

000 LATENCY-AWARE CONTEXTUAL BANDIT: 001 002 APPLICATION TO CRYO-EM DATA COLLECTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 We introduce a latency-aware contextual bandit framework that generalizes the
011 standard contextual bandit problem, where the learner adaptively selects arms and
012 switches decision sets under action delays. In this setting, the learner observes
013 the context and may select multiple arms from a decision set, with the total time
014 determined by the selected subset. The problem can be framed as a special case
015 of semi-Markov decision processes (SMDPs), where contexts and latencies are
016 drawn from an unknown distribution. Leveraging the Bellman optimality equation,
017 we design the contextual online arm filtering (COAF) algorithm, which balances
018 exploration, exploitation, and action latency to minimize regret relative to
019 the optimal average-reward policy. We analyze the algorithm and show that its re-
020 gret upper bounds match established results in the contextual bandit literature. In
021 numerical experiments on a movie recommendation dataset and cryogenic elec-
022 tron microscopy (cryo-EM) data, we demonstrate that our approach efficiently
023 maximizes cumulative reward over time.

024 025 1 INTRODUCTION

026 The contextual bandit framework models sequential decision-making under uncertainty: the learner
027 observes context, selects an action, and receives feedback only for that action (Lattimore &
028 Szepesvári, 2020). This framework is widely used in domains requiring personalization, exper-
029 imentation, or optimization under uncertainty, including recommender systems, healthcare, edu-
030 cation, finance, and energy management (Li et al., 2010; Tewari & Murphy, 2017; Lan & Baraniuk,
031 2016; Soemers et al., 2018; Chen et al., 2020). Standard formulations do not account for the la-
032 tency of acquiring information or executing actions. In practice, obtaining contexts—such as as-
033 say results, medical records, or experimental measurements—often involves non-negligible delays.
034 Similar challenges arise in scientific automation, where experimental decisions must trade off infor-
035 mation gain against time constraints. Examples include high-throughput drug discovery, automated
036 materials science, and astronomy (Blay et al., 2020; Pyzer-Knapp et al., 2022; Adler et al., 2020).
037 A prominent instance is cryo-electron microscopy (cryo-EM) (Li et al., 2023), where limited and
038 costly microscope time must be efficiently allocated to the most informative imaging targets.

039 To address this limitation, we extend the contextual bandit model to incorporate latency-aware
040 decision-making. At each round, the learner selects multiple arms from a decision set and receives
041 their rewards, with a total time cost determined by the chosen subset. Maximizing cumulative re-
042 ward in this setup requires balancing the trade-off between *exploration* (gathering information from
043 new actions) and *exploitation* (selecting actions with high expected rewards), while also implement-
044 ing an effective strategy for arm selection under latency. This problem can be framed as a special
045 case of SMDPs where the reward function, sojourn time distribution, and transition probabilities are
046 unknown, making it a reinforcement learning task. We adopt the framework of undiscounted rein-
047 forcement learning (Auer et al., 2008) under the average reward criterion. In particular, we make the
048 following contributions:

- 049 • We analyze the latency-aware contextual bandit problem and derive the Bellman optimality equa-
050 tion to characterize the optimal policy. We show that the maximum average reward can be obtained
051 by finding the root of a function with noisy measurements.
- 052 • Building on the Bellman optimality equation, we leverage stochastic approximation and the upper
053 confidence bound (UCB) method to design the COAF algorithm, which efficiently selects arms

054 and switching decision sets under action latency. We establish that COAF achieves sublinear regret
 055 and validate its performance through numerical experiments on a movie recommendation dataset
 056 and cryo-EM data collection. The results demonstrate the effectiveness of COAF in time-sensitive
 057 decision-making tasks.
 058

059 2 RELATED WORKS 060

061 In sequential decision-making under uncertainty, maximizing reward requires balancing exploration
 062 and exploitation. The multi-armed bandit (MAB) problem formalizes this trade-off: a learner repeat-
 063 edly selects arms with unknown reward distributions and aims to minimize regret, defined as the dif-
 064 ference between the cumulative reward of an online algorithm and that of the optimal arm (Robbins,
 065 1952; Lai & Robbins, 1985). Classical algorithms with strong theoretical guarantees include the
 066 UCB family, which selects arms according to optimistic estimates of their mean rewards. Thompson
 067 sampling, one of the earliest MAB solutions, is a randomized Bayesian algorithm that nonetheless
 068 addresses the fundamentally frequentist problem of regret minimization (Thompson, 1933; Agrawal
 069 & Goyal, 2012; Kaufmann et al., 2012). Other widely studied policies include the Gittins index (Gitt-
 070 tins et al., 2011; Lattimore, 2016) and minimum empirical divergence (Honda & Takemura, 2010).

071 The contextual bandit problem generalizes the MAB by allowing the learner to make decisions based
 072 on observed contexts. This framework naturally integrates statistical learning and function approx-
 073 imation into sequential decision-making. Contextual bandit algorithms can be broadly categorized
 074 into two types. *Realizability-based approaches* assume that rewards follow a known parametric
 075 family, enabling efficient algorithms with strong theoretical guarantees. Representative examples in-
 076 clude LinUCB and linear Thompson sampling for linear models (Chu et al., 2011; Agrawal & Goyal,
 077 2013), and GLM-UCB, GLM-TS, and GLOC for generalized linear models (Filippi et al., 2010;
 078 Abeille & Lazaric, 2017; Jun et al., 2017). In contrast, *general-purpose approaches* make weaker
 079 assumptions, accommodating broader function classes. They often rely on regression oracles, with
 080 regret bounds expressed in terms of sample complexity measures such as VC-dimension, eluder di-
 081 mension, or the performance of a square-loss minimizing oracle (Langford & Zhang, 2007; Beygelz-
 082 imer et al., 2011; Russo & Van Roy, 2013; Foster & Rakhlin, 2020). Empirically, realizability-based
 083 methods outperform general-purpose approaches when the reward model is well-specified, while the
 084 latter offer greater flexibility under unknown or complex reward structures (Bietti et al., 2021).

085 Our problem formulation allows the learner to select multiple arms from a decision set. This setup
 086 was first introduced by Anantharam et al. (1987) and is widely studied in combinatorial bandits. The
 087 reward function can be linear with respect to the individual arm rewards (Cesa-Bianchi & Lugosi,
 088 2012) or nonlinear, capturing interactions and combinatorial constraints (Chen et al., 2013; Kveton
 089 et al., 2014; Chen et al., 2016). Contextual combinatorial bandits focus on learning the combinatorial
 090 reward structure under context, where decision sets arrive sequentially and selecting a combination
 091 of arms incurs a fixed time cost (Qin et al., 2014). This model does not explicitly account for action
 092 latency. We adopt the semi-bandit feedback model (Kveton et al., 2015), where the learner receives
 093 granular feedback in the form of individual rewards for each selected arm.

094 The idea of switching decision sets in our problem is inspired by the mortal MAB (Chakrabarti et al.,
 095 2008), where the learner can request new decision sets, and the lifetime of each set (i.e., the number
 096 of available arms) follows a geometric distribution. Similarly, the sleeping experts problem (Kanade
 097 et al., 2009; Kleinberg et al., 2010) considers a dynamic arm set, where arms are activated either
 098 stochastically or by an adversary. In this setup, the learner passively reacts to the changes of arm sets.
 099 In contrast, as in mortal MAB, our formulation allows the learner to actively control the dynamics by
 100 switching to new decision sets, potentially accessing better arms. Our problem integrates dynamic
 101 control of action space into contextual decision-making, combining elements of mortal MAB and
 102 contextual combinatorial bandits. This adds complexity, as the learner must balance both expected
 103 reward and the time required for each decision.

104 3 PROBLEM SETTINGS 105

106 This section presents the formal problem formulation for the latency-aware contextual bandit and
 107 discusses connections to existing works. As a natural application, cryo-EM data collection is intro-
 108 duced, where microscope operations induce inherent latencies.

108 3.1 LATENCY-AWARE CONTEXTUAL BANDITS
109110 We consider a latency-aware contextual bandit problem. At each round $j = 1, 2, \dots$:111
112 • The learner observes: (i) the arm feature vectors $\mathbb{X}_j = \{\mathbf{x}_{j,1}, \dots, \mathbf{x}_{j,n_j}\} \subset \mathbb{R}^d$; (ii) the action
113 space $\mathbb{A}_j \subseteq 2^{[n_j]}$ containing subsets of arms; and (iii) a latency function $l_j : \mathbb{A}_j \rightarrow \mathbb{R}_{\geq 0}$.
114 • The learner selects a subset of arms $A_j \in \mathbb{A}_j$ and observes semi-bandit feedback: for each $i \in A_j$,
115 the reward $y_{j,i}$ is revealed, while the rewards of unchosen arms remain unknown.
116 • The learner receives total reward $r_j(A_j) = \sum_{i \in A_j} y_{j,i}$ ¹, and the time spent is $l_j(A_j)$.
117118 Several elements of the setup are stochastic, including \mathbb{X}_j (and its size n_j), \mathbb{A}_j , and l_j . We assume
119 that the sequence $\{(\mathbb{X}_j, \mathbb{A}_j, l_j)\}_{j=1}^\infty$ is IID, with each $(\mathbb{X}_j, \mathbb{A}_j, l_j)$ drawn from an unknown
120 distribution P_{env} . Arbitrary dependencies among \mathbb{X}_j , \mathbb{A}_j , and l_j within a round $j \in \mathbb{N}$ are allowed.
121 Each selected arm i yields a random reward $y_{j,i} = \psi_*(\mathbf{x}_{j,i}) + \epsilon_{j,i}$, where $\psi_* : \mathbb{R}^d \rightarrow [-1, 1]$ is
122 the bounded mean reward function unknown to the learner, and noise $\epsilon_{j,i}$ is a zero-mean random
123 variable. We further impose the following assumptions.
124125 **Assumption 1** (Boundedness). *There exist $n_{\max}, l_{\min}, l_{\max} > 0$ such that for all rounds $j \in \mathbb{N}$: (i)
126 the number of arms $n_j \leq n_{\max}$; (ii) the action time $l_j(A_j) \in [l_{\min}, l_{\max}]$ for all $A_j \in \mathbb{A}_j$.*
127128 **Assumption 2** (Realizability (Foster et al., 2018)). *The learner is given a regressor class \mathcal{F} that
129 contains the bounded mean reward function ψ_* , i.e., $\psi_* \in \mathcal{F}$.*
130131 **Remark 1.** *The term $l_j(\emptyset)$ can be interpreted as the time spent to acquire contextual information,
132 and the condition $l_j(A_j) \geq l_{\min} > 0$ for all $A_j \in \mathbb{A}_j$ ensures temporal progress at each round j .
133 Under Assumption 2, it suffices to learn the mean reward function within the regressor class \mathcal{F} .*
134135 The problem is formally specified by $\mathcal{M} = (P_{\text{env}}, \psi_*)$, and the objective is to maximize cumulative
136 reward without prior knowledge of \mathcal{M} . Beyond the standard exploration-exploitation trade-off in
137 MAB problems, the learner must balance exploiting the current decision set, where good arms may
138 be exhausted, with switching to new sets, taking action latency into account.
139140 3.2 RELATIONSHIP WITH EXISTING WORKS
141142 The problem studied in this paper generalizes the following existing bandit setups.
143144 **Stochastic contextual bandits (Lattimore & Szepesvári, 2020):** In this setup, the learner observes
145 the context of arm features \mathbb{X}_j and selects a single arm at each round j . This corresponds to a special
146 case of our problem, where $\mathbb{A}_j = \{\{1\}, \dots, \{n_j\}\}$ and the action time $l_j(A_j) = 1$ for all $A_j \in \mathbb{A}_j$.
147148 **Contextual combinatorial semi-bandits (Qin et al., 2014):** This formulation, like our problem,
149 allows the learner to select subsets of arms $A_j \in \mathbb{A}_j \subseteq 2^{[n_j]}$ at each round j , but does not explicitly
150 model action latency, i.e., $l_j(A_j) = 1$ for all $A_j \in \mathbb{A}_j$.
151152 **Mortal MAB (Chakrabarti et al., 2008):** In this setup, all arms in a decision set have identical
153 rewards, $y_{j,i} = y_j$ for all $i \in [n_j]$, and the sequence $\{y_j\}_{j=1}^\infty$ is IID with $y_j \sim P_y$. The number of
154 arms n_j , drawn from a geometric distribution with parameter p , represents the lifetime of the
155 decision set. Our problem generalizes this setup by incorporating contextual information and allowing
156 heterogeneous rewards across arms. The mortal MAB is a planning problem, as both P_y and p are
157 assumed known, whereas our setting is a learning problem with unknown P_{env} and ψ_* .
158159 3.3 CRYO-EM DATA COLLECTION
160161 Single-particle cryo-EM is a structural biology technique for determining near-atomic resolution
162 3D structures of biomolecules. A purified sample is applied to a thin, electron-transparent grid and
163 rapidly frozen in vitreous ice. Imaging produces 2D projections of particles by passing an electron
164 beam through the sample. A typical data collection workflow is illustrated in Fig. 1. The grid
165 contains multiple *squares*, each with several *holes* where biomolecules are preserved in thin ice.
166167
168 ¹While $r_j(A_j)$ can be generalized to be non-linear under monotonicity and Lipschitz assumptions, as in Qin
169 et al. (2014), we focus on the linear case, as handling arm interactions is beyond the scope of this work.
170

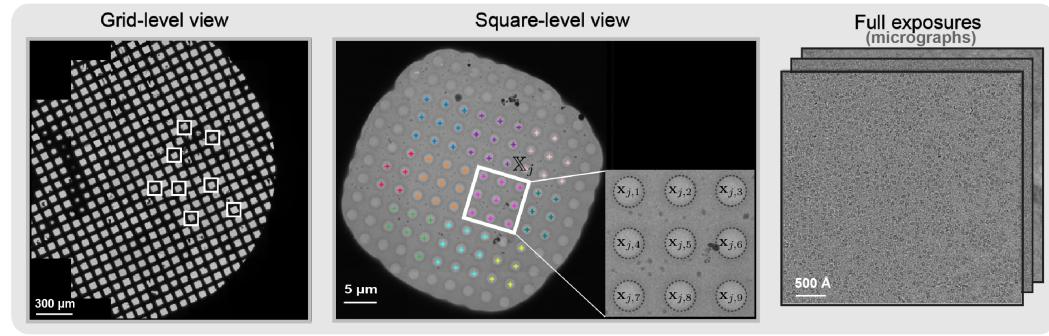


Figure 1: Cryo-EM data collection at multiple magnifications: (i) *grid-level* shows the entire grid at low magnification, (ii) *square-level* captures individual squares at medium magnification to assess ice quality within holes, and (iii) *full exposures* are high-magnification images of selected holes.

Grid-level and square-level views are used to navigate and select holes for *full exposures*. These high-magnification exposures, taken with high electron doses, are used for 3D reconstruction of biomolecules. Radiation irreversibly damages the sample, so each region can be imaged only once.

Cryo-EM data collection is inherently a bandit problem with partial feedback: selecting a set of holes reveals the data quality only for the chosen holes, while unselected holes remain unknown. Our latency-aware formulation captures the time required for exposures, refocusing, and stage movements. Neighboring holes can often be imaged via fast beam shifts, but larger movements require physically moving the stage, which is slower and necessitates additional refocusing. To capture this, holes in a square are divided into patches (colored in Fig. 1), each forming a decision set of n_j arms, with contexts \mathbb{X}_j extracted from cropped square-level images. The learner selects a subset $A_j \subseteq [n_j]$ for full exposures. For a microscope, the exposure time T_{exp} and the latency T_{mov} for moving to the next patch are typically known or easily estimated. Let t_j denote the stochastic time to acquire the square-level view and extract contexts \mathbb{X}_j . Then, the latency of action A_j is

$$l_j(A_j) = t_j + T_{\text{mov}} \mathbf{1}\{A_j \neq \emptyset\} + T_{\text{exp}} |A_j|. \quad (1)$$

The feedback $y_{j,i}$ is obtained by evaluating the high-magnification micrographs. Micrograph quality can be quantified using the CTF maximum resolution (Rohou & Grigorieff, 2015), which measures the finest structural detail in Å (0.1 nm). With sufficient computational resources, additional metrics—such as the number of biomolecules detected per micrograph or assessments from deep learning models like MicAssess (Li et al., 2020)—can also be incorporated.

4 MAXIMIZATION OF AVERAGE REWARD

In this section, we study the maximum average reward achievable in the latency-aware contextual bandit problem. Assuming a known mean reward function ψ_* , we derive the Bellman optimality equation, which can be used to compute this maximum average reward. This quantity then serves as a baseline for defining the regret of an algorithm, which we aim to minimize throughout the paper.

4.1 OPTIMAL AVERAGE REWARD

At each round k , the learner follows a policy π to select a subset of arms $A_k \in \mathbb{A}_k$. Let the *history* up to round k be $\mathcal{H}_{k-1} \triangleq \{(\mathbb{X}_j, \mathbb{A}_j, l_j, \{y_{j,i}\}_{i \in A_j})\}_{j=1}^{k-1}$. The policy π maps the history \mathcal{H}_{k-1} and the current arm features \mathbb{X}_k to a probability distribution over the action space \mathbb{A}_k . Let $k(t)$ denote the (random) number of completed decision rounds up to time t . The *expected cumulative reward* of a policy π up to time t is

$$\mathbb{E} \left[\sum_{j=1}^{k(t)} \sum_{i \in A_j} y_{j,i} \right] = \mathbb{E} \left[\sum_{j=1}^{k(t)} \sum_{i \in A_j} \mathbb{E}[y_{j,i} \mid \mathcal{H}_{j-1}] \right] = \mathbb{E} \left[\sum_{j=1}^{k(t)} \sum_{i \in A_j} \psi_*(\mathbf{x}_{j,i}) \right] \triangleq \mathbb{E}[\mathbf{q}^\pi(t)], \quad (2)$$

which depends on both the environment \mathcal{M} and the policy π . In the average-reward setting, the performance of π is evaluated by the long-term average reward

$$\Gamma_{\mathcal{M}}^{\pi} \triangleq \limsup_{t \rightarrow \infty} \frac{\mathbb{E}[q^{\pi}(t)]}{t}.$$

With Assumption 1 and the mean reward function ψ_* bounded in $[-1, 1]$, $\Gamma_{\mathcal{M}}^{\pi}$ is finite for any policy π . Then *optimal average reward* is then defined as

$$\Gamma_{\mathcal{M}}^* \triangleq \sup_{\pi} \Gamma_{\mathcal{M}}^{\pi}.$$

Treating $l_j(A_j)$ in round j as the sojourn time, our model can be viewed as a special case of SMDPs (Puterman, 2014). The following theorem provides its Bellman optimality equation.

Theorem 1. *For the latency-aware contextual bandit problem $\mathcal{M} = (P_{\text{env}}, \psi_*)$, let $(\mathbb{X}, \mathbb{A}, 1) \sim P_{\text{env}}$ and let $\mu = \{\mu_i\}_{i=1}^n$, where $\mu_i = \psi_*(\mathbf{x}_i)$ for each $\mathbf{x}_i \in \mathbb{X}$. The optimal average reward $\Gamma = \Gamma_{\mathcal{M}}^*$ is the unique solution to $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma, A, 1, \mu)] = 0$, where*

$$g(\Gamma, A, 1, \mu) \triangleq l(A) \Gamma - \sum_{i \in A} \mu_i. \quad (3)$$

Proof. We adopt the concept of differential return from average-reward MDPs (Sutton, 2018). At each decision round j , selecting $A_j \in \mathbb{A}_j$ incurs time $l_j(A_j)$. The quantity $g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j)$ defined in equation 3 measures the *gap* between the optimal expected reward $l_j(A_j) \Gamma_{\mathcal{M}}^*$ in the time interval and the actual collected reward $\sum_{i \in A_{j,i}} \mu_{j,i}$.

Step 1: For any policy π , let $A_j \in \mathbb{A}_j$ denote the selected arms at round j . Since t is possible in the middle of a decision round, $\left| t - \sum_{j=1}^{k(t)} l_j(A_j) \right| \leq l_{\max}$, where l_{\max} is from Assumption 1. Then

$$t \Gamma_{\mathcal{M}}^* - q^{\pi}(t) \geq \sum_{j=1}^{k(t)} g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) - l_{\max} |\Gamma_{\mathcal{M}}^*| \geq \sum_{j=1}^{k(t)} \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j) - l_{\max} |\Gamma_{\mathcal{M}}^*. \quad (4)$$

Using Wald's lemma (Durrett, 2019) and the IID assumption on $\{(\mathbb{X}_j, \mathbb{A}_j, l_j)\}_{j=1}^{\infty}$,

$$\mathbb{E} \left[\sum_{j=1}^{k(t)} \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j) \right] = \mathbb{E}[k(t)] \mathbb{E} \left[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, 1, \mu) \right]. \quad (5)$$

With equation 5, dividing equation 4 by t and taking the lim sup of expectations yields

$$\Gamma_{\mathcal{M}}^* - \Gamma_{\mathcal{M}}^{\pi} \geq \limsup_{t \rightarrow \infty} \frac{\mathbb{E}[k(t)]}{t} \mathbb{E} \left[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, 1, \mu) \right].$$

Since this holds for any π , taking the supremum of $\Gamma_{\mathcal{M}}^{\pi}$ over π gives

$$\limsup_{t \rightarrow \infty} \frac{\mathbb{E}[k(t)]}{t} \mathbb{E} \left[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, 1, \mu) \right] \leq 0.$$

Since $\limsup_{t \rightarrow \infty} \mathbb{E}[k(t)]/t > 0$, we get $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, 1, \mu)] \leq 0$.

Step 2: Let policy π' selects $A_j = \arg \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j)$ at each round j . Using the same bound for t in the middle of a decision round,

$$t \Gamma_{\mathcal{M}}^* - q^{\pi'}(t) \leq \sum_{j=1}^{k(t)} \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j) + l_{\max} |\Gamma_{\mathcal{M}}^*|.$$

Taking expectations and applying equation 5 give

$$\limsup_{t \rightarrow \infty} \frac{\mathbb{E}[k(t)]}{t} \mathbb{E} \left[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, 1, \mu) \right] \geq \Gamma_{\mathcal{M}}^* - \Gamma_{\mathcal{M}}^{\pi'} \geq 0.$$

270 **Algorithm 1:** Contextual Online Arm Filtering (COAF)

271 **Initialization:** $\xi \in (0, 1]$, $\Gamma_1 \in [\Gamma_{\min}, \Gamma_{\max}]$ and $\gamma_0 = 0$.

272 **for** $j = 1, 2, \dots$ **do**

273 1 Estimate the mean rewards for each arm i base on \mathcal{H}_{j-1} , denoted by $\hat{\mu}_j = \{\hat{\mu}_{j,i}\}_{i=1}^{n_j}$.

274 2 Select subset of arms

275
$$A_j \in \arg \min_{A \in \mathbb{A}_j} g(\Gamma_j, A, l_j, \hat{\mu}_j).$$

276 3 Set $\gamma_j = \gamma_{j-1} + \min_{A \in \mathbb{A}_j} l_j(A)$, and set $\Gamma_{j+1} = \Pi_{[\Gamma_{\min}, \Gamma_{\max}]} \left[\Gamma_j - \frac{1}{\xi \gamma_j} g(\Gamma_j, A_j, l_j, \hat{\mu}_j) \right]$.

281

282

283 Since $\limsup_{t \rightarrow \infty} \mathbb{E}[\mathbf{k}(t)]/t > 0$, we have $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, l, \mu)] \geq 0$.

284 Combining both steps, we conclude $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, l, \mu)] = 0$. With $l(A) > L_{\min} > 0$, the

285 function $g(\Gamma, A, l, \mu)$ is strictly increasing in Γ , and hence $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma, A, l, \mu)]$ is also strictly

286 increasing in Γ . Therefore, the solution $\Gamma = \Gamma_{\mathcal{M}}^*$ is unique. \square

287

288 **Remark 2.** *The effect of arm quality and latency on the optimal average reward $\Gamma_{\mathcal{M}}^*$ can be seen*

289 *from Theorem 1. Larger delays $l(A)$ steepen the growth of $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma, A, l, \mu)]$ with Γ , resulting*

290 *in a smaller root $\Gamma_{\mathcal{M}}^*$. Conversely, higher mean rewards μ shift the function downward, yielding a*

291 *larger $\Gamma_{\mathcal{M}}^*$. The proof also indicates that the policy π' minimizing $g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j)$ is optimal.*

292 4.2 ALGORITHM REGRET

294 Since the objective of a policy π is to maximize cumulative reward, the optimal average reward $\Gamma_{\mathcal{M}}^*$

295 serves as a natural performance benchmark. The *regret* of π at time T is defined as

296
$$R_T^\pi \triangleq T\Gamma_{\mathcal{M}}^* - \mathbb{E}[\mathbf{q}^\pi(T)], \quad (6)$$

297 which we aim to minimize. Our goal is to design policies that perform well across general problem

298 setups. Specifically, policy π aims to minimize the *worst-case regret* $\sup_{\mathcal{M}} R_T^\pi(\mathcal{M})$, while the

299 optimal value of this quantity, known as the *minimax regret*, is given by $\inf_{\pi} \sup_{\mathcal{M}} R_T^\pi(\mathcal{M})$.

300 The minimax regret lower bound in contextual bandit settings is known to depend on the regressor

301 class \mathcal{F} . Since contextual bandits are a special case of the problem studied here, these lower bound

302 results also apply. In particular, when \mathcal{F} is the class of d -dimensional linear functions, the state-of-

303 the-art minimax regret lower bound is $\Omega(d\sqrt{T})$ (Lattimore & Szepesvári, 2020).

304

306 5 CONTEXTUAL ONLINE ARM FILTERING ALGORITHM

308 The latency-aware contextual bandit problem poses a significant challenge, as it requires learning

309 both the mean reward function ψ_* and the potentially complex distribution P_{env} underlying for

310 $\{(\mathbb{X}_j, \mathbb{A}_j, l_j)\}_{j=1}^\infty$. A key insight from the proof of Theorem 1 (step 2) is that it is optimal to take

311 action $A_j \in \arg \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j)$ in each round j . Since $\Gamma_{\mathcal{M}}^*$ and μ_j are unknown, this

312 minimization is not directly feasible. In this section, we introduce and analyze the COAF algorithm,

313 which relies on estimated values of $\Gamma_{\mathcal{M}}^*$ and μ_j to filter out suboptimal arms.

314

315 5.1 A GENERIC ALGORITHM FRAMEWORK

317 Stochastic approximation (Robbins & Monro, 1951) is a standard method for finding the root of

318 an unknown real-valued function using noisy measurements. Since in Theorem 1 has shown that

319 $\mathbb{E}[\min_{A \in \mathbb{A}} g(\Gamma_{\mathcal{M}}^*, A, l, \mu)] = 0$, COAF in Algorithm 1 employs this approach to maintain an esti-

320 mator Γ_j for $\Gamma_{\mathcal{M}}^*$ at each round j . In Line 3 of Algorithm 1, Γ_j is updated via stochastic approxi-

321 mation and projected back to $[\Gamma_{\min}, \Gamma_{\max}]$, where $\Gamma_{\min} = -n_{\max}/l_{\min}$ and $\Gamma_{\max} = n_{\max}/l_{\min}$.

322 Since the true reward function ψ_* is unknown, COAF estimates the mean rewards $\hat{\mu}_j$ from the

323 sampling history \mathcal{H}_{j-1} . To balance exploration and exploitation, we adopt a UCB strategy by con-

324 structing a confidence set $\mathcal{F}_j \subseteq \mathcal{F}$ based on \mathcal{H}_{j-1} , which contains ψ_* with high probability. At

324 each round j , the UCB for arm i is $\hat{\mu}_{j,i} = \max_{\psi \in \mathcal{F}_j} \psi(\mathbf{x}_{j,i})$, ensuring, with high probability, that
 325 $\hat{\mu}_{j,i} \geq \mu_{j,i} = \psi_*(\mathbf{x}_{j,i})$. In this paper, we focus on the UCB approach due to its simplicity and
 326 theoretical soundness. However, it is plausible to expect that other index-based contextual bandit
 327 algorithms, such as Thompson Sampling, can also be adapted to the COAF framework.

329 5.2 WORST-CASE REGRET ANALYSIS FOR COAF

331 In Algorithm 1, if $\hat{\mu}_j = \mu_j$, the stochastic approximation procedure ensures $\mathbb{E}[(\Gamma_j - \Gamma_{\mathcal{M}}^*)^2] \rightarrow 0$
 332 as $j \rightarrow \infty$. The following result is derived by relating the regret to the convergence rate of Γ_j .

333 **Lemma 2.** *Consider any latency-aware contextual bandit problem $\mathcal{M} = (P_{\text{env}}, \psi_*)$. Suppose the
 334 COAF algorithm runs with $\xi = 1$ and has exact mean reward estimates, i.e., $\hat{\mu}_j = \mu_j$ in every
 335 round j . Then, for any time horizon $T > 0$, the regret of COAF satisfies*

$$337 R_T^C \leq \sqrt{U_T} + \frac{n_{\max} l_{\max}}{l_{\min}}, \text{ where } U_T \triangleq \frac{T}{l_{\min}} \left(\frac{l_{\max} n_{\max}}{l_{\min}} \right)^2 \left(1 + \frac{l_{\max}}{l_{\min}} \right)^2 \left[1 + \log \left(\frac{T}{l_{\min}} \right) \right].$$

339 **Remark 3.** Lemma 2 captures the oracle case where COAF has access to the true mean rewards,
 340 and establishes an $O(\sqrt{T \log T})$ regret upper bound that arises solely from learning $\Gamma_{\mathcal{M}}^*$.

342 The general COAF algorithm needs to learn the unknown reward function ψ_* within the regressor
 343 class \mathcal{F} from noisy observations. Following standard practice in the contextual bandit literature (Lat-
 344 timore & Szepesvári, 2020), we assume that the noise is conditionally sub-Gaussian.

345 **Assumption 3.** For any $j \in \mathbb{N}$, $\{\epsilon_{j,i}\}_{i=1}^{n_j}$ are independent and conditionally 1-subgaussian:

$$347 \mathbb{E}[e^{\alpha \epsilon_{j,i}} | \mathcal{H}_{j-1}] \leq \exp\left(\frac{\alpha^2}{2}\right), \quad \forall \alpha \in \mathbb{R}, \forall i \in [n_j].$$

349 5.2.1 REGRET UPPER BOUND WITH LINEAR \mathcal{F}

351 The linear regressor class is defined as $\mathcal{F}^l \triangleq \{\mathbf{x} \mapsto \langle \theta, \mathbf{x} \rangle \mid \theta \in \mathbb{R}^d, \|\theta\| \leq 1\}$, where the context
 352 space is $\Omega^l \triangleq \{\mathbf{x} \in \mathbb{R}^d \mid \|\mathbf{x}\| \leq 1\}$. To estimate θ_* corresponding to ψ_* , let

$$354 \bar{\theta}_k = \mathbf{V}_k^{-1}(\lambda) \sum_{j=1}^k \sum_{i \in A_j} \mathbf{x}_{j,i} \mathbf{y}_{j,i}, \quad \mathbf{V}_k(\lambda) = \lambda \mathbf{I} + \sum_{j=1}^k \sum_{i \in A_j} \mathbf{x}_{j,i} \mathbf{x}_{j,i}^\top,$$

357 where $\lambda > 0$ is the regularization parameter. The regressor confidence set at round k is defined as

$$359 \mathcal{F}_k \triangleq \left\{ \mathbf{x} \mapsto \langle \theta, \mathbf{x} \rangle \mid \theta \in \mathbb{R}^d, \|\theta - \bar{\theta}_{k-1}\|_{\mathbf{V}_{k-1}(\lambda)}^2 \leq \beta(s_{k-1}, \delta), \|\theta\| \leq 1 \right\},$$

361 where $\delta \in (0, 1)$, $s_k = \sum_{j=1}^k |A_j|$ and $\sqrt{\beta(n, \delta)} = \sqrt{\lambda} + \sqrt{2 \log(\frac{1}{\delta}) + d \log(\frac{d\lambda+n}{d\lambda})}$.

363 **Theorem 3.** *For any latency-aware contextual bandit problem $\mathcal{M} = (P_{\text{env}}, \psi_*)$, suppose $\psi_* \in \mathcal{F}^l$
 364 and the context space is Ω^l . For any $\delta \in (0, 1/\sqrt{e}]$, with probability at least $1 - \delta$, the regret of
 365 COAF with parameter $\xi \in (0, 1)$ at any time $T > 0$ satisfies*

$$367 R_T^C \leq \sqrt{\frac{U_T}{\xi} + \frac{1}{1-\xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 W_T(\delta)} + \sqrt{\frac{n_{\max}}{l_{\min}} W_T(\delta)} + \frac{n_{\max} l_{\max}}{l_{\min}},$$

369 where $W_T(\delta) = 8dT\beta\left(\frac{Tn_{\max}}{l_{\min}}, \delta\right) \log\left(\frac{d\lambda l_{\min} + Tn_{\max}}{d\lambda l_{\min}}\right)$.

372 5.2.2 REGRET UPPER BOUND WITH GENERAL \mathcal{F}

373 For a general regressor class \mathcal{F} , let $N(\mathcal{F}, \alpha, \|\cdot\|_\infty)$ be the α -covering number of \mathcal{F} in the sup-norm
 374 $\|\cdot\|_\infty$. By calling the online regression oracle, COAF computes the estimated regressor

$$376 \bar{\psi}_k \in \arg \min_{\psi \in \mathcal{F}} \sum_{j=1}^k \sum_{i \in A_j} [\psi(\mathbf{x}_{j,i}) - \mathbf{y}_{j,i}]^2.$$

378 The abstract confidence set \mathcal{F}_k centers around $\bar{\psi}_k$ and is defined as
 379

$$380 \quad \mathcal{F}_k \triangleq \left\{ \psi \in \mathcal{F} \mid \sum_{j=1}^{k-1} \sum_{i \in A_j} [\psi(\mathbf{x}_{j,i}) - \bar{\psi}_{k-1}(\mathbf{x}_{j,i})]^2 \leq \tilde{\beta}(s_{k-1}, \mathcal{F}, \delta, \alpha) \right\},$$

383 where $\tilde{\beta}(n, \mathcal{F}, \delta, \alpha) \triangleq 8 \log(N(\mathcal{F}, \alpha, \|\cdot\|_\infty)/\delta) + 2\alpha n(8 + \sqrt{8 \log(4n^2/\delta)})$ is the tolerance. In
 384 practice, α can be chosen on the order of $1/T$.
 385

386 The eluder dimension of a function class \mathcal{F} , defined below, measures reward dependencies across
 387 contexts (Russo & Van Roy, 2013) and is widely used in contextual bandit regret analysis.

388 **Definition 1.** Feature \mathbf{x} is ϵ -dependent on $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ with respect to \mathcal{F} if any pair of functions
 389 $\psi, \psi' \in \mathcal{F}$ satisfying $\sqrt{\sum_{k=1}^n [\psi(\mathbf{x}_k) - \psi'(\mathbf{x}_k)]^2} \leq \epsilon$ also satisfies $\psi(\mathbf{x}) - \psi'(\mathbf{x}) \leq \epsilon$. Furthermore,
 390 \mathbf{x} is ϵ -independent of $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ with respect to \mathcal{F} if \mathbf{x} is not ϵ -dependent on $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$.

391 **Definition 2.** The ϵ -eluder dimension $\dim_E(\mathcal{F}, \epsilon)$ is the length of the longest sequence of elements
 392 in Ω such that, for some $\epsilon' > \epsilon$, every element is ϵ' -independent of its predecessors.

393 **Theorem 4.** Consider latency-aware contextual bandit problem $\mathcal{M} = (P_{\text{env}}, \psi_*)$. Suppose $\psi_* \in \mathcal{F}$
 394 and let $d_T = \dim_E(\mathcal{F}, \frac{l_{\min}}{Tn_{\max}})$. For any $\delta > 0$, with probability at least $1 - 2\delta$, the regret of COAF
 395 with parameter $\xi \in (0, 1)$ at any time T satisfies

$$398 \quad R_T^C \leq \sqrt{\frac{U_T}{\xi} + \frac{1}{1-\xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 \tilde{W}_T(\delta)} + \sqrt{\frac{n_{\max}}{l_{\min}} \tilde{W}_T(\delta)} + \frac{n_{\max} l_{\max}}{l_{\min}},$$

401 where $\tilde{W}_T(\delta)/T = 4d_T + 1 + 4 \left[\tilde{\beta} \left(\frac{T}{n_{\min}}, \mathcal{F}, \delta, \alpha \right) + 4n_{\max} \right] d_T \left(1 + \log \left(\frac{Tn_{\max}}{l_{\min}} \right) \right)$.
 402

403 **Remark 4.** In Theorems 3 and 4, the regret upper bounds introduce new terms $W_T(\delta)$ and $\tilde{W}_T(\delta)$,
 404 which arise from learning a regressor in \mathcal{F} . The parameter ξ controls the trade-off between learning
 405 $\Gamma_{\mathcal{M}}^*$ and learning the regressor. By setting $\delta = \alpha = 1/T$, the regret upper bounds for COAF become
 406 $O(d\sqrt{T} \log T)$ and $O\left(\sqrt{\dim_E(\mathcal{F}, \frac{1}{T})} \log(N(\mathcal{F}, \frac{1}{T}, \|\cdot\|_\infty)) T \log T\right)$. These rates are consistent
 407 with the standard contextual bandit literature (Chu et al., 2011; Russo & Van Roy, 2013).
 408

409 6 NUMERICAL EXPERIMENTS

411 In this section, we evaluate the performance of COAF in two experiments. In the movie recommendation
 412 task, we compare its regret against three baseline algorithms. In the cryo-EM data collection
 413 task, we assess its data collection efficiency against human microscopists.
 414

415 6.1 SIMULATIONS WITH MOVIELENS 1M DATA

417 We use the MovieLens 1M dataset (Harper & Konstan, 2015), which contains ratings for 3461
 418 movies by 6040 users. Missing ratings are predicted via a matrix completion technique (Nie et al.,
 419 2012), and principal component analysis is applied to obtain a 10-dimensional feature vector for
 420 each movie. At each round j , the number of available movies n_j is uniformly sampled from 6 to 20,
 421 and the action space $A_j = 2^{[n_j]}$. The time cost is $l_j(A_j) = t_j + |A_j|$, where t_j is uniformly sampled
 422 from 5 to 10. The ground-truth regressor ψ_* is trained on the average ratings across all users, and
 423 the noisy reward for each movie is given by the rating from a randomly selected user.

424 In our experiment, the optimal average reward $\Gamma_{\mathcal{M}}^*$ is computed via prolonged execution of the
 425 stochastic approximation algorithm (Robbins & Monro, 1951). Each algorithm in Fig. 2 is run for
 426 2000 iterations, and we plot the mean regret along with the 5% lower, 90% middle, and 5% upper
 427 quantiles of empirical regrets in Fig. 2. In COAF-TS, we follow Abeille & Lazaric (2017) and
 428 sample $\hat{\theta}_j$ from $\mathcal{N}(\bar{\theta}_{j-1}, \sqrt{\beta(s_{j-1}, \delta)} V_{j-1}(\lambda))$ as the parameter for $\hat{\psi}_j$ to estimate arm rewards in
 429 round j . In Fig. 2d, a fixed threshold of 1.75 fails to achieve sublinear regret. In Fig. 2a, COAF-
 430 ORC corresponds to the oracle case described in Lemma 2, where the regret reflects only the cost
 431 of learning $\Gamma_{\mathcal{M}}^*$. For both COAF and COAF-TS, we set the parameter $\xi = 0.5$. We further observe
 that the original COAF with UCB estimates outperforms its Thompson sampling variant.

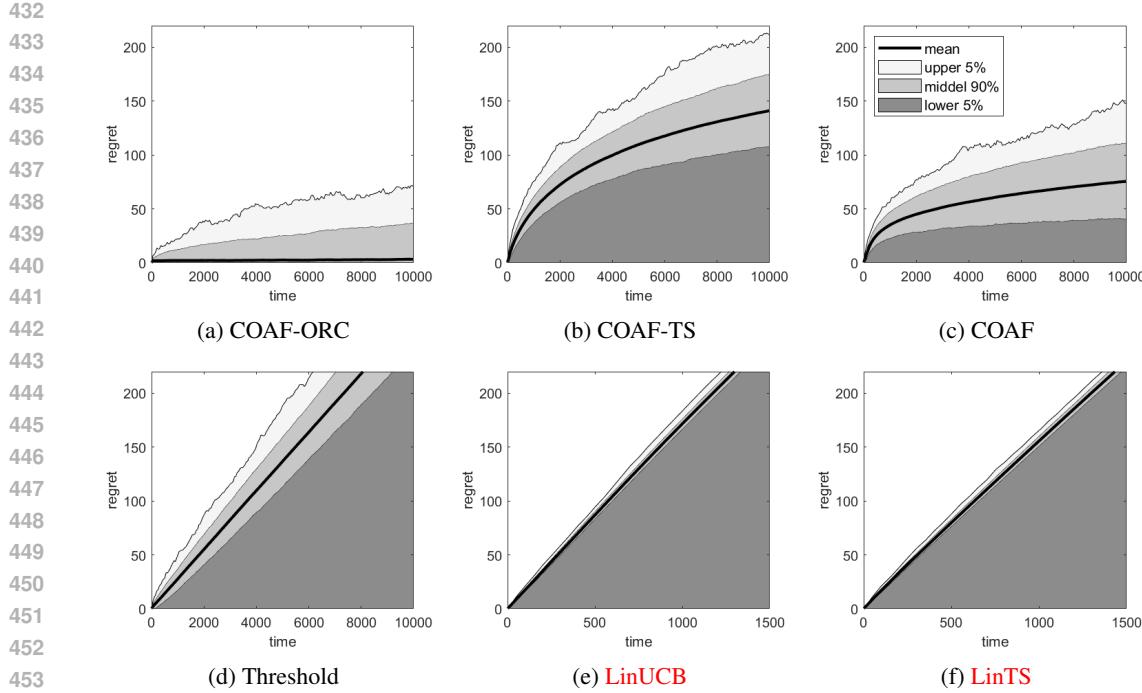


Figure 2: Regrets of COAF and 3 baselines: (i) Threshold selects movies with rating ≥ 1.75 , (ii) COAF-ORC uses the true mean reward, and (iii) COAF-TS employs Thompson Sampling approach.

6.2 CRYO-EM DATA COLLECTION SIMULATIONS

We evaluate COAF in a realistic cryo-EM setting by benchmarking its automated data collection performance against human microscopists. To simulate experimental conditions, we use two existing datasets. The microscope parameters t_j , T_{mov} , and T_{exp} in equation 1 are sampled from real experiment logs, with mean values of 12.09, 51.99, and 6.66 seconds, respectively.

The data collection simulator is illustrated in Fig. 3a. In this setup, holes are cropped from medium-magnification images. The feature representation of each hole consists of its mean pixel value, which correlates with ice thickness, together with the output of the deep learning model Ptolemy (Kim et al., 2023). Based on these features, the UCB reward estimate is displayed at the top-right corner of each hole. In the first experiment (Fig. 3b), we use 0/1 reward feedback, where a micrograph is labeled good if its CTF maximum resolution is below 3.8 Å. In the second experiment (Fig. 3c), the reward corresponds to the number of particles in the micrograph, estimated via blob picking. We then reconstruct 3D biomolecular structures with the same computation method using data collected by human microscopists and by COAF. In both cases, COAF improves data collection efficiency over human microscopists, yielding more good micrographs (particles) and higher-resolution 3D structures. These results highlight the promise of COAF for cryo-EM automation.

7 CONCLUSION

In this paper, we studied the latency-aware contextual bandit problem, which generalizes both standard contextual bandits and mortal multi-armed bandits to settings where collecting contextual information and taking actions incur time costs. We formulated the problem as a special case of SMDPs with unknown rewards, sojourn times, and transition dynamics, and defined regret relative to an optimal algorithm that maximizes the long-term average reward. Building on stochastic approximation and UCB methods, we proposed the COAF algorithm and established its regret guarantees. Through simulations on movie recommendation tasks and cryo-EM data collection, we demonstrated that COAF efficiently maximizes cumulative reward over time. Our approach provides a

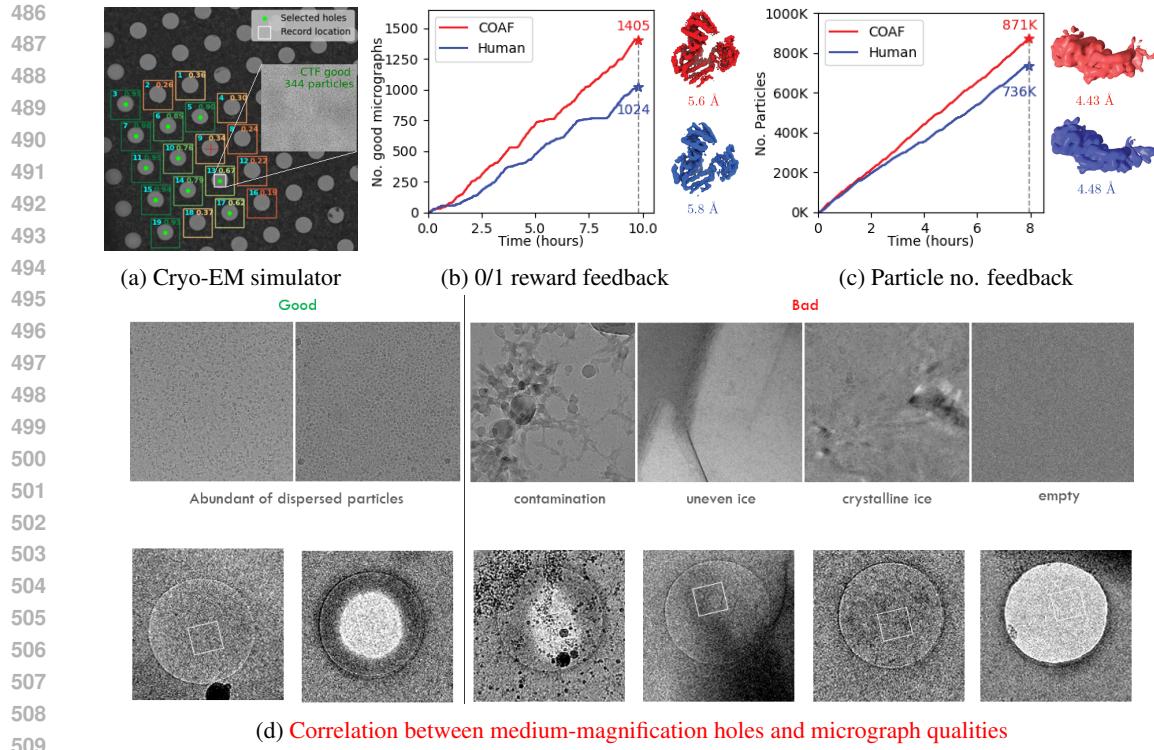


Figure 3: Setup and results of the cryo-EM data collection experiment.

fully automated pipeline for cryo-EM data collection and shows promise for broader application in other time-sensitive decision-making scenarios.

540 REFERENCES

542 Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In *Artificial Intelligence and Statistics*, pp. 176–184. PMLR, 2017.

544 David S. Adler, Kristen B. Wymer, Ryan M. Logue, and Brigitte E. Hesman. Science planning and
545 scheduling of the james webb space telescope. In David S. Adler, Robert L. Seaman, and Chris R.
546 Benn (eds.), *Observatory Operations: Strategies, Processes, and Systems VIII*, pp. 1144918.
547 SPIE, 2020. doi: 10.1117/12.2559726. URL <https://doi.org/10.1117/12.2559726>.

548 S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed bandit problem. In
549 *Annual Conference on Learning Theory*, pp. 39.1–39.26, June 2012.

551 Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
552 In *International conference on machine learning*, pp. 127–135. PMLR, 2013.

553 Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. Asymptotically efficient allocation
554 rules for the multiarmed bandit problem with multiple plays-part i: Iid rewards. *IEEE Transactions on Automatic Control*, 32(11):968–976, 1987.

556

557 Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
558 learning. *Advances in neural information processing systems*, 21, 2008.

559 Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandit
560 algorithms with supervised learning guarantees. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, pp. 19–26. JMLR Workshop and Conference
561 Proceedings, 2011.

562

563 Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. *Journal of Machine Learning Research*, 22(133):1–49, 2021.

564

565 Vincent Blay, Bhairavi Tolani, Sunita P Ho, and Michelle R Arkin. High-throughput screening:
566 today’s biochemical and cell-based approaches. *Drug discovery today*, 25(10):1807–1821, 2020.

567

568 Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. *Journal of Computer and System Sciences*, 78(5):1404–1422, 2012.

569

570 Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-armed bandits.
571 *Advances in neural information processing systems*, 21, 2008.

572

573 Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
574 and applications. In *International conference on machine learning*, pp. 151–159. PMLR, 2013.

575

576 Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
577 general reward functions. *Advances in Neural Information Processing Systems*, 29, 2016.

578

579 Xin Chen, Yutong Nie, and Na Li. Online residential demand response via contextual multi-armed
580 bandits. *IEEE Control Systems Letters*, 5(2):433–438, 2020.

581

582 Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions.
583 In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

584

585 Rick Durrett. *Probability: theory and examples*, volume 49. Cambridge university press, 2019.

586

587 Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
588 generalized linear case. *Advances in neural information processing systems*, 23, 2010.

589

590 Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with
591 regression oracles. In *International Conference on Machine Learning*, pp. 3199–3210. PMLR,
592 2020.

593

594 Dylan Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert Schapire. Practical con-
595 textual bandits with regression oracles. In *International Conference on Machine Learning*, pp.
596 1539–1548. PMLR, 2018.

594 John Gittins, Kevin Glazebrook, and Richard Weber. *Multi-armed bandit allocation indices*. John
 595 Wiley & Sons, 2011.

596

597 F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. *Acm
 598 transactions on interactive intelligent systems (tiis)*, 5(4):1–19, 2015.

599 Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Opti-
 600 mization*, 2(3-4):157–325, 2016.

601

602 Junya Honda and Akimichi Takemura. An asymptotically optimal bandit algorithm for bounded
 603 support models. In *Annual Conference on Learning Theory*, pp. 67–79, June 2010.

604 Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca Willett. Scalable generalized
 605 linear bandits: Online computation and hashing. *Advances in Neural Information Processing
 606 Systems*, 30, 2017.

607

608 Varun Kanade, H Brendan McMahan, and Brent Bryan. Sleeping experts and bandits with stochastic
 609 action availability and adversarial rewards. In *Artificial Intelligence and Statistics*, pp. 272–279.
 610 PMLR, 2009.

611

612 E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically optimal finite-time
 613 analysis. In *International Conference on Algorithmic Learning Theory*, pp. 199–213. Springer,
 2012.

614

615 Paul T Kim, Alex J Noble, Anchi Cheng, and Tristan Bepler. Learning to automate cryo-electron
 616 microscopy data collection with ptolemmy. *IUCrJ*, 10(1):90–102, 2023.

617

618 Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping
 experts and bandits. *Machine learning*, 80(2):245–272, 2010.

619

620 Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid ban-
 621 dits: Fast combinatorial optimization with learning. In *Uncertainty in Artificial Intelligence*, pp.
 622 420–429. PMLR, 2014.

623

624 Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochas-
 625 tic combinatorial semi-bandits. In *Artificial Intelligence and Statistics*, pp. 535–543. PMLR, 2015.

626

627 Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances
 628 in applied mathematics*, 6(1):4–22, 1985.

629

630 Andrew S Lan and Richard G Baraniuk. A contextual bandits framework for personalized learning
 631 action selection. In *EDM*, pp. 424–429, 2016.

632

633 John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
 634 information. *Advances in neural information processing systems*, 20, 2007.

635

636 Tor Lattimore. Regret analysis of the finite-horizon gittins index strategy for multi-armed bandits.
 637 In *Conference on Learning Theory*, pp. 1214–1245. PMLR, 2016.

638

639 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

640

641 Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
 642 personalized news article recommendation. In *Proceedings of the 19th international conference
 643 on World wide web*, pp. 661–670, 2010.

644

645 Yilai Li, Jennifer N Cash, John JG Tesmer, and Michael A Cianfrocco. High-throughput cryo-em
 646 enabled by user-free preprocessing routines. *Structure*, 28(7):858–869, 2020.

647

648 Yilai Li, Quanfu Fan, Ziping Xu, Emma Rose Lee, John Cohn, Veronique Demers, Ja Young Lee,
 649 Lucy Yip, Michael A. Cianfrocco, and Seychelle M. Vos. Optimized path planning surpasses
 650 human efficiency in cryo-em imaging. *eLife*, 12:e88640, 2023. doi: 10.7554/eLife.88640.

651

652 Feiping Nie, Heng Huang, and Chris Ding. Low-rank matrix recovery via efficient schatten p-norm
 653 minimization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 26, pp.
 654 655–661, 2012.

648 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 649 Wiley & Sons, 2014.
 650

651 Edward O Pyzer-Knapp, Jed W Pitera, Peter WJ Staar, Seiji Takeda, Teodoro Laino, Daniel P
 652 Sanders, James Sexton, John R Smith, and Alessandro Curioni. Accelerating materials discov-
 653 ery using artificial intelligence, high performance computing and robotics. *npj Computational
 654 Materials*, 8(1):84, 2022.

655 Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application
 656 on diversified online recommendation. In *Proceedings of the 2014 SIAM International Conference
 657 on Data Mining*, pp. 461–469. SIAM, 2014.

658 Herbert Robbins. Some aspects of the sequential design of experiments. *Bulletin of the American
 659 Mathematical Society*, 58(5):527–535, 1952.

660

661 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathemati-
 662 cal statistics*, pp. 400–407, 1951.

663

664 Alexis Rohou and Nikolaus Grigorieff. Ctffind4: Fast and accurate defocus estimation from electron
 665 micrographs. *Journal of structural biology*, 192(2):216–221, 2015.

666 Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
 667 exploration. *Advances in Neural Information Processing Systems*, 26, 2013.

668

669 Dennis Soemers, Tim Brys, Kurt Driessens, Mark Winands, and Ann Nowé. Adapting to concept
 670 drift in credit card transaction data streams using contextual bandits and decision trees. In *Pro-
 671 ceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

672 Richard S Sutton. Reinforcement learning: An introduction. *A Bradford Book*, 2018.

673

674 Ambuj Tewari and Susan A Murphy. From ads to interventions: Contextual bandits in mobile health.
 675 *Mobile health: sensors, analytic methods, and applications*, pp. 495–517, 2017.

676 W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
 677 evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A REGRET OF COAF WITH ACCESS TO TRUE MEAN REWARDS**
 703

704 *Proof of Lemma 2.* With the regret defined in equation 6, COAF satisfies
 705

$$\begin{aligned}
 706 \quad R_T^C &= T\Gamma_{\mathcal{M}}^* - \mathbb{E} \left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} \mu_{j,i} \right] \\
 707 &\leq \mathbb{E} \left[\sum_{j=1}^{k(T)} \left(l_j(A_j) \Gamma_{\mathcal{M}}^* - \sum_{i \in A_j} \mu_{j,i} \right) \right] + \underbrace{l_{\max} \Gamma_{\mathcal{M}}^*}_{(a)} \\
 708 &\leq \mathbb{E} \left[\sum_{j=1}^{k(T)} g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) \right] + l_{\max} \Gamma_{\max}, \tag{7}
 \end{aligned}$$

712 where term (a) accounts for the potentially unfinished decision round. Note that at each round j ,
 713 with access to the true mean rewards μ_j , COAF selects a subset of arms
 714

$$A_j \in \arg \min_{A \in \mathbb{A}_j} g(\Gamma_j, A, l_j, \mu_j), \tag{8}$$

716 where Γ_j is the online estimator of $\Gamma_{\mathcal{M}}^*$.
 717

718 **Step 1:** In this step, we derive an upper bound for $g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j)$ at each round j . Let
 719

$$A_j^* \in \arg \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j).$$

720 We consider two cases separately: $\Gamma_j < \Gamma_{\mathcal{M}}^*$ and $\Gamma_j \geq \Gamma_{\mathcal{M}}^*$.
 721

722 *Case 1:* If $\Gamma_j < \Gamma_{\mathcal{M}}^*$, we have
 723

$$\begin{aligned}
 724 \quad g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) &= l_j(A_j)(\Gamma_{\mathcal{M}}^* - \Gamma_j) + l_j(A_j)\Gamma_j - \sum_{i \in A_j} \mu_{j,i} \\
 725 &\quad \text{according to equation 8} \\
 726 &\leq l_j(A_j)(\Gamma_{\mathcal{M}}^* - \Gamma_j) + l_j(A_j^*)\Gamma_j - \sum_{i \in A_j^*} \mu_{j,i} \\
 727 &\leq l_j(A_j)(\Gamma_{\mathcal{M}}^* - \Gamma_j) + l_j(A_j^*)\Gamma_{\mathcal{M}}^* - \sum_{i \in A_j^*} \mu_{j,i} \\
 728 &= l_j(A_j)(\Gamma_{\mathcal{M}}^* - \Gamma_j) + g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j).
 \end{aligned}$$

729 *Case 2:* If $\Gamma_j \geq \Gamma_{\mathcal{M}}^*$, we have
 730

$$\begin{aligned}
 731 \quad g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) &\leq l_j(A_j)\Gamma_j - \sum_{i \in A_j} \mu_{j,i} \\
 732 &\quad \text{according to equation 8} \\
 733 &\leq l_j(A_j^*)\Gamma_j - \sum_{i \in A_j^*} \mu_{j,i} \\
 734 &= l_j(A_j^*)(\Gamma_j - \Gamma_{\mathcal{M}}^*) + l_j(A_j^*)\Gamma_{\mathcal{M}}^* - \sum_{i \in A_j^*} \mu_{j,i} \\
 735 &= l_j(A_j^*)(\Gamma_j - \Gamma_{\mathcal{M}}^*) + g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j).
 \end{aligned}$$

736 Putting both cases together, we have
 737

$$g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) \leq l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| + g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j).$$

738 From Theorem 1, we also have $\mathbb{E}[g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j)] = 0$. Applying this result to equation 7 yields
 739

$$R_T^C \leq \mathbb{E} \left[\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| \right] + l_{\max} \Gamma_{\max}. \tag{9}$$

756 **Step 2:** With equation 9, we have converted bounding the regret to analyzing the convergence of Γ_j .
 757 To ease the notation, we define
 758

$$759 \quad h_j(\Gamma) \triangleq \min_{A \in \mathbb{A}_j} g(\Gamma, A, \mathbf{l}_j, \boldsymbol{\mu}_j) = \min_{A \in \mathbb{A}_j} \left[\mathbf{l}_j(A) \Gamma - \sum_{i \in A} \mu_i \right]. \quad (10)$$

$$760$$

$$761$$

762 Let $f_j(\Gamma)$ be a function such that $f'_j(\Gamma) = h_j(\Gamma)$. Notice that $f''_j(\Gamma) = h'_j(\Gamma) \geq \min_{A \in \mathbb{A}_j} \mathbf{l}_j(A)$,
 763 which means f_j is strongly convex with parameter $c_j = \min_{A \in \mathbb{A}_j} \mathbf{l}_j(A)$. So we have
 764

$$765 \quad f_j(\Gamma_j) \geq f_j(\Gamma_M^*) + (\Gamma_j - \Gamma_M^*) h_j(\Gamma_M^*) + \frac{c_j}{2} (\Gamma_j - \Gamma_M^*)^2. \quad (11)$$

$$766$$

$$767$$

768 Applying Cauchy–Schwarz inequality, we have
 769

$$770 \quad \left(\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_M^*| \right)^2 = \left(\sum_{j=1}^{k(T)} \frac{l_{\max}}{\sqrt{c_j}} \sqrt{c_j} |\Gamma_j - \Gamma_M^*| \right)^2$$

$$771$$

$$772$$

$$773 \quad \leq \left[\sum_{j=1}^{k(T)} \left(\frac{l_{\max}}{\sqrt{c_j}} \right)^2 \right] \left[\sum_{j=1}^{k(T)} c_j (\Gamma_j - \Gamma_M^*)^2 \right]$$

$$774$$

$$775$$

$$776 \quad \text{since } c_j \geq l_{\min}$$

$$777$$

$$778 \quad \leq \left[\sum_{j=1}^{k(T)} \frac{l_{\max}^2}{l_{\min}} \right] \left[\sum_{j=1}^{k(T)} c_j (\Gamma_j - \Gamma_M^*)^2 \right]$$

$$779$$

$$780 \quad \text{since } k(T) \leq T/l_{\min}$$

$$781$$

$$782 \quad \leq T \left(\frac{l_{\max}}{l_{\min}} \right)^2 \left[\sum_{j=1}^{k(T)} c_j (\Gamma_j - \Gamma_M^*)^2 \right]. \quad (12)$$

$$783$$

$$784$$

$$785$$

786 We substitute equation 11 into equation 12 to get
 787

$$788 \quad \left(\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_M^*| \right)^2 \leq 2T \left(\frac{l_{\max}}{l_{\min}} \right)^2 \sum_{j=1}^{k(T)} [f_j(\Gamma_j) - f_j(\Gamma_M^*) + (\Gamma_M^* - \Gamma_j) h_j(\Gamma_M^*)]. \quad (13)$$

$$789$$

$$790$$

$$791$$

792 **Step 3:** In this step, we derive an upper bound on $\sum_{j=1}^{k(T)} f_j(\Gamma_j) - f_j(\Gamma_M^*)$ from equation 13. We fol-
 793 low a standard procedure in analyzing online gradient descent for strongly convex functions (Hazan et al., 2016, Sec. 3.3). We reproduce it here to make the proof self-contained. Since $f'_j(\Gamma) = h_j(\Gamma)$
 794 and f_j is strongly convex with parameter c_j , we have
 795

$$796 \quad 2[f_j(\Gamma_j) - f_j(\Gamma_M^*)] \leq 2h_j(\Gamma_j)(\Gamma_j - \Gamma_M^*) - c_j(\Gamma_j - \Gamma_M^*)^2. \quad (14)$$

$$797$$

$$798$$

799 With the update rule of Γ_j in Algorithm 1, we apply the fact $g(\Gamma_j, A, \mathbf{l}_j, \boldsymbol{\mu}_j) = h_j(\Gamma_j)$ to get
 800

$$801 \quad (\Gamma_{j+1} - \Gamma_M^*)^2 = \left[\Pi_{[\Gamma_{\min}, \Gamma_{\max}]} \left(\Gamma_j - \frac{1}{\gamma_j} h_j(\Gamma_j) \right) - \Gamma_M^* \right]^2 \leq \left[\Gamma_j - \frac{1}{\gamma_j} h_j(\Gamma_j) - \Gamma_M^* \right]^2$$

$$802$$

$$803 \quad = (\Gamma_j - \Gamma_M^*)^2 + \frac{1}{\gamma_j^2} h_j^2(\Gamma_j) - \frac{2}{\gamma_j} h_j(\Gamma_j)(\Gamma_j - \Gamma_M^*).$$

$$804$$

$$805$$

$$806$$

807 Rearranging the above inequality, we get
 808

$$809 \quad 2h_j(\Gamma_j)(\Gamma_j - \Gamma_M^*) \leq \gamma_j(\Gamma_j - \Gamma_M^*)^2 - \gamma_j(\Gamma_{j+1} - \Gamma_M^*)^2 + \frac{1}{\gamma_j} h_j^2(\Gamma_j). \quad (15)$$

$$810$$

810 Substituting equation 14 into equation 15 and summing from $j = 1$ to $k(T)$, we have
 811

$$\begin{aligned}
 812 \quad 2 \sum_{j=1}^{k(T)} f_j(\Gamma_j) - f_j(\Gamma_{\mathcal{M}}^*) &\leq \sum_{j=1}^{k(T)} (\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 (\gamma_j - \gamma_{j-1} - c_j) + \sum_{j=1}^{k(T)} \frac{1}{\gamma_j} h_j^2(\Gamma_j) \\
 813 \quad &\text{since } \gamma_0 \triangleq 0, \gamma_j \geq jl_{\min}, \text{ and } |h_j(\Gamma_j)| \leq G \triangleq n_{\max} \left(1 + \frac{l_{\max}}{l_{\min}}\right) \\
 814 \quad &\leq 0 + G^2 \sum_{j=1}^{k(T)} \frac{1}{jl_{\min}} \leq \frac{G^2}{l_{\min}} [1 + \log(k(T))] \\
 815 \quad &\text{since } k(T) \leq \frac{T}{l_{\min}} \\
 816 \quad &\leq \frac{G^2}{l_{\min}} \left[1 + \log \left(\frac{T}{l_{\min}}\right)\right]. \tag{16}
 \end{aligned}$$

824 **Step 4:** By Theorem 1, we have $\mathbb{E}[h_j(\Gamma_{\mathcal{M}}^*)] = 0$. Moreover, since Γ_j depends only on the history
 825 \mathcal{H}_{j-1} , the sequence $\{\sum_{j=1}^k (\Gamma_{\mathcal{M}}^* - \Gamma_j) h_j(\Gamma_{\mathcal{M}}^*)\}_{k=1}^{\infty}$ forms a martingale. Consequently,
 826

$$\mathbb{E} \left[\sum_{j=1}^{k(T)} (\Gamma_{\mathcal{M}}^* - \Gamma_j) h_j(\Gamma_{\mathcal{M}}^*) \right] = 0. \tag{17}$$

830 Applying equation 17 together with equation 16 to equation 13, we obtain
 831

$$\mathbb{E} \left[\left(\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| \right)^2 \right] \leq T \left(\frac{l_{\max}}{l_{\min}} \right)^2 \frac{G^2}{l_{\min}} \left[1 + \log \left(\frac{T}{l_{\min}} \right) \right] \triangleq U_T.$$

835 Finally, since $\mathbb{E}[x] \leq \sqrt{\mathbb{E}[x^2]}$ holds for any random variable x , we conclude
 836

$$R_T^C \leq \mathbb{E} \left[\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| \right] + l_{\max} \Gamma_{\max} \leq \sqrt{U_T} + l_{\max} \Gamma_{\max}.$$

□

842 B SUPPORTING LEMMAS FOR CONTEXTUAL BANDITS

844 In this section, we review relevant results from the existing contextual bandit literature and extend
 845 them for later regret analysis for COAF.

847 B.1 CONCENTRATION PROPERTIES OF THE REGULARIZED LEAST SQUARES

848 In the standard contextual bandit setting, the learner selects a single arm at each round k . Let
 849 \mathbf{x}_k denote the context and y_k the noisy feedback from the chosen arm at round k . The noise in
 850 y_k is conditionally sub-Gaussian, as stated in Assumption 3. The concentration inequality in this
 851 section ensures that the confidence set $\mathcal{F}_k \subseteq \mathcal{F}$ contains ψ_* with high probability for all $k \in \mathbb{N}$.
 852 Consequently, the UCB of each arm is, with high probability, no smaller than its true mean reward.
 853

854 B.1.1 CONCENTRATION INEQUALITY FOR LINEAR REGRESSOR

855 In the linear bandit setting, the regularized least-squares estimator is defined as

$$\bar{\theta}_k = V_k^{-1}(\lambda) \sum_{j=1}^k \mathbf{x}_j y_j, \quad V_k(\lambda) = \lambda I + \sum_{j=1}^k \mathbf{x}_j \mathbf{x}_j^\top.$$

856 **Lemma 5** ((Lattimore & Szepesvári, 2020, Theorem 20.5)). *Let $\delta \in (0, 1)$. Then, with probability
 857 at least $1 - \delta$, it holds that for all $k \in \mathbb{N}$,*

$$\|\bar{\theta}_k - \theta_*\|_{V_k(\lambda)} < \sqrt{\lambda} \|\theta_*\| + \sqrt{2 \log \left(\frac{1}{\delta} \right) + \log \left(\frac{\det V_k(\lambda)}{\lambda^d} \right)}.$$

864 Furthermore, if $\|\theta_*\| \leq m$, then $P(\exists k \in \mathbb{N} : \theta_* \notin \mathcal{C}_k) \leq \delta$ with

$$866 \quad \mathcal{C}_k = \left\{ \theta \in \mathbb{R}^d \mid \|\theta - \bar{\theta}_{k-1}\|_{V_{k-1}(\lambda)} < m\sqrt{\lambda} + \sqrt{2 \log\left(\frac{1}{\delta}\right) + \log\left(\frac{\det V_{k-1}(\lambda)}{\lambda^d}\right)} \right\}. \\ 867$$

868 B.1.2 CONCENTRATION INEQUALITY FOR GENERAL REGRESSOR

870 For a general regressor class \mathcal{F} , recall $N(\mathcal{F}, \alpha, \|\cdot\|_\infty)$ denotes its α -covering number under the sup-
 871 norm $\|\cdot\|_\infty$. The regularized least-squares estimator is $\bar{\psi}_k \in \arg \min_{\psi \in \mathcal{F}} \sum_{j=1}^k (\psi(\mathbf{x}_j) - y_j)^2$. The
 872 following result relates the concentration of $\bar{\psi}_k$ to the α -covering number of \mathcal{F} .

873 **Lemma 6** ((Russo & Van Roy, 2013, Proposition 2)). *For any $\delta > 0$ and $\alpha > 0$, with probability at
 874 least $1 - 2\delta$, it holds for all $k \in \mathbb{N}$ that*

$$876 \quad \psi_* \in \left\{ \psi \in \mathcal{F} \mid \sum_{j=1}^{k-1} [\psi(\mathbf{x}_j) - \bar{\psi}_k(\mathbf{x}_j)]^2 \leq \tilde{\beta}(k, \mathcal{F}, \delta, \alpha) \right\}, \\ 877 \\ 878$$

879 where $\tilde{\beta}(k, \mathcal{F}, \delta, \alpha) = 8 \log(N(\mathcal{F}, \alpha, \|\cdot\|_\infty)/\delta) + 2\alpha k(8 + \sqrt{8 \log(4k^2/\delta)})$.
 880

881 B.2 BOUNDS FOR CUMULATIVE PREDICTION ERROR

883 We report the upper bound on the cumulative prediction error of the estimated rewards. Combined
 884 with the results in Appendix B.1.1, this error is shown to be small with high probability.

885 B.2.1 CUMULATIVE PREDICTION ERROR WITH LINEAR REGRESSOR CLASS

887 With a linear regressor class, the upper bound on the cumulative prediction error depends on the
 888 feature dimension d . The following result builds on the theory of self-normalized processes, and the
 889 version for standard contextual bandits appears in Lattimore & Szepesvári (2020, Lemma 19.4).

890 **Lemma 7.** *Let $\mathbf{V}_0 \in \mathbb{R}^{d \times d}$ be positive definite and $\mathbf{V}_k = \mathbf{V}_0 + \sum_{j=1}^k \sum_{i \in A_j} (1 + \mathbf{x}_{j,i}^\top \mathbf{V}_{j-1}^{-1} \mathbf{x}_{j,i})$.
 891 If $\|\mathbf{x}_{j,i}\| \leq L < \infty$ for all $i \in [n_j]$ and $j \in \mathbb{N}$, then*

$$893 \quad \sum_{j=1}^k \sum_{i \in A_j} \min(1, \mathbf{x}_{j,i}^\top \mathbf{V}_{j-1}^{-1} \mathbf{x}_{j,i}) \leq 2 \log\left(\frac{\det \mathbf{V}_k}{\det \mathbf{V}_0}\right) \leq 2d \log\left(\frac{\text{trace } \mathbf{V}_0 + n_{\max} k L^2}{d \det(\mathbf{V}_0)^{1/d}}\right). \\ 894 \\ 895$$

896 *Proof.* The matrix determinant lemma, which states that for any vector x and positive definite \mathbf{V} ,

$$897 \quad \det(\mathbf{V} + \mathbf{x}\mathbf{x}^\top) = \det(\mathbf{V})(1 + \mathbf{x}^\top \mathbf{V}^{-1} \mathbf{x}). \\ 898$$

899 Applying this iteratively for all $\mathbf{x}_{j,i}$ gives

$$900 \quad \det(\mathbf{V}_k) = \det(\mathbf{V}_0) \prod_{j=1}^k \prod_{i \in A_j} (1 + \mathbf{x}_{j,i}^\top \mathbf{V}_{j-1}^{-1} \mathbf{x}_{j,i}). \\ 901 \\ 902$$

903 Taking logarithms and using $2 \log(1 + x) \geq \min(x, 1)$ for any $x \geq 0$, we have

$$904 \quad 2 \log\left(\frac{\det \mathbf{V}_k}{\det \mathbf{V}_0}\right) = 2 \sum_{j=1}^k \sum_{i \in A_j} \log(1 + \mathbf{x}_{j,i}^\top \mathbf{V}_{j-1}^{-1} \mathbf{x}_{j,i}) \leq \sum_{j=1}^k \sum_{i \in A_j} \min(1, \mathbf{x}_{j,i}^\top \mathbf{V}_{j-1}^{-1} \mathbf{x}_{j,i}). \\ 905 \\ 906$$

907 Finally, using the trace-determinant inequality for positive definite matrices:

$$908 \quad \det(\mathbf{V}_k) \leq \left(\frac{\text{trace}(\mathbf{V}_k)}{d}\right)^d \leq \left(\frac{\text{trace}(\mathbf{V}_0) + n_{\max} k L^2}{d}\right)^d, \\ 909 \\ 910$$

911 we obtain

$$912 \quad \sum_{j=1}^k \sum_{i \in A_j} \mathbf{x}_{j,i}^\top \mathbf{V}_{j-1}^{-1} \mathbf{x}_{j,i} \leq 2 \log\left(\frac{\det \mathbf{V}_k}{\det \mathbf{V}_0}\right) \leq 2d \log\left(\frac{\text{trace } \mathbf{V}_0 + n_{\max} k L^2}{d \det(\mathbf{V}_0)^{1/d}}\right). \\ 913 \\ 914$$

□

918 **Lemma 8.** Let β_1, β_2, \dots be a nondecreasing sequence with $\beta_1 \geq 1$ and let
 919

$$920 \quad \mathcal{C}_j = \left\{ \theta \in \mathbb{R}^d \mid \|\theta - \bar{\theta}_{j-1}\|_{\mathbf{V}_{j-1}}^2 \leq \beta_j, \|\theta\| \leq 1 \right\}. \\ 921$$

922 For each $j \in \mathbb{N}$, take an arbitrary pair $\theta_j, \theta'_j \in \mathcal{C}_j$. If $\|\mathbf{x}_{j,i}\| \leq 1$ for all $i \in [n_j]$ and $j \in \mathbb{N}$, then
 923

$$924 \quad \sum_{j=1}^k \sum_{i \in A_j} \langle \theta_j - \theta'_j, \mathbf{x}_{j,i} \rangle^2 \leq 8d\beta_k \log \left(\frac{\text{trace } \mathbf{V}_0 + n_{\max}k}{d \det(\mathbf{V}_0)^{1/d}} \right). \\ 925 \\ 926$$

927 Furthermore, if $\mathbf{V}_0 = \lambda I$,
 928

$$929 \quad \sum_{j=1}^k \sum_{i \in A_j} \langle \theta_j - \theta'_j, \mathbf{x}_{j,i} \rangle^2 \leq 8d\beta_k \log \left(\frac{d\lambda + n_{\max}k}{d\lambda} \right). \\ 930 \\ 931$$

933 *Proof.* For a vector $\mathbf{x} \in \mathbb{R}^d$ and a positive definite matrix $\mathbf{V} \in \mathbb{R}^{d \times d}$, recall $\|\mathbf{x}\|_{\mathbf{V}} = \sqrt{\mathbf{x}^\top \mathbf{V} \mathbf{x}}$.
 934 Since $\theta_j, \theta'_j \in \mathcal{C}_j$, for each $i \in [n_j]$, we have
 935

$$936 \quad \langle \theta_j - \theta'_j, \mathbf{x}_{j,i} \rangle \leq \|\mathbf{x}_{j,i}\|_{\mathbf{V}_{j-1}^{-1}} \|\theta_j - \theta'_j\|_{\mathbf{V}_{j-1}} \leq 2 \|\mathbf{x}_{j,i}\|_{\mathbf{V}_{j-1}^{-1}} \sqrt{\beta_j}. \\ 937$$

938 With $\|\theta_j\|, \|\theta'_j\|$ and $\|\mathbf{x}_{j,i}\|$ all upper bounded by 1, we have $|\langle \theta_j - \theta'_j, \mathbf{x}_{j,i} \rangle| \leq 2$. Combing this
 939 result with $\beta_k \geq \beta_j \geq 1$, we have
 940

$$941 \quad \langle \theta_j - \theta'_j, \mathbf{x}_{j,i} \rangle \leq \min(2, 2 \|\mathbf{x}_{j,i}\|_{\mathbf{V}_{j-1}^{-1}} \sqrt{\beta_j}) \leq 2\sqrt{\beta_k} \min(1, \|\mathbf{x}_{j,i}\|_{\mathbf{V}_{j-1}^{-1}}). \\ 942$$

943 We use the above inequality and apply Lemma 7 to get
 944

$$945 \quad \sum_{j=1}^k \sum_{i \in A_j} \langle \theta_j - \theta'_j, \mathbf{x}_{j,i} \rangle^2 \leq 4\beta_k \sum_{j=1}^k \sum_{i \in A_j} \min(1, \|\mathbf{x}_{j,i}\|_{\mathbf{V}_{j-1}^{-1}}) \leq 8d\beta_k \log \left(\frac{\text{trace } \mathbf{V}_0 + n_{\max}k}{d \det(\mathbf{V}_0)^{1/d}} \right). \\ 946 \\ 947$$

□

949 B.2.2 CUMULATIVE PREDICTION ERROR WITH GENERAL REGRESSOR CLASS

950 For an abstract regressor class \mathcal{F} , the upper bound of the cumulative prediction error depends on its
 951 eluder dimension $\text{dim}_{\text{E}}(\mathcal{F}, \epsilon)$. For any subset $\tilde{\mathcal{F}} \subseteq \mathcal{F}$, its width at a context \mathbf{x} is defined as
 952

$$953 \quad w_{\tilde{\mathcal{F}}}(\mathbf{x}) \triangleq \sup_{\psi, \psi' \in \tilde{\mathcal{F}}} \psi(\mathbf{x}) - \psi'(\mathbf{x}). \\ 954 \\ 955$$

956 **Single arm selection:** The following results apply to the standard contextual bandit setting, in which
 957 a single arm is selected from each decision set.
 958

959 **Lemma 9** ((Russo & Van Roy, 2013, Proposition 3)). Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ be a sequence of
 960 features, and let β_1, \dots, β_n be a nondecreasing sequence. For each $k \in [n]$ and an arbitrary
 961 $\psi'_k \in \mathcal{F}$, define $\mathcal{F}_k \triangleq \{\psi \in \mathcal{F} \mid \sum_{j=1}^{k-1} [\psi(\mathbf{x}_j) - \psi'_k(\mathbf{x}_j)]^2 \leq \beta_k\}$. Then, for any $\epsilon > 0$,
 962

$$963 \quad \sum_{k=1}^n \mathbf{1} \left\{ w_{\mathcal{F}'_k}(\mathbf{x}_k) > \epsilon \right\} \leq \left(\frac{4\beta_n}{\epsilon^2} + 1 \right) \text{dim}_{\text{E}}(\mathcal{F}, \epsilon). \\ 964 \\ 965$$

966 **Lemma 10.** Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ be a sequence of features, and let β_1, \dots, β_n be a nondecreasing
 967 sequence. For each $k \in [n]$ and an arbitrary $\psi'_k \in \mathcal{F}$, define $\mathcal{F}_k \triangleq \{\psi \in \mathcal{F} \mid \sum_{i=1}^{k-1} [\psi(\mathbf{x}_i) - \\ 968 \psi_k(\mathbf{x}_i)]^2 \leq \beta_n\}$. Then the widths $w_{\mathcal{F}_1}(\mathbf{x}_1), \dots, w_{\mathcal{F}_n}(\mathbf{x}_n)$ satisfy
 969

$$970 \quad \sum_{k=1}^n w_{\mathcal{F}_k}^2(\mathbf{x}_k) \leq 4 \text{dim}_{\text{E}}(\mathcal{F}, \frac{1}{n}) + 1 + 4\beta_n \text{dim}_{\text{E}}(\mathcal{F}, \frac{1}{n}) (1 + \log n). \\ 971$$

972 *Proof.* For the ease of notation, let $w_{\mathcal{F}_k}(\mathbf{x}_k) = w_k$. We rearrange the sequence w_1, \dots, w_n by
 973 defining a sequence k_1, \dots, k_n such that $w_{k_1} \geq w_{k_2} \geq \dots \geq w_{k_n}$. For any $w_{k_{i+1}} > \frac{1}{n}$, there are at
 974 most i values in w_1, \dots, w_n that are greater than $w_{k_{i+1}}$, and we apply Lemma 9 to get
 975

$$\begin{aligned} 976 \quad i &\leq \sum_{k=1}^n \mathbf{1}\{w_{\mathcal{F}_k}(\mathbf{x}_k) > w_{k_{i+1}}\} \\ 977 \\ 978 \quad &\leq \left(\frac{4\beta_n}{w_{k_{i+1}}^2} + 1\right) \dim_E(\mathcal{F}, w_{k_{i+1}}) \leq \left(\frac{4\beta_n}{w_{k_{i+1}}^2} + 1\right) \dim_E(\mathcal{F}, \frac{1}{n}), \\ 980 \end{aligned}$$

981 where the last inequality is due to that $\dim_E(\mathcal{F}, \epsilon)$ is a nonincreasing function of ϵ . Thus, for any
 982 $i > m = \dim_E(\mathcal{F}, \frac{1}{n})$, we rearrange the above inequality to get
 983

$$984 \quad w_{k_{i+1}}^2 \leq \frac{4\beta_n m}{i - m}, \quad \text{if } w_{k_{i+1}} > \frac{1}{n}.$$

985 Moreover, since the range of each $\psi \in \mathcal{F}$ is contained in $[-1, 1]$, $w_k \leq 2$ for all $k \in [n]$. Thus,
 986

$$\begin{aligned} 987 \quad \sum_{k=1}^n w_k^2 &= \sum_{i=1}^n w_{k_i}^2 \leq 4m + \sum_{i=m+1}^n w_{k_i}^2 \mathbf{1}\left\{w_{k_i} \leq \frac{1}{n}\right\} + \sum_{i=m+1}^n w_{k_i}^2 \mathbf{1}\left\{w_{k_i} > \frac{1}{n}\right\} \\ 988 \\ 989 \quad &< 4m + \frac{1}{n} + \sum_{i=m+1}^n \frac{4\beta_n m}{i - m} \leq 4m + 1 + 4\beta_n m(1 + \log n). \\ 990 \\ 991 \end{aligned}$$

□

992
 993
 994 **Multiple arm selection:** When multiple arms are selected in each round, we define
 995

$$996 \quad \mathcal{F}_k \triangleq \left\{ \psi \in \mathcal{F} \mid \sum_{j=1}^{k-1} \sum_{i \in A_j} [\psi(\mathbf{x}_{j,i}) - \psi'_k(\mathbf{x}_{j,i})]^2 \leq \beta_k \right\}.$$

997 To see the difference, we show the feature sequence below:
 998

$$1000 \quad \underbrace{\mathbf{x}_{1,1}, \dots, \mathbf{x}_{1,|A_1|}, \dots, \mathbf{x}_{j-1,1}, \dots, \mathbf{x}_{j-1,|A_{j-1}|}}_{(a)}, \underbrace{\mathbf{x}_{j,1}, \dots, \mathbf{x}_{j,i-1}, \mathbf{x}_{j,i}, \dots, \mathbf{x}_{n,1}, \dots, \mathbf{x}_{j-1,|A_n|}}_{(b)}.$$

1001 When evaluating the width at $\mathbf{x}_{j,i}$, the set \mathcal{F}_j is constructed by imposing constraints only on the
 1002 features in (a); the features in (b) are not incorporated. For each $i \in A_j$ and $j \in \mathbb{N}$, define
 1003

$$1004 \quad \mathcal{F}_{j,i}^m \triangleq \left\{ \psi \in \mathcal{F} \mid \sum_{\nu=1}^{j-1} \sum_{\iota \in A_{\nu}} [\psi(\mathbf{x}_{\nu,\iota}) - \psi'_k(\mathbf{x}_{\nu,\iota})]^2 + \sum_{\iota=1}^{i-1} [\psi(\mathbf{x}_{j,\iota}) - \psi'_k(\mathbf{x}_{j,\iota})]^2 \leq \beta_j + n_{\max} \right\}.$$

1005 With Lemma 9, we obtain
 1006

$$1007 \quad \sum_{j=1}^n \sum_{i \in A_j} \mathbf{1}\{w_{\mathcal{F}_{j,i}^m}(\mathbf{x}_{j,i}) > \epsilon\} \leq \left[\frac{4(\beta_n + 4n_{\max})}{\epsilon^2} + 1 \right] \dim_E(\mathcal{F}, \epsilon).$$

1008 Since $\sum_{\iota=1}^{i-1} [\psi(\mathbf{x}_{j,\iota}) - \psi'_j(\mathbf{x}_{j,\iota})]^2 \leq 4n_{\max}$, we also have $\mathcal{F}_{j,i}^m \supseteq \mathcal{F}_j$. We get the following corollary.
 1009

1010 **Corollary 11.** let β_1, \dots, β_n be a nondecreasing sequence, then for any $\epsilon > 0$,

$$1011 \quad \sum_{j=1}^n \sum_{i \in A_j} \mathbf{1}\{w_{\mathcal{F}_j}(\mathbf{x}_{j,i}) > \epsilon\} \leq \left[\frac{4(\beta_n + 4n_{\max})}{\epsilon^2} + 1 \right] \dim_E(\mathcal{F}, \epsilon).$$

1012 Applying the same steps that lead from Lemma 9 to Lemma 10, we derive the following corollary
 1013 from Corollary 11.

1014 **Corollary 12.** Let β_1, \dots, β_n be a nondecreasing sequence. For each $k \in [n]$, let
 1015

$$1016 \quad \mathcal{F}_k \triangleq \left\{ \psi \in \mathcal{F} \mid \sum_{j=1}^{k-1} \sum_{i \in A_j} [\psi(\mathbf{x}_{j,i}) - \bar{\psi}_k(\mathbf{x}_{j,i})]^2 \leq \beta_k \right\},$$

1017 and let $s_n = \sum_{j=1}^n |A_j|$, then
 1018

$$1019 \quad \sum_{j=1}^n \sum_{i \in A_j} w_{\mathcal{F}_j}^2(\mathbf{x}_{j,i}) \leq 4 \dim_E(\mathcal{F}, \frac{1}{s_n}) + 1 + (4\beta_n + 4n_{\max}) \dim_E(\mathcal{F}, \frac{1}{s_n}) (1 + \log(s_n)).$$

1026 **C REGRET ANALYSIS FOR COAF**
 1027

1028 The following result provides a decomposition of the regret for COAF, isolating the components that
 1029 arise from learning the mean reward function using online feedback.

1030 **Lemma 13.** *If $\psi_* \in \mathcal{F}_j$ for all $j \in \mathbb{N}$, the regret for COAF satisfies*

$$1032 \quad R_T^C \leq \sqrt{\underbrace{\frac{U_T}{\xi} + \frac{T}{1-\xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 \mathbb{E} \left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \right]}_{(a)}} \\ 1033 \quad + \sqrt{\underbrace{\frac{Tn_{\max}}{l_{\min}} \mathbb{E} \left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \right]}_{(b)} + l_{\max} \Gamma_{\max}},$$

1040 where $U_T \triangleq \frac{T}{l_{\min}} \left(\frac{l_{\max} n_{\max}}{l_{\min}} \right)^2 \left(1 + \frac{l_{\max}}{l_{\min}} \right)^2 \left[1 + \log \left(\frac{T}{l_{\min}} \right) \right]$.
 1041

1042 Components (a) and (b) arise from the use of UCB estimates in place of the true mean rewards. The
 1043 remaining terms coincide with those in the oracle case, as established in Lemma 2.

1044 *Proof.* In equation 7, we have shown

$$1047 \quad R_T^C = \mathbb{E} \left[\sum_{j=1}^{k(T)} g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) \right] + l_{\max} \Gamma_{\max}. \quad (18)$$

1050 At each round j , with estimated arm rewards $\hat{\mu}_j$, COAF selects a subset of arms

$$1051 \quad A_j \in \arg \min_{A \in \mathbb{A}_j} g(\Gamma_j, A, l_j, \hat{\mu}_j). \quad (19)$$

1053 Correspondingly, the optimal arm selection is defined as

$$1055 \quad A_j^* \in \arg \min_{A \in \mathbb{A}_j} g(\Gamma_{\mathcal{M}}^*, A, l_j, \mu_j).$$

1057 **Step 1:** To bound $g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j)$, we consider two separate cases: $\Gamma_j < \Gamma_{\mathcal{M}}^*$ and $\Gamma_j \geq \Gamma_{\mathcal{M}}^*$.

1059 *Case 1:* If $\Gamma_j < \Gamma_{\mathcal{M}}^*$, then

$$1061 \quad g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) = l_j(A_j) \Gamma_{\mathcal{M}}^* - \sum_{i \in A_j} \mu_{j,i} \\ 1062 \quad = l_j(A_j) (\Gamma_{\mathcal{M}}^* - \Gamma_j) + l_j(A_j) \Gamma_j - \sum_{i \in A_j} \hat{\mu}_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \\ 1064 \quad \text{according to equation 19} \\ 1067 \quad \leq l_j(A_j) (\Gamma_{\mathcal{M}}^* - \Gamma_j) + l_j(A_j^*) \Gamma_j - \sum_{i \in A_j^*} \hat{\mu}_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}).$$

1070 Moreover, if $\psi_* \in \mathcal{F}_j$, then for each arm $i \in [n_j]$, the UCB estimate satisfies

$$1072 \quad \hat{\mu}_{j,i} = \max_{\psi \in \mathcal{F}_j} \psi(\mathbf{x}_{j,i}) \geq \mu_{j,i}.$$

1074 Hence, we obtain

$$1076 \quad g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) \leq l_j(A_j) (\Gamma_{\mathcal{M}}^* - \Gamma_j) + l_j(A_j^*) \Gamma_j - \sum_{i \in A_j^*} \mu_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \\ 1077 \\ 1078 \quad = l_j(A_j) (\Gamma_{\mathcal{M}}^* - \Gamma_j) + g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j) + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}).$$

1080 *Case 2:* If $\Gamma_j \geq \Gamma_{\mathcal{M}}^*$, we get
1081
1082
$$g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) \leq l_j(A_j) \Gamma_{\mathcal{M}}^* - \sum_{i \in A_j} \mu_{j,i}$$

1083
1084
$$\leq l_j(A_j) \Gamma_j - \sum_{i \in A_j} \hat{\mu}_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})$$

1085
1086 according to equation 19
1087
1088
$$\leq l_j(A_j^*) \Gamma_j - \sum_{i \in A_j^*} \hat{\mu}_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})$$

1089
1090 since as $\hat{\mu}_{j,i} \geq \mu_{j,i}$ for all i
1091
1092
$$\leq l_j(A_j^*) (\Gamma_j - \Gamma_{\mathcal{M}}^*) + l_j(A_j^*) \Gamma_{\mathcal{M}}^* - \sum_{i \in A_j^*} \mu_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})$$

1093
1094
$$= l_j(A_j^*) (\Gamma_j - \Gamma_{\mathcal{M}}^*) + g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j) + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}).$$

1095
1096

1097 With maximum latency l_{\max} , we combine both cases together to get
1098

$$g(\Gamma_{\mathcal{M}}^*, A_j, l_j, \mu_j) \leq l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| + g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j) + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}).$$

1100 It follows from Theorem 1 that $\mathbb{E}[g(\Gamma_{\mathcal{M}}^*, A_j^*, l_j, \mu_j)] = 0$. We apply this result to equation 18 to get
1101

$$R_T^C \leq \mathbb{E} \left[\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \right] + l_{\max} \Gamma_{\max}. \quad (20)$$

1102 **Step 2:** Recall $h_j(\Gamma)$ defined in equation 10. We define its counterpart with UCB estimates
1103

$$\hat{h}_j(\Gamma) = \min_{A \in \mathbb{A}_j} g(\Gamma, A, l_j, \hat{\mu}_j).$$

1104 Then we have the following
1105

$$\begin{aligned} h_j(\Gamma_j) &= \min_{A \in \mathbb{A}_j} \left[l_j(A) \Gamma - \sum_{i \in A} \mu_i \right] \\ &\leq l_j(A_j) \Gamma_j - \sum_{i \in A_j} \mu_{j,i} = l_j(A_j) \Gamma_j - \sum_{i \in A_j} \hat{\mu}_{j,i} + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \\ &= \hat{h}_j(\Gamma_j) + \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}). \end{aligned} \quad (21)$$

1106 Let $f_j(\Gamma)$ be such that $f'_j(\Gamma) = h_j(\Gamma)$. In step 2 of the proof for Lemma 2, we have shown
1107

$$\left(\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| \right)^2 \leq 2T \left(\frac{l_{\max}}{l_{\min}} \right)^2 \sum_{j=1}^{k(T)} \left[f_j(\Gamma_j) - f_j(\Gamma_{\mathcal{M}}^*) + (\Gamma_{\mathcal{M}}^* - \Gamma_j) h_j(\Gamma_{\mathcal{M}}^*) \right]. \quad (22)$$

1108 In later steps of the proof, we use \hat{h}_j to bound the above term.
1109

1110 **Step 3:** We continue to give an upper bound on $\sum_{j=1}^{k(T)} f_j(\Gamma_j) - f_j(\Gamma_{\mathcal{M}}^*)$. Since f_j is strongly
1111 convex with parameter c_j ,
1112

$$\begin{aligned} &2[f_j(\Gamma_j) - f_j(\Gamma_{\mathcal{M}}^*)] \\ &\leq 2h_j(\Gamma_j)(\Gamma_j - \Gamma_{\mathcal{M}}^*) - c_j(\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 \\ &= 2\hat{h}_j(\Gamma_j)(\Gamma_j - \Gamma_{\mathcal{M}}^*) + 2[h_j(\Gamma_j) - \hat{h}_j(\Gamma_j)](\Gamma_j - \Gamma_{\mathcal{M}}^*) - c_j(\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 \\ &\quad \text{since } 2[h_j(\Gamma_j) - \hat{h}_j(\Gamma_j)](\Gamma_j - \Gamma_{\mathcal{M}}^*) \leq \frac{1}{a_j} [h_j(\Gamma_j) - \hat{h}_j(\Gamma_j)]^2 + a_j(\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 \\ &\leq 2\hat{h}_j(\Gamma_j)(\Gamma_j - \Gamma_{\mathcal{M}}^*) + \frac{1}{a_j} [h_j(\Gamma_j) - \hat{h}_j(\Gamma_j)]^2 + (a_j - c_j)(\Gamma_j - \Gamma_{\mathcal{M}}^*)^2, \end{aligned} \quad (23)$$

for some $a_j > 0$ to be chosen in later steps. Using equation 21 and applying the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} [h_j(\Gamma_j) - \hat{h}_j(\Gamma_j)]^2 &\leq \left[\sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \right]^2 \\ &\leq |A_j| \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \leq l_{\max} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2. \end{aligned} \quad (24)$$

In COAF as presented in Algorithm 1, $\Gamma_{j+1} = \Pi_{[\Gamma_{\min}, \Gamma_{\max}]} [\Gamma_j - \frac{1}{\xi \gamma_j} g(\Gamma_j, A_j, \mathbf{l}_j, \hat{\mu}_j)]$. Then we apply the fact that $g(\Gamma_j, A_j, \mathbf{l}_j, \hat{\mu}_j) = \hat{h}_j(\Gamma_j)$ to get

$$\begin{aligned} (\Gamma_{j+1} - \Gamma_{\mathcal{M}}^*)^2 &= \left[\Pi_{[\Gamma_{\min}, \Gamma_{\max}]} \left(\Gamma_j - \frac{1}{\xi \gamma_j} \hat{h}_j(\Gamma_j) \right) - \Gamma_{\mathcal{M}}^* \right]^2 \leq \left[\Gamma_j - \frac{1}{\xi \gamma_j} \hat{h}_j(\Gamma_j) - \Gamma_{\mathcal{M}}^* \right]^2 \\ &= (\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 + \frac{1}{\xi^2 \gamma_j^2} \hat{h}_j^2(\Gamma_j) - \frac{2}{\xi \gamma_j} \hat{h}_j(\Gamma_j) (\Gamma_j - \Gamma_{\mathcal{M}}^*). \end{aligned}$$

Rearranging the above equation, we get

$$2\hat{h}_j(\Gamma_j)(\Gamma_j - \Gamma_{\mathcal{M}}^*) = \xi \gamma_j (\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 - \xi \gamma_j (\Gamma_{j+1} - \Gamma_{\mathcal{M}}^*)^2 + \frac{1}{\xi \gamma_j} \hat{h}_j^2(\Gamma_j). \quad (25)$$

Substituting equation 24 and equation 25 into equation 23, we compute the following summation:

$$\begin{aligned} &2 \sum_{j=1}^{k(T)} f_j(\Gamma_j) - f_j(\Gamma_{\mathcal{M}}^*) \\ &\leq \sum_{j=1}^{k(T)} (\Gamma_j - \Gamma_{\mathcal{M}}^*)^2 (\xi \gamma_j - \xi \gamma_{j-1} + a_j - c_j) + \sum_{j=1}^{k(T)} \frac{1}{\xi \gamma_j} \hat{h}_j^2(\Gamma_j) + \frac{l_{\max}}{a_j} \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \\ &\quad \text{since } \frac{1}{\gamma_0} \triangleq 0, |\hat{h}_j(\Gamma_j)| \leq G \triangleq n_{\max} \left(1 + \frac{l_{\max}}{l_{\min}} \right), \text{ and we select } a_j = (1 - \xi) c_j \\ &= 0 + G^2 \sum_{j=1}^{k(T)} \frac{1}{\xi \gamma_j} + \frac{l_{\max}}{a_j} \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \\ &\quad \text{since } c_j \geq l_{\min} \\ &\leq 0 + \frac{G^2}{\xi} \sum_{j=1}^{k(T)} \frac{1}{j l_{\min}} + \frac{l_{\max}}{(1 - \xi) l_{\min}} \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \\ &\leq \frac{G^2}{\xi l_{\min}} [1 + \log(k(T))] + \frac{l_{\max}}{(1 - \xi) l_{\min}} \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \\ &\quad \text{since } k(T) \leq \frac{T}{l_{\min}} \\ &\leq \frac{G^2}{\xi l_{\min}} \left[1 + \log \left(\frac{T}{l_{\min}} \right) \right] + \frac{l_{\max}}{(1 - \xi) l_{\min}} \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2. \end{aligned} \quad (26)$$

Step 4: In equation 17, we have shown

$$\mathbb{E} \left[\sum_{j=1}^{k(T)} (\Gamma_{\mathcal{M}}^* - \Gamma_j) h_j(\Gamma_{\mathcal{M}}^*) \right] = 0.$$

Applying it together with equation 26 to equation 22, we obtain

$$\mathbb{E} \left[\left(\sum_{j=1}^{k(T)} l_{\max} |\Gamma_j - \Gamma_{\mathcal{M}}^*| \right)^2 \right] \leq \frac{U_T}{\xi} + \frac{T}{1 - \xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 \mathbb{E} \left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \right].$$

With this result, and using the fact that $\mathbb{E}[x] \leq \sqrt{\mathbb{E}[x^2]}$ for any random variable x , it follows from equation 20 that

$$\begin{aligned} R_T^C &\leq \sqrt{\frac{U_T}{\xi} + \frac{T}{1-\xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 \mathbb{E} \left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \right]} \\ &\quad + \mathbb{E} \left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \right] + l_{\max} \Gamma_{\max}. \end{aligned} \quad (27)$$

In addition, Cauchy–Schwarz inequality gives

$$\left[\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i}) \right]^2 \leq \sum_{j=1}^{k(T)} |A_j| \times \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \leq \frac{T n_{\max}}{l_{\min}} \sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2.$$

Applying $\mathbb{E}[x] \leq \sqrt{\mathbb{E}[x^2]}$ to the second expectation in equation 27, and then combining it with the above inequality, we conclude the proof. \square

With Lemma 13 in place, we leverage the theoretical results for standard contextual bandits in Appendix B to analyze the regret of COAF. For some $\delta > 0$, we define event

$$\mathcal{E} \triangleq \{\forall k \in \mathbb{N} : \psi_* \in \mathcal{F}_k\}.$$

C.1 REGRET UPPER BOUND WITH LINEAR REGRESSOR CLASS

Proof of Theorem 3. For a linear mean reward function $\psi_* \in \mathcal{F}_1$, the event \mathcal{E} can also be written as

$$\mathcal{E} = \{\forall j \in \mathbb{N} : \theta_* \in \mathcal{C}_j\},$$

where

$$\mathcal{C}_j = \left\{ \theta \in \mathbb{R}^d \mid \|\theta - \bar{\theta}_{j-1}\|_{V_{j-1}(\lambda)}^2 < \beta(s_{j-1}, \delta), \|\theta\| \leq 1 \right\}.$$

By Lemma 7, we also have $P(\neg\mathcal{E}) \leq \delta$, using the fact that $\det V_n(\lambda) \leq (\lambda + n/d)^d$.

For each $\mathbf{x}_{j,i}$, let $\hat{\theta}_{j,i} \in \arg \max_{\theta \in \mathcal{C}_j} \langle \theta, \mathbf{x}_{j,i} \rangle$, i.e., $\hat{\mu}_{j,i} = \langle \hat{\theta}_{j,i}, \mathbf{x}_{j,i} \rangle$. Since $\delta \in (0, 1/\sqrt{e}]$ ensures $\beta(0, \delta) \geq 1$, if the event \mathcal{E} occurs, we can apply Lemma 8 to obtain

$$\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 = \sum_{j=1}^{k(T)} \sum_{i \in A_j} \langle \hat{\theta}_{j,i} - \theta_*, \mathbf{x}_{j,i} \rangle^2 \leq 8d\beta(s_{k(T)}, \delta) \log \left(\frac{d\lambda + n_{\max}k(T)}{d\lambda} \right),$$

where $s_k = \sum_{j=1}^k |A_j|$. Since $k(T) \leq T/l_{\min}$ and $s_{k(T)} \leq T n_{\max} / l_{\min}$, we also have

$$\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 \leq \frac{W_T(\delta)}{T}. \quad (28)$$

If \mathcal{E} occurs, we apply equation 28 to Lemma 13 to get

$$R_T^C \leq \sqrt{\frac{U_T}{\xi} + \frac{1}{1-\xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 W_T(\delta)} + \sqrt{\frac{n_{\max}}{l_{\min}} W_T(\delta)} + l_{\max} \Gamma_{\max},$$

which holds with probability at least $1 - \delta$. \square

C.2 REGRET UPPER BOUND FOR GENERAL REGRESSOR CLASS

Proof of Theorem 4. Using the concentration property of $\bar{\psi}_k$ from Lemma 6, we have $P(\neg\mathcal{E}) \leq 2\delta$.

For each $\mathbf{x}_{j,i}$, let $\hat{\psi}_{j,i} \in \arg \max_{\psi \in \mathcal{F}_j} (\psi(\mathbf{x}_{j,i}))$, i.e., $\hat{\mu}_{j,i} = \hat{\psi}_{j,i}(\mathbf{x}_{j,i})$. Conditioned on the event \mathcal{E} , we also have $\psi_* \in \mathcal{F}_j$ for any $j \in \mathbb{N}$ and $i \in [n_j]$. Thus,

$$\sum_{j=1}^{k(T)} \sum_{i \in A_j} (\hat{\mu}_{j,i} - \mu_{j,i})^2 = \sum_{j=1}^{k(T)} \sum_{i \in A_j} \left[\hat{\psi}_{j,i}(\mathbf{x}_{j,i}) - \psi_*(\mathbf{x}_{j,i}) \right]^2 \leq \sum_{j=1}^{k(T)} \sum_{i \in A_j} w_{\mathcal{F}_j}^2(\mathbf{x}_{j,i}).$$

1242 Then we apply Corollary 12 to get
 1243

$$\begin{aligned}
 & \sum_{j=1}^{k(T)} \sum_{i \in A_j} w_{\mathcal{F}_j}^2(\mathbf{x}_{j,i}) \\
 & \leq 4 \dim_E \left(\mathcal{F}, \frac{1}{s_{k(T)}} \right) + 1 + 4 \left[\tilde{\beta}(k(T), \mathcal{F}, \delta, \alpha) + 4n_{\max} \right] \dim_E \left(\mathcal{F}, \frac{1}{s_{k(T)}} \right) (1 + \log(s_{k(T)})) \\
 & \quad \text{since } k(T) \leq T/l_{\min} \text{ and } s_{k(T)} \leq Tn_{\max}/l_{\min} \\
 & \leq 4 \dim_E \left(\mathcal{F}, \frac{l_{\min}}{Tn_{\max}} \right) + 1 + 4 \left[\tilde{\beta} \left(\frac{T}{n_{\min}}, \mathcal{F}, \delta, \alpha \right) + 4n_{\max} \right] \dim_E \left(\mathcal{F}, \frac{l_{\min}}{Tn_{\max}} \right) \left(1 + \log \frac{Tn_{\max}}{l_{\min}} \right), \tag{29}
 \end{aligned}$$

1254 where $s_k = \sum_{j=1}^k |A_j|$. We then apply Eq. (29) to Lemma 13 to get
 1255

$$R_T^C \leq \sqrt{\frac{U_T}{\xi} + \frac{1}{1-\xi} \left(\frac{l_{\max}}{l_{\min}} \right)^3 \tilde{W}_T(\delta)} + \sqrt{\frac{n_{\max}}{l_{\min}} \tilde{W}_T(\delta)} + \frac{n_{\max} l_{\max}}{l_{\min}},$$

1256 which holds with probability at least $1 - 2\delta$. □
 1257

1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295