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ABSTRACT

We introduce a latency-aware contextual bandit framework that generalizes the
standard contextual bandit problem, where the learner adaptively selects arms and
switches decision sets under action delays. In this setting, the learner observes
the context and may select multiple arms from a decision set, with the total time
determined by the selected subset. The problem can be framed as a special case
of semi-Markov decision processes (SMDPs), where contexts and latencies are
drawn from an unknown distribution. Leveraging the Bellman optimality equa-
tion, we design the contextual online arm filtering (COAF) algorithm, which bal-
ances exploration, exploitation, and action latency to minimize regret relative to
the optimal average-reward policy. We analyze the algorithm and show that its re-
gret upper bounds match established results in the contextual bandit literature. In
numerical experiments on a movie recommendation dataset and cryogenic elec-
tron microscopy (cryo-EM) data, we demonstrate that our approach efficiently
maximizes cumulative reward over time.

1 INTRODUCTION

The contextual bandit framework models sequential decision-making under uncertainty: the learner
observes context, selects an action, and receives feedback only for that action (Lattimore &
Szepesvari, [2020). This framework is widely used in domains requiring personalization, experi-
mentation, or optimization under uncertainty, including recommender systems, healthcare, educa-
tion, finance, and energy management (L1 et al., 2010; [Tewari & Murphyl [2017; |Lan & Baraniuk,
2016} [Soemers et al.| 2018 |(Chen et al., 2020). Standard formulations do not account for the la-
tency of acquiring information or executing actions. In practice, obtaining contexts—such as as-
say results, medical records, or experimental measurements—often involves non-negligible delays.
Similar challenges arise in scientific automation, where experimental decisions must trade off infor-
mation gain against time constraints. Examples include high-throughput drug discovery, automated
materials science, and astronomy (Blay et al., [2020; Pyzer-Knapp et al.l [2022} |Adler et al., [2020).
A prominent instance is cryo-electron microscopy (cryo-EM) (Li et al., |2023)), where limited and
costly microscope time must be efficiently allocated to the most informative imaging targets.

To address this limitation, we extend the contextual bandit model to incorporate latency-aware
decision-making. At each round, the learner selects multiple arms from a decision set and receives
their rewards, with a total time cost determined by the chosen subset. Maximizing cumulative re-
ward in this setup requires balancing the trade-off between exploration (gathering information from
new actions) and exploitation (selecting actions with high expected rewards), while also implement-
ing an effective strategy for arm selection under latency. This problem can be framed as a special
case of SMDPs where the reward function, sojourn time distribution, and transition probabilities are
unknown, making it a reinforcement learning task. We adopt the framework of undiscounted rein-
forcement learning (Auer et al., 2008) under the average reward criterion. In particular, we make the
following contributions:

* We analyze the latency-aware contextual bandit problem and derive the Bellman optimality equa-
tion to characterize the optimal policy. We show that the maximum average reward can be obtained
by finding the root of a function with noisy measurements.

* Building on the Bellman optimality equation, we leverage stochastic approximation and the upper
confidence bound (UCB) method to design the COAF algorithm, which efficiently selects arms
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and switching decision sets under action latency. We establish that COAF achieves sublinear regret
and validate its performance through numerical experiments on a movie recommendation dataset
and cryo-EM data collection. The results demonstrate the effectiveness of COAF in time-sensitive
decision-making tasks.

2 RELATED WORKS

In sequential decision-making under uncertainty, maximizing reward requires balancing exploration
and exploitation. The multi-armed bandit (MAB) problem formalizes this trade-off: a learner repeat-
edly selects arms with unknown reward distributions and aims to minimize regret, defined as the dif-
ference between the cumulative reward of an online algorithm and that of the optimal arm (Robbins),
1952; |[Lai & Robbins, [1985). Classical algorithms with strong theoretical guarantees include the
UCB family, which selects arms according to optimistic estimates of their mean rewards. Thompson
sampling, one of the earliest MAB solutions, is a randomized Bayesian algorithm that nonetheless
addresses the fundamentally frequentist problem of regret minimization (Thompson, |1933};|Agrawal
& Goyal|[2012; Kaufmann et al.,[2012). Other widely studied policies include the Gittins index (Git-
tins et al., 201 1; Lattimore, [2016)) and minimum empirical divergence (Honda & Takemura, |[2010).

The contextual bandit problem generalizes the MAB by allowing the learner to make decisions based
on observed contexts. This framework naturally integrates statistical learning and function approx-
imation into sequential decision-making. Contextual bandit algorithms can be broadly categorized
into two types. Realizability-based approaches assume that rewards follow a known parametric
family, enabling efficient algorithms with strong theoretical guarantees. Representative examples in-
clude LinUCB and linear Thompson sampling for linear models (Chu et al.,2011;|Agrawal & Goyal,
2013), and GLM-UCB, GLM-TS, and GLOC for generalized linear models (Filippi et al.l 2010;
Abeille & Lazaricl [2017; Jun et al., 2017). In contrast, general-purpose approaches make weaker
assumptions, accommodating broader function classes. They often rely on regression oracles, with
regret bounds expressed in terms of sample complexity measures such as VC-dimension, eluder di-
mension, or the performance of a square-loss minimizing oracle (Langford & Zhang|,[2007; Beygelz-
1mer et al.,[2011; Russo & Van Royl, 2013} |[Foster & Rakhlin,2020). Empirically, realizability-based
methods outperform general-purpose approaches when the reward model is well-specified, while the
latter offer greater flexibility under unknown or complex reward structures (Bietti et al., 2021}).

Our problem formulation allows the learner to select multiple arms from a decision set. This setup
was first introduced by |Anantharam et al.|(1987) and is widely studied in combinatorial bandits. The
reward function can be linear with respect to the individual arm rewards (Cesa-Bianchi & Lugosi,
2012)) or nonlinear, capturing interactions and combinatorial constraints (Chen et al.,|2013}; Kveton
et al.,[2014;|Chen et al.,|2016). Contextual combinatorial bandits focus on learning the combinatorial
reward structure under context, where decision sets arrive sequentially and selecting a combination
of arms incurs a fixed time cost (Qin et al.,[2014). This model does not explicitly account for action
latency. We adopt the semi-bandit feedback model (Kveton et al.l 2015)), where the learner receives
granular feedback in the form of individual rewards for each selected arm.

The idea of switching decision sets in our problem is inspired by the mortal MAB (Chakrabarti et al.,
2008)), where the learner can request new decision sets, and the lifetime of each set (i.e., the number
of available arms) follows a geometric distribution. Similarly, the sleeping experts problem (Kanade
et al., 2009; Kleinberg et al., [2010) considers a dynamic arm set, where arms are activated either
stochastically or by an adversary. In this setup, the learner passively reacts to the changes of arm sets.
In contrast, as in mortal MAB, our formulation allows the learner to actively control the dynamics by
switching to new decision sets, potentially accessing better arms. Our problem integrates dynamic
control of action space into contextual decision-making, combining elements of mortal MAB and
contextual combinatorial bandits. This adds complexity, as the learner must balance both expected
reward and the time required for each decision.

3 PROBLEM SETTINGS

This section presents the formal problem formulation for the latency-aware contextual bandit and
discusses connections to existing works. As a natural application, cryo-EM data collection is intro-
duced, where microscope operations induce inherent latencies.
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3.1 LATENCY-AWARE CONTEXTUAL BANDITS
We consider a latency-aware contextual bandit problem. Ateachround j = 1,2,...:

* The learner observes: (i) the arm feature vectors X; = {x; 1,... ,xjmj} c R% (ii) the action
space A; C 2[0;] containing subsets of arms; and (iii) a latency function L : Aj = R>q.

* The learner selects a subset of arms A; € A; and observes semi-bandit feedback: foreachi € A;,
the reward y; ; is revealed, while the rewards of unchosen arms remain unknown.

* The learner receives total reward r;(A4;) = ZieA]_ ymﬂ and the time spent is 1;(A;).

Several elements of the setup are stochastic, including X; (and its size n;), A;, and 1;. We assume
that the sequence {(X;,A;,1;)}32, is IID, with each (X;, A;,1;) drawn from an unknown distri-
bution F.,,. Arbitrary dependencies among X;, A;, and 1; within a round j € N are allowed.
Each selected arm i yields a random reward y; ; = . (xj,i) + €j,i, Where ¥, : R — [~1,1] is
the bounded mean reward function unknown to the learner, and noise ¢; ; is a zero-mean random
variable. We further impose the following assumptions.

Assumption 1 (Boundedness). There exist Nmax, lmin, lmax > 0 such that for all rounds 5 € N: (i)
the number of arms nj < nuyay; (ii) the action time 1;(A;) € [lmin, lmax] for all A; € A;.

Assumption 2 (Realizability (Foster et al., 2018)). The learner is given a regressor class F that
contains the bounded mean reward function 1, i.e., 1, € F.

Remark 1. The term 1;(0) can be interpreted as the time spent to acquire contextual information,
and the condition 1;(A;) > lymin > 0 for all Aj € A; ensures temporal progress at each round j.
Under Assumption[2] it suffices to learn the mean reward function within the regressor class F.

The problem is formally specified by M = ( Pepny, %4 ), and the objective is to maximize cumulative
reward without prior knowledge of M. Beyond the standard exploration—exploitation trade-off in
MAB problems, the learner must balance exploiting the current decision set, where good arms may
be exhausted, with switching to new sets, taking action latency into account.

3.2 RELATIONSHIP WITH EXISTING WORKS

The problem studied in this paper generalizes the following existing bandit setups.

Stochastic contextual bandits (Lattimore & Szepesvari, 2020): In this setup, the learner observes
the context of arm features X; and selects a single arm at each round j. This corresponds to a special
case of our problem, where A; = {{1},...,{n;}} and the action time 1;(A;) = 1 forall 4; € A;.

Contextual combinatorial semi-bandits (Qin et al., 2014): This formulation, like our problem,
allows the learner to select subsets of arms A; € A; C 2["i] at each round 7, but does not explicitly
model action latency, i.e., 1;(A;) = 1forall A; € A;.

Mortal MAB (Chakrabarti et al., 2008): In this setup, all arms in a decision set have identical
rewards, y, ; =y, for all i € [n;], and the sequence {y;}32; is IID with y, ~ Py. The number of
arms n;, drawn from a geometric distribution with parameter p, represents the lifetime of the deci-
sion set. Our problem generalizes this setup by incorporating contextual information and allowing
heterogeneous rewards across arms. The mortal MAB is a planning problem, as both P and p are
assumed known, whereas our setting is a learning problem with unknown P, and 1.

3.3 CRYO-EM DATA COLLECTION

Single-particle cryo-EM is a structural biology technique for determining near-atomic resolution
3D structures of biomolecules. A purified sample is applied to a thin, electron-transparent grid and
rapidly frozen in vitreous ice. Imaging produces 2D projections of particles by passing an electron
beam through the sample. A typical data collection workflow is illustrated in Fig. [T} The grid
contains multiple squares, each with several holes where biomolecules are preserved in thin ice.

"While r; (A;) can be generalized to be non-linear under monotonicity and Lipschitz assumptions, as in|Qin
et al.|(2014), we focus on the linear case, as handling arm interactions is beyond the scope of this work.
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Figure 1: Cryo-EM data collection at multiple magnifications: (i) grid-level shows the entire grid at
low magnification, (ii) square-level captures individual squares at medium magnification to assess
ice quality within holes, and (iii) full exposures are high-magnification images of selected holes.

Grid-level and square-level views are used to navigate and select holes for full exposures. These
high-magnification exposures, taken with high electron doses, are used for 3D reconstruction of
biomolecules. Radiation irreversibly damages the sample, so each region can be imaged only once.

Cryo-EM data collection is inherently a bandit problem with partial feedback: selecting a set of holes
reveals the data quality only for the chosen holes, while unselected holes remain unknown. Our
latency-aware formulation captures the time required for exposures, refocusing, and stage move-
ments. Neighboring holes can often be imaged via fast beam shifts, but larger movements require
physically moving the stage, which is slower and necessitates additional refocusing. To capture this,
holes in a square are divided into patches (colored in Fig. EI), each forming a decision set of n; arms,
with contexts X; extracted from cropped square-level images. The learner selects a subset A; C [n;]
for full exposures. For a microscope, the exposure time 7.y, and the latency T, for moving to the
next patch are typically known or easily estimated. Let t; denote the stochastic time to acquire the
square-level view and extract contexts X;. Then, the latency of action A; is

1i(A4;) = tj + Tmov1 {Aj # 0} + Texp | 45 (D)

The feedback y; ; is obtained by evaluating the high-magnification micrographs. Micrograph qual-
ity can be quantified using the CTF maximum resolution (Rohou & Grigorieff} 2015), which mea-
sures the finest structural detail in A (0.1 nm). With sufficient computational resources, additional

metrics—such as the number of biomolecules detected per micrograph or assessments from deep
learning models like MicAssess (Li et al.| |2020)—can also be incorporated.

4 MAXIMIZATION OF AVERAGE REWARD

In this section, we study the maximum average reward achievable in the latency-aware contextual
bandit problem. Assuming a known mean reward function 1., we derive the Bellman optimality
equation, which can be used to compute this maximum average reward. This quantity then serves as
a baseline for defining the regret of an algorithm, which we aim to minimize throughout the paper.

4.1 OPTIMAL AVERAGE REWARD

At each round k, the learner follows a policy 7 to select a subset of arms Ay € Ay. Let the history
up to round k be Hy—1 = {(X;, 45,15, {y; ; }ica,) }5;11 The policy 7 maps the history H;_; and
the current arm features X}, to a probability distribution over the action space Aj. Let k(¢) denote

the (random) number of completed decision rounds up to time t. The expected cumulative reward
of a policy 7 up to time ¢ is

k()

K(t) k(t)
E Z Z Vii| =E Z Z Ely;; | Hj—1]| =E Z Z u(x50) | 2E[Q7()], ()

j=1icA, j=1icA; j=1icA,
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which depends on both the environment M and the policy 7. In the average-reward setting, the
performance of 7 is evaluated by the long-term average reward

Elq™ (¢
NP h?iilolp w

With Assumptionand the mean reward function ), bounded in [—1, 1], I'}  is finite for any policy
7. Then optimal average reward is then defined as

[y 2 supl'7,.

Treating 1;(A;) in round j as the sojourn time, our model can be viewed as a special case of
SMDPs (Puterman) 2014). The following theorem provides its Bellman optimality equation.

Theorem 1. For the latency-aware contextual bandit problem M = (Pepy, V), let (X, A1) ~ Popy
and let p = {p; }Yi_,, where p; = 1.(x;) for each x; € X. The optimal average reward I" = 1%, is
the unique solution to E[minAeA g(T, Al u)] = 0, where

i€A

Proof. We adopt the concept of differential return from average-reward MDPs (Sutton, 2018)). At
eacg decision round j, selecting A; € A; incurs time 1;(A;). The quantity g(I'}, 4;,1;, p;)
defined in equation measures the gap between the optimal expected reward 1;(A;)I™, in the time
interval and the actual collected reward  _, A, M

Step 1: For any policy , let A; € A; denote the selected arms at round j. Since ¢ is possible in

the middle of a decision round, |t — Z];(:t)l 1; (Aj)‘ < lmax, Where [, is from Assumption Then

k(?) k(?)

trj\/l_qﬂ-(t) Z z;g(rj;\/laAjalj7l’l’j)_lmax|rj\/l| Z z;fxrg& g(Fj\/l7Aa1j7/'l'j)_lmax|Fj\/l‘- (4)
1= J=

Using Wald’s lemma (Durrett, 2019) and the IID assumption on {(X;, A;,1;)}72,

k(t)
j=

E = E[k(t)) E| min g(T, AL p)- 5)

With equation[5} dividing equation[d] by ¢ and taking the lim sup of expectations yields

Elk(¢
vy —T > limsupyE[gﬁr&g(Fj‘w,A,l,u)]
€

t—o0

Since this holds for any 7, taking the supremum of I'}} ; over 7 gives

lim sup E[kt(t)]

t—o00

i * < 0.
E[glelgg(FM,ALu)} <0

Since lim sup,_, ., E[k(£)]/t > 0, we get E[ minaea g(I', 4,1, )] <0.

Step2: Letpolicy 7’ selects Aj = argminy ey, g(I'yy, 4,1, ;) at each round j. Using the same
bound for ¢ in the middle of a decision round,

k(t)
trj\/l - qTr (t) S legélAn] g(Fj\/[aAvljaH'j) + lmax ‘Fj‘/‘\/l| .
j=

Taking expectations and applying equation [5] give

E[k(t /
limsupyE{?eigg(FL,A,l,u)] >y — T >0.

t—o0
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Algorithm 1: Contextual Online Arm Filtering (COAF)
Initialization: ¢ € (0,1], T'1 € [['min, ['max] and yo = 0.
forj =1,2,... do

Estimate the mean rewards for each arm i base on H;_;, denoted by fi; = {/1;.i}i2,.

Select subset of arms
Aj € argming(Ty, 4,15, f1;).
AEAJ’

Sety; = ;-1 +mingea, 1j(A), and set Uj1 = Tlr, ;. 1,00 [Fj — 27905, A5, ﬂj)]'

Since lim sup,_, .o E[k(¢)]/t > 0, we have E[ minaca g(T, 4,1, )] > 0.

Combining both steps, we conclude E[ minaea g(Iy, 4,1, 1)] = 0. With 1(A) > Lyin > 0, the
function g(T", A, 1, 1) is strictly increasing in I', and hence E[ minacy g(T', A, 1, )] is also strictly
increasing in I'. Therefore, the solution I' = I'}; is unique. O

Remark 2. The effect of arm quality and latency on the optimal average reward 1", can be seen
from Theorem Larger delays 1(A) steepen the growth of Elminaca g(T, A, 1, )] with T, resulting
in a smaller root Iy ;. Conversely, higher mean rewards . shift the function downward, yielding a
larger I\ 1. The proof also indicates that the policy 7' minimizing g(I'\, A,1;, p;) is optimal.

4.2 ALGORITHM REGRET

Since the objective of a policy 7 is to maximize cumulative reward, the optimal average reward I'} ,
serves as a natural performance benchmark. The regrer of 7 at time T is defined as

R} £ 1T}, —E[q™(T)], (6)
which we aim to minimize. Our goal is to design policies that perform well across general problem

setups. Specifically, policy 7 aims to minimize the worst-case regret sup n, RT.(M), while the
optimal value of this quantity, known as the minimax regret, is given by inf sup ,, RT.(M).

The minimax regret lower bound in contextual bandit settings is known to depend on the regressor
class F. Since contextual bandits are a special case of the problem studied here, these lower bound
results also apply. In particular, when F is the class of d-dimensional linear functions, the state-of-

the-art minimax regret lower bound is Q(dv/T') (Lattimore & Szepesvari, 2020).

5 CONTEXTUAL ONLINE ARM FILTERING ALGORITHM

The latency-aware contextual bandit problem poses a significant challenge, as it requires learning
both the mean reward function 1), and the potentially complex distribution Py, underlying for
{(X,4;,15)}52,. A key insight from the proof of Theorem [I|(step 2) is that it is optimal to take
action 4; € arg minAeAj 9(I\, A, 15, ;) in each round j. Since I'}; and p; are unknown, this
minimization is not directly feasible. In this section, we introduce and analyze the COAF algorithm,
which relies on estimated values of '}y ; and p; to filter out suboptimal arms.

5.1 A GENERIC ALGORITHM FRAMEWORK

Stochastic approximation (Robbins & Monrol [1951)) is a standard method for finding the root of
an unknown real-valued function using noisy measurements. Since in Theorem |l| has shown that
E [ mingea (I, 4,1, u)} = 0, COAF in Algorithm (I|employs this approach to maintain an esti-
mator I'; for I}, at each round j. In Line [3|of Algorithm (I} I'; is updated via stochastic approxi-
mation and projected back to [['min, I'max]» Where T'imin = —nmax/lmin a0d Tiax = Pmax/Imin-

Since the true reward function v, is unknown, COAF estimates the mean rewards fi; from the
sampling history H;_;. To balance exploration and exploitation, we adopt a UCB strategy by con-
structing a confidence set F; C F based on H;_1, which contains 1, with high probability. At
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each round j, the UCB for arm i is fi;; = maxycr, ¥(X;), ensuring, with high probability, that
Qi > Wi = ¥.(x;,;). In this paper, we focus on the UCB approach due to its simplicity and
theoretical soundness. However, it is plausible to expect that other index-based contextual bandit
algorithms, such as Thompson Sampling, can also be adapted to the COAF framework.

5.2 WORST-CASE REGRET ANALYSIS FOR COAF

In Algorithm , if fi; = p;, the stochastic approximation procedure ensures E[(Fj — Fj\/l)Q] — 0
as j — oo. The following result is derived by relating the regret to the convergence rate of I';.

Lemma 2. Consider any latency-aware contextual bandit problem M = (Poyy, s ). Suppose the
COAF algorithm runs with & = 1 and has exact mean reward estimates, i.e., fi; = [; in every
round j. Then, for any time horizon T > 0, the regret of COAF satisfies
)
lmin '

Remark 3. Lemma |Z| captures the oracle case where COAF has access to the true mean rewards,
and establishes an O (/T log T) regret upper bound that arises solely from learning I ;.

C nnlaxlnlax A T Z!IlaXTLHIHX ? llnax ?
Ry <\/Up + ————, where Up = —_— 1+ 1+ log (

Zmin lmin lmin [min

The general COAF algorithm needs to learn the unknown reward function v, within the regressor
class F from noisy observations. Following standard practice in the contextual bandit literature (Lat-
timore & Szepesvari, |2020), we assume that the noise is conditionally sub-Gaussian.

Assumption 3. Forany j € N, {ej,i}lilj 1 are independent and conditionally 1-subgaussian:

E [e*

Hji—1] < exp (%), Va € R, Vi € [n;].

5.2.1 REGRET UPPER BOUND WITH LINEAR F
The linear regressor class is defined as 7! £ {@x + (0, x) | € R, ||0]| < 1}, where the context

space is Q' £ {x € R? | ||| < 1}. To estimate §, corresponding to ¢, let

i k
0, =V, '(\) Z Z Xji¥j00 Vi(A) = AT+ Z Z X%, i

j=14i€A,; j=14i€A,

where A > 0 is the regularization parameter. The regressor confidence set at round % is defined as

F 2 {w = (0, ) ‘ 6 R [|0—Bioalf, ) < Blsko1.0), 6] < 1},

where 6 € (0,1), s, = Z?Zl |A;| and \/B(n,8) = VX + \/21og(%) + dlog (%24™).

Theorem 3. For any latency-aware contextual bandit problem M = (P, 1)), suppose 1, € F!
and the context space is Q. For any § € (0,1/+/e], with probability at least 1 — 0, the regret of
COAF with parameter § € (0,1) at any time T' > 0 satisfies

UT 1 Zm ax 3 ;o Nmax tr, /¢ Nmax lmax
RS < | —/ 4+ — Wr (6 1/ Wr (6 _—
o £ ’ 1-— E <lmin > T( ) N lmin T( ) + Zlnin i

where Wr(0) = 8dTﬁ<7Tl”‘{"ax , 6) log (711,\11,33-4-@1“]“ )

lmin

5.2.2 REGRET UPPER BOUND WITH GENERAL F

For a general regressor class F, let N(F, o, ||-|| ) be the a-covering number of F in the sup-norm
||-|| .- By calling the online regression oracle, COAF computes the estimated regressor

k
= argminz Z [dJ(XJGi) - yj,i]Q'

YEF  iT1ica,
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The abstract confidence set F}, centers around 1/_1k and is defined as

Fi & {1/) eF ’ Z Z (%5.4) — V—1(x.0)]% < B(sk—1,F, 0, a)},

j= 11€A

where 3(n, F,d,a) £ 8log (N(F,a,|[|..)/d) + 2an(8 + \/8log(4n2/5)) is the tolerence. In
practice, a can be chosen on the order of 1/7".

The eluder dimension of a function class F, defined below, measures reward dependencies across
contexts (Russo & Van Royl [2013)) and is widely used in contextual bandit regret analysis.

Definition 1. Feature x is e-dependent on {x1, ..., x,} with respect to F if any pair of functions
., € F satisfying />, [b(xr) — V' (zk)]? < € also satisfies (x) — ' (x) < e. Further-

more, x is e-independent of {x1, . . . , @, } with respect to F if x is not e-dependent on {x1, ..., x,}.

Definition 2. The c-eluder dimension dimg(F, €) is the length of the longest sequence of elements
in Q) such that, for some €' > ¢, every element is ¢’ -independent of its predecessors.

Theorem 4. Consider latency-aware contextual bandit problem M = (Peyy, ¥y ). Suppose ¥, € F
and let dp = dimg (.7-", Tln%) For any 0 > 0, with probability at least 1 — 20, the regret of COAF
with parameter £ € (0,1) at any time T satisfies

Zmax 3 T ”max Ir nmaxlmax
RS < \/ +1 ) Wr(8) + . ]71/1/1-(5) 4 maxmax

]min 'min Imin

where Wrp(0)/T = 4dy + 1+ 4 [B (52 F.8,0) + Anas] di (1 + log (T ) ).

Remark 4. In Theorems and the regret upper bounds introduce new terms Wr (8) and Wr(5),
which arise from learning a regressor in F. The parameter £ controls the trade-off between learning
I'\( and learning the regressor. By setting § = o = 1/T, the regret upper bounds for COAF become

O(dvVTlogT) and O(\/dimE (F, %) log (N(F, %, []l.)) T log T). These rates are consistent
with the standard contextual bandit literature (Chu et al.| |201 1} |Russo & Van Roy,|2013).

6 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of COAF in two experiments. In the movie recommen-
dation task, we compare its regret against three baseline algorithms. In the cryo-EM data collection
task, we assess its data collection efficiency against human microscopists.

6.1 SIMULATIONS WITH MOVIELENS 1M DATA

We use the MovieLens 1M dataset (Harper & Konstan, 2015), which contains ratings for 3461
movies by 6040 users. Missing ratings are predicted via a matrix completion technique (Nie et al.,
2012), and principal component analysis is applied to obtain a 10-dimensional feature vector for
each movie. At each round j, the number of available movies n; is uniformly sampled from 6 to 20,
and the action space A; = 2[%]. The time costis 1;(A;) = t; +|A;|, where t; is uniformly sampled
from 5 to 10. The ground-truth regressor v, is trained on the average ratings across all users, and
the noisy reward for each movie is given by the rating from a randomly selected user.

In our experiment, the optimal average reward I, is computed via prolonged execution of the
stochastic approximation algorithm (Robbins & Monrol [1951)). Each algorithm in Fig. [2|is run for
2000 iterations, and we plot the mean regret along with the 5% lower, 90% middle, and 5% upper
quantiles of empirical regrets in Fig. 2] In COAF-TS, we follow [Abeille & Lazaric| (2017) and
sample 6; from AV (6, _1,/B(sj_1,0)V;j_1(\)) as the parameter for 1); to estimate arm rewards in
round j. In Fig. a fixed threshold of 1.75 fails to achieve sublinear regret. In Fig. COAF-
ORC corresponds to the oracle case described in Lemma [2] where the regret reflects only the cost
of learning I"} ;. For both COAF and COAF-TS, we set the parameter £ = 0.5. We further observe
that the original COAF with UCB estimates outperforms its Thompson sampling variant.
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Figure 2: Regrets of COAF and 3 baselines: (i) Threshold selects movies with rating > 1.75, (ii)
COAF-ORC uses the true mean reward, and (iii) COAF-TS employs Thompson Sampling approach.

6.2 CRYO-EM DATA COLLECTION SIMULATIONS

We evaluate COAF in a realistic cryo-EM setting by benchmarking its automated data collection
performance against human microscopists. To simulate experimental conditions, we use two exist-
ing datasets. The microscope parameters t;, Trov, and Toyp in equation |I| are sampled from real
experiment logs, with mean values of 12.09, 51.99, and 6.66 seconds, respectively.

The data collection simulator is illustrated in Fig. [3a] In this setup, holes are cropped from medium-
magnification images. The feature representation of each hole consists of its mean pixel value, which
correlates with ice thickness, together with the output of the deep learning model Ptolemy
2023). Based on these features, the UCB reward estimate is displayed at the top-right corner
of each hole. In the first experiment ( Fig. @), we use 0/1 reward feedback, where a micrograph is
labeled good if its CTF maximum resolution is below 3.8 A. In the second experiment ( Fig., the
reward corresponds to the number of particles in the micrograph, estimated via blob picking. We
then reconstruct 3D biomolecular structures with the same computation method using data collected
by human microscopists and by COAF. In both cases, COAF improves data collection efficiency
over human microscopists, yielding more good micrographs (particles) and higher-resolution 3D
structures. These results highlight the promise of COAF for cryo-EM automation.

7 CONCLUSION

In this paper, we studied the latency-aware contextual bandit problem, which generalizes both stan-
dard contextual bandits and mortal multi-armed bandits to settings where collecting contextual infor-
mation and taking actions incur time costs. We formulated the problem as a special case of SMDPs
with unknown rewards, sojourn times, and transition dynamics, and defined regret relative to an
optimal algorithm that maximizes the long-term average reward. Building on stochastic approxi-
mation and UCB methods, we proposed the COAF algorithm and established its regret guarantees.
Through simulations on movie recommendation tasks and cryo-EM data collection, we demon-
strated that COAF efficiently maximizes cumulative reward over time. Our approach provides a
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A  REGRET OF COAF WITH ACCESS TO TRUE MEAN REWARDS
Proof of Lemmal[2] With the regret defined in equation [6] COAF satisfies

R =1T% —E

j=11i€A;
rk(T)
<E Z <1j(Aj)F34 - Z Mj.,i) + Inax g
Lj=1 i€A; ‘/—’(a)
rk(T
<E Z 9 FM’ J? iu’j) + ImaxD'max; (7)
Lj=1

where term (a) accounts for the potentially unfinished decision round. Note that at each round 7,
with access to the true mean rewards p;, COAF selects a subset of arms

Aj e argming(T;, 4,1, uj), (8)
Ach;

where I'; is the online estimator of I"} ;.
Step 1: In this step, we derive an upper bound for g(I'}(, A;,1;, ;) at each round j. Let

A} € argmmg(FM,A 1, pj).
Ach;

We consider two cases separately: I'; < I and I'; > I ,.
Case 1: If I'; < I",;, we have
9@ Aj L, ) =1 (A) (T = T5) + L (AT = > pji
i€EA;
according to equation [g]

<L(A)Th =) + LADT; = > g

€AY

<L(A) (T = T5) + L (AN — >
1€A]

=1 (A5) (T — Tj) + 9(Th, A7, 1, 115)-

Case 2: It I'; > I" ;, we have
9T Aj s 1) <L(AT; = > s
iEA]‘
according to equation [§]

Ty =

i€ A
=1; (A7) (T — T) + 1; (A5 — Z Hij,i
1€EAY
=Li(A7) (T = Ta) + 9(Ths A7 1, ).
Putting both cases together, we have
Q(Fj\/lvA IJHU’J) < lmax |F - FM‘ +9(FM7A]7117“J)
From Theorem we also have E[g(I"}, A}, 1;, p;)] = 0. Applying this result to equatlonlylelds

K(T)

Z lmax ‘Fj - Fj\/l|

j=1

R <E + Imax'max- ©)
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Step 2: With equation@], we have converted bounding the regret to analyzing the convergence of I';.
To ease the notation, we define

hi(T) 2 min g(T. A1 ;) = min |L;(A)T =S 1. 10
5(0) = min g(0 ALy, ) 15%1&[]() ;M] (10)

Let f;(I") be a function such that f}(I") = h;(T'). Notice that f/'(I') = h(T') > minaea, 1;(A),
which means f; is strongly convex with parameter ¢; = minaca, 1;(A). So we have

J

J5(05) 2 (03 + (05 = T)hy (Ta) + 5 (T = D)™ an

Applying Cauchy—Schwarz inequality, we have

k(T) 2
<§j%wuy—rm>
i=1

k(T)l 2
NIV ES Y
(v
rk(T)

L1 [KT)
Z (lmﬁ) ] lzcj(ﬁ —F%)Q]

Jj=1

IN

since ¢; > Iin

k(T) 12 k(T)

< Jmax | N ey (T —F}M)Q]
j=1

since k(T') < T'/lin

rk(T)

gT(lmaX>2 S eI, _rw)]. (12)

I .
min L =1

J=1 lmin

We substitute equation [TT]into equation [I2]to get

K(T) 2 I o K(T)
( zmaxmrm) <27 (F2) 3[4 = (T + Cha — T, (13)

]:1 min j:1

Step 3: In this step, we derive an upper bound on le(le) fi(T;)—f;(T%,) from equationE We fol-
low a standard procedure in analyzing online gradient descent for strongly convex functions (Hazan
et al., 2016} Sec. 3.3). We reproduce it here to make the proof self-contained. Since f7(T') = h;(T’)

and f;is strongly convex with parameter c;, we have

2[£5(T5) = f;(Thg)] < 2h;(T;)(T5 = Thy) — ¢5(T; — Tiy)*. (14)

With the update rule of I'; in Algorithm [1} we apply the fact g(T';, A,1;, ;) = h;(T';) to get

2 2
(Tjp1 —Th)? = {H[Fmimrmg (Fj - fhj(Fj)) - FM:| < {Fj — —h;(l;) =Ty
Vi i
= (T = Th)? + =3 (T;) = —hi(T)(T; = Thy)-
i i
Rearranging the above inequality, we get

* * * 1
2h;(T;)(T; = Tiag) < 7505 = T)® =% (Tia = Tag)? + ?h?(rj)- (15)

J
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Substituting equation (14]into equation|15|and summing from j = 1 to k(7'), we have

k(T) k(T) k(T) 1
23 f(T5) = i) <D (T =T (v — v — i)+ —h3(T5)
i=1 =1 =1
J J J
since o £ 0,7; > jlmin, and |h;(T;)| < G 2 Nnax (1 + llrrz—“:)
k(T) a2
2
<O * G Z jlmln mm [1 + log( ( ))]
since k(T) < l
2
<& ()] "

Step 4: By Theorem|[I] we have E[h;(I"},)] = 0. Moreover, since I'; depends only on the history
H;_1, the sequence { Z i1 =T h (Fj\/l)} , forms a martingale. Consequently,

k(T)
E| > T -T)) hj(rh)] =0. (17)

j=1

Applying equation [T7)together with equation [I6]to equation[I3] we obtain

2 max ) G? T
E{(Z']‘»(_Tl)lmax|rj_r;4|) ] <T<z . > » {1+log<l ‘ ﬂ 2 Uy
Finally, since E[x] < \/IW holds for any random variable x, we conclude

k(T')
Rg" S E Z lmax |Fj - Fj\/[| + lmax max > \/ UT + lmax max-.
j=1

B SUPPORTING LEMMAS FOR CONTEXTUAL BANDITS

In this section, we review relevant results from the existing contextual bandit literature and extend
them for later regret analysis for COAF.

B.1 CONCENTRATION PROPERTIES OF THE REGULARIZED LEAST SQUARES

In the standard contextual bandit setting, the learner selects a single arm at each round k. Let
xj, denote the context and y, the noisy feedback from the chosen arm at round k. The noise in
¥}, is conditionally sub-Gaussian, as stated in Assumption [3} The concentration inequality in this
section ensures that the confidence set F,, C F contains 1, with high probability for all £ € N.
Consequently, the UCB of each arm is, with high probability, no smaller than its true mean reward.

B.1.1 CONCENTRATION INEQUALITY FOR LINEAR REGRESSOR

In the linear bandit setting, the regularized least-squares estimator is defined as

k k
1 )\)ijyj, Vie(A) = AT + Zm]m;
j=1 j=1

Lemma 5 ((Lattimore & Szepesvari, 2020, Theorem 20.5)). Let § € (0, 1). Then, with probability
at least 1 — 6, it holds that for all k € N,

10k = 0.1y, ) < VAL + \/210g (1) +log (detVM).
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Furthermore, if ||0.|| < m, then P(3k € N : 0, ¢ Ci) < § with

Cr {GeRd‘HG Or-1lly, <mf+\/210g(;)+1og<detvkm>}

B.1.2 CONCENTRATION INEQUALITY FOR GENERAL REGRESSOR

For a general regressor class F, recall N (F, «, ||-|| ) denotes its a-covering number under the sup-

. . . . 2
norm ||-|| . The regularized least-squares estimator is ¢, € arg min,,c » 2?21 (w(wj) — yj) . The
following result relates the concentration of 1, to the a-covering number of F.

Lemma 6 ((Russo & Van Roy, [2013|, Proposition 2)). For any § > 0 and o > 0, with probability at
least 1 — 26, it holds for all k € N that

{1;[}6]:‘ Z .’1}] )] B(/{,}—,(S,a)},
where B(k, F,8,a) = 8log (N(F,a, |-||..)/6) + 2ak(8 + \/8log(4k2/3)).

B.2 BOUNDS FOR CUMULATIVE PREDICTION ERROR

We report the upper bound on the cumulative prediction error of the estimated rewards. Combined
with the results in Appendix this error is shown to be small with high probability.

B.2.1 CUMULATIVE PREDICTION ERROR WITH LINEAR REGRESSOR CLASS

With a linear regressor class, the upper bound on the cumulative prediction error depends on the
feature dimension d. The following result builds on the theory of self-normalized processes, and the
version for standard contextual bandits appears in [Lattimore & Szepesvari| (2020, Lemma 19.4).

Lemma 7. Let V, € R4*? be positive definite and Vi, = Vo + Z?:l ZieAj (1+ X Vi “ix; i)-
Ifl|x;.l| < L < ooforalli € [nj]and j €N, then

k
, det V}, trace Vo + Nmaxk L?
1 V. ix;;) <21 < 2d1 )
jz:;i;.mm ,ng XJ7)— Og(detVO) < Og< ddet(Vo)l/d

Proof. The matrix determinant lemma, which states that for any vector x and positive definite V,
det(V +zx') =det(V)(1 +2'V ')
Applying this iteratively for all x;; gives

k
det(Vi) = det(Vo) [T T (+ +x/,V, i) -

j=li€A;

Taking logarithms and using 2log(1 + ) > min(z, 1) for any 2 > 0, we have

b k
detV; - '
2log (detVS) = QZ Z log (1 + X;:i‘/}_llxj,i) < Z Z min 17Xj Vi Xj,i) ]

j=1i€A, J=1icA,

Finally, using the trace-determinant inequality for positive definite matrices:

d oy d
maxkL
det(%)s(mCZ(Vk)) S(trace(Vo)+n K ) |

d
we obtain

k
_ det V; trace Vi + nmaxk L?
T 1 k 0 max
E E L Ve <21 < 2d1 .
Ly Ly P9ATim1 = T8 (detvo) = Og( ddet(Vp) 1/ )
- J
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Lemma 8. Let (31, B2, . .. be a nondecreasing sequence with 31 > 1 and let
= 2
¢ ={0er| 0- 0513, , < Bilol <1}
For each j € N, take an arbituary pair 05,0’ € C;. If ||x;,:|| < 1foralli € [n;] and j € N, then
k
trace Vi + nmaxk
)2 < 8dBy1 .
Z:: ZA: o) < Bdf log ( ddet(Vo) /2 )

Furthermore, if V) = A1,

M»

ol < S log (5pet).

J lzeAJ

Proof. For a vectore € R? and a positive definite matrix V' € R4, recall ||z||y, = V! V.
Since 0;, 0’ € C;, for each i € [n;], we have

(0; — 05, %54) < 1¢jillv—1 [6; — 9}HVJ.71 < 2[xjilly-1 V/Bj-

JH and ||x; ;|| all upper bounded by 1, we have |(6; — Hé,xj,i>| < 2. Combing this
result with 3, > 3; > 1, we have

(05 = 6, %;.5) < min (2,2[xilly - /) < 2¢/Bemin (L, [1x]ly-1 )

We use the above inequality and apply Lemma[7|to get

k k
/ 2 . trace Vi + Nmaxk
DD 0 —05,%;0)7 < 4By Y min(1, 15illv-1 ) < 8dBy log ( dde(Vo)i/d )

j=1icA; j=1icA;

O

B.2.2 CUMULATIVE PREDICTION ERROR WITH GENERAL REGRESSOR CLASS

For an abstract regressor class F, the upper bound of the cumulative prediction error depends on its
eluder dimension dimg(F, €). For any subset 7 C F, its width at a context x is defined as

wp(@) 2 sup bla) - (@).

by eF

Single arm selection: The following results apply to the standard contextual bandit setting, in which
a single arm is selected from each decision set.

Lemma 9 ((Russo & Van Roy, 2013} Proposition 3)). Let x1,...,x, € R? be a sequence of
features, and let (1, ..., B, be a nondecreasing sequence. For each k € [n| and an arbitrary

U}, € F, define Fi, = {4 € F | Zf;ll [(x;) — ' (25)]> < Br}. Then, for any € > 0,

n

31 {wﬂ(mk) > e} < (5" + 1> dimg (F, ¢).

k=1

Lemma 10. Let 1, ..., x, € R? be a sequence of features, and let 31, . . ., B, be a nondecreasing
sequence. For each k € [n] and an arbitrary ¢}, € F, define Fi, & {4 € F | Zf;ll [(x;) —
Ui (x:))? < Bn}. Then the widths wr, (1), ..., wr, (©,) satisfy

Zw%—k(mk) < 4dimg (.7-', %) + 1+ 4p3,, dimg (}", %) (1+logn).
k=1
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Proof. For the ease of notation, let wr, (xy) = wy. We rearrange the sequence wy, ..., w, by
defining a sequence k1, ..., k, such that wy, > wy, > ... > wy,,. For any wg,,, > %, there are at
most ¢ values in wy, .. ., wy, that is greater wy,_, , and we apply Lemma@]to get

n

1 < Z 1 {w;k(:ck) > wkiﬂ}
k=1
48 ) 46 .
< ( — + 1) dimg (F, wg,,,) < ( S+ 1) dimg (F, 1),
wk?H»l wki+1

where the last inequality is due to that dimg(F, €) is a nonincreasing function of e. Thus, for any
i > m = dimg/(F, 1), we rearrange the above inequality to get

CR 48, m

Wy, > 5
ki1 T—m

. 1

if 'LUk;i+1 > E

Moreover, since the range of each ¢ € F is contained in [—1, 1], wy, < 2 for all k& € [n]. Thus,
> owt =Y u, <+ S o< the Y utafon > 1)
k=1 i=m-+1 i=m-+1

n 4 n
fum <4dm+ 1446, m(1 + logn).
-m

Multiple arm selection: When multiple arms are selected in each round, we define

k-1
Fi £ {¢ €F ’ DD () — (x50 < ﬂk}~

j=14i€A;
To see the difference, we show the feature sequence below:
X171, Ce. 7X1,\A1\7 e 7Xj_1717 e 7Xj—1,\Aj,1\7Xj,17 N axj,i—hxj,iy e ,Xml, Ce 7Xj—1,|An|'
(a) (b)

When evaluating the width at x; ;, the set F; is constructed by imposing constraints only on the
features in (a); the features in (b) are not incorporated. For each i € A; and j € N, define

{¢€‘F’ Z Z Xl/L ’(/}k XI/L 2+Z X]L ¢/k(xj,b)}2<ﬁj+nmax}~

v=1.€A,
With Lemma 9] we obtain

Z Z {wfm (x5,:) > 6} < [W + 1] dimg (F,€).

j=1i€A;

Since Zz;} [1h(x5,,) =1 (%x;,)]* < 4nmax, We also have Fii 2 Fj. We get the following corollary.

Corollary 11. let 5, . .., By, be a nondecrasing sequence, then for any € > 0,
n 4 max .
Z Z {wg, (x;,:) > €} < [B—l—n) —|—1] dimg (F,€).
j=1li€A;

Applying the same steps that lead from Lemma 9] to Lemma we derive the following corollary
from Corollary [T}

Corollary 12. Let 31,. .., B, be a nondecreasing sequence. For each k € [n], let
k— -
i = {1/J €F ’ ZJ':ll Diea, W(xj,0) — Yr(x;,0)]? < 5k}’
and let s, = "'

1
Z Z w]_- (x5,) < 4dimg (f ) + 14 (458, + 4npmayx) dimg <.7: 5

j=1li€A; n

) (1+log(sn))-
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C REGRET ANALYSIS FOR COAF

The following result provides a decomposition of the regret for COAF, isolating the components that
arise from learning the mean reward function using online feedback.

Lemma 13. If, € F; forall j € N, the regret for COAF satisfies

3
k(T ~
RS < |9+ e () B[N e, (s — i13.00?]

min

(a)

Nmax k(T
+ \/TZE [Z ( )ZzeA (NJ i Nj-,i)Q} +Hmax'max,

).

Components (a) and (b) arise from the use of UCB estimates in place of the true mean rewards. The
remaining terms coincide with those in the oracle case, as established in Lemma 2]

©)

Imin

where Up & L (71"1&*”"““) (1+ l?n::) [1 + log (

Proof. In equation[7] we have shown

K(T)
R$ =E [ > 9T Ay, 1)
j=1

+ lmaxrmax- (18)

At each round j, with estimated arm rewards fi;, COAF selects a subset of arms

Aj e argming(T;, 4,15, ft;). (19)
A€A

Correspondingly, the optimal arm selection is defined as
A} € argmin g(Iy, A, 1, pj).
Step 1: To bound g(I"} 1, A;,1;, i), we consider two seperate cases: I'; < I and I'; > I'},.
Case I: If I'; < T, then
9@ Aj 1, ) =L (AT = D i
i€EA;

=1;(A4;) (T = Tj) + ZM31+ZMJ2 145.i)

i€A; i€EA;

according to equation[T9]

<L(A)Thg = T5) + LADT; = > g+ > (figi — f74)-

€AY i€A;

Moreover, if 1, € F;, then for each arm ¢ € [n;], the UCB estimate satisfies

15 = max Y(xX;) > Wi
MJ,’L Ver, VJJ( jﬂ) = M]ﬂ
Hence, we obtain

900 Aj L ) S LADN T —T) + LA — Y g+ > (i — Hja)
zeA* i€EA;

= 1;(A) (o = 1)) + 9(hes A3 s ) + D (s — )
i€EA;
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Case2: ItT'; > 17, we get
9T Ajy 1y ) <Li(A;) Dy — Z Hjyi

iEAj
ANTy = g+ Y (g — 144)
i€A; i€A;

according to equation|T9]
<GANT; = > i+ Y (i — 1)
i€AT iCA;
since as fij; > p;; forall ¢

LA = Th) + LA = Y i+ > (i — Hg.i)
’LEA* i€EA;

=L (AT = The) + 9T A3 i) + > (g — 1.4):
i€A;
With maximum latency /,,,.x, We combine both cases together to get
9Ty Ajs 1y i) < lmax [T — Ty +9(FMaA* Jrbj) + Z (fij,i — Hja)-
i€EA;

It follows from Theoremthat Elg(T, Az, )] = 0. We apply this result to equatlon.to get

K(T)
R <E| Y hax Ty =Tl + D (5.6 — 15.6) | + ImaxTmaxc (20)
j=1 i€A;

Step 2: Recall h,;(I") defined in equation |10}, We define its counterpart with UCB estimates
hyi(T) = ,221& 9T, ALy, fuy).

Then we have the following

hy(Ty) = min |1 Zm}
i€A
I Z tgi = 1(A;)L; — Z fiji+ Z (f1,i = tj,3)
iGAJ‘ iEAj iGAJ
T5) 4+ > (i — 1150): @1
ieA;

Let f;(T") be such that f}(I") = h;(T'). In step 2 of the proof for Lemma we have shown
k(T)

K(T) 2
(z b T — rm) <or (YN 0) - 0 + (T~ Ty (The)]. @)
j=1 j=1

lmin
In later steps of the proof, we use ;Lj to bound the above term.

Step 3: We continue to give an upper bound on Zl;(:Tl) fi(T;) — f;(I,). Since f; is strongly
convex with parameter c;,

2[f5(T5) = f;(T)]
<2h; (L) (L — Thy) —c;(L — 7\4)
:2}}( L), — FM +2[h](F] hj(T';) ]F =T — Cj(Fj*Fj\A)Q
since 2|h;(I';) — h;(T ])} (T, =T < %[ i(L';) *ilj(rj)}z + a;(T; *Fjvt)2
)

iwrj)— AP + (0 — )T — Tho)?, 3

<2h;(T;)(T; — T +
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for some a; > 0 to be chosen in later steps. Using equation @ and applying the Cauchy—Schwarz
inequality, we obtain

[h3(T;) = hy(0)]" < [ > (i — um)} 2

i€EA;
<AL (g = 15.0)° < lnaxe Y (i — p1.0)* (24)
i€A; i€A;
In COAF as presented in Algorithm Ljpr =, rad [T — (F A;j 15, frj)]. Then we

apply the fact that g(I';, A;,1;, ft;) = fALj (T;) to get

* 1 A ? 1 * 2
(Tj41—Th)?* = {H[Fm,n, Timas] (Fj h;(T; )) FM:| < {Fj — —h; () — Iy
f Vi 57]
* 2 *
= (T = Tu)* + & ghi( i) gf%hj(Fj)(Fj —Tw)-
Rearranging the above equation, we get
205 (T)(Tj = Thy) = €35(T5 = Ti)® = €3 (Dj1 = The)® + g—h’% Do @)
]
Substituting equation [24] and equation [23]into equation 23] we compute the following summation:
K(T)
2 Z £3(T5) = f5(Ta)
k(T) k(T) l k(T)
<Y (T =T (& — v +aj — ) + Z 7h2 + NN (g — pga)?
Jj=1 5% aj j=11i€A;

1
. A
since — = 0,

fzj(I‘j)‘ <G 2 npax (1 + é‘:ﬁ‘), and we select a; = (1 — &)c;

Yo
k(T) k(T)
—0+G2Z£ maXZZNm_NM
Jj=1i€A;
since ¢; > lmin
o k(T) k(T)
0+ LY et T 2 X i
.7 mll’l mll’l ] 1 1614
G2 max k(T)
Sfl —[1 +log(k(T))] + SO (i — 1)
min mln j 1 leA
since k(T) < £
G2 max
S{l . [1+1og<l£n>} ZZ”JZ ,u” ’ (26)
min mln j 1 ’LEA

Step 4: In equation [T7} we have shown

K(T)
E| > (M- Fj)hj(Ffw)] =0.

Jj=1

Applying it together with equation 26]to equation 22] we obtain

E | (S50t 105 - 1) | < 52 +1T5(§2j:)31€[z‘;9 S ren, (irs — 37
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With this result, and using the fact that E[x] < 4/E[x?| for any random variable x, it follows
from equation [20] that

lmax ’ T
RC_\/+ ) B[S S s~ )

lmin
{Zk(T) ZzeA (M], ,uj,i):| + lmaxrmax- (27)
In addition, Cauchy—Schwarz inequality gives
k(T) 2 k(T k(T) T k(T)
~ nmax A
zzw,i—m] DRI SR P DPILIEINS
j=14ic€A; J=1icCA; =1 e Ay

Applying E[x] < 1/E[x?] to the second expectation in equation and then combining it with the
above inequality, we conclude the proof. O

With Lemma [I3]in place, we leverage the theoretical results for standard contextual bandits in Ap-
pendix BJto analyze the regret of COAF. For some ¢ > 0, we define event

E2{VkeN:, € Fi}.

C.1 REGRET UPPER BOUND WITH LINEAR REGRESSOR CLASS

Proof of Theorem[3] For a linear mean reward function . € F, the event £ can also be written as
E={VjeN:0, €C;},
where
¢, = {HE]Rd 168112, ) < Blsm1.0). 18] < 1}.
By Lemma we also have P(—&) < 4, using the fact that det V;,(\) < (A + n/d)<.

For each x; ;, let éﬂ € argmaxgee, (0, x;,4). i.e., flj; = <éj’l-,xj’i>. Since 6 € (0,1/+/e] ensures
B(0,6) > 1, if the event £ occurs, we can apply Lemmato obtain

K(T) K(T)

) A\ + Naxk(T
3 S s = 32 3 03, < 805, ) o (D)),
j=1 ’LEA j=1 iGA]'

where s, = 2?21 |A;|. Since k(T') < T'/lin and g7y < TMmax/lmin, We also have

K(T)

DD (i —mia) < T(‘s). (28)

j=11i€A;

5

If £ occurs, we apply equation [28|to Lemma [I3]to get

C UT 1 lmax s nmax
RS < ? + 17_5 . WT((S) + WT((S) + lmameaxa

which holds with probability at least 1 — 6.

C.2 REGRET UPPER BOUND FOR GENERAL REGRESSOR CLASS
Proof of TheoremHd Using the concentration property of 1, from Lemma@ we have P(—=€) < 2.

For each x; ;, let ), ; € arg maxyer (X5, 1., flj,; = 1;4(x;,:). Conditioned on the event £, we
also have ¢, € F; forany j € N and i € [n;]. Thus,

k(T) k(T) K(T)
ZZ(ﬂj,i*#]z ZZ[w]zX]z w*lei| ZZU}; le
Jj=11i€A; j=14i€A; j=11i€A;
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Then we apply Corollary[T2]to get

K(T)
SO wk (x54)

j=1 iGAj

<4 dimg <]-‘, - > +1+4 {B(k(T),]—', 5,a) + 4nmax} dimg <]—‘,
k(T)
since k(1) < T'/liin and sg(1) < TPmax/Imin

<adimg (7, 7o) 4144 |5 (52, F,0,0) + 4] dimg (F, 7 ) (14 log s )

) (1 + 10g(5k(T)))

Sk(T)

(29)
where s, = 2?21 |A;|. We then apply Eq. to Lemmato get
C maX 3 < Nmax 5 nrnaxlrnax
Ry < 7-1—7 ) Wr(6) + fWT((S)‘i‘li.,
which holds with probability at least 1 — 24. O
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