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ABSTRACT

We introduce a latency-aware contextual bandit framework that generalizes the
standard contextual bandit problem, where the learner adaptively selects arms and
switches decision sets under action delays. In this setting, the learner observes
the context and may select multiple arms from a decision set, with the total time
determined by the selected subset. The problem can be framed as a special case
of semi-Markov decision processes (SMDPs), where contexts and latencies are
drawn from an unknown distribution. Leveraging the Bellman optimality equa-
tion, we design the contextual online arm filtering (COAF) algorithm, which bal-
ances exploration, exploitation, and action latency to minimize regret relative to
the optimal average-reward policy. We analyze the algorithm and show that its re-
gret upper bounds match established results in the contextual bandit literature. In
numerical experiments on a movie recommendation dataset and cryogenic elec-
tron microscopy (cryo-EM) data, we demonstrate that our approach efficiently
maximizes cumulative reward over time.

1 INTRODUCTION

The contextual bandit framework models sequential decision-making under uncertainty: the learner
observes context, selects an action, and receives feedback only for that action (Lattimore &
Szepesvári, 2020). This framework is widely used in domains requiring personalization, experi-
mentation, or optimization under uncertainty, including recommender systems, healthcare, educa-
tion, finance, and energy management (Li et al., 2010; Tewari & Murphy, 2017; Lan & Baraniuk,
2016; Soemers et al., 2018; Chen et al., 2020). Standard formulations do not account for the la-
tency of acquiring information or executing actions. In practice, obtaining contexts—such as as-
say results, medical records, or experimental measurements—often involves non-negligible delays.
Similar challenges arise in scientific automation, where experimental decisions must trade off infor-
mation gain against time constraints. Examples include high-throughput drug discovery, automated
materials science, and astronomy (Blay et al., 2020; Pyzer-Knapp et al., 2022; Adler et al., 2020).
A prominent instance is cryo-electron microscopy (cryo-EM) (Li et al., 2023), where limited and
costly microscope time must be efficiently allocated to the most informative imaging targets.

To address this limitation, we extend the contextual bandit model to incorporate latency-aware
decision-making. At each round, the learner selects multiple arms from a decision set and receives
their rewards, with a total time cost determined by the chosen subset. Maximizing cumulative re-
ward in this setup requires balancing the trade-off between exploration (gathering information from
new actions) and exploitation (selecting actions with high expected rewards), while also implement-
ing an effective strategy for arm selection under latency. This problem can be framed as a special
case of SMDPs where the reward function, sojourn time distribution, and transition probabilities are
unknown, making it a reinforcement learning task. We adopt the framework of undiscounted rein-
forcement learning (Auer et al., 2008) under the average reward criterion. In particular, we make the
following contributions:

• We analyze the latency-aware contextual bandit problem and derive the Bellman optimality equa-
tion to characterize the optimal policy. We show that the maximum average reward can be obtained
by finding the root of a function with noisy measurements.

• Building on the Bellman optimality equation, we leverage stochastic approximation and the upper
confidence bound (UCB) method to design the COAF algorithm, which efficiently selects arms
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and switching decision sets under action latency. We establish that COAF achieves sublinear regret
and validate its performance through numerical experiments on a movie recommendation dataset
and cryo-EM data collection. The results demonstrate the effectiveness of COAF in time-sensitive
decision-making tasks.

2 RELATED WORKS

In sequential decision-making under uncertainty, maximizing reward requires balancing exploration
and exploitation. The multi-armed bandit (MAB) problem formalizes this trade-off: a learner repeat-
edly selects arms with unknown reward distributions and aims to minimize regret, defined as the dif-
ference between the cumulative reward of an online algorithm and that of the optimal arm (Robbins,
1952; Lai & Robbins, 1985). Classical algorithms with strong theoretical guarantees include the
UCB family, which selects arms according to optimistic estimates of their mean rewards. Thompson
sampling, one of the earliest MAB solutions, is a randomized Bayesian algorithm that nonetheless
addresses the fundamentally frequentist problem of regret minimization (Thompson, 1933; Agrawal
& Goyal, 2012; Kaufmann et al., 2012). Other widely studied policies include the Gittins index (Git-
tins et al., 2011; Lattimore, 2016) and minimum empirical divergence (Honda & Takemura, 2010).

The contextual bandit problem generalizes the MAB by allowing the learner to make decisions based
on observed contexts. This framework naturally integrates statistical learning and function approx-
imation into sequential decision-making. Contextual bandit algorithms can be broadly categorized
into two types. Realizability-based approaches assume that rewards follow a known parametric
family, enabling efficient algorithms with strong theoretical guarantees. Representative examples in-
clude LinUCB and linear Thompson sampling for linear models (Chu et al., 2011; Agrawal & Goyal,
2013), and GLM-UCB, GLM-TS, and GLOC for generalized linear models (Filippi et al., 2010;
Abeille & Lazaric, 2017; Jun et al., 2017). In contrast, general-purpose approaches make weaker
assumptions, accommodating broader function classes. They often rely on regression oracles, with
regret bounds expressed in terms of sample complexity measures such as VC-dimension, eluder di-
mension, or the performance of a square-loss minimizing oracle (Langford & Zhang, 2007; Beygelz-
imer et al., 2011; Russo & Van Roy, 2013; Foster & Rakhlin, 2020). Empirically, realizability-based
methods outperform general-purpose approaches when the reward model is well-specified, while the
latter offer greater flexibility under unknown or complex reward structures (Bietti et al., 2021).

Our problem formulation allows the learner to select multiple arms from a decision set. This setup
was first introduced by Anantharam et al. (1987) and is widely studied in combinatorial bandits. The
reward function can be linear with respect to the individual arm rewards (Cesa-Bianchi & Lugosi,
2012) or nonlinear, capturing interactions and combinatorial constraints (Chen et al., 2013; Kveton
et al., 2014; Chen et al., 2016). Contextual combinatorial bandits focus on learning the combinatorial
reward structure under context, where decision sets arrive sequentially and selecting a combination
of arms incurs a fixed time cost (Qin et al., 2014). This model does not explicitly account for action
latency. We adopt the semi-bandit feedback model (Kveton et al., 2015), where the learner receives
granular feedback in the form of individual rewards for each selected arm.

The idea of switching decision sets in our problem is inspired by the mortal MAB (Chakrabarti et al.,
2008), where the learner can request new decision sets, and the lifetime of each set (i.e., the number
of available arms) follows a geometric distribution. Similarly, the sleeping experts problem (Kanade
et al., 2009; Kleinberg et al., 2010) considers a dynamic arm set, where arms are activated either
stochastically or by an adversary. In this setup, the learner passively reacts to the changes of arm sets.
In contrast, as in mortal MAB, our formulation allows the learner to actively control the dynamics by
switching to new decision sets, potentially accessing better arms. Our problem integrates dynamic
control of action space into contextual decision-making, combining elements of mortal MAB and
contextual combinatorial bandits. This adds complexity, as the learner must balance both expected
reward and the time required for each decision.

3 PROBLEM SETTINGS

This section presents the formal problem formulation for the latency-aware contextual bandit and
discusses connections to existing works. As a natural application, cryo-EM data collection is intro-
duced, where microscope operations induce inherent latencies.
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3.1 LATENCY-AWARE CONTEXTUAL BANDITS

We consider a latency-aware contextual bandit problem. At each round j = 1, 2, . . . :

• The learner observes: (i) the arm feature vectors Xj = {xj,1, . . . ,xj,nj} ⊂ Rd; (ii) the action
space Aj ⊆ 2[nj ] containing subsets of arms; and (iii) a latency function lj : Aj → R≥0.

• The learner selects a subset of armsAj ∈ Aj and observes semi-bandit feedback: for each i ∈ Aj ,
the reward yj,i is revealed, while the rewards of unchosen arms remain unknown.

• The learner receives total reward rj(Aj) =
∑
i∈Aj

yj,i
1, and the time spent is lj(Aj).

Several elements of the setup are stochastic, including Xj (and its size nj), Aj , and lj . We assume
that the sequence {(Xj ,Aj , lj)}∞j=1 is IID, with each (Xj ,Aj , lj) drawn from an unknown distri-
bution Penv. Arbitrary dependencies among Xj , Aj , and lj within a round j ∈ N are allowed.
Each selected arm i yields a random reward yj,i = ψ∗(xj,i) + ϵj,i, where ψ∗ : Rd → [−1, 1] is
the bounded mean reward function unknown to the learner, and noise ϵj,i is a zero-mean random
variable. We further impose the following assumptions.

Assumption 1 (Boundedness). There exist nmax, lmin, lmax > 0 such that for all rounds j ∈ N: (i)
the number of arms nj ≤ nmax; (ii) the action time lj(Aj) ∈ [lmin, lmax] for all Aj ∈ Aj .
Assumption 2 (Realizability (Foster et al., 2018)). The learner is given a regressor class F that
contains the bounded mean reward function ψ∗, i.e., ψ∗ ∈ F .

Remark 1. The term lj(∅) can be interpreted as the time spent to acquire contextual information,
and the condition lj(Aj) ≥ lmin > 0 for all Aj ∈ Aj ensures temporal progress at each round j.
Under Assumption 2, it suffices to learn the mean reward function within the regressor class F .

The problem is formally specified by M = (Penv, ψ∗ ), and the objective is to maximize cumulative
reward without prior knowledge of M. Beyond the standard exploration–exploitation trade-off in
MAB problems, the learner must balance exploiting the current decision set, where good arms may
be exhausted, with switching to new sets, taking action latency into account.

3.2 RELATIONSHIP WITH EXISTING WORKS

The problem studied in this paper generalizes the following existing bandit setups.

Stochastic contextual bandits (Lattimore & Szepesvári, 2020): In this setup, the learner observes
the context of arm features Xj and selects a single arm at each round j. This corresponds to a special
case of our problem, where Aj =

{
{1}, . . . , {nj}

}
and the action time lj(Aj) = 1 for all Aj ∈ Aj .

Contextual combinatorial semi-bandits (Qin et al., 2014): This formulation, like our problem,
allows the learner to select subsets of arms Aj ∈ Aj ⊆ 2[nj ] at each round j, but does not explicitly
model action latency, i.e., lj(Aj) = 1 for all Aj ∈ Aj .

Mortal MAB (Chakrabarti et al., 2008): In this setup, all arms in a decision set have identical
rewards, yj,i = yj for all i ∈ [nj ], and the sequence {yj}∞j=1 is IID with yj ∼ Py. The number of
arms nj , drawn from a geometric distribution with parameter p, represents the lifetime of the deci-
sion set. Our problem generalizes this setup by incorporating contextual information and allowing
heterogeneous rewards across arms. The mortal MAB is a planning problem, as both Py and p are
assumed known, whereas our setting is a learning problem with unknown Penv and ψ∗.

3.3 CRYO-EM DATA COLLECTION

Single-particle cryo-EM is a structural biology technique for determining near-atomic resolution
3D structures of biomolecules. A purified sample is applied to a thin, electron-transparent grid and
rapidly frozen in vitreous ice. Imaging produces 2D projections of particles by passing an electron
beam through the sample. A typical data collection workflow is illustrated in Fig. 1. The grid
contains multiple squares, each with several holes where biomolecules are preserved in thin ice.

1While rj(Aj) can be generalized to be non-linear under monotonicity and Lipschitz assumptions, as in Qin
et al. (2014), we focus on the linear case, as handling arm interactions is beyond the scope of this work.
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Figure 1: Cryo-EM data collection at multiple magnifications: (i) grid-level shows the entire grid at
low magnification, (ii) square-level captures individual squares at medium magnification to assess
ice quality within holes, and (iii) full exposures are high-magnification images of selected holes.

Grid-level and square-level views are used to navigate and select holes for full exposures. These
high-magnification exposures, taken with high electron doses, are used for 3D reconstruction of
biomolecules. Radiation irreversibly damages the sample, so each region can be imaged only once.

Cryo-EM data collection is inherently a bandit problem with partial feedback: selecting a set of holes
reveals the data quality only for the chosen holes, while unselected holes remain unknown. Our
latency-aware formulation captures the time required for exposures, refocusing, and stage move-
ments. Neighboring holes can often be imaged via fast beam shifts, but larger movements require
physically moving the stage, which is slower and necessitates additional refocusing. To capture this,
holes in a square are divided into patches (colored in Fig. 1), each forming a decision set of nj arms,
with contexts Xj extracted from cropped square-level images. The learner selects a subsetAj ⊆ [nj ]
for full exposures. For a microscope, the exposure time Texp and the latency Tmov for moving to the
next patch are typically known or easily estimated. Let tj denote the stochastic time to acquire the
square-level view and extract contexts Xj . Then, the latency of action Aj is

lj(Aj) = tj + Tmov1 {Aj ̸= ∅}+ Texp |Aj |. (1)

The feedback yj,i is obtained by evaluating the high-magnification micrographs. Micrograph qual-
ity can be quantified using the CTF maximum resolution (Rohou & Grigorieff, 2015), which mea-
sures the finest structural detail in Å (0.1 nm). With sufficient computational resources, additional
metrics—such as the number of biomolecules detected per micrograph or assessments from deep
learning models like MicAssess (Li et al., 2020)—can also be incorporated.

4 MAXIMIZATION OF AVERAGE REWARD

In this section, we study the maximum average reward achievable in the latency-aware contextual
bandit problem. Assuming a known mean reward function ψ∗, we derive the Bellman optimality
equation, which can be used to compute this maximum average reward. This quantity then serves as
a baseline for defining the regret of an algorithm, which we aim to minimize throughout the paper.

4.1 OPTIMAL AVERAGE REWARD

At each round k, the learner follows a policy π to select a subset of arms Ak ∈ Ak. Let the history
up to round k be Hk−1 ≜

{(
Xj ,Aj , lj , {yj,i}i∈Aj

)}k−1

j=1
. The policy π maps the history Hk−1 and

the current arm features Xk to a probability distribution over the action space Ak. Let k(t) denote
the (random) number of completed decision rounds up to time t. The expected cumulative reward
of a policy π up to time t is

E

k(t)∑
j=1

∑
i∈Aj

yj,i

 = E

k(t)∑
j=1

∑
i∈Aj

E[yj,i | Hj−1]

 = E

k(t)∑
j=1

∑
i∈Aj

ψ∗(xj,i)

 ≜ E
[
qπ(t)

]
, (2)
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which depends on both the environment M and the policy π. In the average-reward setting, the
performance of π is evaluated by the long-term average reward

ΓπM ≜ lim sup
t→∞

E[qπ(t)]
t

.

With Assumption 1 and the mean reward function ψ∗ bounded in [−1, 1], ΓπM is finite for any policy
π. Then optimal average reward is then defined as

Γ∗
M ≜ sup

π
ΓπM.

Treating lj(Aj) in round j as the sojourn time, our model can be viewed as a special case of
SMDPs (Puterman, 2014). The following theorem provides its Bellman optimality equation.
Theorem 1. For the latency-aware contextual bandit problem M = (Penv, ψ∗), let (X,A, l) ∼ Penv

and let µ = {µi}n
i=1, where µi = ψ∗(xi) for each xi ∈ X. The optimal average reward Γ = Γ∗

M is
the unique solution to E

[
minA∈A g(Γ, A, l,µ)

]
= 0, where

g(Γ, A, l,µ) ≜ l(A) Γ−
∑
i∈A

µi. (3)

Proof. We adopt the concept of differential return from average-reward MDPs (Sutton, 2018). At
eacg decision round j, selecting Aj ∈ Aj incurs time lj(Aj). The quantity g(Γ∗

M, Aj , lj ,µj)
defined in equation 3 measures the gap between the optimal expected reward lj(Aj)Γ∗

M in the time
interval and the actual collected reward

∑
i∈Aj,i

µj,i.

Step 1: For any policy π, let Aj ∈ Aj denote the selected arms at round j. Since t is possible in

the middle of a decision round,
∣∣∣t−∑k(t)

j=1 lj(Aj)
∣∣∣ ≤ lmax, where lmax is from Assumption 1. Then

tΓ∗
M−qπ(t) ≥

k(t)∑
j=1

g(Γ∗
M, Aj , lj ,µj)− lmax|Γ∗

M| ≥
k(t)∑
j=1

min
A∈Aj

g(Γ∗
M, A, lj ,µj)− lmax|Γ∗

M|. (4)

Using Wald’s lemma (Durrett, 2019) and the IID assumption on {(Xj ,Aj , lj)}∞j=1,

E

[ k(t)∑
j=1

min
A∈Aj

g(Γ∗
M, A, lj ,µj)

]
= E[k(t)]E

[
min
A∈A

g(Γ∗
M, A, l,µ)

]
. (5)

With equation 5, dividing equation 4 by t and taking the lim sup of expectations yields

Γ∗
M − ΓπM ≥ lim sup

t→∞

E[k(t)]
t

E
[
min
A∈A

g(Γ∗
M, A, l,µ)

]
.

Since this holds for any π, taking the supremum of ΓπM over π gives

lim sup
t→∞

E[k(t)]
t

E
[
min
A∈A

g(Γ∗
M, A, l,µ)

]
≤ 0.

Since lim supt→∞ E[k(t)]/t > 0, we get E
[
minA∈A g(Γ

∗
M, A, l,µ)

]
≤ 0.

Step 2: Let policy π′ selectsAj = argminA∈Aj
g(Γ∗

M, A, lj ,µj) at each round j. Using the same
bound for t in the middle of a decision round,

tΓ∗
M − qπ

′
(t) ≤

k(t)∑
j=1

min
A∈Aj

g(Γ∗
M, A, lj ,µj) + lmax |Γ∗

M| .

Taking expectations and applying equation 5 give

lim sup
t→∞

E[k(t)]
t

E
[
min
A∈A

g(Γ∗
M, A, l,µ)

]
≥ Γ∗

M − Γπ
′

M ≥ 0.

5
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Algorithm 1: Contextual Online Arm Filtering (COAF)
Initialization: ξ ∈ (0, 1], Γ1 ∈ [Γmin,Γmax] and γ0 = 0.

for j = 1, 2, . . . do
1 Estimate the mean rewards for each arm i base on Hj−1, denoted by µ̂j = {µ̂j,i}

nj
i=1.

2 Select subset of arms
Aj ∈ argmin

A∈Aj

g(Γj , A, lj , µ̂j).

3 Set γj = γj−1 +minA∈Aj lj(A), and set Γj+1 = Π[Γmin,Γmax]

[
Γj − 1

ξγj
g(Γj , Aj , lj , µ̂j)

]
.

Since lim supt→∞ E[k(t)]/t > 0, we have E
[
minA∈A g(Γ

∗
M, A, l,µ)

]
≥ 0.

Combining both steps, we conclude E
[
minA∈A g(Γ

∗
M, A, l,µ)

]
= 0. With l(A) > Lmin > 0, the

function g(Γ, A, l,µ) is strictly increasing in Γ, and hence E
[
minA∈A g(Γ, A, l,µ)

]
is also strictly

increasing in Γ. Therefore, the solution Γ = Γ∗
M is unique.

Remark 2. The effect of arm quality and latency on the optimal average reward Γ∗
M can be seen

from Theorem 1. Larger delays l(A) steepen the growth of E[minA∈A g(Γ, A, l,µ)] with Γ, resulting
in a smaller root Γ∗

M. Conversely, higher mean rewards µ shift the function downward, yielding a
larger Γ∗

M. The proof also indicates that the policy π′ minimizing g(Γ∗
M, A, lj ,µj) is optimal.

4.2 ALGORITHM REGRET

Since the objective of a policy π is to maximize cumulative reward, the optimal average reward Γ∗
M

serves as a natural performance benchmark. The regret of π at time T is defined as

RπT ≜ TΓ∗
M − E

[
qπ(T )

]
, (6)

which we aim to minimize. Our goal is to design policies that perform well across general problem
setups. Specifically, policy π aims to minimize the worst-case regret supMRπT (M), while the
optimal value of this quantity, known as the minimax regret, is given by infπ supMRπT (M).

The minimax regret lower bound in contextual bandit settings is known to depend on the regressor
class F . Since contextual bandits are a special case of the problem studied here, these lower bound
results also apply. In particular, when F is the class of d-dimensional linear functions, the state-of-
the-art minimax regret lower bound is Ω(d

√
T ) (Lattimore & Szepesvári, 2020).

5 CONTEXTUAL ONLINE ARM FILTERING ALGORITHM

The latency-aware contextual bandit problem poses a significant challenge, as it requires learning
both the mean reward function ψ∗ and the potentially complex distribution Penv underlying for
{(Xj ,Aj , lj)}∞j=1. A key insight from the proof of Theorem 1 (step 2) is that it is optimal to take
action Aj ∈ argminA∈Aj

g(Γ∗
M, A, lj ,µj) in each round j. Since Γ∗

M and µj are unknown, this
minimization is not directly feasible. In this section, we introduce and analyze the COAF algorithm,
which relies on estimated values of Γ∗

M and µj to filter out suboptimal arms.

5.1 A GENERIC ALGORITHM FRAMEWORK

Stochastic approximation (Robbins & Monro, 1951) is a standard method for finding the root of
an unknown real-valued function using noisy measurements. Since in Theorem 1 has shown that
E
[
minA∈A g(Γ

∗
M, A, l,µ)

]
= 0, COAF in Algorithm 1 employs this approach to maintain an esti-

mator Γj for Γ∗
M at each round j. In Line 3 of Algorithm 1, Γj is updated via stochastic approxi-

mation and projected back to [Γmin,Γmax], where Γmin = −nmax/lmin and Γmax = nmax/lmin.

Since the true reward function ψ∗ is unknown, COAF estimates the mean rewards µ̂j from the
sampling history Hj−1. To balance exploration and exploitation, we adopt a UCB strategy by con-
structing a confidence set Fj ⊆ F based on Hj−1, which contains ψ∗ with high probability. At

6
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each round j, the UCB for arm i is µ̂j,i = maxψ∈Fj
ψ(xj,i), ensuring, with high probability, that

µ̂j,i ≥ µj,i = ψ∗(xj,i). In this paper, we focus on the UCB approach due to its simplicity and
theoretical soundness. However, it is plausible to expect that other index-based contextual bandit
algorithms, such as Thompson Sampling, can also be adapted to the COAF framework.

5.2 WORST-CASE REGRET ANALYSIS FOR COAF

In Algorithm 1, if µ̂j = µj , the stochastic approximation procedure ensures E
[
(Γj − Γ∗

M)2
]
→ 0

as j → ∞. The following result is derived by relating the regret to the convergence rate of Γj .
Lemma 2. Consider any latency-aware contextual bandit problem M = (Penv, ψ∗). Suppose the
COAF algorithm runs with ξ = 1 and has exact mean reward estimates, i.e., µ̂j = µj in every
round j. Then, for any time horizon T > 0, the regret of COAF satisfies

RC
T ≤

√
UT +

nmaxlmax

lmin
, where UT ≜

T

lmin

(
lmaxnmax

lmin

)2(
1 +

lmax

lmin

)2[
1 + log

( T

lmin

)]
.

Remark 3. Lemma 2 captures the oracle case where COAF has access to the true mean rewards,
and establishes an O(

√
T log T ) regret upper bound that arises solely from learning Γ∗

M.

The general COAF algorithm needs to learn the unknown reward function ψ∗ within the regressor
class F from noisy observations. Following standard practice in the contextual bandit literature (Lat-
timore & Szepesvári, 2020), we assume that the noise is conditionally sub-Gaussian.
Assumption 3. For any j ∈ N, {ϵj,i}

nj
i=1 are independent and conditionally 1-subgaussian:

E [eαϵj,i |Hj−1] ≤ exp
(
α2

2

)
, ∀α ∈ R, ∀i ∈ [nj ].

5.2.1 REGRET UPPER BOUND WITH LINEAR F

The linear regressor class is defined as F l ≜
{
x 7→ ⟨θ,x⟩

∣∣ θ ∈ Rd, ∥θ∥ ≤ 1
}

, where the context
space is Ωl ≜

{
x ∈ Rd

∣∣ ∥x∥ ≤ 1
}

. To estimate θ∗ corresponding to ψ∗, let

θ̄k = V −1
k (λ)

k∑
j=1

∑
i∈Aj

xj,iyj,i, Vk(λ) = λI +

k∑
j=1

∑
i∈Aj

xj,ix
⊤
j,i,

where λ > 0 is the regularization parameter. The regressor confidence set at round k is defined as

Fk ≜
{
x 7→ ⟨θ,x⟩

∣∣∣ θ ∈ Rd,
∥∥θ − θ̄k−1

∥∥2
Vk−1(λ)

≤ β(sk−1, δ), ∥θ∥ ≤ 1
}
,

where δ ∈ (0, 1), sk =
∑k
j=1 |Aj | and

√
β(n, δ) =

√
λ+

√
2 log(1δ ) + d log

(
dλ+n
dλ

)
.

Theorem 3. For any latency-aware contextual bandit problem M = (Penv, ψ∗), suppose ψ∗ ∈ F l

and the context space is Ωl. For any δ ∈ (0, 1/
√
e ], with probability at least 1 − δ, the regret of

COAF with parameter ξ ∈ (0, 1) at any time T > 0 satisfies

RC
T ≤

√
UT
ξ

+
1

1− ξ

( lmax

lmin

)3
WT (δ) +

√
nmax

lmin
WT (δ) +

nmaxlmax

lmin
,

where WT (δ) = 8dTβ
(
Tnmax

lmin
, δ
)
log
(
dλlmin+Tnmax

dλlmin

)
.

5.2.2 REGRET UPPER BOUND WITH GENERAL F

For a general regressor class F , let N(F , α, ∥·∥∞) be the α-covering number of F in the sup-norm
∥·∥∞. By calling the online regression oracle, COAF computes the estimated regressor

ψ̄k ∈ argmin
ψ∈F

k∑
j=1

∑
i∈Aj

[
ψ(xj,i)− yj,i

]2
.

7
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The abstract confidence set Fk centers around ψ̄k and is defined as

Fk ≜

{
ψ ∈ F

∣∣∣ k−1∑
j=1

∑
i∈Aj

[ψ(xj,i)− ψ̄k−1(xj,i)]
2 ≤ β̃(sk−1,F , δ, α)

}
,

where β̃(n,F , δ, α) ≜ 8 log
(
N(F , α, ∥·∥∞)/δ

)
+ 2αn

(
8 +

√
8 log(4n2/δ)

)
is the tolerence. In

practice, α can be chosen on the order of 1/T .

The eluder dimension of a function class F , defined below, measures reward dependencies across
contexts (Russo & Van Roy, 2013) and is widely used in contextual bandit regret analysis.

Definition 1. Feature x is ϵ-dependent on {x1, . . . ,xn} with respect to F if any pair of functions
ψ,ψ′ ∈ F satisfying

√∑n
k=1[ψ(xk)− ψ′(xk)]2 ≤ ϵ also satisfies ψ(x) − ψ′(x) ≤ ϵ. Further-

more, x is ϵ-independent of {x1, . . . ,xn} with respect to F if x is not ϵ-dependent on {x1, . . . ,xn}.

Definition 2. The ϵ-eluder dimension dimE(F , ϵ) is the length of the longest sequence of elements
in Ω such that, for some ϵ′ > ϵ, every element is ϵ′-independent of its predecessors.

Theorem 4. Consider latency-aware contextual bandit problem M = (Penv, ψ∗). Suppose ψ∗ ∈ F
and let dT = dimE

(
F , lmin

Tnmax

)
. For any δ > 0, with probability at least 1−2δ, the regret of COAF

with parameter ξ ∈ (0, 1) at any time T satisfies

RC
T ≤

√
UT
ξ

+
1

1− ξ

( lmax

lmin

)3
W̃T (δ) +

√
nmax

lmin
W̃T (δ) +

nmaxlmax

lmin
,

where W̃T (δ)/T = 4dT + 1 + 4
[
β̃
(

T
nmin

,F , δ, α
)
+ 4nmax

]
dT

(
1 + log

(
Tnmax

lmin

))
.

Remark 4. In Theorems 3 and 4, the regret upper bounds introduce new terms WT (δ) and W̃T (δ),
which arise from learning a regressor in F . The parameter ξ controls the trade-off between learning
Γ∗
M and learning the regressor. By setting δ = α = 1/T , the regret upper bounds for COAF become

O(d
√
T log T ) and O

(√
dimE

(
F , 1

T

)
log
(
N(F , 1

T , ∥·∥∞)
)
T log T

)
. These rates are consistent

with the standard contextual bandit literature (Chu et al., 2011; Russo & Van Roy, 2013).

6 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of COAF in two experiments. In the movie recommen-
dation task, we compare its regret against three baseline algorithms. In the cryo-EM data collection
task, we assess its data collection efficiency against human microscopists.

6.1 SIMULATIONS WITH MOVIELENS 1M DATA

We use the MovieLens 1M dataset (Harper & Konstan, 2015), which contains ratings for 3461
movies by 6040 users. Missing ratings are predicted via a matrix completion technique (Nie et al.,
2012), and principal component analysis is applied to obtain a 10-dimensional feature vector for
each movie. At each round j, the number of available movies nj is uniformly sampled from 6 to 20,
and the action space Aj = 2[nj ]. The time cost is lj(Aj) = tj + |Aj |, where tj is uniformly sampled
from 5 to 10. The ground-truth regressor ψ∗ is trained on the average ratings across all users, and
the noisy reward for each movie is given by the rating from a randomly selected user.

In our experiment, the optimal average reward Γ∗
M is computed via prolonged execution of the

stochastic approximation algorithm (Robbins & Monro, 1951). Each algorithm in Fig. 2 is run for
2000 iterations, and we plot the mean regret along with the 5% lower, 90% middle, and 5% upper
quantiles of empirical regrets in Fig. 2. In COAF-TS, we follow Abeille & Lazaric (2017) and
sample θ̂j from N (θ̄j−1,

√
β(sj−1, δ)Vj−1(λ)) as the parameter for ψ̂j to estimate arm rewards in

round j. In Fig. 2d, a fixed threshold of 1.75 fails to achieve sublinear regret. In Fig. 2a, COAF-
ORC corresponds to the oracle case described in Lemma 2, where the regret reflects only the cost
of learning Γ∗

M. For both COAF and COAF-TS, we set the parameter ξ = 0.5. We further observe
that the original COAF with UCB estimates outperforms its Thompson sampling variant.

8
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(a) COAF-ORC (b) COAF-TS (c) COAF

(d) Threshold (e) LinUCB (f) LinTS

Figure 2: Regrets of COAF and 3 baselines: (i) Threshold selects movies with rating ≥ 1.75, (ii)
COAF-ORC uses the true mean reward, and (iii) COAF-TS employs Thompson Sampling approach.

6.2 CRYO-EM DATA COLLECTION SIMULATIONS

We evaluate COAF in a realistic cryo-EM setting by benchmarking its automated data collection
performance against human microscopists. To simulate experimental conditions, we use two exist-
ing datasets. The microscope parameters tj , Tmov, and Texp in equation 1 are sampled from real
experiment logs, with mean values of 12.09, 51.99, and 6.66 seconds, respectively.

The data collection simulator is illustrated in Fig. 3a. In this setup, holes are cropped from medium-
magnification images. The feature representation of each hole consists of its mean pixel value, which
correlates with ice thickness, together with the output of the deep learning model Ptolemy (Kim
et al., 2023). Based on these features, the UCB reward estimate is displayed at the top-right corner
of each hole. In the first experiment ( Fig. 3b), we use 0/1 reward feedback, where a micrograph is
labeled good if its CTF maximum resolution is below 3.8 Å. In the second experiment ( Fig. 3c), the
reward corresponds to the number of particles in the micrograph, estimated via blob picking. We
then reconstruct 3D biomolecular structures with the same computation method using data collected
by human microscopists and by COAF. In both cases, COAF improves data collection efficiency
over human microscopists, yielding more good micrographs (particles) and higher-resolution 3D
structures. These results highlight the promise of COAF for cryo-EM automation.

7 CONCLUSION

In this paper, we studied the latency-aware contextual bandit problem, which generalizes both stan-
dard contextual bandits and mortal multi-armed bandits to settings where collecting contextual infor-
mation and taking actions incur time costs. We formulated the problem as a special case of SMDPs
with unknown rewards, sojourn times, and transition dynamics, and defined regret relative to an
optimal algorithm that maximizes the long-term average reward. Building on stochastic approxi-
mation and UCB methods, we proposed the COAF algorithm and established its regret guarantees.
Through simulations on movie recommendation tasks and cryo-EM data collection, we demon-
strated that COAF efficiently maximizes cumulative reward over time. Our approach provides a

9
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(a) Cryo-EM simulator (b) 0/1 reward feedback (c) Particle no. feedback

(d) Correlation between medium-magnification holes and micrograph qualities

Figure 3: Setup and results of the cryo-EM data collection experiment.

fully automated pipeline for cryo-EM data collection and shows promise for broader application in
other time-sensitive decision-making scenarios.
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Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-armed bandits.
Advances in neural information processing systems, 21, 2008.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In International conference on machine learning, pp. 151–159. PMLR, 2013.

Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
general reward functions. Advances in Neural Information Processing Systems, 29, 2016.

Xin Chen, Yutong Nie, and Na Li. Online residential demand response via contextual multi-armed
bandits. IEEE Control Systems Letters, 5(2):433–438, 2020.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
tions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
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A REGRET OF COAF WITH ACCESS TO TRUE MEAN REWARDS

Proof of Lemma 2. With the regret defined in equation 6, COAF satisfies

RC
T = TΓ∗

M − E

[ k(T )∑
j=1

∑
i∈Aj

µj,i

]

≤ E

[ k(T )∑
j=1

(
lj(Aj)Γ∗

M −
∑
i∈Aj

µj,i

)]
+ lmaxΓ

∗
M︸ ︷︷ ︸

(a)

≤ E

[ k(T )∑
j=1

g(Γ∗
M, Aj , lj ,µj)

]
+ lmaxΓmax, (7)

where term (a) accounts for the potentially unfinished decision round. Note that at each round j,
with access to the true mean rewards µj , COAF selects a subset of arms

Aj ∈ argmin
A∈Aj

g(Γj , A, lj ,µj), (8)

where Γj is the online estimator of Γ∗
M.

Step 1: In this step, we derive an upper bound for g(Γ∗
M, Aj , lj ,µj) at each round j. Let

A∗
j ∈ argmin

A∈Aj

g(Γ∗
M, A, lj ,µj).

We consider two cases separately: Γj < Γ∗
M and Γj ≥ Γ∗

M.

Case 1: If Γj < Γ∗
M, we have

g(Γ∗
M, Aj , lj ,µj) =lj(Aj)(Γ∗

M − Γj) + lj(Aj)Γj −
∑
i∈Aj

µj,i

according to equation 8

≤lj(Aj)(Γ∗
M − Γj) + lj(A∗

j )Γj −
∑
i∈A∗

j

µj,i

≤lj(Aj)(Γ∗
M − Γj) + lj(A∗

j )Γ
∗
M −

∑
i∈A∗

j

µj,i

=lj(Aj)(Γ∗
M − Γj) + g(Γ∗

M, A∗
j , lj ,µj).

Case 2: If Γj ≥ Γ∗
M, we have

g(Γ∗
M, Aj , lj ,µj) ≤lj(Aj)Γj −

∑
i∈Aj

µj,i

according to equation 8

≤lj(A∗
j )Γj −

∑
i∈A∗

j

µj,i

=lj(A∗
j )(Γj − Γ∗

M) + lj(A∗
j )Γ

∗
M −

∑
i∈A∗

j

µj,i

=lj(A∗
j )(Γj − Γ∗

M) + g(Γ∗
M, A∗

j , lj ,µj).

Putting both cases together, we have

g(Γ∗
M, Aj , lj ,µj) ≤ lmax |Γj − Γ∗

M|+ g(Γ∗
M, A∗

j , lj ,µj).

From Theorem 1, we also have E[g(Γ∗
M, A∗

j , lj ,µj)] = 0. Applying this result to equation 7 yields

RC
T ≤ E

[ k(T )∑
j=1

lmax |Γj − Γ∗
M|

]
+ lmaxΓmax. (9)
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Step 2: With equation 9, we have converted bounding the regret to analyzing the convergence of Γj .
To ease the notation, we define

hj(Γ) ≜ min
A∈Aj

g(Γ, A, lj ,µj) = min
A∈Aj

[
lj(A) Γ−

∑
i∈A

µi

]
. (10)

Let fj(Γ) be a function such that f ′j(Γ) = hj(Γ). Notice that f ′′j (Γ) = h′j(Γ) ≥ minA∈Aj
lj(A),

which means fj is strongly convex with parameter cj = minA∈Aj lj(A). So we have

fj(Γj) ≥ fj(Γ
∗
M) + (Γj − Γ∗

M)hj(Γ
∗
M) +

cj
2
(Γj − Γ∗

M)2. (11)

Applying Cauchy–Schwarz inequality, we have( k(T )∑
j=1

lmax |Γj − Γ∗
M|

)2

=

( k(T )∑
j=1

lmax√cj
√

cj |Γj − Γ∗
M|

)2

≤

[ k(T )∑
j=1

( lmax√cj

)2][ k(T )∑
j=1

cj(Γj − Γ∗
M)2

]
since cj ≥ lmin

≤

[ k(T )∑
j=1

l2max

lmin

][ k(T )∑
j=1

cj(Γj − Γ∗
M)2

]
since k(T ) ≤ T/lmin

≤T
( lmax

lmin

)2[ k(T )∑
j=1

cj(Γj − Γ∗
M)2

]
. (12)

We substitute equation 11 into equation 12 to get( k(T )∑
j=1

lmax |Γj − Γ∗
M|

)2

≤ 2T
( lmax

lmin

)2 k(T )∑
j=1

[
fj(Γj)− fj(Γ

∗
M) + (Γ∗

M − Γj)hj(Γ
∗
M)
]
. (13)

Step 3: In this step, we derive an upper bound on
∑k(T )
j=1 fj(Γj)−fj(Γ∗

M) from equation 13. We fol-
low a standard procedure in analyzing online gradient descent for strongly convex functions (Hazan
et al., 2016, Sec. 3.3). We reproduce it here to make the proof self-contained. Since f ′j(Γ) = hj(Γ)
and fj is strongly convex with parameter cj , we have

2
[
fj(Γj)− fj(Γ

∗
M)
]
≤ 2hj(Γj)(Γj − Γ∗

M)− cj(Γj − Γ∗
M)2. (14)

With the update rule of Γj in Algorithm 1, we apply the fact g(Γj , A, lj ,µj) = hj(Γj) to get

(Γj+1 − Γ∗
M)2 =

[
Π[Γmin,Γmax]

(
Γj −

1

γj
hj(Γj)

)
− Γ∗

M

]2
≤
[
Γj −

1

γj
hj(Γj)− Γ∗

M

]2
= (Γj − Γ∗

M)2 +
1

γ2j
h2j (Γj)−

2

γj
hj(Γj)(Γj − Γ∗

M).

Rearranging the above inequality, we get

2hj(Γj)(Γj − Γ∗
M) ≤ γj(Γj − Γ∗

M)2 − γj(Γj+1 − Γ∗
M)2 +

1

γj
h2j (Γj). (15)

15
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Substituting equation 14 into equation 15 and summing from j = 1 to k(T ), we have

2

k(T )∑
j=1

fj(Γj)− fj(Γ
∗
M) ≤

k(T )∑
j=1

(Γj − Γ∗
M)2(γj − γj−1 − cj) +

k(T )∑
j=1

1

γj
h2j (Γj)

since γ0 ≜ 0, γj ≥ jlmin, and |hj(Γj)| ≤ G ≜ nmax

(
1 + lmax

lmin

)
≤0 +G2

k(T )∑
j=1

1

jlmin
≤ G2

lmin

[
1 + log(k(T ))

]
since k(T ) ≤ T

lmin

≤ G2

lmin

[
1 + log

(
T

lmin

)]
. (16)

Step 4: By Theorem 1, we have E[hj(Γ∗
M)] = 0. Moreover, since Γj depends only on the history

Hj−1, the sequence
{∑k

j=1(Γ
∗
M − Γj)hj(Γ

∗
M)
}∞
k=1

forms a martingale. Consequently,

E

[ k(T )∑
j=1

(Γ∗
M − Γj)hj(Γ

∗
M)

]
= 0. (17)

Applying equation 17 together with equation 16 to equation 13, we obtain

E
[(∑k(T )

j=1 lmax |Γj − Γ∗
M|
)2]

≤ T

(
lmax

lmin

)2
G2

lmin

[
1 + log

(
T

lmin

)]
≜ UT .

Finally, since E[x] ≤
√

E[x2] holds for any random variable x, we conclude

RC
T ≤ E

[ k(T )∑
j=1

lmax |Γj − Γ∗
M|

]
+ lmaxΓmax ≤

√
UT + lmaxΓmax.

B SUPPORTING LEMMAS FOR CONTEXTUAL BANDITS

In this section, we review relevant results from the existing contextual bandit literature and extend
them for later regret analysis for COAF.

B.1 CONCENTRATION PROPERTIES OF THE REGULARIZED LEAST SQUARES

In the standard contextual bandit setting, the learner selects a single arm at each round k. Let
xk denote the context and yk the noisy feedback from the chosen arm at round k. The noise in
yk is conditionally sub-Gaussian, as stated in Assumption 3. The concentration inequality in this
section ensures that the confidence set Fk ⊆ F contains ψ∗ with high probability for all k ∈ N.
Consequently, the UCB of each arm is, with high probability, no smaller than its true mean reward.

B.1.1 CONCENTRATION INEQUALITY FOR LINEAR REGRESSOR

In the linear bandit setting, the regularized least-squares estimator is defined as

θ̄k = V −1
k (λ)

k∑
j=1

xjyj , Vk(λ) = λI +

k∑
j=1

xjx
⊤
j .

Lemma 5 ((Lattimore & Szepesvári, 2020, Theorem 20.5)). Let δ ∈ (0, 1). Then, with probability
at least 1− δ, it holds that for all k ∈ N,∥∥θ̄k − θ∗

∥∥
Vk(λ)

<
√
λ ∥θ∗∥+

√
2 log

(
1
δ

)
+ log

(
detVk(λ)

λd

)
.
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Furthermore, if ∥θ∗∥ ≤ m, then P (∃k ∈ N : θ∗ /∈ Ck) ≤ δ with

Ck =

{
θ ∈ Rd

∣∣∣ ∥∥θ − θ̄k−1

∥∥
Vk−1(λ)

< m
√
λ+

√
2 log

(
1
δ

)
+ log

(
detVk−1(λ)

λd

)}
.

B.1.2 CONCENTRATION INEQUALITY FOR GENERAL REGRESSOR

For a general regressor class F , recall N(F , α, ∥·∥∞) denotes its α-covering number under the sup-
norm ∥·∥∞. The regularized least-squares estimator is ψ̄k ∈ argminψ∈F

∑k
j=1

(
ψ(xj)−yj

)2
. The

following result relates the concentration of ψ̄k to the α-covering number of F .
Lemma 6 ((Russo & Van Roy, 2013, Proposition 2)). For any δ > 0 and α > 0, with probability at
least 1− 2δ, it holds for all k ∈ N that

ψ∗ ∈
{
ψ ∈ F

∣∣∣ k−1∑
j=1

[ψ(xj)− ψ̄k(xj)]
2 ≤ β̃(k,F , δ, α)

}
,

where β̃(k,F , δ, α) = 8 log
(
N(F , α, ∥·∥∞)/δ

)
+ 2αk(8 +

√
8 log(4k2/δ)).

B.2 BOUNDS FOR CUMULATIVE PREDICTION ERROR

We report the upper bound on the cumulative prediction error of the estimated rewards. Combined
with the results in Appendix B.1.1, this error is shown to be small with high probability.

B.2.1 CUMULATIVE PREDICTION ERROR WITH LINEAR REGRESSOR CLASS

With a linear regressor class, the upper bound on the cumulative prediction error depends on the
feature dimension d. The following result builds on the theory of self-normalized processes, and the
version for standard contextual bandits appears in Lattimore & Szepesvári (2020, Lemma 19.4).

Lemma 7. Let V0 ∈ Rd×d be positive definite and Vk = V0 +
∑k
j=1

∑
i∈Aj

(
1 + x⊤

j,iV
−1
j−1xj,i

)
.

If ∥xj,i∥ ≤ L <∞ for all i ∈ [nj ] and j ∈ N, then
k∑
j=1

∑
i∈Aj

min
(
1,x⊤

j,iV
−1
j−1xj,i

)
≤ 2 log

(
detVk
detV0

)
≤ 2d log

(
traceV0 + nmaxkL

2

ddet(V0)1/d

)
.

Proof. The matrix determinant lemma, which states that for any vector x and positive definite V ,

det(V + xx⊤) = det(V )(1 + x⊤V −1x).

Applying this iteratively for all xj,i gives

det(Vk) = det(V0)

k∏
j=1

∏
i∈Aj

(
1 + x⊤

j,iV
−1
j−1xj,i

)
.

Taking logarithms and using 2 log(1 + x) ≥ min(x, 1) for any x ≥ 0, we have

2 log

(
detVk
detV0

)
= 2

k∑
j=1

∑
i∈Aj

log
(
1 + x⊤

j,iV
−1
j−1xj,i

)
≤

k∑
j=1

∑
i∈Aj

min
(
1,x⊤

j,iV
−1
j−1xj,i

)
.

Finally, using the trace-determinant inequality for positive definite matrices:

det(Vk) ≤
(
trace(Vk)

d

)d
≤
(
trace(V0) + nmaxkL

2

d

)d
,

we obtain
k∑
j=1

∑
i∈Aj

x⊤
j,iV

−1
j−1xj,i ≤ 2 log

(
detVk
detV0

)
≤ 2d log

(
traceV0 + nmaxkL

2

ddet(V0)1/d

)
.
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Lemma 8. Let β1, β2, . . . be a nondecreasing sequence with β1 ≥ 1 and let

Cj =
{
θ ∈ Rd

∣∣∣ ∥∥θ − θ̄j−1

∥∥2
Vj−1

≤ βj , ∥θ∥ ≤ 1
}
.

For each j ∈ N, take an arbituary pair θj , θ′j ∈ Cj . If ∥xj,i∥ ≤ 1 for all i ∈ [nj ] and j ∈ N, then

k∑
j=1

∑
i∈Aj

⟨θj − θ′j ,xj,i⟩2 ≤ 8dβk log

(
traceV0 + nmaxk

ddet(V0)1/d

)
.

Furthermore, if V0 = λI ,

k∑
j=1

∑
i∈Aj

⟨θj − θ′j ,xj,i⟩2 ≤ 8dβk log
(
dλ+nmaxk

dλ

)
.

Proof. For a vectore x ∈ Rd and a positive definite matrix V ∈ Rd×d, recall ∥x∥V =
√
x⊤V x.

Since θj , θ′j ∈ Cj , for each i ∈ [nj ], we have

⟨θj − θ′j ,xj,i⟩ ≤ ∥xj,i∥V −1
j−1

∥∥θj − θ′j
∥∥
Vj−1

≤ 2 ∥xj,i∥V −1
j−1

√
βj .

With
∥∥θj∥∥,∥∥θ′j∥∥ and ∥xj,i∥ all upper bounded by 1, we have

∣∣⟨θj − θ′j ,xj,i⟩
∣∣ ≤ 2. Combing this

result with βk ≥ βj ≥ 1, we have

⟨θj − θ′j ,xj,i⟩ ≤ min
(
2, 2 ∥xj,i∥V −1

j−1

√
βj
)
≤ 2
√
βkmin

(
1, ∥xj,i∥V −1

j−1

)
.

We use the above inequality and apply Lemma 7 to get

k∑
j=1

∑
i∈Aj

⟨θj − θ′j ,xj,i⟩2 ≤ 4βk

k∑
j=1

∑
i∈Aj

min
(
1, ∥xj,i∥V −1

j−1

)
≤ 8dβk log

(
traceV0 + nmaxk

ddet(V0)1/d

)
.

B.2.2 CUMULATIVE PREDICTION ERROR WITH GENERAL REGRESSOR CLASS

For an abstract regressor class F , the upper bound of the cumulative prediction error depends on its
eluder dimension dimE(F , ϵ). For any subset F̃ ⊆ F , its width at a context x is defined as

wF̃ (x) ≜ sup
ψ,ψ′∈F̃

ψ(x)− ψ′(x).

Single arm selection: The following results apply to the standard contextual bandit setting, in which
a single arm is selected from each decision set.

Lemma 9 ((Russo & Van Roy, 2013, Proposition 3)). Let x1, . . . ,xn ∈ Rd be a sequence of
features, and let β1, . . . , βn be a nondecreasing sequence. For each k ∈ [n] and an arbitrary
ψ′
k ∈ F , define Fk ≜

{
ψ ∈ F |

∑k−1
j=1 [ψ(xj)− ψ′

k(xj)]
2 ≤ βk

}
. Then, for any ϵ > 0,

n∑
k=1

1
{
wF ′

k
(xk) > ϵ

}
≤
(
4βn
ϵ2

+ 1

)
dimE(F , ϵ).

Lemma 10. Let x1, . . . ,xn ∈ Rd be a sequence of features, and let β1, . . . , βn be a nondecreasing
sequence. For each k ∈ [n] and an arbitrary ψ′

k ∈ F , define Fk ≜
{
ψ ∈ F |

∑k−1
i=1 [ψ(xi) −

ψk(xi)]
2 ≤ βn

}
. Then the widths wF1

(x1), . . . , wFn
(xn) satisfy

n∑
k=1

w2
Fk

(xk) ≤ 4 dimE
(
F , 1

n

)
+ 1 + 4βn dimE

(
F , 1

n

)
(1 + log n).
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Proof. For the ease of notation, let wFk
(xk) = wk. We rearrange the sequence w1, . . . , wn by

defining a sequence k1, . . . , kn such that wk1 ≥ wk2 ≥ . . . ≥ wkn . For any wki+1
> 1

n , there are at
most i values in w1, . . . , wn that is greater wki+1

, and we apply Lemma 9 to get

i ≤
n∑
k=1

1
{
wFk

(xk) > wki+1

}
≤
(

4βn
w2
ki+1

+ 1

)
dimE(F , wki+1) ≤

(
4βn
w2
ki+1

+ 1

)
dimE

(
F , 1

n

)
,

where the last inequality is due to that dimE(F , ϵ) is a nonincreasing function of ϵ. Thus, for any
i > m = dimE(F , 1

n ), we rearrange the above inequality to get

w2
ki+1

≤ 4βnm

i−m
, if wki+1 >

1

n
.

Moreover, since the range of each ψ ∈ F is contained in [−1, 1], wk ≤ 2 for all k ∈ [n]. Thus,
n∑
k=1

w2
k =

n∑
i=1

w2
ki ≤ 4m+

n∑
i=m+1

w2
ki1

{
wki ≤

1

n

}
+

n∑
i=m+1

w2
ki1

{
wki >

1

n

}

< 4m+
1

n
+

n∑
i=m+1

4βnm

i−m
≤ 4m+ 1 + 4βnm(1 + log n).

Multiple arm selection: When multiple arms are selected in each round, we define

Fk ≜

{
ψ ∈ F

∣∣∣ k−1∑
j=1

∑
i∈Aj

[ψ(xj,i)− ψ′
k(xj,i)]

2 ≤ βk

}
.

To see the difference, we show the feature sequence below:
x1,1, . . . ,x1,|A1|, . . . ,xj−1,1, . . . ,xj−1,|Aj−1|︸ ︷︷ ︸

(a)

,xj,1, . . . ,xj,i−1︸ ︷︷ ︸
(b)

,xj,i
↑
, . . . ,xn,1, . . . ,xj−1,|An|.

When evaluating the width at xj,i, the set Fj is constructed by imposing constraints only on the
features in (a); the features in (b) are not incorporated. For each i ∈ Aj and j ∈ N, define

Fm
j,i ≜

{
ψ ∈ F

∣∣∣ j−1∑
ν=1

∑
ι∈Aν

[ψ(xν,ι)− ψ′
k(xν,ι)]

2 +

i−1∑
ι=1

[ψ(xj,ι)− ψ′
k(xj,ι)]

2 ≤ βj + nmax

}
.

With Lemma 9, we obtain
n∑
j=1

∑
i∈Aj

1
{
wFm

j,i
(xj,i) > ϵ

}
≤
[
4(βn + 4nmax)

ϵ2
+ 1

]
dimE (F , ϵ) .

Since
∑i−1
ι=1[ψ(xj,ι)−ψ′

j(xj,ι)]
2 ≤ 4nmax, we also have Fm

j,i ⊇ Fj . We get the following corollary.
Corollary 11. let β1, . . . , βn be a nondecrasing sequence, then for any ϵ > 0,

n∑
j=1

∑
i∈Aj

1
{
wFj (xj,i) > ϵ

}
≤
[
4(βn + 4nmax)

ϵ2
+ 1

]
dimE (F , ϵ) .

Applying the same steps that lead from Lemma 9 to Lemma 10, we derive the following corollary
from Corollary 11.
Corollary 12. Let β1, . . . , βn be a nondecreasing sequence. For each k ∈ [n], let

Fk ≜
{
ψ ∈ F

∣∣∣ ∑k−1
j=1

∑
i∈Aj

[ψ(xj,i)− ψ̄k(xj,i)]
2 ≤ βk

}
,

and let sn =
∑n
j=1 |Aj |, then

n∑
j=1

∑
i∈Aj

w2
Fj
(xj,i) ≤ 4 dimE

(
F , 1

sn

)
+ 1 + (4βn + 4nmax) dimE

(
F , 1

sn

)
(1 + log(sn)).
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C REGRET ANALYSIS FOR COAF

The following result provides a decomposition of the regret for COAF, isolating the components that
arise from learning the mean reward function using online feedback.
Lemma 13. If ψ∗ ∈ Fj for all j ∈ N, the regret for COAF satisfies

RC
T ≤

√√√√√UT

ξ + T
1−ξ

(
lmax

lmin

)3
E
[∑k(T )

j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2
]

︸ ︷︷ ︸
(a)

+

√
Tnmax

lmin
E
[∑k(T )

j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2
]

︸ ︷︷ ︸
(b)

+lmaxΓmax,

where UT ≜ T
lmin

(
lmaxnmax

lmin

)2(
1 + lmax

lmin

)2[
1 + log

(
T
lmin

)]
.

Components (a) and (b) arise from the use of UCB estimates in place of the true mean rewards. The
remaining terms coincide with those in the oracle case, as established in Lemma 2.

Proof. In equation 7, we have shown

RC
T = E

[ k(T )∑
j=1

g(Γ∗
M, Aj , lj ,µj)

]
+ lmaxΓmax. (18)

At each round j, with estimated arm rewards µ̂j , COAF selects a subset of arms

Aj ∈ argmin
A∈Aj

g(Γj , A, lj , µ̂j). (19)

Correspondingly, the optimal arm selection is defined as

A∗
j ∈ argmin

A∈Aj

g(Γ∗
M, A, lj ,µj).

Step 1: To bound g(Γ∗
M, Aj , lj ,µj), we consider two seperate cases: Γj < Γ∗

M and Γj ≥ Γ∗
M.

Case 1: If Γj < Γ∗
M, then

g(Γ∗
M, Aj , lj ,µj) =lj(Aj)Γ∗

M −
∑
i∈Aj

µj,i

=lj(Aj)(Γ∗
M − Γj) + lj(Aj)Γj −

∑
i∈Aj

µ̂j,i +
∑
i∈Aj

(µ̂j,i − µj,i)

according to equation 19

≤lj(Aj)(Γ∗
M − Γj) + lj(A∗

j )Γj −
∑
i∈A∗

j

µ̂j,i +
∑
i∈Aj

(µ̂j,i − µj,i).

Moreover, if ψ∗ ∈ Fj , then for each arm i ∈ [nj ], the UCB estimate satisfies

µ̂j,i = max
ψ∈Fj

ψ(xj,i) ≥ µj,i.

Hence, we obtain

g(Γ∗
M, Aj , lj ,µj) ≤ lj(Aj)(Γ∗

M − Γj) + lj(A∗
j )Γ

∗
M −

∑
i∈A∗

j

µj,i +
∑
i∈Aj

(µ̂j,i − µj,i)

= lj(Aj)(Γ∗
M − Γj) + g(Γ∗

M, A∗
j , lj ,µj) +

∑
i∈Aj

(µ̂j,i − µj,i).
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Case 2: If Γj ≥ Γ∗
M, we get

g(Γ∗
M, Aj , lj ,µj) ≤lj(Aj)Γ∗

M −
∑
i∈Aj

µj,i

≤lj(Aj)Γj −
∑
i∈Aj

µ̂j,i +
∑
i∈Aj

(µ̂j,i − µj,i)

according to equation 19

≤lj(A∗
j )Γj −

∑
i∈A∗

j

µ̂j,i +
∑
i∈Aj

(µ̂j,i − µj,i)

since as µ̂j,i ≥ µj,i for all i

≤lj(A∗
j )(Γj − Γ∗

M) + lj(A∗
j )Γ

∗
M −

∑
i∈A∗

j

µj,i +
∑
i∈Aj

(µ̂j,i − µj,i)

=lj(A∗
j )(Γj − Γ∗

M) + g(Γ∗
M, A∗

j , lj ,µj) +
∑
i∈Aj

(µ̂j,i − µj,i).

With maximum latency lmax, we combine both cases together to get

g(Γ∗
M, Aj , lj ,µj) ≤ lmax |Γj − Γ∗

M|+ g(Γ∗
M, A∗

j , lj ,µj) +
∑
i∈Aj

(µ̂j,i − µj,i).

It follows from Theorem 1 that E[g(Γ∗
M, A∗

j , lj ,µj)] = 0. We apply this result to equation 18 to get

RC
T ≤ E

[ k(T )∑
j=1

lmax |Γj − Γ∗
M|+

∑
i∈Aj

(µ̂j,i − µj,i)

]
+ lmaxΓmax. (20)

Step 2: Recall hj(Γ) defined in equation 10. We define its counterpart with UCB estimates

ĥj(Γ) = min
A∈Aj

g(Γ, A, lj , µ̂j).

Then we have the following

hj(Γj) = min
A∈Aj

[
lj(A) Γ−

∑
i∈A

µi

]
≤lj(Aj)Γj −

∑
i∈Aj

µj,i = lj(Aj)Γj −
∑
i∈Aj

µ̂j,i +
∑
i∈Aj

(µ̂j,i − µj,i)

=ĥj(Γj) +
∑
i∈Aj

(µ̂j,i − µj,i). (21)

Let fj(Γ) be such that f ′j(Γ) = hj(Γ). In step 2 of the proof for Lemma 2, we have shown( k(T )∑
j=1

lmax |Γj − Γ∗
M|

)2

≤ 2T
( lmax

lmin

)2 k(T )∑
j=1

[
fj(Γj)− fj(Γ

∗
M) + (Γ∗

M − Γj)hj(Γ
∗
M)
]
. (22)

In later steps of the proof, we use ĥj to bound the above term.

Step 3: We continue to give an upper bound on
∑k(T )
j=1 fj(Γj) − fj(Γ

∗
M). Since fj is strongly

convex with parameter cj ,

2
[
fj(Γj)− fj(Γ

∗
M)
]

≤2hj(Γj)(Γj − Γ∗
M)− cj(Γj − Γ∗

M)2

=2ĥj(Γj)(Γj − Γ∗
M) + 2

[
hj(Γj)− ĥj(Γj)

]
(Γj − Γ∗

M)− cj(Γj − Γ∗
M)2

since 2
[
hj(Γj)− ĥj(Γj)

]
(Γj − Γ∗

M) ≤ 1
aj

[
hj(Γj)− ĥj(Γj)

]2
+ aj(Γj − Γ∗

M)2

≤2ĥj(Γj)(Γj − Γ∗
M) +

1

aj

[
hj(Γj)− ĥj(Γj)

]2
+ (aj − cj)(Γj − Γ∗

M)2, (23)
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for some aj > 0 to be chosen in later steps. Using equation 21 and applying the Cauchy–Schwarz
inequality, we obtain[

hj(Γj)− ĥj(Γj)
]2 ≤

[ ∑
i∈Aj

(µ̂j,i − µj,i)

]2
≤ |Aj |

∑
i∈Aj

(µ̂j,i − µj,i)
2 ≤ lmax

∑
i∈Aj

(µ̂j,i − µj,i)
2. (24)

In COAF as presented in Algorithm 1, Γj+1 = Π[Γmin,Γmax]

[
Γj − 1

ξγj
g(Γj , Aj , lj , µ̂j)

]
. Then we

apply the fact that g(Γj , Aj , lj , µ̂j) = ĥj(Γj) to get

(Γj+1 − Γ∗
M)2 =

[
Π[Γmin,Γmax]

(
Γj −

1

ξγj
ĥj(Γj)

)
− Γ∗

M

]2
≤
[
Γj −

1

ξγj
ĥj(Γj)− Γ∗

M

]2
= (Γj − Γ∗

M)2 +
1

ξ2γ2j
ĥ2j (Γj)−

2

ξγj
ĥj(Γj)(Γj − Γ∗

M).

Rearranging the above equation, we get

2ĥj(Γj)(Γj − Γ∗
M) = ξγj(Γj − Γ∗

M)2 − ξγj(Γj+1 − Γ∗
M)2 +

1

ξγj
ĥ2j (Γj). (25)

Substituting equation 24 and equation 25 into equation 23, we compute the following summation:

2

k(T )∑
j=1

fj(Γj)− fj(Γ
∗
M)

≤
k(T )∑
j=1

(Γj − Γ∗
M)2(ξγj − ξγj−1 + aj − cj) +

k(T )∑
j=1

1

ξγj
ĥ2j (Γj) +

lmax

aj

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2

since
1

γ0
≜ 0,

∣∣∣ĥj(Γj)∣∣∣ ≤ G ≜ nmax

(
1 + lmax

lmin

)
, and we select aj = (1− ξ)cj

=0 +G2

k(T )∑
j=1

1

ξγj
+
lmax

aj

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2

since cj ≥ lmin

≤0 +
G2

ξ

k(T )∑
j=1

1

jlmin
+

lmax

(1− ξ)lmin

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2

≤ G2

ξlmin

[
1 + log(k(T ))

]
+

lmax

(1− ξ)lmin

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2

since k(T ) ≤ T
lmin

≤ G2

ξlmin

[
1 + log

(
T
lmin

)]
+

lmax

(1− ξ)lmin

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2. (26)

Step 4: In equation 17, we have shown

E

[ k(T )∑
j=1

(Γ∗
M − Γj)hj(Γ

∗
M)

]
= 0.

Applying it together with equation 26 to equation 22, we obtain

E
[(∑k(T )

j=1 lmax |Γj − Γ∗
M|
)2]

≤ UT
ξ

+
T

1− ξ

(
lmax

lmin

)3

E
[∑k(T )

j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2
]
.
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With this result, and using the fact that E[x] ≤
√

E[x2] for any random variable x, it follows
from equation 20 that

RC
T ≤

√
UT
ξ

+
T

1− ξ

(
lmax

lmin

)3

E
[∑k(T )

j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2
]

+E
[∑k(T )

j=1

∑
i∈Aj

(µ̂j,i − µj,i)
]
+ lmaxΓmax. (27)

In addition, Cauchy–Schwarz inequality gives[ k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)

]2
≤

k(T )∑
j=1

|Aj | ×
k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2 ≤ Tnmax

lmin

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2.

Applying E[x] ≤
√
E[x2] to the second expectation in equation 27, and then combining it with the

above inequality, we conclude the proof.

With Lemma 13 in place, we leverage the theoretical results for standard contextual bandits in Ap-
pendix B to analyze the regret of COAF. For some δ > 0, we define event

E ≜ {∀k ∈ N : ψ∗ ∈ Fk} .

C.1 REGRET UPPER BOUND WITH LINEAR REGRESSOR CLASS

Proof of Theorem 3. For a linear mean reward function ψ∗ ∈ Fl, the event E can also be written as

E = {∀j ∈ N : θ∗ ∈ Cj} ,
where

Cj =
{
θ ∈ Rd

∣∣∣ ∥∥θ − θ̄j−1

∥∥2
Vj−1(λ)

< β(sj−1, δ), ∥θ∥ ≤ 1

}
.

By Lemma 7, we also have P (¬E) ≤ δ, using the fact that detVn(λ) ≤ (λ+ n/d)d.

For each xj,i, let θ̂j,i ∈ argmaxθ∈Cj
⟨θ,xj,i⟩, i.e., µ̂j,i = ⟨θ̂j,i,xj,i⟩. Since δ ∈ (0, 1/

√
e ] ensures

β(0, δ) ≥ 1, if the event E occurs, we can apply Lemma 8 to obtain
k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2 =

k(T )∑
j=1

∑
i∈Aj

⟨θ̂j,i − θ∗,xj,i⟩2 ≤ 8dβ(sk(T ), δ) log

(
dλ+ nmaxk(T )

dλ

)
,

where sk =
∑k
j=1 |Aj |. Since k(T ) ≤ T/lmin and sk(T ) ≤ Tnmax/lmin, we also have

k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2 ≤ WT (δ)

T
. (28)

If E occurs, we apply equation 28 to Lemma 13 to get

RC
T ≤

√
UT
ξ

+
1

1− ξ

(
lmax

lmin

)3
WT (δ) +

√
nmax

lmin
WT (δ) + lmaxΓmax,

which holds with probability at least 1− δ.

C.2 REGRET UPPER BOUND FOR GENERAL REGRESSOR CLASS

Proof of Theorem 4. Using the concentration property of ψ̄k from Lemma 6, we have P (¬E) ≤ 2δ.

For each xj,i, let ψ̂j,i ∈ argmaxψ∈Fj
(xj,i), i.e., µ̂j,i = ψ̂j,i(xj,i). Conditioned on the event E , we

also have ψ∗ ∈ Fj for any j ∈ N and i ∈ [nj ]. Thus,
k(T )∑
j=1

∑
i∈Aj

(µ̂j,i − µj,i)
2 =

k(T )∑
j=1

∑
i∈Aj

[
ψ̂j,i(xj,i)− ψ∗(xj,i)

]2
≤

k(T )∑
j=1

∑
i∈Aj

w2
Fj
(xj,i).
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Then we apply Corollary 12 to get

k(T )∑
j=1

∑
i∈Aj

w2
Fj
(xj,i)

≤4 dimE

(
F , 1

sk(T )

)
+ 1 + 4

[
β̃(k(T ),F , δ, α) + 4nmax

]
dimE

(
F , 1

sk(T )

)(
1 + log(sk(T ))

)
since k(T ) ≤ T/lmin and sk(T ) ≤ Tnmax/lmin

≤4 dimE

(
F , lmin

Tnmax

)
+ 1 + 4

[
β̃
(

T
nmin

,F , δ, α
)
+ 4nmax

]
dimE

(
F , lmin

Tnmax

)(
1 + log Tnmax

lmin

)
,

(29)

where sk =
∑k
j=1 |Aj |. We then apply Eq. (29) to Lemma 13 to get

RC
T ≤

√
UT
ξ

+
1

1− ξ

( lmax

lmin

)3
W̃T (δ) +

√
nmax

lmin
W̃T (δ) +

nmaxlmax

lmin
,

which holds with probability at least 1− 2δ.
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