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ABSTRACT

In current graph neural networks (GNNs), it is a common practice to apply a
pre-defined message passing heuristics to all graph data, even though the stereo-
typical relational inductive bias (e.g., graph heat diffusion) might not fit the un-
seen graph topology. Such gross simplification might be responsible for the lack
of an in-depth understanding of graph learning principles, which challenges us to
push the boundary from crafting application-specific GNNs to embracing a “meta-
learning” paradigm. In this work, we ratchet the gear of GNN another notch for-
ward by formulating GNN as a mean field game, that is, the best learning outcome
occurs at the Nash-equilibrium when the learned graph inference rationale allows
each graph node to find what the best feature representations is for not only the
individual node but also the entire graph.
We formulate the search for novel GNN mechanism into a variational framework
of mean-field control (MFC) problem, where the optimal relational inductive bias
is essentially a graph mapping of control patterns associated with mean-field in-
formation dynamics. Specifically, we seek for the topology-adaptive control func-
tion of transportation mobility (controlling information exchange throughout the
graph) and reaction mobility (controlling feature representation learning on each
node), on the fly, which allows us to uncover the most suitable learning mechanism
for a GNN instance by solving an MFC variational problem through the lens of
Hamiltonian flows. In this context, our variational framework brings together ex-
isting GNN models into various mean-field games with distinct equilibrium states,
each characterized by the learned control patterns. Furthermore, we present an ag-
nostic end-to-end deep model, coined Nash-GNN (in honor of Nobel laureate Dr.
John Nash), to jointly identify the inductive bias and fine-tune the GNN hyper-
parameters on top of the elucidated learning mechanism. Nash-GNN has achieved
SOTA performance on diverse graph data including popular benchmark datasets
and human connectomes. More importantly, the mathematical insight of MFC
framework provides a new window to understand the foundational principles of
graph learning as an interactive dynamical system, which allows us to reshape the
idea of designing next-generation GNN models.

1 INTRODUCTION

We live in a world of complex systems where individual objects are intricately connected (Zeng
et al., 2017). Since graph is a powerful object to model the object-to-object relationship in the
complex system (Smith & Johnson, 2020), graph neural networks (GNNs) that perform machine
learning on graph data have been successfully deployed in various fields of science and engineering,
including social network analysis (Hamilton et al., 2017a), recommendation systems (Ying et al.,
2018), biochemical engineering (Kearnes et al., 2016), knowledge graph (Schlichtkrull et al., 2018),
traffic flow prediction (Ma et al., 2020), drug repurposing (Goh et al., 2017), etc.

Despite various GNN instances, their machine learning backbones share many common compo-
nents. For example, the learning process typically consists of (1) a feature representation module for
individual graph nodes and (2) a message passing mechanism to disseminate these feature represen-
tations across the graph (Wu et al., 2020). In addition, the inductive biases – In the realm of GNN,
relational inductive bias refers to the inherent assumptions and biases (e.g., permutation invariance
and message passing) in the model design that leverages the structure and properties of graphs to
improve learning and generalization. – are critical in all GNNs which are closely associated with

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

graph topology (Battaglia et al., 2018). That is, the relational inductive biases should preserve ex-
plicit relationships between graph nodes (encoded in an adjacency matrix), regardless of using graph
convolution network (GCN) (Kipf & Welling, 2017) or Transformer backbone (Ma et al., 2023).

Meanwhile, the complexity of real-world graph data presents new challenges. For instance, multi-
ple lines of evidence show even simple multi-layer perceptrons (MLPs) can outperform GNNs on
heterophilic graphs (Zhu et al., 2020; Liu et al., 2021; Mao et al., 2024), where the homophily as-
sumption (i.e., strongly connected nodes are supposed to bear similar feature representations (Kipf
& Welling, 2017)) does not hold anymore. Tremendous efforts have been made to address this chal-
lenge, where representative approaches include extending single channel message aggregation to
adaptive channel mixing (Luan et al., 2022) and directly measuring the degree of graph heterophily
(Zhu et al., 2021). Another well-known challenge in GNNs is the over-smoothing issue, due to ex-
cessive information aggregation between inter-connected nodes. A set of effective solutions have
been proposed in the past several years. For example, graph neural diffusion (GRAND) (Chamber-
lain et al., 2021) alleviates the over-smoothing issue by replacing the layer-by-layer optimization in
the (discrete) GNN model with a continuous diffusion process which is formulated in a partial dif-
ferential equation (PDE). This approach has inspired the development of several new GNN models
(Wang et al., 2022; Rusch et al., 2022; Choi et al., 2023; Thorpe et al., 2022; Brandstetter et al.,
2021; Eliasof et al., 2021), which are essentially derived from discretizations of different PDEs.
Moreover, adjusting the network architecture provides an additional solution for the over-smoothing
issue. For example, ResNet-based machine learning backbones have been integrated into GNNs (Li
et al., 2018; 2019), alongside the adoption of Transformer backbone to efficiently capture global fea-
ture representations without the restriction of step-by-step traversal on the graph (Kim et al., 2022;
Yun et al., 2019).

Figure 1: The motivation of Nash-GNN. GNN instances and graph data
intended for application are visually represented by gears of two differ-
ent colors (green for models and yellow for data). The tooth pattern of
data gears reflects the topological characteristics of graph data, such as
whether it exhibits homophilic or heterophilic behavior. Left: Current
approaches use the same GNN gear to match all data gears, relying on
the “black-box” of gradient descent to fine-tune the underlying green
gear (GNN model) to fit the yellow gears (data). This often leads to
sub-optimal learning outcomes. Right: Our MFC framework formu-
late graph learning as a mean-field game in the variational framework.
By formulating the graph feature representation learning as a dynami-
cal process, we capitalize on the equilibrium state (critical point of the
mean-field control problem) to form a Hamiltonian flow which allows us
to link the “on-the-fly” design of GNN mechanism (shown in the blue
box) and the discrete GNN instance for the real-world graph data. The
showcase of our Nash-GNN approach is the craft of suitable GNN mech-
anism (indicated by red arrows) for unseen graph data #3.

As the mechanic example of
gear-to-gear matching shown in
Fig. 1, the state-of-the-art be-
hind the design of each GNN
model is hand-crafted based on
the domain knowledge of ma-
chine learning and graph sig-
nal processing (Ortega et al.,
2018; Hammond et al., 2011).
More critically, the design of
GNN model is fixed for all
graph data, and completely re-
lies on back-propagation to op-
timize the learning performance
by fine-tuning the model hyper-
parameters. Due to the lack
of a good understanding about
the learning mechanism inside
GNNs at a system level, achiev-
ing state-of-the-art performance
doesn’t necessarily ensure that
the inference principle is well-
suited for the underlying graph
learning problem. A typical ex-
ample is that a particular GNN model either yields superior performance on homophilic graphs
compared to heterophilic ones, or vice versa. In this regard, it is vital to unify the existing work of
GNNs into a novel learning paradigm that crafts explainable GNNs with well-defined principles and
mathematically guaranteed foundations.

To establish the physics-informed framework generalizing GNNs instances, we conceptualize the
learning process in GNNs as a dynamical system of a large number of particles (i.e., graph nodes),
where each particle solves its own feature representation learning problem by taking other particles’
learning results into account. This conceptualization is supported by recent works that frame the
feature representation learning as a dynamic process of graph heat diffusion (Chamberlain et al.,
2021; Dan et al., 2023). By regarding the feature vector on each node as the potential energy, we
further hypothesize that the system dynamics follows the second law of thermodynamics (Onsager,
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1949): energy tends to evolve in the direction where the negative entropy functional dissipates most
rapidly. This dissipative nature is given by Onsager’s reciprocal relations (Onsager, 1949), simply
stating that “Heat does not spontaneously flow from a colder body to a hotter body (Cengel & Boles,
2010)”.

Following this notion, we propose to characterize the collective behaviors of simultaneous message
passing and feature representation learning within GNNs based on the second law of thermody-
namics, where the energy dissipation pattern is determined by a selected (learnable) “free energy
functional”. Inspired by the mean-field theory in physics (Lasry & Lions, 2007), we further con-
ceptualize that the dynamic process of graph feature representation learning forms a gradient flow
controlled by the graph-adaptive “free energy functional”. In this context, the most promising learn-
ing mechanism (aka. relational inductive bias in GNNs) for the specific graph data is characterized
by an optimal transport from the initial feature representations to an Nash-equilibrium state (depend-
ing on the down-stream learning tasks), where each graph node finds the best feature presentation
for itself and the entire graph.
Taken together, we present a variational framework of mean-field control (MFC) problem to achieve
the physics-informed learning paradigm of designing novel GNN mechanisms, where the optimal re-
lational inductive bias is essentially the mean-field control pattern associated with underlying graph
data. Specifically, the MFC control pattern consists of two functions of kinetic dynamics: (1) a func-
tion of transportation mobility for controlling node-to-node information exchange and (2) a function
of reaction mobility for learning the feature representation on each node. These two mobility func-
tions determine the characteristic control pattern that yields relation inductive bias (message passing
and representation learning) within the specific GNN instance, by shaping the kinetic dynamics of
underlying “free energy functional”. Since different graph data forms a unique dynamical system
with distinct transportation and reaction functions, our proposed physics-informed learning frame-
work for GNN, coined as Nash-GNN (name after Nash equilibrium), integrates two hierarchical
machine learning modules at both the mechanism and model instance levels. At the mechanism
level, we seek the most suitable control patterns that shape the gradient flow in the MFC variational
problem. Furthermore, we derive Hamiltonian flows for the governing equation of the underlying
MFC problem. As multiple lines of work have demonstrated that GNN is equivalent to an under-
lying PDE (Zhao et al., 2024; Dan et al., 2023; Chamberlain et al., 2021; Wang et al., 2022), the
Hamiltonian flow becomes a stepping stone, which allows us to link the abstract learning of GNN
mechanism in the variational framework and the fine-tuning hyper-parameters at the GNN model
instance level. The outcome of our work is an end-to-end deep model that jointly identifies the most
suitable relational inductive bias and refines hyper-parameters for the corresponding GNN instance.

The major technical contributions are three-fold. First, we present a physics-informed learning
framework for GNN that crafts the most suitable GNN model while performing machine learning
on graph data. Second, we integrate the theory of mean-field control into graph neural networks
which not only offers an in-depth understanding of GNNs but also provides a general guideline for
developing deep models for unseen graph data. Third, we present a practical end-to-end solution,
based on Hamiltonian flows, to customize the best GNN model for the underlying graph data. In
addition to the comprehensive evaluation on benchmark datasets, we explore the foundational prin-
ciples of graph learning as an interactive dynamical system, which is valuable for the conceptual
framework of developing future GNN models.

2 METHODS

2.1 BACKGROUND AND MOTIVATION

Suppose we have an undirected, weighted graph G = (V,P) with V = {vi|i = 1, ..., N} is a finite
set of N vertices and P ⊂ V × V denotes the set of edges. The adjacency matrix is denoted as
A = [aij ]

N
i,j=1, where [i, j] ∈ P . Suppose xt = {x(v, t)|v ∈ V} ∈ RN×d represent the distribution

of graph feature embeddings associated at time t. The continuity equation describes the evolution of
distribution xt can be formulated as ∂

∂txt = −div(xtγt), where div(·) denotes divergence operator
and γt is the latent velocity field. By constraining the evolution of xt being the gradient flow that
minimizes the energy functional E(xt) =

∫
G G(xt)dv, there exists a unique potential function Φt

such that γt = ∇Φt (Li et al., 2022).
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Remark 1. We remark that if G(x(v, t)) = x(v, t)logx(v, t), then the gradient flow ∂
∂txt =

−div(xt∇Φt) satisfies the heat equation ∂
∂txt = −∆xt, where Φ(v, t) = G′(v, t) = log x(v, t)+1.

Mounting evidence shows that the message-passing mechanism in graph convolutional network can
be formulated as a neural graph diffusion process Chamberlain et al. (2021).

This example indicates that the dynamic process of graph learning can be framed as a variational
problem governed by a predefined gradient flow. Furthermore, it is possible to identify the most
appropriate combination of energy function E(xt) and gradient flow ∂

∂txt using machine learning
technique, which sets the stage for a novel “meta-learning” paradigm. In what follows, we first unify
existing GNN models into the reaction-diffusion model (RDM): ∂x

∂t = ∆F (x) + R(x), where F (·)
and R(·) are diffusion and reaction functions, respectively. By constraining the gradient flow to
follow the characteristics of RDM, we further formulate it into a variational problem of mean-field
control, where we seek to learn and integrate graph-specific control patterns into the gradient flow.
Together, we present a physics-informed approach to jointly perform machine learning using the
suitable relational inductive bias (aka. GNN learning mechanism) and fine-tune the GNN model
instance through the Hamiltonian flows derived from the associated RDM.

2.2 UNIFYING GRAPH NEURAL NETWORKS IN REACTION DIFFUSION MODEL

In this section, we briefly review some representative GNNs and unify them in the umbrella of RDM.
More details are shown in the Appendix A.

GRAND (Chamberlain et al., 2021). Graph neural diffusion (GRAND) draws inspiration from the
heat diffusion equation, offering a unified mathematical framework for vanilla message-passing laws
on graphs by: ∂

∂t
x(t) = div[c∇x(t)] = c∆x(t), (1)

where F (x) = x and R(x) = 0. To simplify the problem formulation here, we assume c is a
homogeneous and time-invariant diffusion function. Thus, the intrinsic diffusion-reaction pattern
can be further simplified as ∂

∂tx(t) = ∆x(t) after dropping c.

GraphBel (Song et al., 2022). Extended from GRAND, the Beltrami diffusion on graph (GraphBel)
proposed to use Beltrami flow to normalize the graph gradient as:

∂

∂t
x(t) =

1

∥∇x∥ div

(
∇x(t)

∥∇x(t)∥

)
, (2)

where ∇x(t)
∥∇x(t)∥ is a discrete analogue of the mean curvature operator. Without changing the diffusion-

reaction property, we keep using ∆ to indicate the normalized graph Laplacian operator here. Thus,
Eq. 2 becomes ∂

∂tx(t) = ∥∇x∥
−1∆x(t), where ∥∇x∥ = ⟨∇x,∇x⟩ 12 is time-invariant magnitude of

graph gradient. Since 1
∥∇x∥ is decoupled with the divergence operator in Eq. 2, it is straightforward

to derive F (x) = x and R(x) = 0 in GraphBel.

ACMP (Wang et al., 2022). Inspired by interacting particle dynamics, Allen-Cahn message-passing
(ACMP) graph neural network models both attractive and repulsive forces between two connected
nodes during message-passing process using a predefined Allen-Cahn double-well potential function
f(x) (Allen & Cahn, 1979). The ACMP-based GNN models can be formulated as:

∂

∂t
x(t) = mx

[
div

(
ε2x∇x(t)

)
− f ′(x)

]
(3)

wheremx is a hyper-parameter for the mobility and εx a constant. Sincemx and εx do not determine
the reaction-diffusion property, the PDE in ACMP can be simplified to ∂

∂tx(t) = ∆x(t)− f ′(x). In
this scenario, F (x) = x and R(x) = −f ′(x).

It is apparent that the characteristics of particular GNN instance are determined by a gradient flow ∂x
∂t

associated with the reaction-diffusion model. As we explain next, gradient flow is a curve following
the direction of steepest descent of a functional which essentially describes the working mechanism
of the dynamical system. However, current GNN models simply apply the same PDE to all graph
data, lacking a system-level understanding of the underlying learning mechanisms behind the PDE.

2.3 A VARIATIONAL MFC FRAMEWORK FOR DESIGNING NOVEL GNN MODELS

Following the spirit of mean-field theory, we frame the dynamic process of learning graph feature
representations as a complex system, where optimal features emerge as the system reaches Nash-
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equilibrium governed by the control patterns learned from the underlying graph data. To achieve
this, we present a variational framework of mean-field control to create the most suitable learning
mechanism for GNN.

2.3.1 PROBLEM FORMULATION.
Suppose Ψ(v) is situated in the continuous domain of a smooth positive density space. First, we
construct a Lyapunov functional E(Ψ(v)) =

∫
G G(Ψ(v))dv, where G : R → R is convex with

G′′(Ψ) > 0. If the gradient flow satisfies the RDM ∂Ψ
∂t = ∆F (Ψ) + R(Ψ), minimizing E(Ψ(v))

forms a dynamical system:
∂

∂t
E(Ψt) = −g(Ψt)−1 ∂

∂Ψ
E(Ψt), g(Ψ) =

(
−div(

F ′(Ψ)

G′′(Ψ)
∇)− R′(Ψ)

G′(Ψ)

)−1

, (4)

where g(Ψ) is the weighted elliptic operator (Proof in Appendix Sec. A.2.). To foreshadow the
motivation for introducing the notion of control pattern in the MFC framework (in Section 2.3.3),
we define the following two functionals to simplify the analytic expression of g(Ψ).

Definition 1. Transportation and reaction mobility functions. Given F , R, and G, we define the
transportation mobility function Θ1(Ψ) = F ′(Ψ)

G′′(Ψ) and reaction mobility function Θ2(Ψ) = − R(Ψ)
G′(Ψ) .

The derivation of g(Ψ) not only links objective functional E(Ψ) and RDM-based gradient flow, but
also allows us to define the mean-field information metrics Ambrosio et al. (2005) as follows.

Definition 2. Mean-field information metric. Denote Φ as a smooth, positive density function.
Given the elliptic operator g (in Eq. 4), the metric between two densities Φ1 and Φ2 is:

σ(Φ1,Φ2) =

∫
G
(∇Φ1,∇Φ2)Θ1dv +

∫
G
(Φ1,Φ2)Θ2dv (5)

Remark 2. In the special case of Θ1 = Ψ and Θ2 = 0 (first term in Eq. 6), the variational MFC
problem is seeking the optimal transport ψ1 to move the mass from Ψ0 to Ψ1 by minimizing L2-
Wasserstein metric. In another special case that Θ1 = 0 and Θ2 = Ψ (second term in Eq. 6),
the variational problem is corresponding to the Fisher-Rao metric, which has been well studied in
information geometry (Amari, 2016). It is clear there are different choices of operator g lead to
different mean-field information metrics.

In the scenario of GNN, the input feature representations are often considered as Ψ0 (initial state
t = 0). The learned feature representations for down-stream task (such as node classification) are
considered as Ψ1 (terminal state t = 1). Given Ψ0 and Ψ1, a natural question is: What is the most
efficient way to transport Ψ0 to Ψ1? The key to answering this optimal transport question is to study
the critical point of the objective functional E(Ψ), which leads to the mean-field control problem.

Definition 3. Mean-field control problem. Consider a variational problem

inf
ψ1,ψ2,Ψ

∫ 1

0

[∫
G

1

2
∥ψ1(v, t)∥2 Θ1(Ψ(v, t)) +

1

2
|ψ2(v, t)|2 Θ2(Ψ(v, t))dv

]
dt, (6)

where the infimum is taken among all density functions Ψ(v), vector fields ψ1, and reaction rate
functions ψ2, such that

∂tΨ(v, t) +∇ · (Θ1(Ψ(v, t))ψ1(v, t)) = ψ2(v, t)Θ2(Ψ(v, t)), (7)

with fixed initial and terminal density functions Ψ0,Ψ1.

2.3.2 GRAPH NEURAL NETWORK IS A MEAN-FIELD GAME.

We set up a mean-field game with N players in a continuum of non-cooperative rational agents
(graph nodes) distributed spatially in the graph G and temporally in [0, 1]. For an agent v starting
at Ψ0(v), the evolution of Ψ(t, v) is completely determined by Eq. 7. To play the game over
a time interval [0, 1], each agent seeks to minimize the objective functional in Eq. 6, where the
transportation and reaction mobility cost is incurred by each agent’s own action. Following the
pioneering work (Lasry & Lions, 2007), mean-field game is equivalent to variational formulation of
MFC problem in Definition 3.

Proposition 1. Hamiltonian flow in mean-field control problem. Assume Ψ(v, t) > 0 for t ∈
[0, 1]. Then there exists a function Φ : [0, 1] × G → R, such that the critical points of variational
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problem Eq. 6 satisfy
ψ1(v, t) = ∇Φ(v, t), ψ2(v, t) = Φ(v, t) (8)

with {
∂tΨ(v, t) +∇ · (Θ1(Ψ(v, t))∇Φ(v, t)) = Θ2(Ψ(v, t))Φ(v, t),
∂tΦ(v, t) +

1
2
∥∇Φ(v, t)∥2Θ′

1(Ψ(v, t)) + 1
2
|Φ(v, t)|2Θ′

2(Ψ(v, t)) = 0,
(9)

and Ψ(v, 0) = Ψ0(v), Ψ(v, t) = Ψ1(v).

Sketch of proof. We introduce Φ as the Lagrange multiplier of variational problem (Eq. 6) con-
strained by the gradient flow in Eq. 7. Then we derive the solution of vector field ψ1, reaction
function ψ2, and Hamiltonian flow in Eq. 9 by following the schema of saddle point problem (Ben-
son et al., 2019). The detailed proof is shown in Appendix Sec. A.3.

Remark 3. If Θ1 = Ψ and Θ2 = 0, the above formulation corresponds to the well-known Benamou-
Brenier formula (Benamou & Brenier, 2000) in optimal transport. If Θ1 and Θ2 are positive func-
tions then the objective functional in Eq. 6 is convex, making the derived gradient flow in Eq. 9 a
minimizer of variational MFC problem (Li et al., 2022).

Remark 4. Suppose Ψ0 is the initial graph representations. Given Θ1 and Θ2, Proposition 1 indi-
cates that, at the mechanism level, the dynamical mechanics of feature representation learning from
Ψ0 to Ψ1 is characterized by a Hamiltonian flow (Eq. 9), while at the model instance level, the
alignment between the learned features Ψ1 (terminal state) and the downstream task can be fine-
tuned using a PDE-based GNN approach (Zhao et al., 2024) which is governed by the Hamiltonian
flow.

2.3.3 DISCOVER MEAN-FIELD CONTROL PATTERNS Θ1 AND Θ2 FROM GRAPH DATA.
The variational framework for MFC problem provides a potential optimal solution for the objective
functional in Eq. 6 by examining the saddle point. Like numerous entities in the universe operate,
we propose that the information exchange mechanism in graph feature presentation learning (aka.
relational inductive bias in GNN) also conforms to a dynamic system, adhering to the physical
principles elucidated in Proposition 1. Particularly, the physical principle is characterized by the
pre-selected transportation functional Θ1 and reaction functional Θ2. In contrast to the special cases
of 2-Wasserstein distance (where Θ1(Ψ) = Ψ, Θ2(Ψ) = 0) and Fish-Rao metric (where Θ1(Ψ) = 0,
Θ2(Ψ) = Ψ), Θ1 and Θ2 are essentially the weighted functions on each location v, acting as the
expected control patterns that allow us to regulate the local message exchange during the evolution
of graph representations Ψt. Naturally, we are motivated to learn the optimal control patterns Θ1

and Θ2, from the underlying graph data to improve the performance of GNN models.
In light of this, we present the following meta-learning paradigm that derives the most suitable
learning mechanism from MFC problem and meanwhile optimizes model parameters using GNN
backbones. By doing so, we expect to (1) enhance graph data learning performance on top of the
existing GNN models and (2) establish an in-depth understanding of how individual node learns
the best feature representations for themselves and the entire graph. Specifically, we introduce
the functional Hamilton-Jacobi equations in positive density space (i.e., graph space) and define a
Hamilton functionalH : G × G → R as follows

H(Ψ,Φ) =

∫
G

(
1

2
∥∇Φ∥2Θ1(Ψ) +

1

2
|Φ|2Θ2(Ψ)

)
dv, (10)

where the density function Ψ serves as the state variable (akin to position), while the potential
function Φ acts as the momentum variable in graph space.

2.4 GNN ABSTRACT LEARNING FRAMEWORK BY MEAN-FIELD CONTROL AND
HAMILTONIAN MECHANICS

MFC framework for GNNs. In Sec. 2.2, we have shown the relationship between GNN model
instance and reaction-diffusion equation. Despite many GNN models being fundamentally linked
to the same PDE, they exhibit varied learning behaviors, yielding distinct learned feature represen-
tations. Within the variational framework of the MFC problem, such diversity can be attributed to
the fact that different GNNs are driven by distinct objective functionals E(Ψ), each governed by
unique physical principles. In Table 1, we summarize the energy variational functional E , mobility
functions Θ1 and Θ2, reaction-diffusion equation, and the corresponding Hamiltonian flows. Details
can be found in Sec. A.4 of the Appendix.
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It is clear that the objective functional E(Ψ) =
∫
G G(Ψ)dv (for crafting GNN mechanism) and the

associated gradient flow in ∂Ψ
∂t = ∆F (Ψ) + R(Ψ) (for optimizing GNN instance) are both related

to transportation mobility function Θ1 and reaction mobility function Θ2. By capitalizing on this
property, Nash-GNN emerges as the first-ever meta-learning graph learning approach. For clarity,
we further summarize how GNN is formulated as mean-field games, as detailed in Appendix A.5.

Network architecture of Nash-GNN. Inspired by (Zhao et al., 2024), we propose an agnostic end-
to-end deep model based on Hamiltonian mechanics, which characterizes information propagation
in graph networks using a Hamiltonian-like structure. The overall network architecture is shown
in Fig. 2. Specifically, we regard the potential energy Ψ and latent function Φ (∇Φ is a flow
vector field) in Eq. 9 as the position and momentum variables, respectively, in the Hamiltonian
system, where the phase space (Ψ,Φ) characterizes the system’s evolution (green arrow). Prior to
(Ψ(0),Φ(0)), we deploy a set of fully-connected layers F to project the observed nodal features x
to the energy function. There are two major inter-connected network components in Nash-GNN:
(1) meta-learning componentM (yellow box) for generating control patterns Θ1 and Θ2 based on
the current estimation of phase space (Ψ,Φ) (indicated by blue arrow); and (2) PDE-based GNN
instance H (gray box) for solving the evolution of Hamiltonian flow, where the terminal state of
Hamiltonian flow is used to plug-in with the down-stream learning task (indicated by black arrow).
The connection betweenM andH is the learned control patterns Θ1 and Θ2, as indicated by orange
arrow in Fig. 2.
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Figure 2: The network architecture of Nash-GNN.

Control pattern learn-
ing component M:
Generating Θ1 and
Θ2 by input con-
vex neural network
(ICNN). Since energy
function H(Ψ,Φ)
is completely deter-
mined by mobility function Θ1 and Θ2 (shown in Eq. 10), we propose to use a neural network
M to establish the implicit mapping between the input (Ψ,Φ) and output (Θ1,Θ2). As a crucial
prerequisite for deriving the Hamiltonian flow outlined in Eq. 9, the objective function needs to be
convex. Therefore, we use input convex neural network (Amos et al., 2017) as the backbone ofM,
which yields the convex function instance in a recursive manner:

z(k+1) = σ(k)
(
W

(k)
1 z(k) +W

(k)
2 (Ψ,Φ) + b(k)

)
, (11)

where z(k) denotes the output of kth layer. Each layer consists of two MLPs which project (1)
the output from the previous layer zk−1 (parameterized by W (k)

1 ) and (2) the current phase-space
(Ψ,Φ) (parameterized by W (k)

2 ) and concatenate the output of two MLPs into z(k+1) by applying a
non-linear activation σ(k) with a bias vector b(k). Thus, the output of meta-learning componentM is
the transportation function and reaction function, which allows to define the mobility measurements
for each graph node based on the phase space (Ψ,Φ).

GNN based on Hamiltonian flow. In physics, systems evolve according to fundamental physi-
cal laws, with a (pre-defined) conserved quantity function H(Ψ,Φ) that remains constant along the
system’s trajectory of evolution. This conserved quantity is commonly interpreted as the “system en-
ergy”. We model the evolution of graph feature representations by following Hamiltonian equation:

∂tΨ =
δ

δΦ
HM(Ψ,Φ), ∂tΦ = − δ

δΨ
HM(Ψ,Φ), (12)

Table 1: Variational functionals E(Ψ) =
∫
G G(Ψ)dv, diffusion function F (·), reaction functionR(·), mobility

functions Θ1(·) and Θ2(·), and Hamiltonian equations.

Model E(Ψ) =
∫
G G(Ψ)dv F (Ψ) R(Ψ) Θ1(Ψ) = F ′

G′′ Θ2(Ψ) = − R
G′ Hamiltonian Equation

GRAND
∫
G(Ψ logΨ− 1)dv Ψ 0 Ψ 0

{
∂tΨ+∇ · (Ψ∇Φ) = 0
∂tΦ+ 1

2∥∇Φ∥
2 = 0

GraphBel
∫
G(

1
2Ψ

2)dv Ψ 0 1 0
{
∂tΨ+∇ · (∇Φ) = 0
∂tΦ = 0

ACMP
∫
G f(Ψ)dv Ψ −f ′(Ψ) f ′′(Ψ)−1 1

{
∂tΨ+∇ ·

(
f ′′(Ψ)−1∇Φ

)
− Φ = 0

∂tΦ− 1
2∥∇Φ∥

2 f ′′′(Ψ)
f ′′(Ψ)2 = 0
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with the initial features (Ψ(0),Φ(0)) at time t = 0 being the vectors of potential energies. Sup-
posing Ψ(v) ∈ Rd and Φ(v) ∈ Rd, we generate a 2d-dimensional vectors that are then split into
two equal halves: the first half serves as the feature (position) vector Ψ, while the second half
represents the momentum vector guiding the system’s evolution. Assuming a terminal time point
t = T , the solution of the system is represented by Ψ(T ) and Φ(T ), obtained through integration
to derive the trajectory (Ψ(t),Φ(t)) described in Eq. 12. After that, we apply the canonical pro-
jection function Π to extract the concatenated feature vector Ψ of the nodes from (Ψ(T ),Φ(T )),
yielding Π(Ψ(T ),Φ(T )) → x(T ), which can then be utilized for downstream tasks such as node
classification. For clarify, we summarize the implemented details in Algorithm 1.

3 EXPERIMENTS

Experiment setup. The evaluation on Nash-GNN not only includes benchmark with respect to
existing state-of-the-art GNN models but also a proof-of-concept exploration to uncover novel in-
sights into graph learning. Specifically, benchmark tests include (1) node classification and (2) graph
classification. For graph node classification, we first apply our method to both heterophilic and ho-
mophilic datasets (sorted by homophily ratio h (Zhu et al., 2020)): Texas (h = 0.11), Wisconsin
(h = 0.21), Actor (h = 0.22), Squirrel (h = 0.22), Chameleon (h = 0.23), Cornell (h = 0.3),
Citeseer (h = 0.74), Pubmed (h = 0.8) and Cora (h = 0.81), where h indicate the fraction of edges
that connect nodes with the same label. We then verify the performance of Nash-GNN on large-scale
dataset from OGB (Open Graph Benchmark) (Hu et al., 2020), i.e., ogbn-arxiv and ogbn-products.
For graph classification, we first conduct an experiment on the benchmark results on TUDataset
(Morris et al., 2020) including MUTAG, NCI1, ENZYMES, D&D, PTC FM, IMDB-B and PRO-
TEINS. To demonstrate the generality and scalability of our proposed model, we then apply the
Nash-GNN to human connectomes for disease diagnosis, we use the processed neuroimaging data
in the published datasets (Xu et al., 2024): ABIDE (Autism), ADNI (Alzheimer) (Weiner et al.,
2010), OASIS (Alzheimer) (LaMontagne et al., 2019), PPMI (Parkinson), where we use regional
BOLD (blood oxygenation level-dependent) time series as the graph embedding and functional con-
nectivity (FC) with ALL atlas (116 regions) (Tzourio-Mazoyer et al., 2002) as the adjacency matrix.
The data description is shown in Sec. B.1.

We compare the performance with various benchmark GNN models, including vanilla GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017b), GraphCON
(Rusch et al., 2022), GraphBel (Song et al., 2022), GRAND (Chamberlain et al., 2021), ACMP
(Wang et al., 2022) HANG (Zhao et al., 2024), GIN (Xu et al., 2018) and AM-GCN (Wang et al.,
2020). For conventional graph data in node classification experiments, we follow a challenging
data-splitting method published in (Zheng et al., 2021) (graph robustness benchmark), with 60%
for training, 10% for validation, and the rest of the nodes for the testing set. We adhere to all
standard OGB evaluation settings. For TUDataset, we report the 10-fold cross-validation (follow
(Ranjan et al., 2020)) results on different models. For human connectome data, we report the 5-fold
cross-validation results.

3.1 BENCHMARK EVALUATIONS: GNN IS A MEAN-FIELD GAME

Performance on graph node classification. Results. Table 2 and Table 8 list the comparison
results for nine classic graph datasets and two large-scale datasets on nine methods. Nash-GNN
achieves SOTA performance on heterophilic and homophilic as well as large-scale graph data over
the existing hand-designed GNN models. Moreover, we perform two ablation studies in terms of
different Hamiltonian energy functions and PDE solvers, the results are shown in Appendix B.3.

Discussion. These results provide strong evidence that our variational framework is able to cus-
tomize the most suitable mobility functions for different graph data, which contributes to enhanced
learning performance compared to other “one-size-fits-fall” approaches. More importantly, this ex-
periment supports our vision that “GNN is a mean-field game”.

Performance on graph classification. In graph classification experiments, we include a
“global max pool” function and a fully connected layer to achieve the graph classification task.
Results on TUDataset. Table 3 presents the benchmark results for six classic methods on the pop-
ular TUDataset. Our Nash-GNN, demonstrates strong performance across various types of graph
data, including molecules, bioinformatics, and social networks, outperforming several existing hand-
designed GNN models.
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Table 2: Top: Test accuracies (%) on nine graph networks for node classification task. Statistical significance
is assessed based on 20 resampling tests conducted using a randomized seed. ‘∗’ means statistically significance
with p ≤ 0.05. Bottom: Diagnosis accuracies (%) on disease-based datasets.

Dataset GCN GAT GraphSAGEGraphCON GraphBel GRAND ACMP HANG Nash-GNN

Texas 61.48±7.68 61.48±5.61 81.85±5.46 84.20±3.01 85.71±2.9685.52±0.5786.00±3.2185.56±1.5494.00
∗
±2.21

Wisconsin 55.00±5.79 49.86±3.47 81.07±3.82 87.93±4.30 86.95±3.5387.35±5.3786.49±4.3084.27±4.7588.22
∗
±4.16

Actor 29.05±1.69 26.34±0.87 32.72±3.62 35.62±1.54 33.58±1.6133.20±1.2533.65±1.9535.12±1.0636.25
∗
±1.38

Squirrel 39.27±1.09 36.05±1.69 39.76±1.88 34.90±1.90 39.08±6.4935.46±1.0136.56±1.5239.32±1.2840.38
∗
±0.60

Chameleon 55.65±3.54 51.57±4.93 55.12±1.84 48.31±2.77 46.79±1.6146.03±1.8946.85±1.9559.85±2.1260.14±0.22

Cornell 50.00±7.25 40.37±4.61 67.78±7.81 82.16±6.17 78.53±1.2880.00±2.3179.73±2.8677.41±4.0183.59
∗
±2.23

Citeseer 66.51±12.7546.13±19.72 63.16±9.34 74.84±0.49 69.62±0.5674.98±1.4575.07±2.1773.75±1.8077.61
∗
±1.38

Pubmed 88.63±1.31 87.36±1.34 88.71±0.34 88.78±0.46 86.97±0.3788.44±0.3487.76±1.2489.93±0.27 90.75±0.27

Cora 86.86±0.63 87.04±0.69 81.38±6.24 86.27±0.51 82.60±0.6487.53±0.5982.91±2.6284.56±1.2187.80±0.47

Table 3: Performace on TUDataset.
Dataset MUTAG NCI1 ENZYMES D&D PTC FM IMDB-B PROTEINS
GCN 0.730±0.022 0.609±0.020 0.247±0.010 0.705±0.010 0.608±0.022 0.740±0.002 0.706±0.008

GAT 0.727±0.021 0.574±0.026 0.265±0.017 0.693±0.012 0.609±0.021 0.727±0.012 0.705±0.005

GraphSAGE 0.732±0.023 0.705±0.003 0.300±0.014 0.715±0.008 0.602±0.019 0.729±0.010 0.704±0.005

GCNII 0.728±0.022 0.691±0.003 0.444±0.022 0.706±0.008 0.616±0.013 0.694±0.007 0.695±0.010

AM-GCN 0.803±0.015 0.665±0.002 0.411±0.022 0.741±0.004 0.620±0.004 0.505±0.017 0.713±0.006

GIN 0.814±0.015 0.750±0.140 0.496±0.045 0.730±0.033 0.590±0.033 0.728±0.009 0.715±0.017

Nash-GNN 0.834∗
±0.019 0.749∗

±0.004 0.546∗
±0.015 0.770∗

±0.009 0.644∗
±0.003 0.751∗

±0.013 0.740∗
±0.005

Table 4: Diagnosis accuracies (%) on disease-based datasets.
Dataset GCN GAT GraphSAGEGraphCON GraphBel GRAND ACMP HANG Nash-GNN

ABIDE 54.85±0.56 54.29±0.26 54.41±0.56 54.51±0.31 54.72±0.5162.79±12.79 54.85±0.64 51.92±0.97 62.78∗±1.26

ADNI 76.62±3.76 72.36±3.41 75.10±3.4 71.24±2.05 91.75±8.64 78.10±16.51 92.68±7.68 91.47±4.1795.82
∗
±1.50

OASIS 85.95±0.05 86.06±0.22 86.01±0.23 86.23±0.27 85.93±0.25 85.54±3.10 85.79±0.23 85.89±0.3589.22
∗
±0.18

PPMI 68.02±11.5764.96±7.33 68.02±11.14 64.54±9.31 71.86±4.05 71.43±1.85 72.45±2.2170.91±2.2474.03±3.11

Discussion. These results provide compelling evidence that our variational framework is well-suited
for various types of graph datasets, resulting in improved learning performance compared to ap-
proaches tailored to specific datasets.

Results on human connectomes. Table 4 summarizes the diagnostic performance across six disease-
based datasets, where we predict the likelihood of developing neurological disease in unseen subjects
using graph data. The experimental findings demonstrate that our method exhibits significant effec-
tiveness in disease diagnosis, suggesting the promising clinical value of deploying our approach in
disease early diagnosis.

Discussion. Atypical neuron growth/loss is the hallmark of many neurological diseases (Dickson,
2010; Lord et al., 2018). Meanwhile, the prion-like mechanism (i.e., misfolded proteins spread like
an infection in the brain) has been frequently reported in many neuroscience studies (Frost & Dia-
mond, 2016; Guo & Lee, 2014), where network topology plays a vital role in determining the kinetic
of pathology propagation (Palop et al., 2006). In addition to the standard attention mechanism in
GNN (Veličković et al., 2018), the MFC framework in Nash-GNN allows us to uncover the dynamic
mechanism of disease progress from a system perspective, as shown below.

3.2 METHOD EXPLORATION: NEW INSIGHT OF GRAPH LEARNING BEYOND ATTENTION

In this section, we put the spotlight on the transport mobility function Θ1 since this mobility function
is intuitively relevant to the message-exchanging mechanism in GNNs. For each graph dataset, one
of the outputs of Nash-GNN is the learned Θ1 at each graph node, where we essentially employ
ICNN backbone (Eq. 11 in the abstract learning moduleM) to generate a convex function based on
the flow information Ψ. Assuming the latent convex function is a polynomial function, we compute
the mean polynomial power α at each graph node by applying uni-variate polynomial fitting for
each element and then averaging the degrees of polynomial power. After that, we conduct several
post-hoc analyses at graph level and node level, respectively. First, we use the averaged polynomial
power (across nodes) to express the graph homophily ratio h, to uncover the new insight into how the
dynamics of information exchange in GNN correlates with the properties of the graph data. Second,
we extend this global analysis to each graph node with the hypothesis that mobility of spreading node
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Figure 3: Left: Correlation between graph homophily ratio h (y-axis) and the learned control pattern Θ1(Ψ) =
Ψα (x-axis). h is a global measurement where a large degree indicates a better alignment between graph
topology and the consistency of labels across connected nodes. We use a polynomial function to fit Θ1 for each
node, where the degree of α is inversely proportional to the freedom of local information exchange. It is clear
that the learned control pattern is highly correlated with the heuristic measurement. Right: Top ten significant
brain regions associated with the pathophysiological mechanism of AD, Autism, and PD.
embeddings (related to neuropathology burdens) underlines the biological mechanism in disease
progression.

Results. As the white curve shown in Fig. 3.2 left, the α ∼ h relationship across nine graph dataset
indicates a notable anti-correlation. It implies that the effective way to perform graph learning is to
promote information exchange on homophilic graphs (such as Cora and Pubmed) while constrain-
ing the diffusion of information between connected nodes with different labels in heterophilic graphs
(such as Texas and Wisconsin). The reason behind is rooted in the MFC objective functional (Eq.
6 that larger degree of Θ1 encourages the optimization process favoring smaller flows Ψ1 which
is aligned with the heuristic of penalizing information exchange in heterophilic graphs. Further-
more, we display the learned Θ1 at node level for Texas, Wisconsin, Chameleon, and Pubmed in
Fig. 3.2 left, where bright yellow and dark red denote for small and large degree of Θ1(Ψ(v)),
respectively.
Discussion. Similarly, we conduct the same post-hoc analysis to investigate the biological underpin-
ning between the learned node-wise transport mobility degree and pathophysiological mechanism
of disease progression. In Fig. 3.2 right, we use large size node to indicate the larger mobility of
the underlying node (associated with smaller degree of Θ1(Ψ(v)). It is interesting to find that the
brain regions with high dynamics for pathology propagation are closely associated with our current
findings on disease etiology. Take Alzheimer’s disease (AD) for example, resting-state fMRI studies
have identified significant alterations in BOLD signal dynamics within the default mode network
(DMN), which may indicate abnormalities in functional connectivity (Varma et al., 2017). Here,
we use machine learning techniques to provide another piece of data-driven evidence to support
this finding as most of the large-size nodes are located in DMN. Additionally, our findings reveal
that (1) increased mobility of pathological factors in the cerebellum correlates with the progression
of Parkinson’s disease, and (2) accelerated neuron overgrowth in the dorsal attention and limbic
networks, as well as the cerebellum, may potentially be the contributing factor to autism. These
promising results underscore the new window to answer neuroscience questions using explainable
machine learning techniques.

4 CONCLUSIONS

In this work, we embarked on a new abstract learning framework for GNN to customize graph neu-
ral networks for various graph-based machine learning tasks. We integrate the theory of mean-field
control into GNNs to enhance our understanding and guide the development of deep models for
new graph datasets. We also provide an end-to-end solution using Hamiltonian flows to jointly learn
suitable inductive bias for GNN model and fit the customized GNN model to the underlying graph
data. Our approach is thoroughly evaluated on standard benchmark datasets, and we explore fun-
damental principles of graph learning as an interactive dynamical system, which not only advances
GNN understanding but also contributes to the broader field of graph-based machine learning.
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A PROOF OF PROPOSITIONS AND DETAILED FORMULATIONS AND
EXPLANATIONS

A.1 THE EXPLANATION OF DEFINITION 1

The motivation of formulating Θ1 = F ′(Ψ)
G′′(Ψ) and Θ2 = − R(Ψ)

G′(Ψ) is to facilitate (1) linking the
diffusion term F (Ψ) and reaction term R(Ψ) in RDM to energy functional E(Ψ) =

∫
G G(Ψ(v))dv

and (2) generalizing existing GNNs into the RDM framework. As described in Sec. 2.2, current
PDE-based GNN models can be regarded as the RDM with empirically defined diffusion functional
instance F (Ψ) and reaction functional instance R(Ψ). In our approach, the behavior of diffusion F
and reaction R is not fixed for all graph data. Instead, we learn the most appropriate diffusion and
reaction functions through the transport functional Θ1 and reaction mobility functional Θ2.

A.2 PROOF OF PROPOSITION 1

To prove Proposition 1, we consider constructing a Lyapunov functional E : G → R to study the
RDM, thus considering E(Ψ) =

∫
G(Ψ(v))dv, where G : R → R is a convex function with

G′′(Ψ) > 0. In such cases, we have

d

dt
E(Ψ(t, ·)) =

∫
G′(Ψ(t, v)) · ∂tΨ(t, v)dv =

∫
G′(Ψ(t, v))(∆F (Ψ(t, v)) +R(Ψ(t, v)))dv

= −
∫

(∇G′(Ψ(t, v)),∇G′(Ψ(t, v)))
F ′(u(t, v))

G′′(Ψ(t, v))
dv +

∫
G′(Ψ(t, v))2

R(Ψ(t, v))

G′(Ψ(t, v))
dv

(13)
where we apply ∇G′(Ψ) = G′′(Ψ)∇Ψ in Eq. 13. Herein, we assume − R

G′ > 0 and F ′(Ψ) > 0 for
Ψ > 0, thus we have d

dtE(Ψ) ≤ 0, indicting that functional E(Ψ) is not increasing along flow. The
decay behavior described above suggests a gradient flow formulation for the dynamics outlined in
RDM. To refine and clarify this concept, we introduce an inverse of the weighted elliptic operator

g(Ψ) :=

(
−∇ ·

(
F ′(Ψ)

G′′(Ψ)
∇
)
− R(Ψ)

G′(Ψ)

)−1

(14)

Thus we have

∂tΨ = −g(Ψ)−1 δ

δΨ
G(Ψ) = −

(
−∇ ·

(
F ′(Ψ)

G′′(Ψ)
∇
)
− R(Ψ)

G′(Ψ)

)
δ

δΨ
G(Ψ)

= ∇ ·
(
F ′(Ψ)

G′′(Ψ)
∇G′(Ψ)

)
+
R(Ψ)

G′(Ψ)
G′(Ψ) = ∆F (Ψ) +R(Ψ)

(15)

where δ
δΨ denotes the L2 first variation w.r.t. Ψ ∈ M(E). Based on the above

notation, the dissipation of Lyapunov functional E along RDM satisfies d
dtE(Ψ) =

−
∫ (

δ
δΨG(Ψ), g(Ψ)−1 δ

δΨG(Ψ)
)
dv ≤ 0.

A.3 PROOF OF PROPOSITION 2

To prove Proposition 2, we first rewrite the variables in variational problem Eq. 6 of the main text
as

q1(t, v) = Θ1(Ψ)ψ1(t, v), q2(t, v) = Θ2(Ψ)ψ2(t, v), (16)

Thus the variational problem Eq. 6 forms

inf
m1,m2,u

{∫ 1

0

∫
G

∥q1(t, v)∥2

2Θ1(Ψ(t, v))
+
|q2(t, v)|2

2Θ2(Ψ(t, v))
dvdt :

∂tΨ(t, v) +∇ · q1(t, v) = q2(t, v), fixed Ψ0,Ψ1} .
(17)

Denote the Lagrange multiplier of Eq. 17 by Φ. We consider the following saddle point problem
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inf
q1,q2,Ψ

sup
Φ
L (q1, q2,Ψ,Φ) , (18)

with

L (q1, q2,Ψ,Φ) =
∫ 1

0

∫
G

{
∥q1(t, v)∥2

2Θ1(Ψ(t, v))
+
|q2(t, v)|2

2Θ2(Ψ(t, v))

+ Φ(t, v) (∂tΨ(t, v) +∇ · q1(t, v)− q2(t, v))} dvdt.
(19)

By finding the saddle point of L, we have


δ

δq1
L = 0,

δ
δq2
L = 0,

δ
δΨL = 0,
δ
δΦL = 0,

⇒


q1
Θ1

= ∇Φ,
q2
Θ2

= Φ,

− 1
2
∥q1∥2

θ2
1

Θ′
1 − 1

2
|q2|2
Θ2

2
Θ′

2 − ∂tΦ = 0,

∂tΨ+∇ · q1 − q2 = 0,

(20)

where δ
δq1
, δ
δq2
, δ
δΨ ,

δ
δΦ are L2 first variations w.r.t functions q1, q2,Ψ,Φ, respectively. After that, by

substituting the above two row equations into the last two row equations of Eq. 20, we derive the
PDE pair Eq. 9 in the main text.

A.4 LYAPUNOV FUNCTINALS, REACTION-DIFFUSION EQUATIONS AND HAMILTONIAN
EQUATIONS

For GRAND case, let G(Ψ) = Ψ logΨ − 1, F (Ψ) = Ψ, R(Ψ) = 0, thus we have based on
Definition 1

Θ1(Ψ) =
F ′(Ψ)

G′′(Ψ)
= Ψ, Θ2(Ψ) = − R(Ψ)

G′(Ψ)
= 0 (21)

According to Eq. 14, the metric forms

g(Ψ) (σ1, σ2) =

∫
G
(∇Φ1(v),∇Φ2(v))Ψ(v)dv. (22)

Consider the relations σi = −∇ · (Ψ∇Φi) for i = 1, 2. In this scenario, the mean-field information
metric aligns with the Wasserstein-2 metric, as discussed in (Ambrosio et al., 2005). The gradi-
ent flow of E(Ψ), denoted as the negative Boltzmann-Shannon entropy, on the graph space (G, g),
corresponds to the heat equation described by Eq. 1 in the main text, i.e.,

∂tΨ = ∇ · (Ψ∇G′(Ψ)) = ∇ · (ΨG′′(Ψ)∇Ψ) = ∆Ψ, (23)

which is equivalent to Eq. 1 in the main text. The dissipation of E(Ψ) forms∫
G ∥∇ logΨ(v)∥2Ψ(v)dv. And the Hamilton-Jacobi equation in (G, g) follows ∂tU(t,Ψ) +

1
2

∫
G

∥∥∥∇ δ
δΨ(v)U(t,Ψ)

∥∥∥2 Ψ(v)dv = 0, where δ
δΨ(v)U(t,Ψ) = Φ(t, v). According to Eq. 10 in

the main text, its “characteristics” in graph space (G, g) satisfy{
∂tΨ+∇ · (Ψ∇Φ) = 0,
∂tΦ+ 1

2∥∇Φ∥
2 = 0.

(24)

For GraphBel case, let G(Ψ) = 1
2Ψ

2, F (Ψ) = Ψ, R(Ψ) = 0, thus we have

Θ1(Ψ) =
F ′(Ψ)

G′′(Ψ)
= 1, Θ2(Ψ) = − R(Ψ)

G′(Ψ)
= 0 (25)

The metric forms
g(Ψ) (σ1, σ2) =

∫
G
(∇Φ1(v),∇Φ2(v)) dv (26)

with σi = −∇ · (∇Φi) , i = 1, 2. The gradient flow of E in (G, g) forms

∂tΨ = ∇ · (∇G′(Ψ)) = ∇ · (G′′(Ψ)∇Ψ) = (∇Ψ)−1∆Ψ, (27)
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which is equivalent to Eq. 2 in the main text. The dissipation of E(Ψ) forms
∫
G ∥∇Ψ))∥2dv. And

the Hamilton-Jacobi equation in (G, g) follows ∂tU(t,Ψ) + 1
2

∫
G

∥∥∥∇ δ
δΨ(v)U(t,Ψ)

∥∥∥2 dv = 0. Its
“characteristics” in graph space (G, g) satisfy{

∂tΨ+∇ · (∇Φ) = 0,
∂tΦ = 0.

(28)

For ACMP case, let f ∈ C2(R) be a given function. Consider F (Ψ) = Ψ, G(Ψ) =
f(Ψ), R(Ψ) = −f ′(Ψ). We have

Θ1(Ψ) =
F ′(Ψ)

G′′(Ψ)
= f ′′(Ψ)−1, Θ2(Ψ) = − R(Ψ)

G′(Ψ)
= 1. (29)

The metric forms

g(Ψ) (σ1, σ2) =

∫
G
(∇Φ1,∇Φ2) f

′′(Ψ)−1dv +

∫
G
Φ1Φ2dv, (30)

with σi = −∇ ·
(
f ′′(Ψ)−1∇Φi

)
+Φi, i = 1, 2. The gradient flow of E in graph space (G, g) satisfy

∂tΨ(t, v) = ∆Ψ(t, v)− f ′(Ψ(t, v)), (31)
which is equivalent to Eq. 3 in the main text. And the dissipation of E(Ψ) satisfies∫
G ∥∇f

′(Ψ)∥2 f ′′(Ψ)−1dv +
∫
G |f

′(Ψ)|2 dv. And the Hamilton-Jacobi equation in (G, g) follows

∂tU(t,Ψ)+ 1
2

∫
G

∥∥∥∇ δ
δΨ(v)U(t,Ψ)

∥∥∥2 f ′′(Ψ(v))−1dv+ 1
2

∫
G

∣∣∣ δ
δΨ(v)U(t,Ψ)

∣∣∣2 dv = 0. Thus, its “char-
acteristics” in graph space (G, g) satisfy{

∂tΨ+∇ ·
(
f ′′(Ψ)−1∇Φ

)
− Φ = 0,

∂tΦ− 1
2∥∇Φ∥

2 f ′′′(Ψ)
f ′′(Ψ)2 = 0.

(32)

A.5 GNN IS A MEAN FILED GAME

In the following, we emphasize the explanation of the principle of how GNN is formulated as a
mean-field game, the evolution of Nash-GNN from GNN is summarized in Fig. 4.

Graph 
neural 

networks

Variational 
analysis

Governing 
equation

Mean-field 
game

Hamiltonian 
Flow

Nash-GNN
Mean-field 

control

Discretization

Critical 
point

Game policy

Figure 4: The evolution of Nash-GNN from GNN.

GNN is a dynamical system. Simply put,
GNN is a black box that converts the initial
feature representations into a latent sub-
space by a set of information exchanges
(constrained by graph topology) and pro-
jection (using a mapping function shared
by all graph nodes). As GNNs often con-
sist of multiple layers, the evolution of fea-
ture representation from the initial state
(input graph embeddings) to the terminal
state (last layer of GNN) can be regarded
as a time-dependent dynamical system,
where the dynamics is determined by a
governing equation (in the form of PDE). In the reminiscent of the Brachistochrone problem 1 (a
classic physics problem that involves finding the curve down which a bead sliding under the influ-
ence of gravity will travel in the least amount of time between two points), the powerful calculus of
variations (COV) allows us to generate various governing equations, providing a necessary condition
that a function must satisfy in order to be an extremum of a given functional.

GNN-PDE-COV interplay. Inspired by recent PDE-based deep models such as Neural ODE and
GRAND, we frame the layer-by-layer feed-forward process x(l+1) = σ(AWx(l)) as a dynami-
cal system, where the time-evolving mechanics is determined by the graph heat equation ∂x(t)

∂t =

1https://en.wikipedia.org/wiki/Brachistochrone curve
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∆x (t). Here, A and ∆ denote the normalized adjacency matrix and Laplacian matrix, W is the
learnable mapping parameters, and σ denotes the nonlinear activation function. Indeed, the evolu-
tion of the heat equation forms the gradient flow of the Dirichlet energy ε(x) = 1

2

∫
|x|2. Thus,

we have established a connection between the GNN model instance in the discrete domain and the
equivalent variation functional in the continuous domain, where the governing equation is acting as
a stepping stone.

Setup of mean-field game for GNN. Following the notion of mean-field game, each graph node is
acting as an agent. The game is to find the best feature presentations for all graph nodes that mini-
mize the loss function in GNN. In a mean field game, each agent (aka. graph node) makes decisions
based on both their individual state and the aggregate effect of the states and actions of all other
agents, often referred to as the “mean field.” The primary goal is to find a Nash equilibrium, which
is a strategic decision-making in very large populations of interacting agents such that no agent can
benefit by changing their strategy while others keep theirs unchanged. Mathematically, mean field
games often involve solving coupled partial differential equations such as Hamilton-Jacobi-Bellman
(HJB) equation which describes the optimal control problem for the evolution of the distribution of
agents’ states over time. In our work, we introduce mean-field game and mean-field control (MFC)
into GNN, as described below.

A MFC framework for designing a novel GNN model. First, we extend the heat equation to a graph-
based reaction-diffusion model, where the system behavior is determined by a mobility functional
(Θ1) and reaction functional (Θ2). Second, we follow the recent work of MFC (Li et al., 2022) to
define the main variational problem, consisting of a metric space (Eq. 6) and gradient flow (Eq.
7). After that, we study the critical point of the variational problem, yielding a Hamiltonian flow in
MFC problem (Proposition 2).

Takeaway. We formulate the dynamic process of graph feature representation as a mean-field game
where the game policy is defined in a mean-field control perspective. In the real application, our
model simultaneously (1) crafts GNN model instance by identifying the most appropriate game pol-
icy (i.e., derive the instance of mobility functional Θ1 and reaction functional Θ2), and (2) optimizes
GNN instance using Hamiltonian flow.

A.6 ALGORITHM IMPLEMENTATION

Algorithm 1: Nash-GNN algorithm
Input: Graph G = (V,P), node features x(t), adjacency matrix A
Output: The mobilities Θ1,Θ2, the evolved node feature representation x(T )
for i = 1 . . . |V| do

Construct phase space by (Ψi,Φi)← F(xi(t));
for t = 1 . . . T do

Learn mobilities Θ1,Θ2 by Θ1,Θ2 ←M((Ψ,Φ));
Construct Hamiltonian functionH(Ψi(t),Φi(t)) by Eq. 10;
Build PDE of the evolution of system state on graph by Eq. 12;
Derive the trajectory (Ψi(t),Φi(t)) by PDE solver;

end
Yield the evolved node feature representation x(T ) by x(T )← Π(Ψ(T ),Φ(T ));

end

B EXPERIMENTAL DETAILS

B.1 DATASETS AND HYPERPARAMETERS

Classic graph data for node classification. We summarize the data information in the following
Table 5.

Classic graph data for graph classification. We summarize the involved TUDdataset in the follow-
ing Table 6.
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Table 5: Data description for node classification.
Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora ogbn-arxiv ogbn-products

Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.3 0.57 0.74 0.81 0.23 0.41
#Nodes |V| 183 251 7,600 5,201 2,277 183 3,327 19,717 2,708 169,343 2,449,029
#Edges |P| 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278 1,116,243 61,859,140

#Classes |Y| 5 5 5 5 5 5 7 3 6 23 27

Table 6: TUDataset description.
MUTAGE NCI1 ENZYMES D&D PTC FM IMDB PROTEINS

#Graphs |V| 188 4,110 600 1,178 349 1,000 1,113
#Classes |P| 2 2 6 2 2 2 2

Avg#Nodes |Y| 17.93 29.87 32.63 284.32 14.11 19.77 39.06
Avg#Edges |Y| 19.79 32.30 62.14 715.66 14.48 96.53 72.82

Disease-based human connectome data. We summarize the data information in the following Table
7. Note, Destrieux atlas (Destrieux et al., 2010) (160 brain regions) are used in OASIS to verify the
scalability of the models.

Table 7: Disease-based human connectome data statistics.
Dataset Condition # of Subjects # of Classes # of Regions/Nodes Avg # of Node Features
ABIDE Autism 1025 2 116 201
ADNI Alzheimer 250 5 116 177
OASIS Alzheimer 1475 2 160 330
PPMI Parkinson 209 4 116 198

For a binary dataset consisting of two classes, one representing a disease group and the other a
normal control group. For ADNI dataset, following the clinical outcomes, we categorized sub-
jects into distinct groups representing different cognitive statuses. These groups include: cognitive
normal (CN), Subjective memory concern (SMC), early-stage mild cognitive impairment (EMCI),
late-stage mild cognitive impairment (LMCI), and Alzheimer’s Disease (AD) groups. To facilitate
population counts, we regard CN, SMC and EMCI as “CN-like” group, while LMCI and AD as
“AD-like” groups. This partitioning allows for the analysis and comparison of individuals across
varying levels of cognitive function, providing valuable insights into disease progression and cog-
nitive decline within the study population. For the PPMI dataset, which encompasses four distinct
classes, including normal control, scans without evidence of dopaminergic deficit (SWEDD), pro-
dromal, and Parkinson’s disease (PD).

Hyperparameters. We use the Adam optimizer with a learning rate of 0.01, and the epoch is set
as 250. Most hidden dimensions are set to 128 (Squirrel and Chameleon are set to 64, Cora and
ABIDE are set to 32). All the experiments are conducted on four NVIDIA RTX 6000 Ada GPUs.
The code is released at Anonymous GitHub: https://anonymous.4open.science/r/
Nash-GNN-4570/.

B.2 COMPARISON METHODS

Graph neural networks (GNNs) have emerged as powerful tools for learning from graph-structured
data, achieving state-of-the-art performance in various domains such as social networks, biological
networks, and recommendation systems. In this work, we compare our method against a diverse set
of benchmark GNN models that represent key advancements in the field:

Vanilla GCN (Kipf & Welling, 2017): The Graph Convolutional Network (GCN) introduced the
foundational concept of convolutional operations on graph-structured data, leveraging spectral graph
theory to propagate node features across the graph. Despite its simplicity, GCN remains a widely
used baseline in GNN research.

GAT (Veličković et al., 2018): The Graph Attention Network (GAT) improved upon GCN by incor-
porating an attention mechanism to adaptively weigh neighbor contributions, enabling the model to
capture more nuanced patterns in heterogeneous and large-scale graphs.
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GraphSAGE (Hamilton et al., 2017b): This inductive framework generates embeddings by sampling
and aggregating features from node neighborhoods, making it particularly effective for large and
dynamic graphs where new nodes can be introduced.

GraphCON (Rusch et al., 2022): GraphCON leverages neural ODEs and skip connections to im-
prove gradient flow during training, enabling it to address the oversmoothing problem in deep GNN
architectures.

GraphBel (Song et al., 2022): This model focuses on enhancing robustness against adversarial at-
tacks by learning more resilient graph representations through belief propagation mechanisms.

GRAND (Chamberlain et al., 2021): GRAND introduces random diffusion processes to improve
message passing, focusing on long-range dependencies and reducing the oversquashing issue com-
monly seen in deep GNNs.

ACMP (Wang et al., 2022): The Adversarial Contrastive Message Passing (ACMP) framework uti-
lizes contrastive learning to enhance node representations, particularly in the presence of noisy or
incomplete graphs.

HANG (Zhao et al., 2024): HANG employs adversarial training to learn robust graph embeddings,
effectively tackling challenges posed by graph perturbations and adversarial noise.

GIN (Xu et al., 2018): The Graph Isomorphism Network (GIN) is designed to be as powerful as
the Weisfeiler-Lehman graph isomorphism test, achieving high expressiveness by using a learnable
aggregation function.

AM-GCN (Wang et al., 2020): This model integrates both node features and graph topology in a
balanced way, enhancing its ability to learn from graphs with highly diverse connectivity patterns.

These models collectively capture a wide range of design principles, from improved aggregation
mechanisms (e.g., GAT, GIN) and inductive capabilities (e.g., GraphSAGE) to adversarial robust-
ness (e.g., HANG, GraphBel) and advanced training techniques (e.g., GraphCON, GRAND). By
benchmarking against these state-of-the-art GNNs, we provide a comprehensive evaluation of our
method’s performance, highlighting its strengths and contributions to the field.

Table 8: The performance on OGB dataset.
GCN GAT GraphSAGE GraphBel ACMP HANG GCNII AM-GCN Nash-GNN

ogbn-arxiv 0.7174 0.7365 0.7149 0.7256 0.7543 0.7484 0.7274 0.7239 0.7697
ogbn-products 0.7564 0.7904 0.7870 0.8049 0.8295 0.8468 0.7824 0.8013 0.8740

B.3 ABLATION STUDY

Table 9: Ablation studies on Hamiltonian energy functionH and PDE solver.
Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

Hamiltonian energy functionH
GCN 0.8715 0.8200 0.3403 0.4019 0.5522 0.7495 0.7075 0.8880 0.8739
GAT 0.9083 0.8466 0.3544 0.3506 0.5913 0.7266 0.7313 0.8895 0.8703
PDE Solver
Euler 0.9266 0.8733 0.3529 0.4013 0.6043 0.8716 0.7663 0.9037 0.8832
RK4 0.8073 0.8700 0.3912 0.4415 0.6565 0.8807 0.76627 0.8896 0.8867
Symplectic-Euler 0.8716 0.8600 0.3586 0.4013 0.6130 0.8165 0.7155 0.8769 0.8686
dopri5 0.9541 0.8767 0.3917 0.3795 0.6522 0.8624 0.7394 0.8911 0.8467

Energy function: In physical systems, the system is often depicted as a graph where two neighboring
vertices with mass are connected by a spring of given stiffness and length (Curtin & Scher, 1990). In
this context, the system’s energy is thus related to the graph’s topology thus we design two examples
of energy function H that involve interactions between neighboring nodes, one is vanilla GCN, and
the other one is GAT.

We can observe that such simplification will degrade the performance compared with our Nash-
GNN, whereas outperforms other competing methods in most scenarios (as shown in Tables 2, 8,
3, 4). In contrast, our Nash-GNN is not to directly learn the energy function, but to indirectly learn
the Hamilton function by fitting the potential function (mobility) Θ through Eq. 10. By doing
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so, the defined Θ has strict mathematical derivation. We use an Input Convex Neural Network
(ICNN) to learn Θ because it guarantees that the objective function is convex, ensuring robustness
and mathematical rigor in the model.

PDE solver: We list the performance of various PDE solvers in Table 9. The solvers considered
include the fixed-step Euler and RK4 methods, the adaptive-step Dopri 5 method from (Chen et al.,
2018), and the Symplectic-Euler method from (Rusch et al., 2022). The Symplectic-Euler method,
being inherently energy-conserving, is particularly well-suited for preserving the dynamic properties
of Hamiltonian systems over long periods. Our observations suggest that the choice of solver influ-
ences the performance of models. However, optimizing solver selection was not a major focus of
our work, and no specific optimizations were performed during our experiments. For computational
efficiency, we opted for the Euler PDE solver in all experiments presented in the main paper.

C DISCUSSION, LIMITATIONS AND SOCIAL IMPACT

Discussion. In our experiments, we observed that the number of MLP layers in the ICNN module
will impact performance. Specifically, smaller values of h may require more MLP layers to ade-
quately capture and model the underlying data. One plausible explanation for this phenomenon is
that heterophilic graph data exhibits a more complex relationship between edges compared to ho-
mophilic graph data. This complexity necessitates deeper neural network architectures to effectively
learn and represent the nuanced relationships present in the data.

Limitations. Our model has a relatively high computational cost. We list the average inference time
for different models used in our study in Table 10. This analysis is performed using the Cora dataset
(2708 nodes), with all graph PDE models employing the Euler Solver, an integration time of 3,
and a step size of 1. All the experiments are conducted on NVIDIA RTX 6000Ada GPUs. Upon
examination, it is observed that our Nash-GNN necessitates more inference time compared to other
baseline models. But it has the same inference time as methods of the same type, such as GraphBel,
ACMP and HANG.

Model GCN GAT GraphSAGE GraphCON GraphBel GRAND ACMP HANG GCNII Nash-GNN

Time(ms) 2.5570 4.5409 1.0505 2.2354 24.5252 10.228 27.1618 33.4651 3.0198 33.2494

Table 10: Model inference time (ms) comparison across various architectures.

Societal impact. Our major contribution to the machine learning field is we introduce a princi-
pled approach to optimize GNNs for suitting diverse graph datasets. Through the integration of
mean-field control theory and Hamiltonian flows into GNN abstract learning, we developed a novel
methodology that enhances our understanding of deep learning models applied to graph datasets.
From the application perspective, our deep model represents a promising approach to bridge the
gap between graph-based machine learning and neuroscience research, offering new avenues for
studying disease processes.
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