
Under review as a conference paper at ICLR 2024

BREADTH-FIRST EXPLORATION
IN GRID-BASED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, graph-based planners have gained significant attention for goal-
conditioned reinforcement learning (RL), where they construct a graph that repre-
sents confident transitions between “subgoals” as edges and run shortest path al-
gorithms to exploit the confident edges. Such a graph construction consists of only
achieved subgoals while recording unattained ones in history is also crucial. In-
deed, it often wastes an excessive number of attempts to unattainable subgoals. To
alleviate this issue, we propose a graph construction method that efficiently man-
ages all the achieved and unattained subgoals on a grid graph adaptively discretiz-
ing the goal space. This enables a breadth-first exploration strategy, grounded
in local adaptive grid refinement, that prioritizes broad probing of subgoals on a
coarse grid over meticulous one on a dense grid. We empirically verify the effec-
tiveness of our method through extensive experiments.

1 INTRODUCTION

Many real-world sequential decision-making problems can be framed as the task of targeting a
given goal, e.g., the navigation of walking robots (Schaul et al., 2015; Nachum et al., 2018) and
the manipulation of objects using robotic arms (Andrychowicz et al., 2017). Goal-conditioned re-
inforcement learning (RL) aims to solve these problems using a goal-conditioned policy designed
to maximize the return with respect to the target goal. This offers a versatile policy for a variety
of distinct problems, described by corresponding goals, whereas other RL frameworks often require
separate policies for different tasks. Besides the inherent versatility, it also enables the hierarchical
RL (Zhang et al., 2020) which decomposes a daunting long-horizon goal into a series of manage-
able short-horizon subgoals so that the agent can exploit more confident and learnable transitions
between subgoals than the direct transition to the ultimate goal.

Recent advancements in RL have witnessed the emergence of graph-based planners as potent tools
for this subgoal-based decomposition (Eysenbach et al., 2019; Huang et al., 2019; Kim et al., 2021;
Lee et al., 2022). At a high level, these planners construct a graph that encapsulates confident
transitions between subgoals as edges and employ shortest-path algorithms to leverage the confident
edges. However, there is a significant caveat: these graphs comprise only subgoals in the replay
buffer, which the agent has achieved in prior. The oversight of not recording failed subgoals in
history leads to wasteful expenditure of samples to repeatedly attempt similar unattained or even
impossible subgoals rather than to explore novel ones, as exemplified in Figure 1.

In response to this challenge, we propose Breadth-first Exploration on Adaptive Grid (BEAG) for
graph-based goal-conditioned RL. Our key idea is to manage both achieved and unattained subgoals
on a grid graph, adaptively discretizing the goal space during the training process. Our subgoal
management assesses the achievability of all the subgoals on the grid, including unattained ones,
and then probes the subgoals in a planned order. This systemically prevents consecutive attempts
to (currently) unachievable subgoals, whereas the previous method, e.g., (Lee et al., 2022), expend
attempts to randomly ransack unexplored subgoals, as shown in Figure 1.

Specifically, we devise a breadth-first exploration strategy grounded on local adaptive grid refine-
ment. This strategy first explores subgoals on a coarse grid and then refines the grid selectively
around the local of unattained subgoals. The benefits are twofold: (i) it prioritizes broad probing on
a coarse grid over extensive searching on a dense grid; and (ii) adaptively refines the grid around

1

Under review as a conference paper at ICLR 2024

(a) U-maze task (b) DHRL (Lee et al., 2022) (c) BEAG (ours)

Figure 1: Illustration of breadth-first exploration. We compare the subgoal exploration strategies
of DHRL (state-of-the-art) and BEAG (ours) in the 10-th training epoch for U-maze task, depicted
in Figure 1a. In Figure 1b and 1c, each left plot summarizes the statistics on the attempted subgoals,
and each right plot presents the agent’s coverage in terms of the success rate of reaching goals in
a specific region. DHRL expend a substantial number of attempts at impossible subgoals (on the
wall), whereas BEAG spends virtually zero attempts on them. This demonstrates the efficiency of
BEAG conducting the breadth-first exploration.

(a) Bottleneck-maze
task (b) The proposed procedure of adaptive grid refinement

Figure 2: Local adaptive grid refinement. In Bottleneck-maze task of Figure 2a, we visualize how
BEAG adaptively refines the grid of subgoals over training epochs (0, 10, 11, 40), initialized at a
grid too coarse to complete the task, compared to the width of the bottleneck point. As shown in
Figure 2b, our approach adaptively refines around informative subgoals, previously unattainable and
thus disconnected.

more demanding parts, as elucidated in Figure 2. Our extensive experiments demonstrate the ef-
ficacy of our method, in which BEAG identifies adaptive grids tailored to various environments
requiring heterogeneous grid resolutions, both at the level of individual environments and within
different parts of a single environment.

Our main contributions are summarized as follows:

• We show that the previous graph-based planners overlook unattained subgoals in their
graphs, and thus often misguide the agent to wastefully attempt to impossible subgoals.

• To address this inefficiency, we introduce a grid-based RL, called BEAG, which efficiently
identifies both achieved and unattained subgoals through the breadth-first exploration based
on the local adaptive grid refinement over the goal space.

• Our method outperforms state-of-the-art methods in a set of complex and long tasks thanks
to its adaptability to various environments with differing grid resolution requirements.

2 RELATED WORKS

Graph-based RL and graph management Graph-based RL has emerged as a promising frame-
work for solving complex tasks (Huang et al., 2019; Eysenbach et al., 2019; Kim et al., 2021; Lee
et al., 2022), where deep RL agents plan a path of manageable subgoals from a challenging goal
while leveraging graph algorithms such as shortest path algorithms on a subgoal graph. Despite their
remarkable advancements, they just discard unattained subgoals and construct graphs of achieved
ones, randomly sampled from the replay buffer, inheriting the practice originated by (Huang et al.,
2019; Eysenbach et al., 2019). This restricted and random construction of graphs inevitably omits
records of unattainable subgoals, which are beneficial to avoid them in the future. Consequently,

2

Under review as a conference paper at ICLR 2024

this omission can lead deep RL agents to fruitlessly pursue impossible subgoals, thereby diluting
the benefits offered by graph algorithms. To address this issue, we introduce a grid-based method
to embrace both attained and unattained subgoals on a grid, systematically exploring them. Specif-
ically, we introduce the breadth-first exploration on a local adaptive grid refinement, where the
refinement mechanism is analogous to the principle in (Berger & Oliger, 1984).

Structured exploration in RL For efficient RL, exploration strategies have been structured to
exploit the prior knowledge on the environment. This body of work encompasses both theoretical
(Combes et al., 2017; Ok et al., 2018) and empirical (Pathak et al., 2017; Tam et al., 2022) studies.
In hierarchical RL, the prior methods to expand the set of confident subgoals (Zhang et al., 2020;
Kim et al., 2021; Lee et al., 2022) are structured under the assumption that more distant goals are
inherently more challenging. They prioritize subgoals adjacent to previously identified confident
ones. However, they overlook another valuable piece of prior knowledge that the achievabilities of
similar goals are likely to be similar. Hence, they are prone to expend similar attempts around an
impossible subgoal even after experiencing consecutive failures, rather than exploring more broadly
for novel attempts. In contrast, our proposed breadth-first exploration strategy takes into account
the prior knowledge of the similarity, thereby promoting a more efficient exploration. While similar
approaches to broaden exploration ranges have been explored in various RL methods, e.g., (Pathak
et al., 2017; Tam et al., 2022), our work is, to the best of our knowledge, the first one tailored for
goal exploration. In addition, our adaptive refinement provides further improvements.

Finally, we underscore that a number of the previous works (Eysenbach et al., 2019; Huang et al.,
2019; Zhang et al., 2021; Gieselmann & Pokorny, 2021; Kim et al., 2023) in fact, bypassed the
subgoal exploration problems by assuming uniform initial state distribution over the feasible space.
This can be direct access to the area of achievable subgoals. In our experiment, we fixed the initial
states instead to evaluate the efficiency of subgoal exploration. In turn, the most recent work (Kim
et al., 2023) showed a very low performance, while BEAG solved a set of complex tasks while
quickly identifying achievable subgoals.

3 PRELIMINARIES

3.1 GOAL-CONDITIONED REINFORCEMENT LEARNING.

Learning framework Building upon previous research (Schaul et al., 2015; Andrychow-
icz et al., 2017), we begin with a goal-conditioned Markov decision process represented as
(S,G,A, p, r, γ,H), where S and G are state space and goal space respectively and there is a map-
ping function ϕ : S −→ G between them. A denotes the action space, and environment works by the
transition dynamics p(s′|s, a). Reward function is defined as r(s, a, s′, g) = −1|ϕ(s′)−g|>δ , where
δ is a threshold to determine whether if the goal has been achieved. γ denotes the discount factor
and H is the horizon. Our framework contains a policy denoted as π(a|s, g; θ), which is parameter-
ized by neural networks with parameters represented as θ. And the objective of our framework is to
optimize π in order to maximize the expected future outcome Σ∞

t=0γ
tr(st, at, st+1, g).

Hindsight experience replay Given the assumption of sparse rewards and long-horizon tasks,
there exists an efficiency challenge in learning. To address this, many previous methods have incor-
porated Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) into their training. HER
involves modifying the goal by covering the achieved goals in the future during training. By doing
so, it allows for more sample-efficient learning by making it possible to learn from failed attempts
as if they were successful, particularly in long-horizon tasks. We also apply Hindsight Experience
Replay to our learning framework for enhanced sample efficiency.

3.2 GRAPH-BASED REINFORCEMENT LEARNING.

Planning on the graph Introducing a graph into goal-conditioned RL for complex and long-
horizon tasks has shown remarkable performance improvement. In previous works, it has been
shown that it is possible to shorten long horizons by changing the goal to one of the goals that the
agent has already visited. Search on the Replay Buffer (SoRB) (Eysenbach et al., 2019) constructs
a graph based on states randomly sampled from a replay buffer. SoRB connects edges with weights

3

Under review as a conference paper at ICLR 2024

estimated from the Q-function. Since the reward function mentioned above assigns a reward of −1
until reaching the goal, it aids in estimating temporal distance:

Dist(s −→ g) = logγ(1 + (1− γ)Q(s, π(s, g)|g)), (1)

which is the expected time step from state s to goal g. Then, the path is generated by the shortest
path finding algorithm, such as Dijkstra’s algorithm.

However, this estimation may lead to errors when predicting long distances. To address this issue,
previous methods (Eysenbach et al., 2019; Lee et al., 2022) have introduced a threshold on edge
length, connecting nodes only within a certain distance. However, when a goal is assigned to a
location that has not yet been explored, in other words, when a goal that is far from the current
graph is given, it is essential for the goal to be connected to the current graph to use the shortest path
algorithm. In such cases, the problem arises where incorrect estimations can lead to the generation
of incorrect paths. Thus, we propose graph planning method dealing with the above problem in
Section 4.

4 METHOD

To fully utilize the benefit from the graph-planner in graph-based RL, it is necessary to compose the
subgoal graph with confident edges covering all the (feasible) goal space. To construct such a sub-
goal graph, we propose a grid-based RL, called breadth-first exploration on adaptive grid (BEAG).
Our key idea is to systemically manage the statistics of failures and successes of subgoals on an
adaptive grid. In Section 4.1, we explain how to construct and manage a grid. We begin with a
regular grid, uniformly covering the goal space. While training, we mark unattained subgoals to
avoid repetitve failures. Subsequently, we adaptively densify grid to facilitate fine-grained decision
making. We manage the graph by iteratively marking and densifying. Additionally, We introduce
goal shifting techniques to enhance exploration. In Section 4.2, We elaborate on the rationale behind
adopting a grid graph and elucidate why our method demonstrates robust performance.

4.1 BREADTH-FIRST EXPLORATION ON ADAPTIVE GRID (BEAG)

Initial grid We begin with a grid graph H = (V, E) aligned with the k-dimensional goal space.
To simplify the description, we use a uniform grid interval n for each dimension: V = {l, l+ n, l+
2n, ..., l+mn}k, with the constraint l+mn ≤ u < l+(m+1)n, where l and u represent the lower
and upper bounds of G, respectively. Subsequently, E is formed by connecting i, j ∈ V where the
Euclidean distance between i and j is n. We assume that the cost of moving between two subgoals
at an equal distance is similar, and thus, we use the Euclidean distance as the weights of the edges.
To generalize to diverse environments, if the aforementioned assumption does not hold, the distance
measure introduced in (1) can be employed as the weights of the edges. However, it is noteworthy
that the Q-function may exhibit instability in predictions for untried transitions, potentially hindering
exploration.

Unattained subgoal marking During the planning process, we run a shortest path algorithm on
the grid graph. In particular, we assign edge weights to identify unreachable subgoals. We im-
plement this by introducing two hyperparameters τt, τn which serve as threshold for the failure
condition and count. To be specific, we assign the edge weights wi,j of the edge (i, j) as follows:

wi,j =

{
∞ if na

j > τn and ns
j = 0

∥i− j∥2 otherwise
, i, j ∈ V, (i, j) ∈ E . (2)

Here, na
j denotes the number of attempts to the subgoal j as the next subgoal. Next, ns

j denotes the
number of successes for the agent to actually reach the subgoal j in the attempt. Since we are using
a grid graph, we can assume that if the next subgoal is not an unattinable subgoal, it can be achieved
within proper time steps. Thus, instead of trying until the end of the episode to determine failure,
we consider it a failure if the next subgoal is not achieved within τt time steps. In that case, we also
assign the edge weights leading to that subgoal to∞ for the duration of the episode. It is important
to emphasize that postponing exploration for the subgoal occurs only within the current episode and
modifications are made even if the attempt count exceeds τn.

4

Under review as a conference paper at ICLR 2024

Adaptive grid refinement It is worth noting that the performance of grid-based planning cru-
cially dependent on the grid interval n, which is a hyperparameter to control the level of details
for searching a trajectory. Similar to other hyperparameters, choosing an inappropriate grid interval
may downgrade the performance, e.g., an overly large grid interval may lead to sub-optimal trajecto-
ries with coarse-grained transitions. To address this issue, we propose local adaptive grid refinement
which provides robustness to the choice of grid interval via adaptively amplifying the grid resolution
near the selected subgoals. Given the assumption that exploration in the failed region is more valu-
able than the already successful region, we choose the postponed subgoal that have failed more than
τn times, as mentioned earlier in the weight criteria. To underscore our breadth-first exploration, we
select the subgoal from those with the largest intervals, specifically those distant from surrounding
subgoals. The grid refinement is achieved by adding a 5k grid graph for k-dimensional goal space
that are half the size of the previous grid interval around the selected subgoals. For instance, refining
(m,m, ...,m) would involve combining the grid graph {m− n,m− n

2 ,m,m+ n
2 ,m+ n}k to the

existing grid graph. We simply monitor the number of visited subogals, and if the count does not
increase for several episodes, we determine that refinement is necessary and proceeded.

Goal shifting As evidenced by prior works (Ecoffet et al., 2019), it is often informative to continue
the exploration of an agent even after achieving the target goal. To this end, after an agent achieves
the target goal, we shift the goal to one of the unattempted subgoals in the grid graph. We regularize
the “hardness” of the new goal via prioritization of shift to the closest unattempted subgoal. This
technique can be considered a more efficient form of exploration compared to prior methods that
suggest a new goal via random noise addition that is more likely to suggest shifting the goal towards
already explored subgoals in the later training phase of the agent.

4.2 DISCUSSION ABOUT BEAG

In this section, we further clarify the advantages of using our grid-based planning algorithm. First,
the trajectories planned by the grid graph contains even the “novel subgoals”, which represent sub-
goals that have not been explored by the agent in prior. This provides a useful cue for the agent
to explore unattempted trajectories instead of overly concentrating on failed attempts in the past.
Previous methods struggled to generate diverse path when given goal located outside the graph. As
shown in Figure 1b, they often ended up generating paths similar to ones that had failed before, caus-
ing repeated failures. In contrast, within our grid graph, we can generate many alternative routes
that can lead to the goal. In addition, the above edge weight modification criteria encourages the
exploration of new subgoals instead of repeating failures.

Furthermore, the subgoal trajectories generated from the grid-based planner is reasonable in the
sense that the distance between the subgoals are regularized to be within a reachable distance. This
incorporates our prior knowledge about the environment that the agent likely cannot reach a far-
away subgoal provided by the planner. In contrast, existing graph-based planners often set the final
goal as the subgoals for the agent, which is likely unreachable during the initial training phase.

Finally, the grid graph also explicitly keeps track of failed attempts via subgoals and edges that
represent unattainable subgoals and transitions, respectively. This complements the inherent bias
of training agents with hindsight experience replay that promotes the agent to waste attempts on
unattainable subgoals. This happens because the goal in the learning data gets replaced with one of
the states achieved during the trajectory, causing a delay in learning from failed goals. By addressing
failed goals during the planning phase rather than the network training phase, we can effectively
avoid repetitive failures and even ensure the efficiency of learning through HER.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines We compare our method, BEAG, with the state-of-the-arts of graph-based RL algo-
rithms in the followings:

5

Under review as a conference paper at ICLR 2024

(a) U-maze (b) Π-maze (c) Complex-maze (d) Bottleneck-maze (e) Reacher3D

Figure 3: AntMaze and Reacher3D environments. We evaluate graph-based RL methods in the
set of MuJoCo environments depicted above, in challenging setups with sparse rewards over long
horizon. They include navigation tasks in various maps, and robot-arm manipulation task with
obstacle to reach the target position, where the subgoal exploration is crucial as the agents have no
access to any information on the maps except their maximum sizes.

• DHRL (Lee et al., 2022): DHRL constructs a graph from the replay buffer based on the
FPS algorithm, which aids in generating an uniform graph. Then, it follows a shortest path
from the current state to the subgoal generated by high-level policy.

• PIG (Kim et al., 2023): PIG also constructs a graph based on the FPS algorithm and em-
ploys imitation learning to ensure that the same action is taken for each subgoal along
a shortest path. PIG employs random initialization during the training process, which is
highly advantageous in the graph-based method due to its ease in collecting states for graph
construction. For a fair comparison, we report results using fixed initialization during the
training process.

• HIGL (Kim et al., 2021): HIGL constructs a graph from the replay buffer by considering
both coverage and novelty. In addition, it employed a shortest-path algorithm to find a
path and obtained a restricted subgoal using an adjacency network. While HIGL operates
in a dense reward setting for their optimal performance, for a fair comparison, we report
experimental results in a sparse reward setting.

• HIRO (Nachum et al., 2018): HIRO is a vanilla HRL method that has a 2-level learnable
hierarchical policy and does not use graphs for training or inference.

Training setups Goal-conditioned RL has various training setups depending on the initial state
space and goal space, each of which serves a unique purpose. For instance, there can be a fixed
state space and a random goal space, where the objective is to be able to reach anywhere from the
fixed location. If we use fixed goals for training in this scenario, the agent may quickly reach spe-
cific locations but this does not necessarily imply the ability to go anywhere. On the other hand,
considering random initial states and goal spaces implies the objective of being able to go from
anywhere to anywhere, regardless of the starting point. However, especially in graph-based RL,
utilizing a random initial state allows for data collection across the entire environment without the
need for exploration. This makes it a less challenging environment, and the scope of its utilization
becomes limited. Therefore, we conducted the overall experiments in a learning environment sim-
ilar to DHRL, featuring a fixed initial state and random goals. To be detailed, we implement our
networks based on the TD3 algorithm (Fujimoto et al., 2018), and employ Dijkstra’s algorithm to
compute the shortest path in the graph. Additionally, it is noteworthy that we consistently set the
grid interval to 2 for all maps in the AntMaze environment.

Evaluation Our primary evaluation metric for RL algorithms is the success rate, a widely adopted
metric in prior works (Lee et al., 2022; Kim et al., 2021; 2023). Specifically, the success rate is the
ratio of successfully achieving the most challenging goal in 10 trials. Given our method’s emphasis
on exploration, examining the success rate’s improvement with fewer environment steps becomes
crucial and forms a key point of interest.

Environments Our experiments were conducted on a set of challenging tasks with sparse rewards
over long horizon, by configuring the MuJoCo environments (AntMaze and Reacher). Specifically,
the following environments are considered, and visual representations are provided in Figure 3.

• {U, π, Complex, Bottleneck}-maze: The ants simulate reaching goals in a variety of mazes.
Each map has a different size (U, Bottleneck : 24 × 24, π: 40 × 40, complex: 56 × 56)

6

Under review as a conference paper at ICLR 2024

(a) U-maze (b) Π-maze (c) Complex-maze

(d) Bottleneck-maze (e) Reacher3D

Figure 4: Success rates in various environments (with random goal). We report the average
success rate as a line and the standard deviation as a shaded region for the 4 random seeds. We note
that PIG (Kim et al., 2023) assumes a fixed initial state, and HIGL (Kim et al., 2021) operates under
a sparse reward setting for a fair comparison.

and structure, possibly conjectured by its name. For instance, Bottleneck-maze, originated
in (Lee et al., 2022), has an intriguing structure, where the maze is divided into two parts
by a narrow gate or bottleneck between them, and thus the agent needs to recognize the
gate in order to navigate the ant everywhere.

• Reacher3D (with a wall): The robotic arm simulates moving the tip of the hand to the target
position, which can be blocked by a wall, as shown in Figure 3e.

5.2 COMPARATIVE RESULTS

As evident in Figure 4a, 4b, and 4c, our approach BEAG consistently outperforms the state-of-the-
art baselines. The advantage of BEAG is more pronounced in terms of success rate on a larger map,
i.e., the breadth-first exploration is more advantageous in larger maps (π-maze and Complex-maze).
The reason that baselines require more samples to achieve the challenging goals is that it omits
records on impossible subgoals in the graph while training the neural high-level agent to learn the
impossible subgoals implicitly. In contrast, BEAG’s breadth-first search systemically identifies the
impossible subgoals on the grid. Additionally, it is important to highlight the relatively high variance
observed in DHRL. This variability can be attributed to the utilization of randomly assigned goals
during training, which can be significantly influenced by the initial random seed. As elucidated in
Figure 1, BEAG employs breadth-first exploration, allowing it to construct a map understanding
independent of the intricacy of randomly assigned goals.

5.3 FIXED GOAL ENVIRONMENT

We have conducted experiment to demonstrate a clear advantage of BEAG. Specifically we compare
BEAG and DHRL in a U-maze environment, where the initial state and goal are fixed at the bottom-
left and top-left corners, respectively. This environment is dedicated to evaluating the efficiency of
exploration. As illustrated in Figure 5a, BEAG reached the goal much faster than DHRL, thanks to
the breadth-first exploration. The relatively small gap between BEAG and DHRL in the random goal
setting may suggest that DHRL heavily relies on random goal generation for subgoal exploration. In
this experiment, we also report coverage, which is the averaged success rate of uniformly sampled
goals, in which we sample 10 goals per unit-size cell over the entire goal space to make the sampling
more uniform. As depicted in Figure 5b, DHRL exhibits a lack of coverage increase under the fixed
goal setting, indicating a complete absence of exploration. In Figure 5c and 5d, we report the success
rates for specific region during training, our approach stands out in its ability to explore diverse
paths leading to challenging goals, owing to its management of unattained subgoals, while DHRL
encounters difficulties in exploring novel areas. Furthermore, we observe that BEAG outperforms

7

Under review as a conference paper at ICLR 2024

(a) Success rate

(b) Coverage

(c) BEAG (fixed goal)

(d) DHRL (fixed goal)

Figure 5: U-maze with a fixed goal. We measure the (a) average success rate and (b) average
coverage for each region in U-maze, where the initial state and goal are fixed at the bottom-left
and top-left corners, respectively, during the training phase. We also visualize the coverage of each
region at 0, 20, and 40 epochs (120K, 300K, and 480K environment steps), respectively (c, d).

in the fixed goal setting compared to the random goal setting, as the continual input of the same
goal during training facilitates the effective removal of unattained subgoals along the path toward
the goal.

5.4 BOTTLENECK-MAZE ENVIRONMENT

We design an experiment to demonstrate the ability of grid refinement to address the challenge
of a bottleneck environment in Figure 4d, which can be difficult to navigate on the grid graph.
As shown in Figure 2, with the initialized grid graph, our algorithm can only fail for the upper
half of the map. BEAG rapidly completes the exploration of the lower part through breadth-first
exploration and refines the outer regions of the map for additional exploration. After refinement,
it can generate paths even for areas where it previously failed, demonstrating the scalability and
robustness to the hyperparameter of our algorithm. Despite disadvantage of narrow bottleneck for
grid, BEAG demonstrates performance comparable to DHRL in comparison.

5.5 ABLATION STUDY

Figure 6: Ablation study about
Goal Shifting in U-maze.

Goal Shifting Goal shifting is a technique that helps
the agent engage in additional exploration by replacing an
achieved goal with a nearby explorable goal. This reduces
wasted episodes where easy goals are repeatedly provided in
settings with randomly given goals. As a result, the average
success rate has improved, but it is important to pay closer
attention to the variance. As shown in Figure 6 a significant
reduction in variance is observed, emphasizing the learning
stability of BEAG concerning random seeds, as mentioned in
Section 5.2.

Hyperparameter Choice To identify failure, we utilize a count-based method with two thresh-
olds: failure condition τt and failure count τn. Figures 7a and 7b demonstrate that increasing the
thresholds for both criteria requires more environment steps to achieve goals. Notably, a low success
rate is observed at τn = 1 in Figure 7b, attributed to a significant number of false negatives (attain-
able but marked), as illustrated in Figure 7e, especially when compared to Figure 7c. In Figure 7a,
it can be observed that although the performance is favorable at τt = 50, however, false negatives
still occur under this condition as demonstrated in Figure 7d. To ensure stability, we employed the
thresholds (τt = 100, τn = 3) in all other experiments.

8

Under review as a conference paper at ICLR 2024

(a) Failure condition τt (b) Failure count τn

(c) (τt = 100, τn = 3) (d) (τt = 50, τn = 3) (e) (τt = 100, τn = 1)

Figure 7: Hyperparameter choice in U-maze. We measure the average success rate of BEAG on
different (a) failure condition τt and (b) failure count τn. We also visualize the grid graphs at the last
timestep (c, d, e). We visualize the grid graph by removing edges directed to the marked unattained
subgoals.

Figure 8: Empirical effectiveness
of design choice in U-maze.

Design Choice To construct the graph, the grid graph is em-
ployed due to its uniform distribution, ensuring the presence
of a nearby subgoal even with a limited number of nodes, irre-
spective of the given goal. We present experimental results ap-
plying our proposed method to a graph composed of uniformly
randomly sampled nodes across the entire map. As illustrated
in Figure 8, outcomes from random nodes resulted in failure
with a comparable number of nodes (200). Furthermore, with
an increase in the number of nodes (400, 600), a need to post-
pone nodes also escalates, demanding more environment steps
for success.

6 CONCLUSION

In this work, we introduce BEAG, a novel approach that places a strong emphasis on sample-efficient
exploration to enhance goal achievement. Our experimental findings showcase the rapid expansion
of exploration, facilitated by predictive techniques applied to nodes previously considered unreach-
able within a grid graph framework. BEAG not only surpasses the performance of prior state-of-
the-art methods but also introduces a fresh perspective to the realm of graph-based reinforcement
learning. While we have applied a straightforward grid refinement approach to a grid graph in this
study, we anticipate the existence of more sophisticated heuristics for adaptive grid graph construc-
tion and the selection of candidate refinements in the future.

Limitation BEAG has demonstrated significant performance improvements in the context of
sparse and long-horizon tasks, specifically illustrated through the simplified example of AntMaze
navigation with a 2-dimensional goal space. However, it is expected to face limitations when applied
to high-dimensional datasets such as images or language due to the inherent complexities involved.
We believe that further research into representation learning for handling high-dimensional data can
address these challenges. Additionally, while our approach primarily utilized grids, incorporating
representations would necessitate starting from graph construction. We leave these aspects as future
works.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of computational Physics, 53(3):484–512, 1984.

Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal exploration in structured
stochastic bandits. Advances in Neural Information Processing Systems, 30, 2017.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Robert Gieselmann and Florian T Pokorny. Planning-augmented hierarchical reinforcement learn-
ing. IEEE Robotics and Automation Letters, 6(3):5097–5104, 2021.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in Neural Information Processing Systems, 34:28336–28349,
2021.

Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based
planning with goal-conditioned policies. arXiv preprint arXiv:2303.11166, 2023.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H Jin Kim. Dhrl: A graph-based approach for long-
horizon and sparse hierarchical reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:13668–13678, 2022.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Allison Tam, Neil Rabinowitz, Andrew Lampinen, Nicholas A Roy, Stephanie Chan, DJ Strouse,
Jane Wang, Andrea Banino, and Felix Hill. Semantic exploration from language abstractions
and pretrained representations. Advances in Neural Information Processing Systems, 35:25377–
25389, 2022.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In International Conference on Machine Learning, pp. 12611–12620. PMLR, 2021.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 33:21579–21590, 2020.

10

Under review as a conference paper at ICLR 2024

A ALGORITHM

Algorithm 1 Overview of BEAG

Input: total training episode nepi, initial random step nrand, refinement frequency nref, total training
step tstep, failure count threshold τn, failure condition threshold τt, environment Env, policy π,
state-goal mapping function ϕ

for ep← 1 to nepi do
Env.reset()
if ep = nrand then

Construct a grid graphH(V, E)
Marked unattained subgoal set Vu ← ∅

else if ep > nrand then
if ep % nref = 0 then
H,Vu ← Grid Refinement(H,Vu)

end if
H′(V ′, E ′)← H

end if
for t← 1 to tstep do

if ep < nrand then ▷ Initial random stage
at ← random.unifrom(Env.action)

else
if episode step = 0 then
P ← Dijkstra’s Algorithm(H′, ϕ(s0), g): (ϕ(s0), wp1, wp2, ..., g)
waypoint index p← 1; tracking time ttr ← 0

end if
if achieved goal g then

g ← Goal Shifting(H′, g)
P ← Dijkstra’s Algorithm(H′, ϕ(st), g): (ϕ(st), wp1, wp2..., g)
p← 1; ttr ← 0

else if achieved waypoint wpp then
na
wpp
← na

wpp
+ 1

ns
wpp
← ns

wpp
+ 1

p← p+ 1; ttr ← 0
else if ttr > τt then

na
wpp
← na

wpp
+ 1

H′ ← Remove Subgoal(H′, wpp)
if na

wpp
> τn and ns

wpp
= 0 then

H ← Remove Subgoal(H, wpp)
Vu ← Vu ∪ {wpp}

end if
P ← Dijkstra’s Algorithm(H′, ϕ(st), g): (ϕ(st), wp1, wp2..., g)
p← 1; ttr ← 0

end if
at ← π(st, wpp)

end if
Env.step(at)
Train policy π
ttr ← ttr + 1

end for
end for

11

Under review as a conference paper at ICLR 2024

Algorithm 2 Training policy

Input: replay buffer B, maximum her step hmax

sample D ← (st, sgt, at, r(st+1, sgt), st+1) ∈ B
relabel sgt ← ˆsgt = ϕ(st+th) where th ∼ Uniform([0,min(ttotal − t, hmax)])
update π using D

Algorithm 3 Grid Graph Construction

Input: grid interval n, goal space dimension m, lower bound of goal space l, upper bound of goal
space u

Output: graphH(V, E)

vertex set V ← ∅; edge set E ← ∅
for m← 1 to k do
Vm ← ∅
x← l
while x < u do
Vm ← Vm ∪ {x}
x← x+ n

end while
end for
V ← V1 × V2 × ...× Vk
for i ∈ V do

hi ← n ▷ grid interval
na
i ← 0 ▷ attempt count

ns
i ← 0 ▷ success count

end for
for i, j ∈ V do

if ∥vi, vj∥2 ≤ n then
wi,j ← n;wj,i ← n
E ← E ∪ {(i, j), (j, i)}

end if
end for
returnH(V, E)

Algorithm 4 Grid Refinement

Input: graphH, marked unattained subgoal set Vu
Output: expanded graphH, marked unattained subgoal set Vu

if the number of succeeded subgoals in V is increased then
returnH,Vu

end if
if Vu is empty then

returnH,Vu
end if
d← maxi∈Vu hi

i← uniformly random sample from Vu where hi == d
Vu ← Vu \ {i}
hi ← hi/2
for j ∈ G5×5

i,hi
do

if j /∈ G then
V ← V ∪ j

end if
Add edges between j and v ∈ V which ∥j, v∥2 ≤ hi

end for
returnH,Vu

12

Under review as a conference paper at ICLR 2024

Algorithm 5 Goal Shifting

Input: graphH, goal g
Output: goal g

Vs ← {i|i ∈ V, na
i = 0}

if Vs ̸= ∅ then
g ← argmin

i
dist(Dijkstra’s algorithm(g, i)) for i ∈ Vs

end if
return g

Algorithm 6 Remove Subgoal

Input: graphH(V, E), subgoal j
Output: modified graphH(V, E)

for (i, j) ∈ E do
wi,j ←∞

end for
returnH

13

Under review as a conference paper at ICLR 2024

(a) U-maze (b) Π-maze (c) Complex-maze

(d) Bottleneck-maze (e) Reacher3D

Figure 9: Success rates across individual seeds. We depicted individual seed values with lighter
lines and emphasized the mean with bolder lines.

B SUCCESS RATES ACROSS INDIVIDUAL RANDOM SEEDS

We present a refined representation of experiment results in Figure 4. In contrast to the original
graph depicting the mean and standard deviation, this visualization subtly overlays individual seeds
for enhanced clarity.

14

Under review as a conference paper at ICLR 2024

Figure 10: Effectiveness of the distance choice in U-maze. value function represents the results
of BEAG conducted using a graph where the weight of edges are assigned based on the distance in
(1).

C DESIGN CHOICE FOR THE WEIGHT OF EDGES

BEAG operates under the assumption that the cost of moving between two subgoals at an equal
distance is similar, determining the weight of edges based on Euclidean distance. However, this
assumption is not universally valid. In more general environments, BEAG can utilize the distance
defined in (1) for the weight of edges. Figure 10 demonstrates BEAG’s comparable performance
with this distance. Nevertheless, while subgoals in previous approaches consist of previously vis-
ited subgoals, ensuring accurate predictions, our graph includes unseen subgoals. As a result, in
the initial stages, (1) may lead to unexpected predictions for unseen edges, potentially generating
unfavorable paths to the goal.

15

Under review as a conference paper at ICLR 2024

(a) grid graph (b) grid graph with diagonal edges

Figure 11: Suboptimality of grid graph. We calculate the suboptimality of the path on the 2D
environment for (a) the proposed grid graph and (b) the proposed grid graph with diagonal edges.
The red path represents the path generated by the grid graph, while the green path corresponds to
the straight path.

D ANALYZING SUBOPTIMALITY OF THE GRID PATH

We are analyzing the issue of suboptimality in our grid path planning. BEAG involves planning
paths that limit movement to a single axis, resulting in the creation of suboptimal paths. For instance,
within the 2D AntMaze environment, paths are confined to movement along either the x or y-axis.
This constraint causes delays in reaching diagonal goals compared to the straight path, contributing
to longer travel times. Our analysis specifically focuses on quantifying the suboptimality of these
grid paths, especially in worst-case scenarios. We assume a 2D obstacle-free environment and that
a perfectly trained low-level policy is available, asserting that the time required for movement is
directly proportional to the Euclidean distance.

As shown in Figure 11a, the time for the path generated by the grid path is m + n, while the
straight path takes

√
m2 + n2. The suboptimality

√
m2+n2

m+n reaches its minimum value at n = m,

approximately
√
2
2 ≈ 0.707. We also analyzing suboptimality when introducing diagonal edges

into the grid graph, as depicted in Figure 11b. In this case, paths generated by the grid graph with
diagonal edges take a time of

√
2m+n, while the straight path takes a time of

√
2m2 + 2mn+ n2.

The suboptimality
√
2m2+2mn+n2

√
2m+n

is calculated as
√

2+
√
2

2 ≈ 0.924 when n =
√
2m. Our analysis

suggests that simply adding diagonal edges when constructing the grid graph can significantly reduce
the suboptimality of paths. However, it is important to note that diagonal edges have a distance

√
2

times that of the existing grid edges. This introduces a potential trade-off, as additional steps may
be necessary for training the low-level policy.

16

Under review as a conference paper at ICLR 2024

E HYPERPARAMETER CHOICE

When evaluating the previous Graph-based RL method, we used the same hyperparameters as used
in their papers. And, we conducted additional tuning the number of landmarks for a fair comparison.

Table 1: Hyperparameter for DHRL and BEAG.

DHRL Ours

initial episodes without graph planning 75 -
gradual penalty 1.5-5.0 -

high-level train freq 10 -
Frontier-based Goal Shifting {π, Complex}-maze -

number of landmarks 300-600 196-900
hidden layer (256, 256) (256, 256)

actor lr 0.0001 0.0001
critic lr 0.001 0.001

τ 0.005 0.005
γ 0.99 0.99

batch size 1024 1024
target update freq 10 10
actor update freq 2 2

Table 2: Hyperparameter for PIG.

Reacher U-maze π-maze Complex-
maze

Initial random trajectories 20k 100k 400k 800k
Number of nodes in a graph 80 400 500 500

Balancing coefficient λ 0.0001 0.001 0.001 0.001
Skipping temperature α 10.0 10.0 10.0 10.0

Hindsight relabelling range 50 200 200 200
Action L2 0.01 0.5 0.5 0.5

Action noise 0.1 0.2 0.2 0.2
clipping threshold for distances 4.0 38.0 38.0 38.0

Table 3: Hyperparameter for HIGL and HIRO.

HIGL HIRO

higl-level τ 0.005 0.005
πhi lr 0.0001 0.0001
Qhi lr 0.001 0.001

high-level γ 0.99 0.99
low-level τ 0.005 0.005

πlo lr 0.0001 0.0001
Qlo lr 0.001 0.001

low-level γ 0.95 0.95
hidden layer (128, 128) (128, 128)

number of coverage landmarks γ 20-100 -
number of novelty landmarks γ 20-400 -

batch size 128 128

17

	Introduction
	Related Works
	Preliminaries
	Goal-conditioned Reinforcement Learning.
	Graph-based Reinforcement Learning.

	Method
	Breadth-first Exploration on Adaptive Grid (BEAG)
	Discussion about BEAG

	Experiments
	Experimental setup
	Comparative results
	Fixed goal environment
	Bottleneck-maze environment
	Ablation study

	Conclusion
	Algorithm
	Success rates across individual random seeds
	Design choice for the weight of edges
	Analyzing suboptimality of the grid path
	Hyperparameter choice

