc(f ;Tr). We say f interpolates [3, 20, 2, 1] the training puzzles if
Acc(f ;Tr) ≈ 100%.

2. To measure (B), we measure a consistency ratio CR(f ;D) between the number of consistently
solved puzzles after some local perturbations, and the number of solved puzzles (without pertur-
bation). We are interested in local perturbations that makes minimal change to the puzzle and
maintain the difficulty level (to be specified in § 2.2).

We combine the two factors to define a Local Inconsistency based Memorization Score:

LiMem(f ;D) = Acc(f ;D) · (1− CR(f ;D)).

When there is no ambiguity, we simply call it the memorization score. LiMem(f ;D) ∈ [0, 100]% and
a larger score provide a stronger evidence of memorization. In our empirical study, we say f solves D
via memorization if LiMem(f ;D) > 10%; otherwise we say f solves D via reasoning. Specifically,
a high LiMem(f ;Tr) matches the characteristic behavior of human memorizing observed puzzles, and
in this case we say f memorized the training puzzles. Furthermore, we also measure LiMem(f ;Tst)
on test examples, to study if the generalization accuracy is due to reasoning or memorization.

In order to effectively measure memorization score LiMem(f ;D), we need a principled way to (1)
perform local perturbation that changes the problem while maintaining its difficulty level; (2) compute
the new answer after perturbation, which should be different from the original answer. Towards this
goal, we design and implement a functional dataset based on the Knights and Knaves puzzles [12].

1Interpolating is a term in learning theory to indicate fitting 100% accuracy on training set.
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2.2 Knights and Knaves Logical Reasoning Benchmark

Knights and Knaves (K&K) is a type of logic puzzle where some characters can only answer questions
truthfully, and others only falsely. The goal is to infer each person’s identity. For example: A very
special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves
always lie. You meet 2 inhabitants: Samuel, and Isabella. Samuel told you that Isabella is a knight.
Isabella said that Samuel is a knave and Isabella is a knight. So who is a knight and who is a knave?
The ground-truth answer is that (1) Samuel is a knave and (2) Isabella is a knave.

Based on the K&K puzzle, we design a dynamic benchmark that supports generating new problems
and perturbing existing problems. Our library automatically solves the K&K puzzles and generates
solutions for evaluation and training. Specifically, our benchmark consists of two components:

The abstract problem sampler generates random K&K puzzles in an abstract format (see details in
§ B). Specifically, it takes as input the problem specification (N,D,W ) that determines the difficulty
level. It then generates a problem with N persons, and for each person, a statement that consists of a
random tree of maximum width W and depth D. The leaf nodes can be a claim that a specific person
is lying (i.e., knaive) or telling the truth (i.e., knight) , whereas the branching node can be and, or, not,
if, and if-and-only-if. The problem sampler also has two subcomponents: the Solver finds all possible
solutions to a given puzzle, which is used to guarantee that we generate only problems with a unique
solution; the Perturber which, given a problem, generates a locally perturbed version, by replacing a
leaf node or an entire statement of a random person’s statement with a different one. Perturber only
keeps the perturbed problems that have a different solution than the original problem. Comparison
between the original sample and the leaf/statement-perturbed samples is provided in Tab. 1.

The natural language generator takes an abstract K&K problem and formats it in natural language.
The formatting is template-based, but we support a variety of different (common and uncommon)
person names, role names (e.g., knight & knaves, angels & devils), and different styles of making
each person’s claim.

We create disjoint sets of ntrain training problems and ntest testing problems for each N -person task.
Here, ntest = 100, ntrain = 1, 000 for N > 2, and ntrain = 200 for 2-person tasks due to limited
combinations. Then, we generate perturbed versions for each problem.

3 Quantifying LLM Memorization of Reasoning Tasks

3.1 Off-the-shelf Models

2 3 4 5 6 7 8
# ppl

Llama-3-8B
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Phi-3-mini
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NuminaMath-7B-CoT

Deepseek-Math-7b

GPT-4o-mini

GPT-4o

Claude-3.5-sonnet

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.30 0.16 0.09 0.06 0.05 0.02 0.05

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

0.63 0.42 0.34 0.17 0.09 0.10 0.01

0.68 0.57 0.49 0.32 0.23 0.21 0.11

0.70 0.63 0.51 0.31 0.22 0.10 0.06
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Figure 1: Under 0-shot direct prompting, test
accuracy of off-the-shelf models drops signifi-
cantly with increasing puzzle complexity.

We use the K&K benchmark (§ 2.2) to evaluate 8 mod-
els that are shown to perform competitively on com-
mon reasoning benchmarks. We utilize zero-shot direct
prompting with task-specific instructions for open-ended
question-answering. To assess the correctness, we im-
plement keyword matching: a response is considered
correct if each person’s ground truth identity appears
in the conclusion part of the model’s output (see more
details in § C). As shown in Fig. 1, our K&K benchmark
poses a challenging logical reasoning task for all the
models. Even for the easiest problems involving only
2 persons, the best models still achieve < 70% accu-
racy. And the performance drops significantly as the

complexity increases (the best accuracy is only 11% for 8-person problems).

To quantify LLMs’ memorization of the logical reasoning task, we employ the metrics proposed in
the previous section. Since the training data for the off-the-shelf models is unknown, we will delay
the measurement of the interpolation to fine-tuned models in § 3.2 and focus on the memorization
score under local perturbation LiMem(f ;Tst) here. As shown in Fig. 1, the test accuracy is relatively
low for most cases, suggesting K&K-related problems are probably rare in the Internet and in the
training sets of these models. However, we also note that some specific models have large gaps under
local perturbation as shown in Fig. 5, such as GPT4o and Claude-3.5-Sonnet on 3-person problems
under logical statement perturbation, indicating signs of memorization when solving these puzzles.
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Figure 2: Accuracy of finetuned models drops under
different perturbations. The drops on test set can be
smaller than training set.
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Figure 3: Test acc of FTed models increase with train
acc, despite that the memorization becomes stronger
with larger LiMem(f ;Tr) under leaf perturbation.

3.2 Fine-tuned Models
Here, we study the model’s memorization capacity when directly fine-tuned on K&K problems. We
take Llama3-8B and GPT4o-mini and run supervised fine-tuning (SFT) on a set of K&K training
problems disjoint from the test set. Specifically, during SFT, the model observes the concatenation of
the question and the answer for each problem, but the loss is only computed on the answer part.

LLMs interpolate K&K training problems. We fine-tune 50 epochs for Llama3-8B and GPT4o-
mini for 5 epochs (due to budget constraints) via the OpenAI Finetune API (see details in § C). From
Fig. 2 (clean), we observe high Acc(f ;Tr), and GPT4o-mini fine-tuned on 3-person puzzles reach
interpolation (Acc(f ;Tr) = 100%).

Interpolating LLMs have large LiMem(f ;Tr). In Fig. 2, we report the consistent accuracy
Acc(f ;Tr) · CR under perturbation, defined as the ratio of samples correctly solved in both their
original and perturbed forms. We observe significant gaps under math problem perturbations (e.g.,
statement and leaf) on training samples, suggesting that models have large LiMem(f ;Tr) and may
rely on memorization to solve the training samples.

4 Large Language Interpolators Learn to Reason
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Figure 4: Test accuracy improvement on N -people problems for LLMs fine-tuned on M -people problems,
compared to the unfine-tuned model, under 0-shot direct prompting. Most grid values are above 0, indicating
transferability and enhanced reasoning abilities across unseen tasks. Results for more epochs are in ??.

The studies in § 3 show that both off-the-shelf and fine-tuned models exhibit some level of memoriza-
tion in solving K&K reasoning tasks. However, does it mean that those models do not have reasoning
capabilities at all? It turns out that the models seem to do both, and the reasoning capability actually
improves as the memorization level increases. Next, we present evidence that support this hypothesis.

The generalization performance increases with memorization level. As shown in Fig. 3, the
accuracy of fine-tuned models on the test set continues to increase as Acc(f ;Tr) increases, despite
that Lp∆ on training samples also increases (i.e., stronger memorization).

The LiMem(f ;Tst) on test samples are smaller than LiMem(f ;Tr) on train samples in Fig. 2,
particularly for more challenging cases (e.g., 5-person puzzles). This suggests that models are more
likely to use reasoning when solving unseen test samples.

The fine-tuned model generalizes across different difficulty levels. By fine-tuning on the M -person
problem and testing on the N -person problem, we study LLMs’ transferability. The N ×M test
accuracy improvement grid in Fig. 4 shows that 1) training on any M -person problem generally
enhances accuracy on unseen N -person test problems for any N , indicating enhanced reasoning
ability on both easier and harder problems; 2) extending the training epochs generally yields better
results, particularly for Llama3-8B; 3) test accuracy improvement is larger when N ≤ 6, and
improving performance on more challenging tasks remains possible but more difficult.
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5 Conclusion
In this paper, we designed a K&K puzzle-based logical reasoning benchmark and local perturbation-
based metrics to quantify LLMs’ memorization in reasoning tasks. Our results reveal an intriguing
interplay between memorization and reasoning: while models heavily rely on memorization to solve
challenging K&K puzzles, models trained to have a higher level memorization also solve more unseen
test puzzles, and solve them relatively robustly (in contrast to the memorized training puzzles).
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A Related Work

Memorization and benchmark contamination in LLMs Previous research has explored training
data memorization in the context of privacy and copyright [6], focusing on how LMs may uninten-
tionally reproduce text by generating near-verbatim outputs from their training data [16, 4, 5]. Our
study broadens the concept of memorization to the reasoning context, by evaluating whether LLMs
can recall solutions to training questions but struggle to solve their variants during testing.

Such memorization patterns appear in the off-the-shelf LLMs on popular math reasoning benchmarks,
indicating potential benchmark contamination (i.e., included in the training data). For example,
LLMs perform exceptionally well on benchmarks such as GSM8K, MATH, and MMLU, but their
performance drops significantly when faced with benchmark variants. These include human-curated
problems of similar difficulty [31], functional variants systematically generated via programs [23],
rephrased versions [28], translated versions [29], or problems set beyond a specific date cutoff [22, 11].

Logical reasoning benchmarks To evaluate logical reasoning capabilities in LLMs, synthetic
benchmarks have been developed. These benchmarks enable scalable generation of samples with
varying configurations and difficulty levels [9] to study LLM reasoning in a controlled setup. For
instance, DyVal [32] dynamically generates evaluation samples with controllable complexity based
on directed acyclic graphs, which covers reasoning tasks including deductive, boolean, and abductive
reasoning. The authors demonstrate that fine-tuning Llama2-13B-chat on these synthetic samples
enhances its performance on other reasoning benchmarks. Chen et al. [7] focus on propositional logic
problems involving definite clauses. They synthetically generate variations with different premise
orders, such as forward, backward, and shuffled. Their study shows that aligning the premise order
with the proof order improves LLMs’ accuracy in solving these problems. Dziri et al. [8] explore
the limitations of transformers in tasks requiring compositional reasoning, including multiplication,
Einstein’s Puzzle (a constraint satisfaction problem), and dynamic programming problems. They find
that while GPT-3 fine-tuned on their training samples can solve in-distribution problems, it fails to
generalize to out-of-distribution tasks with increased problem sizes. Extending from Einstein’s Puzzle,
ZebraLogic [18] is introduced to require reasoning through reduction, absurdum, and elimination
to solve constraint satisfaction problems. The study shows that off-the-shelf models struggle with
complex puzzles involving large problem sizes. BoardgameQA[14] presents a question-answering
dataset characterized by contradictory facts and rules in the questions. To solve this task, the authors
find that fine-tuning BERT-large and T5-XXL on their training dataset with proofs outperforms
few-shot prompting using PaLM with chain-of-thought (CoT) prompting. Alice in Wonderland [21]
is a type of reasoning task in the format of light quiz-style problems such as “Alice has N brothers
and she also has M sisters. How many sisters does Alice’s brother have?” Advanced models often
fail to reason and count accurately in such simple scenarios.

The closest benchmark to us is TruthQuest [19], which builds on the classic K&K puzzles but only
focuses on evaluation samples involving 3-6 people puzzles. In contrast, our proposed framework
extends this line of research by generating a more comprehensive set of K&K puzzles with more
difficulty levels and various perturbation types. We evaluate state-of-the-art models on more chal-
lenging K&K puzzles (e.g., 8-people) and analyze their memorization behaviors (via fine-tuning) and
generalization capabilities under local perturbations.

B Data Generation Details

During our data construction, we use the maximum width W = 2 and depth D = 2, and the number
of persons in the puzzle N = 2, 3, 4, 5, 6, 7, 8.

Tab. 1 presents the example knight (truth-teller) and knave (liar) scenario involving two people: Liam
and Aria, with corresponding logical statements, and converted English statements, questions, and
answers. It also shows three versions of the problems: an original example, a leaf-perturbed version,
and a statement-perturbed version. Specifically, (1) leaf perturbation changes a “leaf” in the logical
tree - a single truth value. In this case, it flipped Liam’s status in Aria’s statement from truth-teller
to liar. (2) Statement perturbation changes the entire structure of a statement. Here, it changed
Aria’s statement from an equivalence to a contradictory conjunction. Both perturbations result in
changing the answer. The leaf perturbation creates a subtle change in one statement that flips the
logical outcome, while the statement perturbation changes the entire one statement.
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Table 1: 2-person puzzle generation with the knight (telling-truth) and knave (lying) and comparison between
original sample, leaf-perturbed sample, and statement-perturbed sample.

Type Example Leaf Perturbed Example Statement Perturbed Example
person Liam (person index 0), Aria (person index 1)

logical statement
Liam: (‘not’, (‘lying’, 1))

Aria: (‘⇔’, (‘telling-truth’, 1),
(‘telling-truth’, 0))

Liam: (‘not’, (‘lying’, 1))
Aria: (‘⇔’, (‘telling-truth’, 1),

(‘lying’, 0))

Liam: (‘not’, (‘lying’, 1))
Aria: (‘and’, (‘lying’, 0),

(‘telling-truth’, 0))

English statement
"Aria is not a knave" - Liam. Aria
asserted: "Aria is a knight if and

only if Liam is a knight".

"Aria is not a knave" - Liam. Aria
asserted: "Aria is a knight if and

only if Liam is a knave".

"Aria is not a knave" - Liam. Aria
asserted: "Liam is a knave and

Liam is a knight"

question

"A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2

inhabitants: Liam, and Aria. Aria is
not a knave - Liam. Aria asserted:

Aria is a knight if and only if Liam
is a knight. So who is a knight and

who is a knave?"

"A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2

inhabitants: Liam, and Aria. Aria is
not a knave - Liam. Aria asserted:

Aria is a knight if and only if Liam
is a knave. So who is a knight and

who is a knave?"

"A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2

inhabitants: Liam, and Aria. Aria is
not a knave - Liam. Aria asserted:

Liam is a knave and Liam is a
knight. So who is a knight and who

is a knave?"

answer (1) Liam is a knight (2) Aria is a
knight

(1) Liam is a knave (2) Aria is a
knave

(1) Liam is a knave (2) Aria is a
knave

C Experiments Details

Evaluation We utilize zero-shot direct prompting with task-specific instructions for open-ended
question-answering. We employ the following prompt:

Prompt for 0-shot evaluation

Your task is to solve a logical reasoning problem. You are given set of statements from which
you must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly
state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

### Question: {question}
### Answer:

In our evaluation process, we use greedy decoding with temperature t = 0 for all models and a
maximum token length of 2048.

To assess the correctness, we implement keyword matching: a response is considered correct if each
person’s ground truth identity appears in the conclusion part of the model’s output.

Fine-tuning For Llama3-8B fine-tuning, we employed the following standard hyperparameters
with a batch size of 4, gradient accumulation steps of 8, and 5e-5 learning rate. We finetune for a
maximum of 100 epochs.

For GPT4o-mini fine-tuning, we utilized the default hyperparameters provided by the OpenAI fine-
tuning API. The model was fine-tuned for 5 epochs to achieve high accuracy within reasonable
budget.

D Additional Experimental Results
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2 3 4 5 6 7 8
# ppl

Llama-3-8B

Gemma-2-9b

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

GPT-4o-mini

GPT-4o

Claude-3.5-sonnet

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.30 0.16 0.09 0.06 0.05 0.02 0.05

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

0.63 0.42 0.34 0.17 0.09 0.10 0.01

0.68 0.57 0.49 0.32 0.23 0.21 0.11

0.70 0.63 0.51 0.31 0.22 0.10 0.06

Acc(f ;Tst)

2 3 4 5 6 7 8
# ppl

0.27 0.10 0.04 0.02 0.04 0.00 0.00

0.28 0.16 0.09 0.06 0.04 0.02 0.04

0.22 0.21 0.13 0.09 0.03 0.06 0.03

0.27 0.24 0.14 0.10 0.01 0.07 0.03

0.16 0.13 0.11 0.05 0.01 0.00 0.00

0.22 0.19 0.07 0.06 0.02 0.00 0.00

0.24 0.26 0.19 0.14 0.07 0.08 0.00

0.19 0.30 0.17 0.21 0.14 0.15 0.09

0.24 0.33 0.25 0.23 0.13 0.08 0.06

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
# ppl

0.26 0.11 0.03 0.02 0.04 0.00 0.00

0.30 0.16 0.09 0.05 0.04 0.02 0.04

0.24 0.24 0.13 0.12 0.03 0.06 0.04

0.27 0.28 0.12 0.10 0.03 0.04 0.02

0.23 0.12 0.10 0.05 0.01 0.00 0.00

0.22 0.17 0.06 0.05 0.02 0.00 0.00

0.29 0.25 0.20 0.11 0.06 0.08 0.01

0.20 0.20 0.22 0.18 0.14 0.13 0.09

0.16 0.31 0.24 0.18 0.11 0.08 0.06

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 5: Test accuracy Acc(f ;Tst) of off-the-shelf models under 0-shot direct prompting drops with increasing
puzzle complexity (left). LiMem(f ;Tst) on test examples under statement perturbation (middle) and leaf
perturbation (right) is large for specific models, indicating signs of memorization in solving these puzzles.

2 3 4 5 6 7 8
# ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.24 0.10 0.05 0.03 0.02 0.00 0.01

0.32 0.38 0.21 0.11 0.04 0.02 0.01

0.57 0.40 0.29 0.24 0.10 0.07 0.06

0.23 0.06 0.06 0.02 0.01 0.01 0.00

0.36 0.14 0.04 0.02 0.02 0.01 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
# ppl

0.22 0.08 0.05 0.03 0.02 0.00 0.01

0.23 0.30 0.16 0.11 0.04 0.02 0.01

0.24 0.21 0.23 0.18 0.08 0.07 0.05

0.17 0.06 0.03 0.02 0.01 0.01 0.00

0.24 0.10 0.04 0.02 0.02 0.01 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
# ppl

0.20 0.09 0.05 0.03 0.02 0.00 0.01

0.23 0.29 0.15 0.10 0.04 0.02 0.01

0.28 0.22 0.19 0.17 0.07 0.06 0.04

0.17 0.05 0.06 0.02 0.01 0.01 0.00

0.24 0.12 0.04 0.02 0.02 0.01 0.00

LiMem(f ;Tst) perturbed leaf
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Figure 6: Acc(f ;Tst) and LiMem(f ;Tst) of off-the-shelf models under 0-shot CoT prompting, where we add
a chain-of-thought trigger phrase “ Let’s think step by step” in the end of the prompt.

2 3 4 5 6 7 8
# ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.45 0.20 0.16 0.11 0.02 0.03 0.03

0.54 0.31 0.18 0.10 0.07 0.05 0.06

0.31 0.12 0.12 0.06 0.06 0.01 0.01

0.32 0.19 0.10 0.03 0.01 0.01 0.01

Acc(f ;Tst)

2 3 4 5 6 7 8
# ppl

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.28 0.19 0.15 0.09 0.01 0.02 0.03

0.37 0.24 0.17 0.10 0.03 0.03 0.05

0.27 0.11 0.11 0.06 0.05 0.01 0.01

0.26 0.17 0.08 0.03 0.01 0.01 0.01

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
# ppl

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.37 0.19 0.14 0.11 0.02 0.02 0.03

0.30 0.24 0.16 0.09 0.06 0.02 0.05

0.30 0.12 0.10 0.06 0.06 0.01 0.00

0.25 0.17 0.10 0.03 0.01 0.01 0.01

LiMem(f ;Tst) perturbed leaf
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Figure 7: Acc(f ;Tst) and LiMem(f ;Tst) of off-the-shelf models under 1-shot direct prompting, where we
provide one demonstration consisting of one question and its answer.

2 3 4 5 6 7 8
# ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.14 0.02 0.02 0.01 0.01 0.00 0.00

0.33 0.18 0.08 0.07 0.02 0.03 0.01

0.45 0.28 0.21 0.08 0.04 0.05 0.08

0.27 0.09 0.08 0.01 0.04 0.00 0.00

0.34 0.07 0.06 0.01 0.00 0.00 0.01

Acc(f ;Tst)

2 3 4 5 6 7 8
# ppl

0.14 0.02 0.02 0.01 0.01 0.00 0.00

0.25 0.14 0.06 0.06 0.02 0.03 0.01

0.31 0.24 0.12 0.06 0.02 0.05 0.08

0.25 0.08 0.08 0.01 0.04 0.00 0.00

0.21 0.07 0.06 0.01 0.00 0.00 0.01

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
# ppl

0.14 0.01 0.02 0.01 0.01 0.00 0.00

0.26 0.18 0.08 0.06 0.01 0.03 0.01

0.37 0.20 0.16 0.05 0.02 0.04 0.06

0.23 0.09 0.08 0.01 0.04 0.00 0.00

0.24 0.07 0.06 0.01 0.00 0.00 0.01

LiMem(f ;Tst) perturbed leaf
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Figure 8: Acc(f ;Tst) and LiMem(f ;Tst) of off-the-shelf models under 1-shot CoT prompting, where we
provide one demonstration consisting of a question, its corresponding CoT reasoning steps, and the answer.
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