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Abstract

Distilling advanced Large Language Models’001
instruction-following capabilities into smaller002
models using a selected subset has become a003
mainstream approach in model training. While004
existing synthetic instruction data selection005
strategies can identify valuable subsets for dis-006
tillation, they predominantly rely on single-007
dimensional signals (i.e., reward scores, model008
perplexity). We argue that such narrow signals009
may overlook essential nuances of user instruc-010
tions, especially when each instruction can be011
answered from multiple perspectives. There-012
fore, we investigate more diverse signals to cap-013
ture comprehensive instruction-response pair014
characteristics and propose three foundation015
metrics that leverage Multi-LLM wisdom: (1)016
diverse responses across multiple LLMs and (2)017
reward model assessment. Based on these met-018
rics, we propose CROWDSELECT, which com-019
bines all three metrics with diversity preserva-020
tion through clustering. Our comprehensive ex-021
periments demonstrate that our foundation met-022
rics consistently improve performance across023
4 base models on MT-bench and Arena-Hard.024
Our CROWDSELECT, as an integrated metric,025
achieves state-of-the-art performance in both026
Full and LoRA fine-tuning, showing improve-027
ments of 4.81% on Arena-Hard and 11.1%028
on MT-bench with Llama-3.2-3b-instruct. We029
hope our findings will bring valuable insights030
for future research in this direction.031

1 Introduction032

In recent years, Large Language Models (LLMs)033

(Achiam et al., 2023; Jaech et al., 2024; Team et al.,034

2024; Guo et al., 2025) have demonstrated remark-035

able capability in following user instructions to gen-036

erate coherent and contextually helpful responses037

(Jiang et al., 2023; Zheng et al., 2023b; Wen et al.,038

2024). Yet, the computational overhead for instruc-039

tion tuning and massive parameter sizes of these040

models create a considerable barrier to practical041

deployment (Peng et al., 2023). To address this,042
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Figure 1: A demonstration of instruction tuning with
selected synthetic instruction-response pairs.

many approaches distill the instruction-following 043

prowess of advanced LLMs into smaller, more ef- 044

ficient models through a small-amount instruction 045

tuning with synthetic responses (Xia et al., 2024; 046

Zhou et al., 2024a). 047

A critical bottleneck, however, lies in selecting 048

the right data for this distillation process. Most 049

existing data selection methods rely on prede- 050

fined rules (Chen et al., 2023a), automated single- 051

dimensional signals — such as reward scores (Wu 052

et al., 2024b; Lambert et al., 2024) or difficulty 053

metrics (Li et al., 2023b, 2024b) — to identify valu- 054

able examples for fine-tuning. While effective to a 055

point, such narrow signals may overlook essential 056

nuances of user instructions, especially when each 057

instruction can be answered from multiple perspec- 058

tives (Händler, 2023; Feng et al., 2025). This raises 059

a fundamental question: “Can we leverage multi- 060

dimensional signals to better reflect the various 061

facets of each sample for more effective instruction 062

tuning data selection?” 063

Inspired by previous work that leverage Multi- 064

LLMs collaboration, we take a explorative step to- 065

ward more robust and comprehensive data selection 066

by introducing CROWDSELECT, a framework that 067

harnesses pre-collected Multiple LLMs’ responses 068

and their reward scores, treating as different reflec- 069

tion of the instruction to leverage Multi-LLM Wis- 070
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dom. Instead of treating each instruction–response071

pair in isolation—typically derived from just one072

model’s output—our method aggregates multiple073

responses for each instruction from a diverse set074

of LLMs. Crucially, we also factor in each re-075

sponse’s reward as provided by state-of-the-art re-076

ward models. This multi-view setup captures more077

“facets” of each instruction, illuminating subtle dif-078

ferences in how various models handle the same079

query. Based on these observations, we propose080

three base explorative metrics:081

• Difficulty - Identifies instructions on which the082

majority of models struggle, surfacing challeng-083

ing prompts critical to learning.084

• Separability – Highlights instructions whose re-085

sponse quality exhibits high variance across mod-086

els, making them especially useful for differenti-087

ating stronger from weaker capabilities.088

• Stability – Measures how consistently model089

performance follows expected size-based ranking090

across families, ensuring the selected data helps091

reinforce well-grounded alignment signals.092

Our exploratory experiments in FFT and low-093

rank adaptation (LoRA) (Hu et al., 2021) experi-094

ments on LLama-3.2-3b-base/instruct (Dubey et al.,095

2024) and Qwen-2.5-3b-base/instruct (Yang et al.,096

2024b) demonstrate the robustness and efficacy of097

our proposed metrics through significant perfor-098

mance gaps between top-scored and bottom-scored099

data subset fine-tuning, with potential further im-100

provements through metric combination.101

Subsequently, we propose CROWDSELECT that102

combines these metrics with a clustering strategy103

to preserve diversity and exlore the upperbound of104

leveraging Multi-LLM wisdom to identify a com-105

pact yet high-impact subset of instruction-response106

data. Experimental results show that models fine-107

tuned on our selected subset significantly outper-108

form baselines and previous state-of-the-art data se-109

lection methods, achieving improvements of 4.81%110

on Arena-Hard and 11.1% on MT-bench with111

Llama-3.2-3b-instruct. Furthermore, CROWDSE-112

LECT achieves state-of-the-art performance across113

four models on two benchmarks, demonstrating114

both the generalizability and robustness of our se-115

lected data and methodology, paving a new dimen-116

sion for efficient instruction tuning.117

Our contributions are summarized as follows:118

• Investigation of Multi-LLM Wisdom in In-119

struction Data Selection. We propose a novel120

approach that utilizes multiple synthesized re- 121

sponses from different LLMs for each instruction, 122

enhancing the diversity and quality of data. 123

• Novel Metrics and Methods. We design three 124

new explorative base metrics—Difficulty, Sepa- 125

rability, and Stability—that leverage multi-LLM 126

responses and reward scores as more comprehen- 127

sive signals, and combine them into CROWDS- 128

ELECT to explore upperbound in selecting high- 129

quality data for instruction tuning. 130

• State-of-the-art Performance. We demonstrate 131

that combining our metrics and clustering tech- 132

niques for data selection leads to a new SOTA in 133

efficient instruction tuning in both Llama-3.2-3b 134

and Qwen-2.5-3b. 135

2 Related Work 136

Instruction Tuning Data Selection. Instruction 137

Tuning stands out to be a method to solve the gap 138

between pretrained knowledge and real-world user 139

scenarios (Ouyang et al., 2022; Bai et al., 2022). 140

Recent efforts like Vicuna (Peng et al., 2023) and 141

LIMA (Zhou et al., 2024a) demonstrate high per- 142

formance with a carefully selected small dataset, 143

highlighting the growing importance of efficient 144

instruction tuning. Three key metrics determine 145

instruction data quality: Difficulty, Quality, and Di- 146

versity. Difficulty, focusing mainly on the question 147

side, is considered more valuable for model learn- 148

ing (Li et al., 2023b, 2024b; Liu et al., 2024b; Lee 149

et al., 2024; Wang et al., 2024b). Quality, mainly 150

addressing the response side, measures the help- 151

fulness and safety of model responses, typically 152

assessed using LLM evaluators (Chen et al., 2023a, 153

2024b; Liu et al., 2024c; Ye et al., 2024), reward 154

models (Son et al., 2024; Lambert et al., 2024), and 155

gradient similarity search (Xia et al., 2024). Di- 156

versity also plays a crucial role in covering various 157

instruction formats and world knowledge, primarily 158

improving model robustness (Bukharin and Zhao, 159

2023; Wang et al., 2024d). 160

Data Synthesis for Instruction Tuning. While 161

the development of LLMs initially relied on human- 162

curated instruction datasets for instruction tuning 163

(Zheng et al., 2023a; Zhao et al., 2024; Lightman 164

et al., 2023), this approach proved time-consuming 165

and labor-intensive, particularly as the complex- 166

ity and scope of target tasks increased (Demrozi 167

et al., 2023; Wang et al., 2021). Consequently, re- 168

searchers began exploring the use of frontier LLMs 169
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to generate synthetic instruction datasets, aiming170

to both address these scalability challenges (Ding171

et al., 2023; Chen et al., 2023b, 2024d) and lever-172

age models’ advanced capabilities in developing173

next-generation foundation models (Burns et al.,174

2023; Charikar et al., 2024). Recent advancements175

streamline this process by utilizing instructions di-176

rectly from pretrained LLMs with simple prompt177

templates (Xu et al., 2024a; Chen et al., 2024c;178

Zhang et al., 2024), significantly reducing the re-179

quired custom design from human effort.180

Deriving Crowded Wisdom from Multi-LLM.181

Single LLM’s response to a question face limi-182

tations in its representation of data (particularly183

cutting-edge knowledge) (Lazaridou et al., 2021;184

Dhingra et al., 2022; Kasai et al., 2023), skills (as185

no single LLM is universally optimal empirically)186

(Sun et al., 2022; Liang et al., 2022; Chen et al.,187

2024a), and diverse perspectives (Feng et al., 2025).188

Previous work has demonstrated that online multi-189

LLM wisdom (also known as compositional agent190

frameworks (Gupta and Kembhavi, 2023)) tends to191

outperform single models across various domains,192

providing more comprehensive and reflective so-193

lution on complex downstream tasks (Wang et al.,194

2024c; Wu et al., 2023; Li et al., 2023a; Ouyang195

et al., 2025; Gui et al., 2025). Offline crowded196

wisdom, where data are pre-collected rather than197

real-time inference, also show potential in model198

alignment (Gallego, 2024; Rafailov et al., 2023;199

Meng et al., 2025) and benchmark construction200

(Ni et al., 2024b,a). In this paper, we pioneer the201

use of offline multi-LLM wisdom for instruction202

data selection by utilizing these LLMs’ responses203

and their reward score as reflections to measure204

instruction-response pairs’ Difficulty and Quality.205

3 Methodology206

In this section, we first define our synthetic data207

selection task and propose three foundational met-208

rics that leverage responses and assessment scores209

from multiple advanced LLMs. We then introduce210

CROWDSELECT, which combines these metrics211

with diversity-preserving clustering to explore the212

upper bounds of Multi-LLM Wisdom.213

3.1 Preliminaries214

We formulate the instruction quality as the consen-215

sus among N LLMs. Given an instruction-tuning216

dataset, we extract all instructions from the dataset217

to form instruction dataset Q. For each instruction218

qi ∈ Q, a response set Ri is obtained by querying 219

multiple LLMs. An assessment model then evalu- 220

ates the response set Ri to form the score set CM
i 221

based on metrics M . The index of M is omitted 222

for brevity in the following context unless specified. 223

The top-k instruction subset of metric M is defined 224

as 225

SM
k = argmax

S⊂S,|S|=k
M(CM

i ) (1) 226

where SM
k consists of the k instructions that maxi- 227

mize the metric M . 228

The corresponding response rMi for each instruc- 229

tion qMi from the instruction subset SM
k is subse- 230

quently obtained by 231

rMi = Top(Ri, C
M
i ) (2) 232

where Top(RS
i , C

M
i ) denotes the best responses 233

in rSi ranked by CM
i . The produced instruction- 234

answer subset Q̂ = {(rMi , qMi )} is then utilized for 235

finetuning as an alternative of the original dataset. 236

3.2 Base Metrics 237

In this section, we introduce three new base metrics 238

to leverage multiple LLMs’ responses and their 239

reward scores as various “facets” to reflect the 240

value of each sample. 241

Difficulty. The difficulty score Cdiff is defined 242

as the negative value of the average score, which 243

is the mean score of all the model responses for a 244

given instruction. 245

Cdiff = −
∑

CM
i

N
(3) 246

Higher difficulty indicates more challenging instruc- 247

tions. This metric is particularly well-suited for 248

fine-tuning on reasoning tasks, e.g. mathematics 249

and planning, where the goal is often to improve 250

performance on complex problems. By focusing on 251

instructions with higher difficulty, we prioritize ex- 252

amples that are likely to be answered incorrectly by 253

the majority of models. This ensures that the fine- 254

tuning dataset includes a substantial proportion of 255

challenging instructions, maximizing the model’s 256

exposure to difficult material and potentially lead- 257

ing to greater improvements in performance. 258

Separability. The separability score Csep is de- 259

fined as the score variance, which is the variance 260

of all the response scores for an instruction. 261

Csep = var(CM
i ) (4) 262
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Figure 2: The overall pipeline of our CROWDSELECT, which innovatively leverages metrics calculated from multiple
facets of instructions using pre-collected synthesized responses from various LLMs and their corresponding reward
model scores. We enhance data selection through clustering for diversity and metric combination to explore the
method’s potential. Finally, we evaluate the effectiveness of our selected instruction subset through FFT or LoRA
fine-tuning (Hu et al., 2021) for efficient instruction tuning.

Higher Separability indicates that a considerable263

proportion of models cannot perform well on the264

instruction, thus this instruction is more effective265

in differentiating between models. This characteris-266

tic makes the Separability particularly well-suited267

for curating datasets of knowledge remembering or268

preference alignment. In such datasets, some mod-269

els may exhibit strong performance while others270

struggle. By selecting instructions with high separa-271

bility, we prioritize examples that effectively distin-272

guish between these varying levels of competence.273

These “discriminatory” examples are valuable be-274

cause they provide the fine-tuned model with op-275

portunities to learn from the specific challenges276

that differentiate successful models from less suc-277

cessful ones. Focusing on these examples enforces278

the finetuned model to handle the nuances and com-279

plexities that separate high-performing models.280

Stability. Stability is defined as the average spear-281

man factor, which is the mean of five spearman282

factors, corresponding to five model families. The283

spearman factor is calculated based on ra and rb:284

1
n

∑n
i=1(r

a
i −ra)·(rbi−rb)√(

1
n

∑n
i=1(rai −ra)

2
)
·
(

1
n

∑n
i=1(rbi 2−rb)

2
) (5)285

• ra refers to the original ranking within a286

model family, where models with larger pa-287

rameters are theoretically ranked higher, natu- 288

rally aligning with the performance rank. 289

• rb is determined by the ranking of mod- 290

els based on their response scores (e.g., if 291

LLaMA-3B has a response score of 90 and 292

LLaMA-8B has a response score of 75, then 293

3B ranks higher than 8B within the LLaMA 294

family). 295

Stability effectively captures how well per- 296

formance rankings align with expected model 297

size rankings using Spearman’s rank correlation 298

(Schober et al., 2018), making it robust to varia- 299

tions in score scales and non-linear relationships. 300

Averaging across model families further strength- 301

ens the robustness of the score, alleviating perfor- 302

mance gaps among model families. 303

3.3 CROWDSELECT: Explore the 304

Upperbound with Multi-LLM Wisdom 305

Diversity Preservation with Clustering. To fa- 306

cilitate clustering, all instructions were embedded 307

into a fixed-dimensional latent space using a pre- 308

trained embedding model. Within each cluster, in- 309

structions were then ranked with the given metric, 310

and the highest-ranked instructions were selected. 311

To avoid over-representing dominant clusters and 312

neglecting potentially valuable information con- 313
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tained within smaller or less frequent clusters, we314

draw equally from each cluster to form a more315

robust and generalizable subset.316

Multi-metric Integration Building upon the317

cluster-based selection strategy, we introduce a318

multi-metric approach to leverage the diverse infor-319

mation captured by the difficulty, separability, and320

stability scores. Each instruction-response pair is321

thus characterized by a vector of associated scores,322

reflecting its various attributes. However, these323

metrics exhibit different distributions, ranges, and324

magnitudes. Therefore, we employ a three-stage325

normalization process to ensure equitable contribu-326

tion from each metric.327

Specifically, each metric score is standardized328

to standard normal distribution. The standardized329

scores are then normalized to [0, 1] using a min-330

max scaling approach. Finally, to further refine the331

distribution and mitigate the impact of potential332

outliers, we apply a quantile transformation that333

maps the normalized scores to a uniform distribu-334

tion between [0, 1].335

ZM
i =

(CM
i − µM )

σM
(6)336

337

NM
i =

(ZM
i −min(ZM ))

(max(ZM )−min(ZM ))
(7)338

339

ρMi = quant(NM
i |NM ) (8)340

Following this normalization procedure, we ag-341

gregate the transformed scores into a single multi-342

metric score Ĉ for each instruction-response pair.343

This aggregation is performed using a weighted344

sum of the proposed metrics:345

Ĉi =
∑
j

wi ∗ ρ
Mj

i (9)346

where ρ
Mj
i represent the quantile-transformed347

scores for metric j, and wi are the corresponding348

weights assigned to each metric. This weighted349

multi-metric approach, combined with the preced-350

ing normalization steps, ensures a balanced and351

robust data selection process that leverages the com-352

plementary information provided by the different353

metrics.354

4 Experiment355

In this section, we first validate our base met-356

rics through comparative experiments between top-357

scored and bottom-scored data subsets. We then358

evaluate CROWDSELECT against existing baselines 359

and state-of-the-art methods. Finally, we conduct 360

an ablation study to analyze the contribution of 361

each sub-module within CROWDSELECT. 362

4.1 Experiment Setups 363

Datasets. We conduct our experiments on 364

Magpie-100K-Generator-Zoo1 given that it di- 365

rectly matches our problem setting that contains 366

answers from 19 models—Qwen2 (Yang et al., 367

2024a), Qwen2.5 (Yang et al., 2024b), Llama 3 368

(Dubey et al., 2024), Llama 3.1 (Dubey et al., 369

2024), Gemma 2 (Team et al., 2024), Phi-3 (Ab- 370

din et al., 2024) families and GPT-4(Achiam 371

et al., 2023)—and their reward scores from three 372

state-of-the-art reward models from RewardBench 373

(Lambert et al., 2024): ArmoRM-Llama3-8B-v0.1 374

(Wang et al., 2024a), Skywork-Reward-Llama-3.1- 375

8B (Liu and Zeng, 2024), and Skywork-Reward- 376

Gemma-2-27B (Liu and Zeng, 2024). 377

Evaluation. To evaluate the instruction- 378

following capabilities, we use two widely-used 379

instruction-following benchmarks: MT-Bench 380

(Zheng et al., 2023b) and Arena-Hard (Li et al., 381

2024c). Both benchmarks mainly leverage LLM- 382

as-a-Judge (Zheng et al., 2023b) for evaluation, 383

while MT-Bench leverage 1-10 rating scoring and 384

Arena-Hard leverage direct pairwise comparison 385

and finally provide a leaderboard with one model 386

as anchor-points. In our experiment, we set 387

the base model (i.e., LLaMA-3.2-3B-base) as 388

the anchor point for models for arena battles. 389

We unified the LLM-as-a-Judge model in both 390

benchmarks as DeepSeek-V3 (Liu et al., 2024a) 391

through official API2 and Together API3 given its 392

high performance on natural language generation 393

tasks. Thanks to the unified judge model, we 394

additionally report the Average Performance 395

(AP) as a ranking computed by the ranking in 396

MT-Bench and Arena-Hard. Each experiment 397

was conducted 3 times. The average results 398

are reported to ensure the reliability and 399

reproducibility. 400

Base Models. Following Xu et al. (2024b), 401

we consider four small models from different 402

developers as student models, including base 403

1https://huggingface.co/datasets/Magpie-Align/
Magpie-100K-Generator-Zoo

2https://platform.deepseek.com/
3https://api.together.ai/
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Table 1: Validation of our three foundation metrics on Full fine-tuning Llama-3b-instruct with top-scored (↑) and
bottom-scored (↓) instruction selection and different response selection strategy. Best and second results for each
metric is highlighted in bold and underline.

Strategy DirectScore Difficulty Separability Stability Multi↓ ↑ ↓ ↑ ↓ ↑

MT-Bench

Best-answer 4.406 4.506 4.738 4.731 5.056 4.675 5.088 5.125
Random 4.470 4.469 4.688 4.695 4.785 4.500 4.581 4.613

Top5-random 4.435 4.681 4.870 4.788 5.008 4.619 4.956 5.048

Arena-Hard

Best-answer 75.3(-2.0, 1.6) 78.6(-1.9, 2.1) 76.8(-1.6, 1.7) 81.8(-1.8, 1.2) 83.3(-1.8, 1.7) 80.0(-1.5, 1.6) 82.3(-1.6, 2.2) 85.5(-0.8, 1,1)

Random 74.5(-1.1, 1.2) 78.5(-1.6, 1.3) 80.4(-1.0, 1.5) 79.0(-1.3, 1.4) 80.6(-1.6, 1.6) 76.2(-0.8, 1.6) 77.0(-1.0, 1.8) 82.3(-1.2, 1.3)

Top5-random 73.7(-1.2, 1.8) 75.9(-1.6, 1.5) 76.8(-1.2, 1.4) 82.0(-1.3, 1.2) 80.0(-0.7, 1.3) 75.0(-4.4, 5.8) 76.9(-1.4, 1.6) 83.1(-1.4, 1.7)

and instruct models—Qwen-2.5-3B, Qwen-2.5-3B-404

Instruct (Yang et al., 2024b) and LLaMA-3.2-3B,405

LLaMA-3.2-3B-Instruct (Dubey et al., 2024). We406

use 10 clusters for diversity preservation, and the407

multimetric setting uses w = (1, 1, 2) for metric408

intergration in the following experiments.409

Baselines. We include 7 baselines in our exper-410

iments. Random, denotes a randomly selected411

instruction-answer set from the original dataset.412

We also compared two previous state-of-the-art413

data selection method: Instag (Lu et al., 2023) ,414

and IFD (Li et al., 2023b). For rule-based method,415

We include Length and Reward Score (Liu et al.,416

2023). More details are shown in Appendix B.3.417

Instruction-Tuning Setups. We conduct our418

fine-tuning and evaluation on single A800 and419

A6000 servers. For fine-tuning, we use LLaMA-420

Factory (Zheng et al., 2024). For evaluation, we421

leverage the official codebase of MT-Bench4 and422

Arena-Hard5 for automatic assessments. See Ap-423

pendix B for more details of experiment setups.424

4.2 Experiment Results.425

Three foundation metrics demonstrate effective-426

ness in selecting valuable samples. As shown427

in Table 1, our three foundation metrics consis-428

tently identify valuable instruction samples across429

all response selection strategies. Models fine-tuned430

on Top-scored samples consistently outperform431

Bottom-scored samples, with Stability exceed the432

most margin. We also explore the response se-433

lection strategies to build a foundation for follow-434

ing experiments. Best-answer setting outperforms435

4https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge

5https://github.com/lmarena/Arena-Hard-auto

both Random and Top5-random approaches, indi- 436

cating that responses with higher reward scores 437

provide better quality data for distillation. This 438

consistent performance across individual metrics 439

establishes strong foundation for further improve- 440

ments through integration. Therefore, we use top- 441

scored as the instruction selection and Best-answer 442

as the corresponding response for all experiments. 443

CROWDSELECT achieves new state-of-the-art 444

performance on both benchmarks. As shown 445

in Table 2, our approach significantly outperforms 446

previous baselines across four models, demonstrat- 447

ing robust generalization. On Arena-Hard and 448

MT-bench, CROWDSELECT with Llama-3.2-3b- 449

instruct achieves scores of 85.5 and 7.103 respec- 450

tively, surpassing the previous best results by 4.81% 451

and 11.1%. For Qwen-2.5-3b-instruct, CROWDSE- 452

LECT outperforms the strongest baseline by 3.90%, 453

validating our approach of post-training with high- 454

quality instructions and model distillation. Even for 455

base models, our foundation metrics and CROWD- 456

SELECT prove effective, notably improving Llama- 457

3.2-3b’s performance on MT-bench by 12.3%. 458

CROWDSELECT metrics perform robust on var- 459

ious finetuning methods. Beyond demonstrating 460

superior performance on standard benchmarks, the 461

proposed metrics were further evaluated for robust- 462

ness across a range of fine-tuning methodologies. 463

Table 1 revealed consistent and stable performance 464

of the proposed metrics. This robustness across 465

varying training paradigms highlights the general- 466

izability of the metrics and suggests their applica- 467

bility in a wider range of practical scenarios. 468

4.3 Ablation Studies 469

In this section, we conduct ablation studies for each 470

module in CROWDSELECT to provide a compre- 471
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Figure 3: Overall results demonstrate that our foundation metrics and CROWDSELECT consistently outperform
baseline methods by a significant margin across FFT settings of four models, with particularly strong performance
improvements on Llama-3b-instruct.

hensive analysis of our approach.472

Dataset Size. Cao et al. (2023) suggests that se-473

lecting concise subsets from all datasets yield com-474

petitive results. Following this finding, we collect475

1k instruction-response pairs overall in our main ex-476

periments. Further experiments on various dataset477

sizes also support this finding. From the results in478

4, small elite datasets behaves on par with a large479

dataset. This highlights the importance of data480

quality over sheer quantity in instruction tuning.481

Metric Coefficient Combination Our experi-482

ments explored various coefficient combinations483

to determine the optimal balance for creating high-484

quality, robust datasets. Table 3 details the process485

of optimizing the weights assigned to different met-486

rics when evaluating dataset quality. As shown in487

the table, the coefficient combination w = (1, 1, 2)488

consistently yielded superior results compared to489

other tested combinations.490

Number of Clusters Clustering’s impact on491

dataset quality was investigated by varying the492

number of clusters during dataset construction (see493

Table 4). While no strong positive correlation was494

observed between cluster count and quality, all clus- 495

tered datasets outperformed those constructed with- 496

out clustering. The results highlight the importance 497

and robustness of the clustering process. 498

Response Generation Strategy The response 499

generation strategy largely affects the generation 500

quality of the finetuned LLM. Table 1 shows that 501

the best-answer strategy substantially outperforms 502

other strategies, highlighting the importance of 503

dataset response quality. We argue the reason for 504

strategy independence of the difficulty metric is 505

that the core challenge in these instructions is in- 506

herently tied to the complexity of the task, not in 507

the method of response formulation. For instance, 508

a highly challenging instruction may require the 509

model to synthesize information from multiple do- 510

mains, reason through abstract concepts, or pro- 511

duce detailed, contextually rich outputs. These 512

demands remain consistent, regardless of response 513

generation strategies. 514

Further experiments on finetuning with LoRA 515

and reward model selection are also presented in 516

Appendix C. 517

7



Table 2: Performance comparison of full finetuned Llama3.2-3b-base/instruct and Qwen2.5-3b-base/instruct models
with different data selection strategies. The best and second results are in bold and underline.

Benchmark Base Baselines Our Metrics

Random Tags IFD Difficulty Separability Stability Multi

Llama3.2-3b-base

MT-Bench 4.302 4.406 4.562 3.962 4.738 5.056 5.088 5.125
Arena-Hard 50.0(-0.0, 0.0) 75.3(-2.0, 1.6) 77.3(-1.1, 1.2) 77.6(-1.6, 1.6) 76.8(-1.6, 1.7) 83.3(-1.8, 1.7) 78.3(-1.6, 2.2) 80.6(-2.4, 1.6)

Llama3.2-3b-instruct

MT-Bench 6.200 6.356 6.393 6.243 6.648 6.581 6.625 7.103
Arena-Hard 74.4(-1.0, 1.5) 74.8(-1.5, 1.6) 81.6(-0.2, 0.2) 78.4(-1.7, 1.5) 80.5(-0.9, 1.3) 77.9(-1.5, 1.7) 77.4(-1.5, 1.1) 85.5(-0.8, 1.1)

Qwen2.5-3b-base

MT-Bench 6.043 6.500 6.818 5.825 6.613 7.075 6.681 6.625
Arena-Hard 69.0(-2.2, 1.6) 72.9(-2.2, 1.9) 79.3(-2.2, 1.9) 74.5(-1.5, 1.5) 73.8(-2.5, 1.8) 74.1(-1.6, 2.4) 76.8(-1.8, 1.8) 79.9(-1.6,1.8)

Qwen2.5-3b-instruct

MT-Bench 7.138 6.793 6.818 6.731 7.182 7.269 7.294 7.131
Arena-Hard 81.6(-1.8, 1.4) 78.2(-1.7, 2.0) 82.0(-2.4, 1.6) 80.4(-1.3, 1.0) 81.8(-1.6, 1.3) 83.7(-1.4, 1.2) 83.5(-1.4, 1.4) 85.2(-1.2, 1.1)

Table 3: Hyperparameter comparison of CROWDSE-
LECT using Llama-3b-instruct models with varying clus-
ter numbers. The sequence represents (Difficulty, Sepa-
rability, Stability).

Hyperparameter MT-Bench Arena-Hard

1_1_1 6.913 81.8(-0.5, 0.8)

1_-1_1 6.625 84.2(-0.7, 1.0)

1_1_2 7.103 85.5(-0.8, 1.1)

1_1_-1 6.650 82.7(-1.5, 1.4)

1_1_1.5 6.850 84.7(-1.6, 1.3)

1_-1_1.5 6.781 83.0(-1.4, 1.4)

-1_-1_1 6.781 81.9(-1.5, 1.3)

-1_-1_2 6.838 84.8(-1.3, 1.2)

-1_-1_1.5 6.638 81.8(-1.3, 1.3)

Figure 4: Results show that small elite datasets behaves
on par with a large dataset. Our implementation (line in
red) achieves reasonably good results on all scenarios.

5 Conclusion518

This paper presents novel metrics for synthetic in-519

struction data selection based on Multi-LLM Wis-520

dom, capturing the difficulty of instructions from521

multiple perspectives through various LLMs’ re-522

sponses and their corresponding reward scores. We523

validate our hypothesis through the strong perfor-524

Table 4: Performance comparison of FFT-version of
Llama-3b-instruct on different coefficient combinations
for multiple metrics with clustering.

Benchmark Random Difficulty Separability Stability

10 clusters

MT-Bench 6.443 6.675 6.619 6.913
Arena-Hard 80.9 82.6 81.9 81.8

Arena-Hard-95%CI (-1.3, 1.4) (-1.2, 1.8) (-1.7, 1.7) (-1.5, 1.7)

20 clusters

MT-Bench 6.607 6.615 6.591 6.686
Arena-Hard 82.8 83.1 85.2 82.8

Arena-Hard-95%CI (-1.2, 1.4) (-1.1, 1.7) (-1.3, 1.1) (-1.4, 1.1)

30 clusters

MT-Bench 6.721 6.737 6.725 6.562
Arena-Hard 83.2 84.9 83.3 83.8

Arena-Hard-95%CI (-1.3, 1.1) (-1.0, 1.1) (-1.4, 1.4) (-1.4, 1.2)

mance of individual metrics on both MT-Bench 525

and Arena-Hard using FFT and LoRA fine-tuning 526

on Llama-3.2-3b and Qwen-2.5-3b. By combin- 527

ing diversity enhancement through clustering with 528

our proposed metrics, CROWDSELECT consistently 529

outperforms state-of-the-art data selection meth- 530

ods, establishing both new perspectives and a ro- 531

bust baseline for instruction tuning data selection. 532

Limitations 533

While CROWDSELECT demonstrates significant 534

improvement in synthetic data selection tasks, we 535

acknowledge several limitations. Our approach 536

computes data selection metrics by leveraging re- 537

sponses from multiple models across different 538

model families and their corresponding reward 539

model scores. However, this methodology may 540

be susceptible to reward model biases, including 541

potential reward hacking issues. Although a more 542

8



organic integration of multiple reward scores could543

potentially enhance robustness, the computation544

of these scores requires additional computational545

resources. Furthermore, our experiments were con-546

ducted on both A800 and A6000 GPUs, and the547

variation in hardware environments may introduce548

some instability and affect experimental results, po-549

tentially impacting the reproducibility of our find-550

ings.551
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A Detailed Related Works1024

Instruction Tuning Data Selection. While1025

Large Language Models (LLMs) like GPT-41026

(Achiam et al., 2023; OpenAI, 2024) and Llama-31027

(Dubey et al., 2024) excel in natural language un-1028

derstanding and generation, their pretraining objec-1029

tives often misalign with user goals for instruction-1030

following tasks (Murthy et al., 2024; Gao et al.,1031

2024; Wen et al., 2024). Instruction tuning (or1032

supervised fine-tuning) addresses this gap by re-1033

fining LLMs on curated datasets of prompts and1034

responses. Recent efforts like Vicuna (Peng et al.,1035

2023) and LIMA (Zhou et al., 2024a) demonstrate1036

high performance with a carefully selected small1037

dataset, highlighting the growing importance of1038

efficient instruction tuning and paving the way1039

for aligning models with selected samples. This1040

involves determining which instruction-response1041

pairs to include in the training dataset and how to1042

sample them effectively (Albalak et al., 2024).1043

Three key metrics determine instruction data1044

quality: Difficulty, Quality, and Diversity. Dif-1045

ficulty, focusing mainly on the question side, is1046

considered more valuable for model learning (Liu1047

et al., 2024b; Lee et al., 2024; Wang et al., 2024b).1048

IFD (Li et al., 2023b) pioneered the measurement1049

of instruction-following difficulty for specific pairs,1050

later enhanced by utilizing GPT-2 for efficient es-1051

timation in a weak-to-strong manner (Li et al.,1052

2024b). Quality, mainly addressing the response1053

side, measures the helpfulness and safety of model1054

responses, typically assessed using LLM evaluators1055

(Chen et al., 2023a, 2024b; Liu et al., 2024c; Ye1056

et al., 2024), reward models (Son et al., 2024; Lam-1057

bert et al., 2024), and gradient similarity search1058

(Xia et al., 2024). Diversity, spanning both in-1059

struction and response aspects, plays a crucial role1060

in covering various instruction formats and world1061

knowledge, primarily improving model robustness1062

(Bukharin and Zhao, 2023; Wang et al., 2024d).1063

Our work stands out by addressing all three key1064

components in data selection, introducing novel1065

approaches to measuring difficulty from multiple1066

LLMs’ responses and ultimately enhancing model1067

performance.1068

Data Synthesis for Instruction Tuning. While1069

the development of LLMs initially relied on human-1070

curated instruction datasets for instruction tuning1071

(Zheng et al., 2023a; Zhao et al., 2024; Lightman1072

et al., 2023), this approach proved time-consuming1073

and labor-intensive, particularly as the complex-1074

ity and scope of target tasks increased (Demrozi 1075

et al., 2023; Wang et al., 2021). Consequently, re- 1076

searchers began exploring the use of frontier LLMs 1077

to generate synthetic instruction datasets, aiming 1078

to both address these scalability challenges (Ding 1079

et al., 2023; Chen et al., 2023b, 2024d) and lever- 1080

age models’ advanced capabilities in developing 1081

next-generation foundation models (Burns et al., 1082

2023; Li et al., 2024b; Charikar et al., 2024). Early 1083

approaches (Xu et al., 2023; Wang et al., 2024e; 1084

Zhou et al., 2024b; Luo et al., 2023) focused on 1085

leveraging LLMs to generate synthetic instructions 1086

through a subset of human-annotated seed instruc- 1087

tions (Chen et al., 2023a; Wang et al., 2023), and 1088

further enhanced by few-shot (Li et al., 2024a) and 1089

attribute-guided prompting (Yu et al., 2023; Wu 1090

et al., 2024a; Huang et al., 2024). A parallel line of 1091

research explored summarizing world knowledge 1092

to create more diverse synthetic datasets, aiming 1093

to maximize the coverage of different domains and 1094

task types (Cui et al., 2023; Li et al., 2024a). Re- 1095

cent advancements have further streamlined this 1096

process by utilizing instructions directly from pre- 1097

trained LLMs with simple prompt templates (Xu 1098

et al., 2024a; Chen et al., 2024c; Zhang et al., 2024), 1099

significantly reducing the required custom design 1100

from human effort. While existing work has pri- 1101

marily focused on generating extensive, diverse, 1102

and high-quality datasets—often scaling to 100,000 1103

examples or more—this approach introduces chal- 1104

lenges in terms of computational efficiency and 1105

training resource requirements (Li et al., 2024d; 1106

Dubois et al., 2024). 1107

Deriving Crowded Wisdom from Multi-LLM. 1108

Single LLM’s response to a question face limi- 1109

tations in its representation of data (particularly 1110

cutting-edge knowledge) (Lazaridou et al., 2021; 1111

Dhingra et al., 2022; Kasai et al., 2023), skills (as 1112

no single LLM is universally optimal empirically) 1113

(Sun et al., 2022; Liang et al., 2022; Chen et al., 1114

2024a), and diverse perspectives (Feng et al., 2025). 1115

Previous work has demonstrated that online multi- 1116

LLM wisdom (also known as compositional agent 1117

frameworks (Gupta and Kembhavi, 2023)) tends to 1118

outperform single models across various domains, 1119

providing more comprehensive and reflective so- 1120

lution on complex downstream tasks (Wang et al., 1121

2024c; Hong et al., 2023; Wu et al., 2023; Li et al., 1122

2023a; Ouyang et al., 2025; Gui et al., 2025). Of- 1123

fline crowded wisdom, where data are pre-collected 1124

rather than real-time inference, also show poten- 1125
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tial in model alignment (Gallego, 2024; Rafailov1126

et al., 2023; Meng et al., 2025) and benchmark1127

construction (Ni et al., 2024b,b). In this paper, we1128

pioneer the use of offline multi-LLM wisdom for1129

instruction data selection by utilizing these LLMs’1130

responses and their reward Score as reflections to1131

measure instruction-response pairs’ Difficulty and1132

Quality.1133

B Detailed Experiment Setups1134

B.1 Models & Benchmarks & Datasets1135

Introduction1136

Models. In our study, the synthetic instruction1137

dataset used for data selection consists of 19 re-1138

sponse generators across 6 model families. These1139

families include Qwen2 (Yang et al., 2024a),1140

Qwen2.5 (Yang et al., 2024b), LLaMA 3 (Dubey1141

et al., 2024), LLaMA 3.1 (Dubey et al., 2024),1142

Gemma 2 (Team et al., 2024), and Phi-3 (Ab-1143

din et al., 2024). In our experiments, we per-1144

form supervised fine-tuning on the LLaMA3.2-3B-1145

base/instruct (Dubey et al., 2024) and Qwen-2.5-3b-1146

base/instruct (Yang et al., 2024b) models using the1147

selected 1K datasets. A comprehensive overview1148

of the models used in our study is presented in1149

Table 5.1150

Benchmarks. In order to evaluate the instruction-1151

following capabilities of the models, we use1152

two widely-used instruction-following benchmarks:1153

MT-Bench(Zheng et al., 2023b) and Arena-Hard1154

(Li et al., 2024c) in our study.1155

MT-Bench (Zheng et al., 2023b). MT-bench1156

is a collection of open-ended questions designed1157

to evaluate a chatbot’s performance in multi-turn1158

conversations and its ability to follow instruc-1159

tions—two critical factors in aligning with human1160

preferences. It consists of 80 high-quality multi-1161

turn questions, which are divided into 8 categories:1162

writing, roleplay, extraction, reasoning, mathemat-1163

ics, coding, knowledge I (STEM), and knowledge1164

II (humanities/social sciences). Each category con-1165

tains 10 questions. This framework provides a1166

robust tool for assessing the practical effectiveness1167

of LLMs and their alignment with human prefer-1168

ences, through meticulously designed questions1169

and evaluations conducted by human annotators.1170

Arena-Hard (Li et al., 2024c). Arena-Hard is1171

a benchmark consisting 500 challenging prompts1172

curated by BenchBuilder. It extracts high-quality1173

prompts from crowdsourced datasets like Chatbot 1174

Arena (Zheng et al., 2023b) and WildChat-1M 1175

(Zhao et al., 2024) without human intervention.The 1176

prompts are Scored and filtered based on seven key 1177

qualities, including specificity, domain knowledge, 1178

complexity, problem-solving, creativity, technical 1179

accuracy, and real-world applicability. This en- 1180

sures that the prompts are challenging and capable 1181

of distinguishing between models. Unlike static 1182

benchmarks, Arena-Hard can be continuously up- 1183

dated to reflect the latest advancements in LLMs, 1184

avoiding the risk of becoming obsolete or leaking 1185

test data. 1186

Datasets. In this paper, we conduct our experi- 1187

ments on Magpie-100K-Generator-Zoo(Xu et al., 1188

2024b) because it provides a sufficiently large 1189

quantity of high-quality instruction fine-tuning 1190

data. It is a subset sampled from the MagpieAir- 1191

3M (Xu et al., 2024a) dataset, a large-scale in- 1192

struction dataset. Magpie-100K contains 100,000 1193

high-quality instructions, which are categorized 1194

into several types, including information seek- 1195

ing, mathematics, planning, coding and debug- 1196

ging, advice seeking, creative writing, reasoning, 1197

data analysis, brainstorming, editing, role-playing, 1198

and more.Each instruction has responses from 19 1199

models across 6 model families—and their reward 1200

scores form 3 reward models. The diversity of 1201

these instructions ensures that the dataset covers a 1202

wide range of scenarios and tasks, making it suit- 1203

able for instruction tuning of large language models 1204

(LLMs). 1205

B.2 Model Training Details 1206

Table 2 demonstrates the detailed supervised fine- 1207

tuning (SFT) hyper-parameters. We perform ex- 1208

periments on a server with eight NVIDIA A800- 1209

SXM4-80GB GPUs, two Intel Xeon Platinum 1210

8358P 64-Core Processor, and 1024 GB of RAM. 1211

These experiments were conducted using LLaMA- 1212

Factory(Zheng et al., 2024). 1213

B.3 Baseline Introduction 1214

In this section, we present five baseline methods 1215

for comparison in our study. For each baseline, we 1216

describe its implementation details and rationale 1217

for inclusion. 1218

Length-Based Filtering (Kwon et al., 2024). 1219

The Length method filters instructions based on 1220

their token count. We use the LLaMA 3.2 3B In- 1221

struction tokenizer to compute the number of to- 1222
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Table 5: Overview of 22 models used in our study.
Model Family Release Date Model ID Size

Qwen2-1.5B-Instruct 1.5B
Qwen2 Jun, 2024 Qwen2-7B-Instruct 7B

(Yang et al., 2024a) Qwen2-72B-Instruct 72B
Qwen2.5-3B 3B

Qwen2.5-3B-Instruct 3B
Qwen2.5 Qwen2.5-7B-Instruct 7B

(Yang et al., 2024b) Sept, 2024 Qwen2.5-14B-Instruct 14B
Qwen2.5-32B-Instruct 32B
Qwen2.5-72B-Instruct 72B

Llama 3 Apr, 2024 Llama-3-8B-Instruct 8B
(Dubey et al., 2024) Llama-3-70B-Instruct 70B

Llama-3.1-8B-Instruct 8B
Llama 3.1 Jul, 2024 Llama-3.1-70B-Instruct 70B

(Dubey et al., 2024) Llama-3.1-405B-Instruct 405B
Llama 3.2 Jul, 2024 Llama-3.2-3B 3B

(Dubey et al., 2024) Llama-3.2-3B-Instruct 3B
Gemma-2-2B-it 2B

Gemma 2 Jun, 2024 Gemma-2-9B-it 9B
(Team et al., 2024) Gemma-2-27B-it 27B

Phi-3-mini-128k-instruct 3.5B
Phi-3 Jun, 2024 Phi-3-small-128k-instruct 7B

(Abdin et al., 2024) Phi-3-medium-128k-instruct 14B

Table 6: This table includes the hyper-parameters for
supervised fine-tuning.

Hyper-parameter Value

Learning Rate 1× 10−5

Number of Epochs 3
Per-device Batch Size 1
Gradient Accumulation Steps 2
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Steps 150
Max Sequence Length 2048

kens in each instruction. Instructions that meet the1223

predefined length criteria are selected for further1224

processing.1225

Instag-Based Selection (Lu et al., 2023). The1226

Instag method introduces instruction tagging to ana-1227

lyze the supervised fine-tuning process of large lan-1228

guage models. Our implementation follows these1229

steps:1230

We use DeepSeek’s API to obtain the true labels1231

of instructions. Instructions are grouped based on1232

their assigned labels. The complexity and diversity1233

of each group are computed. Finally, we select a1234

subset of instructions that exhibit the most desirable 1235

characteristics. 1236

Direct Score Filtering The Direct Score method 1237

is inspired by the work of Chen et al. (2023) (Chen 1238

et al., 2023a), which proposes a scoring mecha- 1239

nism for instruction selection. We implement this 1240

approach as follows: 1241

We use the same prompt templates as the original 1242

paper. Instead of the original scoring model, we 1243

use DeepSeek for scoring, ensuring consistency 1244

with our other experimental setups. We select the 1245

top 1,000 instructions based on their scores. 1246

Instruction Filtering by IFD The Instruction 1247

Filtering by IFD method is based on the work of 1248

Li et al. (2023) (Li et al., 2023b), which introduces 1249

self-guided data selection to improve instruction 1250

tuning. We directly use the open-source implemen- 1251

tation from Cherry LLM and apply the following 1252

three-step process: 1253

Train a Pre-Experienced Model to establish prior 1254

knowledge. Compute IFD (Instruction Filtering De- 1255

gree) using the Pre-Experienced Model. Filter the 1256

dataset based on IFD scores to retain high-quality 1257

instructions. To evaluate the effectiveness of IFD, 1258

we implement two versions: 1259
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IFD (with pre): Uses a trained Pre-Experienced1260

Model to compute IFD.1261

IFD (no pre): Computes IFD directly using the1262

model to be trained.1263

Random Sampling The Random baseline selects1264

a random subset of X instructions. Additionally,1265

for each instruction, we randomly select one of1266

its 19 possible responses, ensuring that instruction-1267

response pairs are fully randomized.1268

C Additional Experiment Results1269

C.1 Dataset Size Ablation Details1270

Tables 7 and 8 details the training loss, evaluation1271

loss, and scores of Llama3.2-3b-base/instruct fine-1272

tuned on different dataset sizes when selected with1273

the difficulty metric. The data clearly shows a rapid1274

increase in accuracy in when increasing the dataset1275

sizes up to 0.5k to 1k, and marginal increases af-1276

terwards. This highlights the importance of data1277

quality over sheer quantity in instruction tuning.1278

C.2 CROWDSELECT Performance on LoRA1279

Tables 9 and 10 details the performance of CROWD-1280

SELECT and various baselines combined with1281

LoRA finetuning. CROWDSELECT generally out-1282

performs the baseline dataset selection methods1283

on LoRA. However, more instability is found in1284

LoRA training due to its limited learning capability1285

compared with full finetuning.1286

C.3 CROWDSELECT Performance on Full1287

Finetuning1288

Tables 11 and 12 details the performance of1289

CROWDSELECT and various baselines combined1290

with Full finetuning.1291

C.4 Foundation Metric with Clustering1292

Performance1293

Table 13 details the performance of our foundation1294

metric combined with clustering strategy.1295

C.5 CROWDSELECT Integrated Metric1296

Performance on Different Coefficient1297

Combinations1298

Tables 14, 15, and 16 details the performance of1299

our Integrated metric performace on 9 sets of co-1300

efficients. w = (1, 1, 2) stands out as stable coeffi-1301

cients among all other combinations.1302

C.6 CROWDSELECT Performance on 1303

Different Finetuning Methods 1304

Table 17 details the performance of CROWDSE- 1305

LECT on SFT, DPO, SimPO, and ORPO(Hong 1306

et al., 2024). Data reveals consistent and stable 1307

performance our proposed metrics, while SimPO 1308

performs best on all scenarios. 1309

C.7 CROWDSELECT Performance on 1310

Different Reward Models 1311

Table 18 details the performance of CROWDSE- 1312

LECT on various reward models. Data reveals the 1313

importance of reward models on finetuned model 1314

performance. However, the strong points of differ- 1315

ent reward models is scattered. While the results 1316

show that reward models are crucial for effective 1317

fine-tuning, they also reveal a nuanced landscape 1318

where the strengths of different reward models are 1319

distributed across different aspects of performance. 1320

Scattered performance highlights the need for care- 1321

ful consideration when selecting a reward model 1322

and reflects that current Large Language reward 1323

models are of high variance. Further research into 1324

more robust reward models for Large Language 1325

models is therefore essential. 1326
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Table 7: Performance comparison of Llama-3b-instruct with different sizes of difficulty-based selected data.

Data Size Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

0.25k 0.418 0.951 6.850 301 81.9 (−1.2, 1.5) 275
0.5k 0.406 1.004 6.962 276 83.1 (−1.0, 1.1) 275
1k 0.407 0.942 6.887 271 82.6 (−1.5, 1.2) 273
2k 0.405 0.929 6.668 301 83.1 (−1.0, 1.4) 273
3k 0.415 0.871 6.625 304 85.1 (−1.3, 1.3) 276
4k 0.413 0.869 6.600 279 82.4 (−1.1, 1.7) 268
5k 0.415 0.867 6.675 295 83.3 (−0.7, 1.4) 272
6k 0.414 0.857 6.572 282 84.4 (−1.1, 1.3) 265
7k 0.413 0.848 6.743 286 84.1 (−0.9, 1.2) 266
8k 0.411 0.836 6.618 275 83.1 (−1.1, 1.6) 268
9k 0.411 0.822 6.681 274 83.3 (−1.3, 1.5) 269
10k 0.409 0.828 6.750 279 83.6 (−0.8, 1.7) 266

Table 8: Performance comparison of Llama-3b with different sizes of difficulty-based selected data.

Data Size Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

0.25k 0.567 1.138 4.731 492 75.0 (−1.1, 2.1) 289
0.5k 0.544 1.161 4.987 392 79.1 (−1.0, 1.7) 289
1k 0.539 1.123 5.200 325 78.1 (−1.4, 1.5) 289
2k 0.534 1.094 5.337 309 76.9 (−1.4, 2.2) 290
3k 0.537 1.046 5.237 286 80.0 (−1.6, 1.6) 289
4k 0.535 1.031 5.131 287 79.7 (−1.3, 1.5) 289
5k 0.534 1.022 4.987 271 81.5 (−1.0, 1.5) 289
6k 0.531 1.019 4.943 251 81.8 (−1.3, 1.5) 290
7k 0.529 1.004 4.825 218 78.5 (−1.2, 1.7) 289
8k 0.526 0.990 5.093 278 81.5 (−1.1, 1.3) 289
9k 0.519 0.982 4.893 245 83.2 (−1.5, 1.2) 289
10k 0.517 0.983 5.137 270 82.9 (−1.0, 1.1) 289
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Table 9: Performance comparison of lora-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models
with different data selection strategies.

Benchmark Base Difficulty Separability Stability
↓ ↑ ↓ ↑ ↓ ↑

Llama3.2-3b-instruct

MT-Bench 6.200 6.456 6.688 6.100 6.725 6.131 6.866
Arena-Hard 74.4 69.6 76.8 69.4 72.9 69.8 74.6

Arena-Hard-95%CI (-1.0, 1.5) (-1.8,1.4) (-1.5,1.9) (-2.5,1.2) (-1.6,1.5) (-1.7,1.7) (-1.7,2.0)

Llama3.2-3b-base

MT-Bench 4.302 4.626 4.651 4.631 5.040 3.538 4.369
Arena-Hard 50.0 73.1 68.0 73.8 73.2 60.8 73.2

Arena-Hard-95%CI (0.0,0.0) (-1.8,1.6) (-1.2,1.9) (-1.2,1.8) (-2.0,1.1) (-1.7,1.2) (-1.2,1.2)

Qwen3.2-3b-instruct

MT-Bench 7.138 6.906 7.068 7.025 6.937 7.018 7.037
Arena-Hard 81.6 77.2 79.1 80.3 78.8 76.2 78.0

Arena-Hard-95%CI (-1.8, 1.4) (-1.9, 1.5) (-2.1, 1.8) (-1.9, 1.4) (-1.2, 1.2) (-1.7, 1.6) (-1.8, 1.7)

Qwen3.2-3b

MT-Bench 6.043 5.137 6.612 6.368 6.343 5.800 6.525
Arena-Hard 69.0 76.9 70.7 74.1 74.2 73.7 74.2

Arena-Hard-95%CI (-2.2, 1.6) (-2.0, 1.8) (-1.8, 2.4) (-1.8, 1.5) (-2.1, 1.5) (-2.0, 1.3) (-1.8, 1.9)

Table 10: Performance comparison of lora-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models
with pre data selection strategies as baselines.

Benchmark Random Tags Direct-Score Length IFD
↓ ↑ ↓ ↑ no_pre pre

Llama3.2-3b-instruct

MT-Bench 6.325 6.610 6.631 6.406 6.087 5.375 6.706 6.768
Arena-Hard 74.2 80.1 80.0 74.8 78.1 67.5 81.2 79.5

Arena-Hard-95%CI (-1.7, 1.3) (-0.7, 0.7) (-1.4, 1.7) (-1.1, 1.8) (-3.4, 2.1) (-1.4, 0.9) (-0.8, 1.5) (-1.6, 1.8)

Llama3.2-3b-base

MT-Bench 4.637 4.575 4.962 4.675 4.062 4.243 4.512 4.418
Arena-Hard 76.0 76.8 76.9 75.6 67.1 70.3 73.7 77.5

Arena-Hard-95%CI (-2.0, 1.6) (-1.6, 1.8) (-1.8, 1.7) (-1.6, 1.4) (-2.0, 2.0) (-2.3, 2.2) (-1.5, 1.5) (-1.8, 1.4)

Qwen2.5-3b-instruct

MT-Bench 6.950 7.125 7.131 7.175 7.037 7.006 6.918 6.868
Arena-Hard 78.2 83.0 77.7 81.7 75.8 76.4 78.8 83.1

Arena-Hard-95%CI (-1.5, 1.8) (-1.7, 2.1) (-1.6, 2.0) (-1.7, 1.9) (-2.0, 2.0) (-1.4, 1.7) (-1.3, 1.2) (-0.8, 1.0)

Qwen2.5-3b-base

MT-Bench 5.887 5.616 5.417 5.750 3.981 5.637 6.427 5.861
Arena-Hard 76.6 83.8 79.3 76.5 74.3 70.4 79.7 82.2

Arena-Hard-95%CI (-1.7, 1.5) (-1.3, 1.2) (-1.8, 1.2) (-2.0, 1.7) (-1.8, 1.6) (-1.6, 1.9) (-1.3, 1.0) (-1.3, 1.0)
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Table 11: Performance comparison of fft-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models with
different data selection strategies.

Benchmark Base Difficulty Separability Stablity
↓ ↑ ↓ ↑ ↓ ↑

Llama3.2-3b-instruct

MT-Bench 6.200 6.388 6.648 5.937 6.581 6.225 6.625
Arena-Hard 74.4 76.5 80.5 80.0 77.9 75.8 77.4

Arena-Hard-95%CI (-1.0, 1.5) (-1.6, 1.5) (-0.9, 1.3) (-1.3, 1.2) (-1.5, 1.7) (-1.3, 0.9) (-1.5, 1.1)

Llama3.2-3b-base

MT-Bench 4.302 4.506 4.738 4.731 5.056 4.675 5.088
Arena-Hard 50.0 78.6 76.8 81.8 83.3 80.0 78.3

Arena-Hard-95%CI (0.0, 0.0) (-1.9, 2.1) (-1.6, 1.7) (-1.8, 1.2) (-1.8, 1.7) (-1.5, 1.6) (-1.6, 2.2)

Qwen2.5-3b-instruct

MT-Bench 7.138 6.906 7.182 6.919 7.269 7.056 7.294
Arena-Hard 81.6 82.5 81.8 81.4 83.7 78.1 83.5

Arena-Hard-95%CI (-1.8, 1.4) (-1.8, 1.5) (-1.6, 1.3) (-1.7, 1.6) (-1.4, 1.2) (-1.2, 2.0) (-1.4, 1.4)

Qwen2.5-3b-base

MT-Bench 6.043 6.619 6.613 6.575 7.075 6.763 6.681
Arena-Hard 69.0 80.2 73.8 76.5 74.1 74.4 76.8

Arena-Hard-95%CI (-2.2, 1.6) (-1.7, 1.6) (-2.5, 1.8) (-1.8, 1.8) (-1.6, 2.4) (-1.5, 1.8) (-1.8, 1.8)

Table 12: Performance comparison of fft-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models with
pre data selection strategies as baselines.

Benchmark Random Tags Direct-Score Length IFD
↓ ↑ ↓ ↑ no_pre pre

Llama3.2-3b-instruct

MT-Bench 6.356 6.393 6.068 6.050 5.612 5.781 6.593 6.243
Arena-Hard 74.8 81.6 76.9 77.6 72.9 75.0 76.8 78.4

Arena-Hard-95%CI (-1.5, 1.6) (-0.2, -0.2) (-1.5, 2.0) (-1.7, 1.9) (-1.9, 1.9) (-2.4, 2.0) (-1.2, 1.6) (-1.7, 1.5)

Llama3.2-3b-base

MT-Bench 4.406 4.562 4.131 4.400 3.393 3.893 4.281 3.962
Arena-Hard 75.3 77.3 72.7 75.8 59.4 71.8 73.9 77.6

Arena-Hard-95%CI (-2.0, 1.6) (-1.1, 1.2) (-2.4, 1.9) (-1.4, 1.2) (-1.1, 1.3) (-1.0, 1.2) (-1.0, 1.6) (-1.6, 1.6)

Qwen2.5-3b-instruct

MT-Bench 6.793 6.818 6.506 6.768 5.881 6.931 6.962 6.731
Arena-Hard 78.2 82.0 81.2 80.8 75.6 77.7 79.0 80.4

Arena-Hard-95%CI (-1.7, 2.0) (-2.4, 1.6) (-1.5, 1.8) (-2.1, 1.7) (-1.0, 1.2) (-1.7, 1.7) (-1.0, 1.5) (-1.3, 1.0)

Qwen2.5-3b-base

MT-Bench 6.500 6.818 6.325 6.900 4.925 6.591 5.798 5.825
Arena-Hard 72.9 79.3 75.6 76.8 71.2 72.8 76.2 74.5

Arena-Hard-95%CI (-2.2, 1.9) (-2.2, 1.9) (-1.6, 2.1) (-1.9, 1.9) (-1.7, 1.4) (-2.3, 1.9) (-1.4, 1.3) (-1.5, 1.5)
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Table 13: Performance comparison of cluster-chosen-data-fft-version of Llama-3b-base/instruct and Qwen-3b-
base/instruct models with different data selection strategies.

Benchmark Base Random Difficulty Separability Stability
↓ ↑ ↓ ↑ ↓ ↑

Llama3.2-3b-instruct

MT-Bench 6.200 6.743 6.256 6.675 6.094 6.619 6.275 6.913
Arena-Hard 74.4 80.9 81.4 82.6 84.8 81.9 80.0 81.8

Arena-Hard-95%CI (-1.0, 1.5) (-1.3, 1.4) (-1.5, 2.0) (-1.2, 1.8) (-1.7, 1.4) (-1.7, 1.7) (-2.0, 2.2) (-1.5, 1.7)

Llama3.2-3b-base

MT-Bench 4.302 4.869 4.825 5.000 4.813 4.938 4.800 4.950
Arena-Hard 50.0 79.2 80.8 79.5 80.8 81.9 80.6 80.9

Arena-Hard-95%CI (0.0, 0.0) (-0.9, 0.9) (-1.2, 1.7) (-1.7, 2.2) (-2.0, 1.6) (-1.5, 2.1) (-1.9, 1.8) (-2.0, 1.6)

Qwen-3b-instruct

MT-Bench 7.138 7.006 6.988 7.150 7.238 7.340 7.019 7.181
Arena-Hard 81.6 82.3 82.1 82.6 82.5 82.3 80.3 82.6

Arena-Hard-95%CI (-1.8, 1.4) (-1.0, 0.9) (-1.6, 1.3) (-1.9, 1.7) (-2.1, 1.3) (-1.0, 1.4) (-1.5, 1.4) (-1.4, 2.0)

Qwen-3b-base

MT-Bench 6.043 7.162 6.575 6.800 6.856 6.875 6.819 6.869
Arena-Hard 69.0 74.6 78.2 78.5 78.0 75.7 73.6 76.9

Arena-Hard-95%CI (-2.2, 1.6) (-0.7, 1.0) (-1.9, 2.4) (-1.6, 1.7) (-1.7, 1.8) (-2.2, 2.1) (-1.8, 1.8) (-2.1, 1.6)

Table 14: Performance comparison of fft-version of Llama-3b-instruct on different coefficient combinations for
multiple metrics with clustering.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

1_1_1 0.312 0.715 6.913 307 81.8 (−0.5, 0.8) 266
1_-1_1 0.368 0.803 6.625 292 84.2 (−0.7, 1.0) 269
1_1_2 0.325 0.717 7.103 328 85.5 (−0.8, 1.1) 271
1_1_-1 0.294 0.617 6.650 298 82.7 (−1.5, 1.4) 278
1_1_1.5 0.338 0.721 6.850 312 84.7 (−1.6, 1.3) 266
1_-1_1.5 0.391 0.795 6.781 286 83.0 (−1.4, 1.4) 270
-1_-1_1 0.354 0.707 6.781 308 81.9 (−1.5, 1.3) 275
-1_-1_2 0.355 0.742 6.838 297 84.8 (−1.3, 1.2) 275

-1_-1_1.5 0.351 0.754 6.638 289 81.8 (−1.3, 1.3) 276

Table 15: Performance comparison of fft-version of Qwen-3b-instruct with different coefficient combinations for
multiple metrics.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

1_1_1 0.354 0.776 6.856 359 83.6 (−1.7, 1.2) 259
1_-1_1 0.432 0.861 7.138 383 81.6 (−1.4, 1.5) 259
1_1_2 0.371 0.776 7.131 366 85.2 (−1.2, 1.1) 262
1_1_-1 0.310 0.645 7.231 376 82.3 (−1.6, 1.5) 261
1_1_1.5 0.369 0.755 6.981 387 83.6 (−2.0, 1.2) 260
1_-1_1.5 0.430 0.872 7.371 390 82.4 (−1.7, 1.5) 260
-1_-1_1 0.431 0.874 7.025 397 81.9 (−1.1, 1.9) 260
-1_-1_2 0.431 0.888 6.963 377 80.6 (−1.8, 1.5) 259

-1_-1_1.5 0.433 0.869 6.956 377 82.4 (−1.8, 1.3) 260
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Table 16: Performance comparison of fft-version of Llama-3b with different coefficient combinations for multiple
metrics.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

1_1_1 0.437 0.901 4.800 306 80.8 (−1.3, 1.6) 289
1_-1_1 0.497 1.007 5.019 319 80.3 (−2.2, 2.1) 290
1_1_2 0.454 0.904 4.613 282 82.1 (−1.8, 1.8) 290
1_1_-1 0.416 0.786 4.669 283 83.0 (−1.6, 2.0) 289
1_1_1.5 0.449 0.908 4.731 276 75.7 (−1.9, 2.4) 290
1_-1_1.5 0.496 1.016 5.125 309 80.6 (−2.4, 1.6) 290
-1_-1_1 0.469 0.973 5.050 307 80.7 (−1.8, 1.2) 289
-1_-1_2 0.469 0.968 4.719 268 81.6 (−1.2, 1.1) 290

-1_-1_1.5 0.469 0.968 4.588 291 80.0 (−2.0, 1.8) 290

Table 17: Performance comparison of Llama-3b-instruct models with different finetuning methods

Benchmark Random Difficulty Separability Stability
↓ ↑ ↓ ↑ ↓ ↑

SFT

MT-Bench 6.200 6.388 6.648 5.937 6.581 6.225 6.625
Arena-Hard 74.4 76.5 80.5 77.9 80.0 75.8 77.4

Arena-Hard-95%CI (-1.0, 1.5) (-1.6, 1.5) (-0.9, 1.3) (-1.5, 1.7) (-1.3, 1.2) (-1.3, 0.9) (-1.5, 1.1)

DPO

MT-Bench 6.463 6.431 6.768 6.431 6.418 6.256 6.818
Arena-Hard 74.2 75.1 77.3 76.1 78.5 73.2 76.2

Arena-Hard-95%CI (-1.8, 1.6) (-1.6, 1.6) (-1.6, 1.7) (-1.9, 1.9) (-1.5, 1.4) (-1.4, 1.3) (-1.9, 1.5)

SimPO

MT-Bench 6.950 6.425 7.137 6.518 7.043 6.675 6.931
Arena-Hard 78.7 78.0 78.8 78.2 79.7 76.0 75.5

Arena-Hard-95%CI (-2.5, 2.0) (-2.5, 3.1) (-0.9, 1.2) (-1.6, 0.8) (-5.4, 6.5) (-1.3, 1.1) (-5.7, 6.2)

ORPO

MT-Bench 6.412 6.450 6.450 6.525 6.431 6.312 6.400
Arena-Hard 73.7 73.2 73.7 73.3 74.6 73.2 75.6

Arena-Hard-95%CI (-2.1, 2.2) (-2.2, 1.8) (-1.5, 2.0) (-1.9, 1.8) (-2.0, 2.2) (-2.1, 2.2) (-1.8, 2.2)
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Table 18: Performance comparison of lora-version of Llama-3b-instruct models with different reward-models

Benchmark Difficulty Separability Stability Reward-Score
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

ArmoRM-Llama3-8B-v0.1

MT-Bench 6.625 6.687 6.468 6.493 6.375 6.431 4.037 6.512
Arena-Hard 81.7 78.6 74.3 75.6 77.3 80.0 57.8 83.2

Arena-Hard-95%CI (-2.0, 1.8) (-1.8, 1.8) (-1.8, 2.1) (-2.0, 1.6) (-1.8, 2.0) (-1.0, 1.8) (-2.0, 1.9) (-1.5, 1.9)

Skywork-Reward-Llama-3.1-8B

MT-Bench 6.456 6.688 6.100 6.725 6.131 6.866 4.012 6.675
Arena-Hard 69.6 76.8 69.4 72.9 69.8 74.6 52.6 77.4

Arena-Hard-95%CI (-1.5,1.9) (-1.8,1.4) (-2.5,1.2) (-1.6,1.5) (-1.7,1.7) (-1.7,2.0) (-2.4, 2.0) (-1.8, 2.1)

Skywork-Reward-Gemma-2-27B

MT-Bench 6.512 6.593 6.756 6.881 6.637 6.756 3.793 6.943
Arena-Hard 76.2 78.2 75.4 80.2 79.7 83.6 56.1 79.6

Arena-Hard-95%CI (-1.6, 2.0) (-1.6, 1.5) (-2.1, 2.1) (-1.7, 2.4) (-1.4, 1.4) (-1.9, 2.0) (-2.1, 2.1) (-1.6, 1.7)

0.25k 0.5k 1k

2k 3k 4k

5k 6k 7k

8k 9k 10k

Figure 5: Lora train loss of training Llama-3b by using different sizes of randomly chosen data.

23


	Introduction
	Related Work
	Methodology
	Preliminaries
	Base Metrics
	CrowdSelect: Explore the Upperbound with Multi-LLM Wisdom

	Experiment
	Experiment Setups
	Experiment Results.
	Ablation Studies

	Conclusion
	Detailed Related Works
	Detailed Experiment Setups
	Models & Benchmarks & Datasets Introduction
	Model Training Details
	Baseline Introduction

	Additional Experiment Results
	Dataset Size Ablation Details
	CrowdSelect Performance on LoRA
	CrowdSelect Performance on Full Finetuning
	Foundation Metric with Clustering Performance
	CrowdSelect Integrated Metric Performance on Different Coefficient Combinations
	CrowdSelect Performance on Different Finetuning Methods
	CrowdSelect Performance on Different Reward Models


