
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CLOSED-FORM MERGING OF PARAMETER-EFFICIENT
MODULES FOR FEDERATED CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging has emerged as a crucial technique in Deep Learning, enabling
the integration of multiple models into a unified system while preserving perfor-
mance and scalability. In this respect, the compositional properties of low-rank
adaptation techniques (e.g., LoRA) have proven beneficial, as simple averaging
LoRA modules yields a single model that mostly integrates the capabilities of all
individual modules. Building on LoRA, we take a step further by imposing that
the merged model matches the responses of all learned modules. Solving this ob-
jective in closed form yields an indeterminate system with A and B as unknown
variables, indicating the existence of infinitely many closed-form solutions. To ad-
dress this challenge, we introduce LoRM, an alternating optimization strategy that
trains one LoRA matrix at a time. This allows solving for each unknown variable
individually, thus finding a unique solution. We apply our proposed methodology
to Federated Class-Incremental Learning (FCIL), ensuring alignment of model
responses both between clients and across tasks. Our method demonstrates state-
of-the-art performance across a range of FCIL scenarios.

1 INTRODUCTION

Humans naturally excel at learning a diverse array of skills independently, effortlessly acquiring
knowledge across multiple domains throughout their lives. In contrast, the traditional paradigm for
artificial neural networks relies on training a unified model on a single, large dataset. While this ap-
proach facilitates the simultaneous incorporation of different skills, it lacks the capacity for special-
ized or incremental learning, making it less adaptable and responsive to changes in the environment.
To overcome this limitation and mimic human flexibility, various paradigms have been developed to
enhance neural networks’ ability to manage diverse skills effectively. Multi-Task Learning (Caru-
ana, 1997) involves training a model on several tasks simultaneously, promoting the sharing of
representations across tasks, while Continual Learning (CL) (McCloskey & Cohen, 1989) focuses
on enabling models to learn tasks incrementally without forgetting prior knowledge. Federated
Learning (FL) (McMahan et al., 2017), on the other hand, focuses on decentralized training by dis-
tributing data and computation across separate clients, each specializing in their local task. While
each of these scenarios has its own unique characteristics, they all share the common objective of
integrating task-specific modules into a unified framework.

Recently, large pre-trained architectures have facilitated model editing (Ortiz-Jimenez et al., 2024)
and specialization (Bowman et al., 2023), particularly for fine-tuning downstream tasks. In prac-
tice, deep models often leave their parameters fixed, leveraging Parameter-Efficient Fine-Tuning
(PEFT) techniques to adapt to new tasks effectively. Among PEFT methods, Low-Rank Adaptation
(LoRA) (Hu et al., 2022) has emerged as a prominent approach. LoRA introduces residual weights
in the form of ∆W = BA, where B and A are low-rank matrices. These residuals, commonly
referred to as task vectors (Ilharco et al., 2023), form the foundation of the novel model merg-
ing literature, which has introduced various approaches for their integration. For example, Zhang
et al. (2023c) explore the combination of task vectors through linear arithmetic operations, while
other works focus on identifying optimal coefficients for weighting these modules during aggrega-
tion (Yadav et al., 2024; Yang et al., 2024; Wu et al., 2024). In contrast to these methods, we propose
a novel solution that merges LoRA modules in a closed-form.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To evaluate the feasibility of our approach, we base our investigation on a well-defined empiri-
cal framework, situating our work at the intersection of Federated Learning and Continual Learn-
ing. These two paradigms are ideal for assessing the merging of task vectors, as they encompass
both spatial (across clients) and temporal (over tasks) aggregation. Specifically, in Federated Class-
Incremental Learning (FCIL) (Yoon et al., 2021), tasks are introduced incrementally, and data is
distributed across multiple clients in a decentralized manner.

We introduce a novel approach, termed Low-rank Regression Mean (LoRM), tailored to the FCIL
setting. Our method builds upon RegMean (Jin et al., 2023), a model merging technique derived
from an exactly solvable regression problem. Starting from RegMean’s formulation, we develop a
strategy to merge LoRA modules in closed form. Our derivations result in two key equations — one
for merging matrix A and another one for matrix B. During training, we propose an alternating
optimization procedure, where one matrix is learned while the other remains fixed across models.
In the Federated Class-Incremental Learning setting, spatial aggregation across clients is performed
using this alternating procedure. Conversely, for temporal aggregation, task-specific modules are
merged by applying the RegMean formulation directly to the full residual weights ∆W of all tasks.

In summary, the key contributions of this work are as follows:

• We explore the feasibility of merging LoRA modules using a closed-form solution.
• We introduce LoRM, a novel approach for Federated Class-Incremental Learning that

leverages insights from our exploration.
• We demonstrate the effectiveness of our method across diverse datasets and varying degrees

of data distribution, achieving state-of-the-art results.

2 BACKGROUND AND MOTIVATION

In this section, we present the theoretical foundations behind LoRM, alongside its motivation and
the problem setting in which we situate our empirical evaluation.

2.1 PRELIMINARIES

LoRA (Hu et al., 2022) was introduced to reduce the number of trainable parameters when fine-
tuning pre-trained models. Formally, let W0 ∈ Rd×k represent the matrix of pre-trained weights of
a linear layer, and let x ∈ Rk×1 be the input vector for that layer. The output h is given by:

h = W0x+∆Wx = W0x+BAx, (1)

where ∆W = BA is the residual weight introduced by LoRA, with matrices A and B as the only
components being trained. The efficiency of this approach stems from the low rank r of the matrices,
where B ∈ Rd×r and A ∈ Rr×k, with d and k representing the number of output and input features
of the layer, respectively. Consequently, the number of trainable parameters is r·(d+k), which, since
r ≪ d, constitutes only a fraction of the d · k parameters required for full fine-tuning. Additionally,
B is initialized to 0: i.e., the first forward pass is equivalent to the absence of a LoRA residual.

RegMean (Jin et al., 2023) introduces a method for merging a collection of N linear layers {Wi}Ni=1,
each corresponding to N distinct models trained on distinct inputs {Xi}Ni=1. The goal is to identify
a single linear layer that produces responses that closely match those of the starting layers. Specifi-
cally, the objective function is defined as follows1:

minimize Ω =

N∑
i=1

∥WMXi −WiXi∥22. (2)

By computing the gradient of Ω with respect to WM and setting it equal to zero, a closed-form
solution is obtained. Notably, the merged layer WM is computed as follows:

WM =

(
N∑
i=1

WiXiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

. (3)

1We rework the original formulation to ease subsequent derivations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this context, Xi ∈ Rk×samples represents the input to the i-th layer being merged. Hence, the
Gram matrix XiX

⊤
i has dimensions k × k features.

While RegMean finds a weight matrix that approximates the outputs of all layers considered, it does
not take into account starting from pre-trained weights or the use of low-rank modules (e.g., LoRA).
Given these considerations, we ask whether this method can be suitably adapted to merge LoRA
modules. In other words:

Can we devise a strategy to merge LoRA modules in a closed form?

To further explore this question from an experimental standpoint, we place our investigation in the
context of a Federated Class-Incremental Learning scenario.

2.2 PROBLEM SETTING

In Federated Class-Incremental Learning, the dataset D is first divided into T tasks, each consisting
of a distinct set of classes. Then, each partition Dt corresponding to the t-th task is further dis-
tributed among N clients, resulting in Dt

i for the i-th client. Similar to standard Class-Incremental
Learning (Van de Ven et al., 2022), the task-specific partitions {Dt}t=1,...,T arrive sequentially.

In this federated scenario, the training for each task is conducted over multiple communication
rounds. During each round, clients are restricted to learning only from their local dataset Dt

i . The
local optimization objective for client i, based on the loss function L, can be formally expressed as:

minimize
θi

E(x,y)∼Dt
i
[L(f(x; θi), y)] , (4)

where x and y denote the inputs and corresponding labels, respectively, with θi representing the set
of parameters for client i, and f(·; θi) denoting the associated model.

After completing local updates, each client sends its model parameters θi to the central server, where
they are aggregated with those from other clients. The server then sends the global aggregated model
back to the clients, marking the end of a communication round. This process repeats for several
rounds until the training for task t is completed. Once all rounds for task t have finished, the system
progresses to the next task t+ 1 using the corresponding dataset Dt+1. The ultimate objective is to
obtain a global model, derived from the aggregation of local models performed by the server, that
functions well across all incremental tasks and successfully integrates the distributed knowledge.

3 METHODOLOGY

3.1 A CLOSED-FORM SOLUTION FOR LORA MERGING

Using the same notation as in Equation 2, let W denote the weight matrix of a given layer. Since
LoRA (see Equation 2) is applied to each linear layer across all clients, we express the weight matrix
for the i-th client as Wi = W0 + BiAi, where W0 is the shared pre-trained weight matrix, and
Bi, Ai represent the low-rank matrices specific to the client. This formulation is consistent across
clients, as they all utilize the same model architecture. At the end of each communication round,
after conducting local training on the LoRA matrices, the goal is to merge the corresponding matri-
ces (i.e., A’s with A’s and B’s with B’s) using the closed-form solution derived from RegMean.
Starting from Equation 2, our objective becomes:

Ω =

N∑
i=1

∥(W0 +BMAM)Xi − (W0 +BiAi)Xi∥22. (5)

To find the optimal AM and BM that minimize Ω, we differentiate Ω with respect to each variable,
one at a time, and set the gradients to zero:

∂Ω

∂B
= 0

∂Ω

∂A
= 0

(6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Δ𝑊
Share AM

Share BM

B 1

B 2

B N

A

A

A

B

B

B

A 1

A 2

A N
B AM

X1X1

⊤

X2X2

XNXN

X1X1

X2X2

⊤

⊤

⊤

⊤

BM A B
1 A

1
MM

B
2 A

2
MM

B
T A

T
MM

Round j

Round j+1

XNXN

⊤

Training Frozen MergedDiagonal

Figure 1: Training and aggregation procedure of LoRM. For a generic layer, at the end of the
communication round j or j + 1, we obtain the global BM or AM matrix, respectively, starting
from i) the distributed A’s or B’s, and ii) the gram matrices (XX⊤’s). BM or AM will serve as
the fixed matrix in the next round. Finally, we apply RegMean incrementally to compute ∆W .

However, the system reveals indeterminate, as the two equations exhibit linear dependence on one
another during the calculations. For further mathematical derivations illustrating the infeasibility of
this approach, refer to appendix A.1.

As a solution, we propose freezing one of the two matrices. This means that either A or B is shared
across clients (i.e., treated as a constant), and a single closed-form equation determines how to merge
the trainable matrices across clients. If we choose to share A, the merged BM is obtained as:

BM =

(
N∑
i=1

BiAXiX
⊤
i

)
A⊤

(
A

N∑
i=1

XiX
⊤
i A⊤

)−1

. (7)

Note that A does not have a subscript i, as it is identical for all clients. Instead, if we opt to share
B, the merged AM is computed as:

AM =

(
N∑
i=1

AiXiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

. (8)

For the formal derivation of these equations, refer to appendices A.1.1 and A.1.2.

3.2 LORM

Having established closed-form solutions for weight merging, we now outline the full procedure
of LoRM, illustrated in Figure 1. Each client i begins by optimizing its own Bi, which is learned
during local training, and a shared A, initialized and distributed by the server. In this first round, it
is essential to freeze A, as LoRA’s B is initialized to 0. Freezing B = 0 across all clients would
render the training ineffective. At the end of each round, each client i computes the Gram matrix
XiX

⊤
i with a forward pass on all examples2. Then, it sends Bi and XiX

⊤
i to the server, where the

merging operation (as described in Equation 7) is performed. The resulting BM is then sent back to
the clients, who begin the next communication round.

Alternated optimization. Empirically, we observe that consistently training only the matrix B while
keeping A fixed can be limiting (see Section 4.3 for a detailed analysis). Therefore, to fully exploit
LoRA’s representational potential, we introduce an alternating training approach, where the matrix
to be updated changes at each round. Specifically, after the first round, we freeze B, which is already
synchronized across clients due to the previous server aggregation, and train A instead. Then, at the

2Note that this process provides a Gram matrix for every layer in the network. In this discussion, XiX
⊤
i is

related to the single generic linear layer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 – LoRM, for a generic linear layer Round j Round j + 1

1: Input: T tasks; N clients residual modules ∆Wi = BiAi; layer’s pre-trained weights W0.
2: for each task t ∈ {1, . . . , T} do
3: for each communication round do
4: Clients side:
5: for each client i ∈ {1, . . . , N} in parallel do
6: At = At

M or Bt = Bt
M ▷ Fix either matrix

7: for each epoch do
8: for each input x do
9: h = W0x+Bt

iA
tx or h = W0x+BtAt

ix ▷ Forward pass

10: Optimize Bt
i or Optimize At

i

11: end for
12: end for
13: Send to the server diag(Xt

iX
t⊤
i)

14: Send Bt
i to the server or Send At

i to the server
15: end for
16: Server side:
17: Use Equation 7 and distribute Bt

M or Use Equation 8 and distribute At
M

18: end for
19: end for
20: Use Equation 9 to compute the final residual module ▷ RegMean across tasks

end of the second round, all local A’s are aggregated using Equation 8. This strategy also improves
efficiency, as only one of the two matrices needs to be communicated per round, offering a significant
advantage compared to transmitting the whole LoRA module.

Merge task-specific modules. At the conclusion of the generic task t, the merged matrices Bt
M and

At
M are multiplied to obtain the task-specific residual module: ∆W t = Bt

MAt
M . On the server

side, when aggregating modules from all tasks at the end of the training, we apply the standard
RegMean formulation (Equation 3) to merge the aforementioned residuals as:

∆W =

(
T∑

t=1

Bt
MAt

MXtXt⊤

)(
T∑

t=1

XtXt⊤

)−1

. (9)

To accomplish this, the server stores the task-specific weight {∆W 1, . . . ,∆W T } throughout the
training process, along with the global Gram matrices {XtX1⊤, . . . ,XtXT⊤}. Due to the asso-
ciative property of matrix multiplication, the computation of the latter is straightforward, achieved
by summing the client-specific Gram matrices shared by the clients at the end of each task t:
XtXt⊤ =

∑N
i=1 X

t
iX

t⊤
i . It is worth noting that, for what concerns the classification layer, con-

catenating the task-specific classification heads is equivalent to applying RegMean. We provide a
mathematical derivation of this result in appendix A.4.

The overall procedure yields a final weight residual ∆W that promotes both generalization across
tasks and robustness to knowledge distribution. The pseudocode for LoRM, applied to a generic
linear layer, is presented in Algorithm 1.

3.3 LORM CHARACTERISTICS FOR FEDERATED CLASS-INCREMENTAL LEARNING

In Federated Class-Incremental Learning (FCIL), data privacy, efficiency, and the rate of conver-
gence are crucial concerns. LoRM is specifically designed to address these challenges.

Privacy-preserving. In FCIL, inputs Xi for the i-th client’s generic layer cannot be transmitted
to the central server, as doing so, especially for the first layer, would compromise data privacy by
effectively sharing the dataset. In LoRM, instead of transmitting Xi directly, we send the Gram
matrix XiX

⊤
i , which obfuscates the original data. Furthermore, only the diagonal of the Gram

matrix is communicated, ensuring that no local data is exposed.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Efficiency. The use of LoRA inherently improves efficiency compared to full fine-tuning, as it ne-
cessitates the communication of only two low-rank matrices for each layer. Additionally, LoRM’s
alternating optimization procedure permits the transmission of only one matrix per communication
round, further reducing overhead. The use of solely the diagonal of the Gram matrix mitigates com-
munication costs even further, as it avoids the need to transmit the full matrix. As a result, at the
conclusion of each communication round, each client transmits a low-rank matrix and a vector to
the server for each layer.

Rate of convergence. Ultimately, LoRM demonstrates faster convergence compared to other FCIL
baselines, as further discussed in Section 4.2.

4 EXPERIMENTAL STUDY

4.1 EVALUATION SETTINGS

Datasets. The importance of evaluating pre-trained models on datasets that deviate significantly
from their pre-training domain is well-established in the literature (Kolesnikov et al., 2020; Korn-
blith et al., 2019). Accordingly, we divide the evaluation of LoRM into two parts: one focusing
on in-domain datasets and the other on an out-of-domain dataset. For in-domain evaluation, we
use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-R (Hendrycks et al., 2021). For out-of-
domain evaluation, we employ EuroSAT (Helber et al., 2018), a satellite dataset recognized by Oh
et al. (2022) as one of the most challenging for domain adaptation from ImageNet-21k pre-training.
CIFAR-100 and ImageNet-R are partitioned into 10 incremental tasks, with each task consisting of
10 and 20 classes, respectively. EuroSAT is divided into 5 tasks, each containing 2 classes. The
data is distributed across 10 clients using the commonly adopted distribution-based label imbal-
ance setting (Li et al., 2022; Yurochkin et al., 2019), where partitioning is governed by a Dirichlet
distribution parameterized by β. A smaller β value corresponds to a more challenging data distri-
bution. We evaluate all methods across three scenarios for each dataset, using β ∈ 0.5, 0.1, 0.05 for
the in-domain datasets and β ∈ 1, 0.5, 0.2 for the out-of-domain one. For further details on data
preprocessing, including the dataset-specific augmentations used, refer to appendix B.

Evaluated approaches. We compare LoRM against 10 competing methods spanning different
fields. From Continual Learning, we evaluate EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem,
2017), DER++ (Buzzega et al., 2020), L2P (Wang et al., 2022b), and CODA-Prompt (Smith et al.,
2023). Following previous studies (Zhang et al., 2023b; Guo et al., 2024), we adapt these methods to
the federated domain by merging client weights using the FedAvg algorithm (McMahan et al., 2017).
We also include FisherAvg (Matena & Raffel, 2022) and RegMean (Jin et al., 2023), from the model
merging literature, and CCVR (Luo et al., 2021), a method from Federated Learning. These ap-
proaches are adapted for Continual Learning by applying Asymmetric Cross-Entropy (ACE) (Cac-
cia et al., 2022), where the classification heads are optimized separately for each task. Additionally,
we evaluate two algorithms specifically designed for Federated Class-Incremental Learning: TAR-
GET (Zhang et al., 2023b) and PLoRA (Guo et al., 2024), the latter representing the current State
Of The Art. Finally, we include Joint results as an upper bound, achieved by training the backbone
on the entire dataset without any federated or incremental partitioning.

Implementation Details. As the backbone for LoRM and all competing approaches, we employ
a pre-trained ViT-B/16 model (Dosovitskiy et al., 2021). Specifically, the model is initialized with
pre-trained weights from ImageNet-21K (Ridnik et al., 2021) for all evaluated datasets. Each task
is trained over 5 communication rounds, with each round consisting of 5 epochs. For a complete
overview of the method-specific hyperparameters, refer to appendix D.

4.2 RESULTS

In Tables 1 and 2, we present the results of the evaluated approaches in terms of Final Average
Accuracy (FAA). For a formal definition of this metric, please refer to appendix B.4. The reported
results are averaged over 3 runs, with standard deviations provided in appendix C.1.

In the context of in-domain datasets (Table 1), models tend to perform better on CIFAR-100 than on
ImageNet-R, indicating the former as a simpler task, partially due to having fewer classes. Contin-
ual Learning techniques such as LwF and EWC exhibit low to moderate performance in scenarios

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: In-domain SOTA comparison. Results are reported in terms of FAA(%). Best-performing
methods are indicated in bold, while the second bests are underlined.

CIFAR-100 ImageNet-R
Joint 91.59 86.31

Partition β = 0.5 β = 0.1 β = 0.05 β = 0.5 β = 0.1 β = 0.05

EWC (Kirkpatrick et al., 2017) 71.31 71.75 63.48 56.77 55.67 53.90

LwF (Li & Hoiem, 2017) 54.18 55.12 42.44 49.78 45.03 41.60

DER++ (Buzzega et al., 2020) 67.90 61.97 55.79 55.83 50.07 45.52

L2P (Wang et al., 2022b) 76.30 52.82 45.41 57.58 46.82 37.57

CODA-P (Smith et al., 2023) 62.00 22.21 16.12 48.02 29.68 21.52

FisherAvg (Matena & Raffel, 2022) 70.43 70.10 67.87 57.05 54.05 51.55

RegMean (Jin et al., 2023) 71.07 64.56 61.47 61.05 57.32 49.22

CCVR (Luo et al., 2021) 73.56 78.04 79.47 68.68 69.55 71.83

TARGET (Zhang et al., 2023b) 69.36 69.18 64.23 57.32 58.75 55.70

PILoRA (Guo et al., 2024) 75.34 73.27 68.34 53.03 51.40 47.33

LoRM (ours) 83.19 82.05 81.21 75.62 70.83 70.18

with limited data heterogeneity. Surprisingly, employing a rehearsal buffer (DER++) offers min-
imal benefit. Prompt-based CL approaches similarly show rapid performance degradation as the
distribution parameter β decreases, although L2P demonstrates strong performance at β = 0.5,
ranking second overall. Among FL and model merging methods, which generally outperform CL
approaches, CCVR emerges as the top performer, achieving state-of-the-art accuracy in one setting
(ImageNet-R, β = 0.05). Interestingly, CCVR exhibits a reverse trend with respect to increasing
data heterogeneity: as heterogeneity grows, its performance improves. TARGET and PILoRA, de-
spite being designed specifically for FCIL, show lower performance relative to the adapted CCVR,
a result we attribute to CCVR’s server-side calibration procedure using centralized synthetic data.
Finally, due to its closed-form merging technique, LoRM achieves state-of-the-art results across all
settings except for one (i.e., Imagenet-R, β = 0.05).

On the EuroSAT dataset (Table 2), the previous experimental findings are reversed for most methods.
Specifically, DER++ emerges as the second-best performer across all levels of increasing hetero-
geneity, highlighting the value of utilizing a memory buffer when adapting to different distributions.
L2P follows closely, benefiting from its prompt pool, which proves crucial when deviating from the
pre-training weights. Conversely, CCVR’s advantage vanishes in this setting, as merely calibrating
the classifier fails to extract meaningful representations. Target and PILoRA perform on par with
CCVR but fall short of the top performer, LoRM, which surpasses all approaches by a significant
margin3.

Rate of convergence. Figure 2 illustrates the convergence rates of LoRM and the FCIL competitors
on the first task of ImageNet-R with β = 0.05. The steeper slope of the curve for LoRM, compared
to that of Target and PILoRA, showcases the faster convergence of our approach. This behavior
stems from the closed-form solution applied for merging LoRA at each communication round, which
accelerates convergence by leveraging its optimality. In contrast, PILoRA applies simple averaging
of LoRA modules, while Target does not utilize PEFT modules at all. Additionally, the slower
convergence of PILoRA compared to Target can be attributed to its prototype-based classification
procedure, which necessitates a higher number of training rounds to achieve well-refined prototypes.

4.3 ABLATION STUDIES

Alternating vs. Only B. We investigate whether training the B matrix only (i.e., following the same
procedure as LoRM but applying solely Equation 7 to merge B matrices) could lead to improved
performance compared to our alternating optimization approach. We conduct an experiment on
EuroSAT with β = 1.0 (see Figure 3), showing that the alternating strategy outperforms the only

3Less relevant methodologies are omitted from Table 2 and are reported in Table C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Out-of-domain SOTA comparison. Re-
sults are reported in terms of FAA(%).

Joint 93.72

Partition β = 1.0 β = 0.5 β = 0.2

DER++ 66.72 65.20 65.44

L2P 64.31 62.75 64.42

CCVR 47.41 36.07 43.90

TARGET 36.78 37.81 43.69

PILoRA 40.93 34.02 39.64

LoRM 80.44 77.37 75.12

Table 3: LoRM components. Evaluation of the
different components of LoRM. Results are re-
ported in terms of FAA (%).

ImageNet-R EuroSAT
Partition β = 0.5 β = 1.0

FedAvg 57.65 41.04

FedAvg w/ LoRA 57.00 53.14

RegMean 61.05 44.84

LoRM w/o Equation 9 75.08 71.40

LoRM 75.62 77.37

B approach. This result underscores the importance of leveraging the entire LoRA representation
capabilities to achieve superior performance.

LoRM components. To evaluate the contribution of each component to the overall performance of
LoRM, we conduct an ablation study by incrementally introducing each part and comparing it with
baseline methods. These experiments are performed on EuroSAT with β = 1.0 and ImageNet-R
with β = 0.5. The initial baseline for both datasets is FedAvg (McMahan et al., 2017) combined with
ACE (Caccia et al., 2022). Notably, leveraging LoRA leads to a remarkable performance improve-
ment on EuroSAT but does not affect ImageNet-R. Meanwhile, using the closed-form aggregation
of RegMean, enhanced with ACE, establishes an additional baseline. Building upon this, our alter-
nating optimization strategy, when applied without Equation 9 (i.e., simply averaging task-specific
residuals), substantially boosts performance on both datasets, with a more pronounced impact on the
out-of-domain dataset. Finally, applying RegMean to merge task-specific residuals further enhances
robustness in addressing FCIL challenges, resulting in the final form of LoRM.

5 RELATION WITH PRIOR WORKS

PARAMETER-EFFICIENT FINE-TUNING

Adapting deep neural networks to new tasks typically requires full re-training of all parameters,
which is computationally demanding. Parameter-Efficient Fine-Tuning (PEFT) addresses this by
updating only a small subset of the model parameters, leaving the rest of the network unchanged.
One of the earliest methods in this domain is Adapters (Houlsby et al., 2019), which are lightweight
neural modules inserted between the layers of a pre-trained model to facilitate task adaptation. More
recently, a prominent class of PEFT techniques includes Prompt Tuning (Lester et al., 2021) and Pre-
fix Tuning (Li & Liang, 2021), both of which introduce learnable embeddings, or prompts, appended
to the layers’ input tokens. Prompt Tuning prepends these embeddings directly to the initial input
sequence (Wang et al., 2022b;a), whereas Prefix Tuning concatenates them to specific attention lay-
ers (Smith et al., 2023). An alternative approach to prompting is Low-Rank Adaptation (LoRA) (Hu
et al., 2022), which injects residual parameters into the pre-trained weights using low-rank matrices,
significantly reducing the number of learnable parameters. While recent works have explored vari-
ous alternatives to LoRA(Kopiczko et al., 2024; Zhang et al., 2023d; Renduchintala et al., 2024; Liu
et al., 2022), our research is grounded in the original LoRA framework, leveraging its efficiency and
the extensive literature on model merging that goes with it.

MODEL MERGING

Task-specific modules are typically deployed to address individual tasks. However, an alternative
approach involves merging these modules to create a model capable of generalizing across all tasks.
A notable line of research within model merging focuses on combining task vectors (Ilharco et al.,
2023), specifically those generated by LoRA-like methods. Early studies have explored the use
of linear arithmetic operations (e.g., addition and subtraction) to combine these modules (Zhang
et al., 2023c). Expanding on this, subsequent works have focused on optimizing the coefficients
that determine the contribution of each LoRA module during aggregation (Huang et al., 2023; Yang

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 5 10 15 20
Communication rounds

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Convergence rate

LoRM
Target
PILoRA

Figure 2: Convergence rate.

1 2 3 4 5
Tasks

70

75

80

85

90

95

100

FA
A

 (%
)

Alternating vs. Only B

Alternating
Only B

Figure 3: Alternating vs. Only B.

et al., 2024; Yadav et al., 2024; Wu et al., 2024). Alternatively, RegMean (Jin et al., 2023) introduces
a closed-form solution for merging model weights, though its application to LoRA module merging
has not yet been explored. In this work, we present a novel methodology that leverages this closed-
form solution, specifically tailored for the Federated Class-Incremental Learning setting.

FEDERATED CLASS-INCREMENTAL LEARNING

Federated Class-Incremental Learning (FCIL), introduced by Yoon et al. (2021), addresses the
challenges inherent in Continual Learning, such as Catastrophic Forgetting (Robins, 1995), and
Federated Learning, such as Client Drift (Zhao et al., 2018; Karimireddy et al., 2020), within a
unified framework. Although the FCIL literature is still in its early stages, several studies have
adapted popular Continual Learning methods to the federated paradigm, often by employing the
FedAvg (McMahan et al., 2017) technique for aggregating client model weights. A few approaches,
however, are specifically designed for the FCIL setting. For instance, GLFC (Dong et al., 2022)
incorporates local buffers and a regularization technique to mitigate the effects of gradient updates
related to novel classes, with further refinements in a subsequent work by the same authors (Dong
et al., 2023). TARGET (Zhang et al., 2023b) trains a centralized GAN (Goodfellow et al., 2014) to
populate replay buffers with synthetic samples. Fed-CPrompt (Bagwe et al., 2023) combines local
and global prompts to address both Continual Learning and Federated Learning challenges simul-
taneously. Most recently, PILoRA (Guo et al., 2024) proposed a method that integrates LoRA with
prototypes (i.e., average feature vectors), using the latter for classification instead of relying on the
traditional classification layer. In contrast, our proposed methodology leverages LoRA modules and
aggregates them by aligning their output in both Continual and Federated scenarios in a closed-form.

6 CONCLUSIONS

At the outset of our research, we explored the possibility of a closed-form solution for merging
LoRA modules. Motivated by this question, we identified and validated the existence of such a so-
lution, demonstrating its practicality within the framework of Federated Class-Incremental Learning
(FCIL). We introduced LoRM, a method specifically designed for the FCIL scenario, which sets a
new State of the Art in this domain.

Looking forward, we aim to broaden our exploration to encompass a wider array of PEFT modules.
For modules such as VeRA (Kopiczko et al., 2024) and (IA)3 (Liu et al., 2022), we have already
derived closed-form merging equations, which are detailed in appendices A.2 and A.3, respectively.
Furthermore, given the generality of our derivations beyond the FCIL setting, we also intend to
evaluate the robustness of our equations across various model merging scenarios. Ultimately, we
hope this work will serve not only the Federated Learning and Continual Learning communities but
also contribute to the growing body of research on efficient module compositionally.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Gaurav Bagwe, Xiaoyong Yuan, Miao Pan, and Lan Zhang. Fed-cprompt: Contrastive prompt for
rehearsal-free federated continual learning. arXiv preprint arXiv:2307.04869, 2023.

Benjamin Bowman, Alessandro Achille, Luca Zancato, Matthew Trager, Pramuditha Perera, Gio-
vanni Paolini, and Stefano Soatto. a-la-carte prompt tuning (apt): Combining distinct data via
composable prompting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2023.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark expe-
rience for general continual learning: a strong, simple baseline. Advances in Neural Information
Processing Systems, 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. International
Conference on Learning Representations, 2022.

Rich Caruana. Multitask learning. Machine Learning, 1997.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2022.

Jiahua Dong, Hongliu Li, Yang Cong, Gan Sun, Yulun Zhang, and Luc Van Gool. No one left
behind: Real-world federated class-incremental learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems, 2014.

Haiyang Guo, Fei Zhu, Wenzhuo Liu, Xu-Yao Zhang, and Cheng-Lin Liu. Pilora: Prototype guided
incremental lora for federated class-incremental learning. In Proceedings of the European Con-
ference on Computer Vision, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A
novel dataset and deep learning benchmark for land use and land cover classification. In IEEE
International Geoscience and Remote Sensing Symposium, 2018.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In IEEE International Conference on Computer
Vision, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In International
Conference on Learning Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In International Conference on Learning Representations,
2023.

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
for rehearsal-free continual learning. In IEEE International Conference on Computer Vision,
2023.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
2017.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In Proceedings of
the European Conference on Computer Vision, 2020.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. In International Conference on Learning Representations, 2024.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, University of Tront, 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Natural Language Processing, 2021.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In IEEE International Conference on Data Engineering, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
International Joint Conference on Natural Language Processing, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 2022.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. Advances in Neural Information
Processing Systems, 2021.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, 1989.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2017.

Martin Menabue, Emanuele Frascaroli, Matteo Boschini, Enver Sangineto, Lorenzo Bonicelli, An-
gelo Porrello, and Simone Calderara. Semantic residual prompts for continual learning. In Pro-
ceedings of the European Conference on Computer Vision, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jaehoon Oh, Sungnyun Kim, Namgyu Ho, Jin-Hwa Kim, Hwanjun Song, and Se-Young Yun. Un-
derstanding cross-domain few-shot learning based on domain similarity and few-shot difficulty.
Advances in Neural Information Processing Systems, 2022.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 2024.

Angelo Porrello, Lorenzo Bonicelli, Pietro Buzzega, Monica Millunzi, Simone Calderara, and Rita
Cucchiara. A second-order perspective on compositionality and incremental learning. arXiv
preprint arXiv:2405.16350, 2024.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter effi-
ciency of lora with weight tying. In Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics, 2024.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. In Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2021.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 1995.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2023.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 2022.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In Proceedings of the European Conference on Computer Vi-
sion, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022b.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. In International Conference on
Learning Representations, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. In International Conference on
Learning Representations, 2024.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated contin-
ual learning with weighted inter-client transfer. In International Conference on Machine Learn-
ing, 2021.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional Conference on Machine Learning, 2019.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
with classifier alignment for continual learning on a pre-trained model. In IEEE International
Conference on Computer Vision, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lyu. Target: Federated class-continual
learning via exemplar-free distillation. In IEEE International Conference on Computer Vision,
2023b.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with arith-
metic operation. Advances in Neural Information Processing Systems, 2023c.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations, 2023d.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL OVERVIEW

This supplementary document provides detailed mathematical derivations and additional informa-
tion to complement the main text. The contents are organized as follows:

• Section A – Mathematical Derivations: Presents the mathematical foundations and deriva-
tions related to the combination of different Parameter-Efficient Fine-Tuning methods with
RegMean.

– Section A.1 – Combination of LoRA and RegMean: Derives the optimization problem
when integrating Low-Rank Adaptation (LoRA) with RegMean.

* Section A.1.1 – Solving for A by Fixing B: Details the solution for matrix A when
matrix B is held constant.

* Section A.1.2 – Solving for B by Fixing A: Details the solution for matrix B when
matrix A is held constant.

– Section A.2 – Combination of VeRA and RegMean: Extends the derivations to the
Vector-based Random matrix Adaptation (VeRA) method.

– Section A.3 – Combination of (IA)3 and RegMean: Explores how the (IA)3 method
can be combined with RegMean and provides the corresponding derivations.

– Section A.4 – RegMean Applied to Classification Heads: Discusses the application of
RegMean to classification heads in a class-incremental learning setting.

• Section B – Details on Datasets and Metrics: Offers comprehensive details about the
datasets used and the evaluation metric employed.

• Section C – Additional Results: Presents supplementary experimental results and analyses.
– Section C.1 – Standard Deviations: Reports the standard deviations for all evaluated

approaches.
– Section C.2 – Additional Results on EuroSAT: Provides extended results on the Eu-

roSAT dataset.
• Section D – Hyperparameters: Details the hyperparameters used across different experi-

ments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MATHEMATICAL DERIVATIONS

A.1 COMBINATION OF LORA AND REGMEAN

We consider a minimization problem over a single linear layer where Xi represents the input to the
layer. The objective function is defined as:

minimize Ω =

N∑
i=1

∥WXi −WiXi∥22. (10)

Here, W and Wi are the weight matrices for the global model (server) and the local models (clients)
respectively. In the context of a LoRA residual module, we replace W with W0 +BA, where W0

denotes the pre-trained weight matrix and BA represents the learned low-rank difference. The
objective function becomes:

Ω =

N∑
i=1

∥(W0 +BA)Xi − (W0 +BiAi)Xi∥22.

Expanding the previous expression yields:

Ω =

N∑
i=1

∥Wθ0Xi −W0Xi +BAXi −BiAiXi∥22.

Which simplifies the equation to:

Ω =

N∑
i=1

∥BAXi −BiAiXi∥22.

It is important to note that B and A refer to the merged LoRA matrices (BM and AM in the main
paper). For simplicity, we omit the subscript M . To minimize this objective function, we compute
the partial derivatives with respect to the unknown matrices A and B, setting them equal to zero.
This leads to the following system of equations:

∂Ω

∂A
= 0 ⇒

N∑
i=1

2B⊤(BAXi −BiAiXi)X
⊤
i = 0

∂Ω

∂B
= 0 ⇒

N∑
i=1

2(BAXi −BiAiXi)X
⊤
i A⊤ = 0

We can rearrange the equations as:
N∑
i=1

B⊤BAXiX
⊤
i =

N∑
i=1

B⊤BiAiXiX
⊤
i

N∑
i=1

BAXiX
⊤
i A⊤ =

N∑
i=1

BiAiXiX
⊤
i A⊤

Next, we multiply the second equation on the left by B⊤, in order to align it with the structure of
the first equation:

N∑
i=1

B⊤BiAiXiX
⊤
i A⊤ =

N∑
i=1

B⊤BiAiXiX
⊤
i A⊤.

By substituting the left-hand side of the first equation into the second, we obtain:
N∑
i=1

B⊤BiAiXiX
⊤
i A⊤ −

N∑
i=1

B⊤BiAiXiX
⊤
i A⊤ = 0.

This simplifies to 0 = 0, indicating that the system is indeterminate, with infinitely many possible
solutions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.1 SOLVING FOR A BY FIXING B

Assuming the matrix B is fixed, we can solve for A. The objective function Ω becomes:

ΩA =

N∑
i=1

∥BAXi −BAiXi∥22.

To minimize ΩA, we set its derivative with respect to A to zero:

∂ΩA

∂A
= 0 ⇒

N∑
i=1

2B⊤(BAXi −BAiXi)X
⊤
i = 0,

which simplifies to:
N∑
i=1

B⊤B(AXi −AiXi)X
⊤
i = 0.

Since BA is designed to be low-rank, the matrix B has more rows than columns. As a result,
provided that no row or column of B is zero, the inverse

(
B⊤B

)−1
exists. By multiplying both

sides of the equation from the left by
(
B⊤B

)−1
, we obtain:

N∑
i=1

(AXi −AiXi)X
⊤
i = 0, ⇒ A

N∑
i=1

XiX
⊤
i =

N∑
i=1

AiXiX
⊤
i .

Finally, solving for A, we get:

A =

(
N∑
i=1

AiXiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

.

A.1.2 SOLVING FOR B BY FIXING A

When the matrix A is fixed, we can solve for B. The objective function Ω becomes:

ΩB =

N∑
i=1

∥BAXi −BiAXi∥22.

To minimize ΩB , we set its derivative with respect to B equal to zero:

∂ΩB

∂B
= 0 ⇒

N∑
i=1

2(BAXi −BiAXi)X
⊤
i A⊤ = 0.

Expanding the equation, we get:

N∑
i=1

BAXiX
⊤
i A⊤ −

N∑
i=1

BiAXiX
⊤
i A⊤ = 0,

which simplifies to:

B

N∑
i=1

AXiX
⊤
i A⊤ =

N∑
i=1

BiAXiX
⊤
i A⊤.

Finally, solving for B, we obtain:

B =

(
N∑
i=1

BiAXiX
⊤
i

)
A⊤

(
N∑
i=1

AXiX
⊤
i A⊤

)−1

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 COMBINATION OF VERA AND REGMEAN

Following appendix A.1, we consider the same minimization problem as Equation 10. In the context
of a VeRA residual module, we replace W with W0+ΛbBΛdA, where W0 denotes the pre-trained
weight matrix and ΛbBΛdA represents the learned weight difference. More precisely, B and A are
randomly initialized, while Λb and Λd are learned. The objective function becomes:

Ω =

N∑
i=1

∥(W0 + ΛbBΛdA)Xi − (W0 + Λb,iBΛd,iA)Xi∥22.

While every component of LoRA is a full matrix, here we are considering Λb and Λd, which are
diagonal matrices. In order to enforce this constraint into the previous formulation, we can rewrite
them as column vectors λb and λd:

Ω =

N∑
i=1

∥
(
W0 +

((
λb1b

)
⊙B

) ((
λd1d

)
⊙A

))
Xi − (W0 +

((
λb
i1b

)
⊙B

) ((
λd
i 1d

)
⊙A

)
)Xi∥22,

where 1b and 1d are two row vectors of ones with the same columns as B and A, respectively.
Please note that in our notation, indices of column vectors are denoted as superscripts, while those
of row vectors are represented as subscripts. Expanding this objective, we can write:

Ω =

N∑
i=1

∥W0Xi −W0Xi +
((
λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb
i1d

)
⊙B

) ((
λd
i 1d

)
⊙A

)
Xi∥22.

Which simplifies the equation to:

Ω =

N∑
i=1

∥
((
λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb
i1d

)
⊙B

) ((
λd
i 1d

)
⊙A

)
Xi∥22.

If we compute the partial derivatives with respect to the unknown vectors λb and λd and set them
equal to zero, we obtain an indeterminate system, as similarly discussed in appendix A.1. The
detailed derivation is left to the reader. However, it is still possible to solve for either λb or λd when
the other is known.

A.2.1 SOLVING FOR λd WITH FIXED λb

Assuming the vector λb is fixed, we can solve for λd. The objective function Ω becomes:

Ωλd =

N∑
i=1

∥∥((λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb1b

)
⊙B

) ((
λd
i 1d

)
⊙A

)
Xi

∥∥2
2
.

This can be rearranged as:

Ωλd =

N∑
i=1

∥∥((λb1b

)
⊙B

) [((
λd1d

)
⊙A

)
Xi −

((
λd
i 1d

)
⊙A

)
Xi

]∥∥2
2
.

Since
(
λb1b

)
⊙B is a multiplicative constant, it can be factored out and disregarded, leading to the

following simplified objective:

Ωλd =

N∑
i=1

∥∥((λd1d

)
⊙A

)
Xi −

((
λd
i 1d

)
⊙A

)
Xi

∥∥2
2
.

To minimize Ωλd , we take its derivative with respect to λd and set it to zero:

∂Ωλd

∂λd
= 0 ⇒ 2

N∑
i=1

((λd1d)⊙A)XiX
⊤
i ⊙A1⊤

d −
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i ⊙A1⊤

d = 0.

This simplifies to:

((λd1d)⊙A)

N∑
i=1

XiX
⊤
i =

N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We then solve for λd as follows:

((λd1d)⊙A) =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

,

λd1d =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

A
,

λd1d1
⊤
d =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

A
1⊤
d .

Since 1d1
⊤
d = d is a scalar, we can finally find:

λd =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

dA
1⊤
d .

A.2.2 SOLVING FOR λb WITH FIXED λd

When the vector λd is fixed, we solve for λb. The objective function Ω becomes:

Ωλb =

N∑
i=1

∥∥((λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb
i1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi

∥∥2
2
.

To minimize Ωλb , we compute its derivative with respect to λb and set it to zero:

∂Ωλb

∂λb
= 0 ⇒ 2

N∑
i=1

[
((λb1b)⊙B)((λd1d)⊙A)XiX

⊤
i −

−((λb
i1b)⊙B)((λd1d)⊙A)XiX

⊤
i

]
((λd1d)⊙A)

⊤ ⊙B1⊤
b = 0.

This simplifies to:

((λb1b)⊙B)

N∑
i=1

AXiX
⊤
i A⊤ =

N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤,

where we use A to denote ((λd1d)⊙A) for simplicity. Solving for λb, we get:

((λb1b)⊙B) =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

,

λb1b =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

⊙ 1

B
,

λb1b1
⊤
d =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

⊙ 1

B
1⊤
d .

Finally, since 1d1
⊤
d = d is a scalar, we can solve for λb:

λb =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

⊙ 1

dB
1⊤
d ,

where A = ((λd1d)⊙A).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 COMBINATION OF (IA)3 AND REGMEAN

(IA)3 (Liu et al., 2022) adapts the pretrained model by learning multiplicative weight vectors ℓk

that modulate the intermediate activations — where k is the dimension of the considered activation.
Specifically, for each attention layer, these weight vectors are applied to the input keys, values, and
output. Notably, it can be demonstrated that, for a single linear layer, (IA)3 can be expressed as a
residual module (Porrello et al., 2024):

ℓk ⊙ (W0X) =
[
W0 + ((ℓk − 1⊤

k)1h)⊙W0

]
X,

where 1o and 1h represent row vectors of ones, respectively corresponding to the dimensions of the
output and input of the considered layer. For the sake of simplicity, we deviate from the original
formulation, which initializes ℓk as a column vector of ones. Instead, we begin with a column
vector of zeroes at the beginning of training. This adjustment does not affect the outcome, as we
simultaneously modify our formulation as follows:

ℓk ⊙ (W0X) =
[
W0 + (ℓk1h)⊙W0

]
X,

Then, following appendix A.1, we consider the same minimization problem as Equation 10. This
time, we replace W with W0 + (ℓk1h) ⊙ W0, where W0 denotes the pre-trained weight matrix
and (ℓk1h) ⊙W0 represents the learned weight difference and ℓk is zero initialized. The objective
function becomes:

Ω(IA)3 =

N∑
i=1

∥(W0 + (ℓk1h)⊙W0)Xi − (W0 + (ℓki 1h)⊙W0)Xi∥22.

Following appendix A.1, we can rearrange Ω(IA)3 as:

Ω(IA)3 =

N∑
i=1

∥((ℓk1h)⊙W0)Xi − ((ℓki 1h)⊙W0)Xi∥22.

To minimize Ω(IA)3 , we take its derivative with respect to ℓk and set it to zero:

∂Ω(IA)3

∂ℓk
= 0 ⇒ 2

N∑
i=1

[
((ℓk1h)⊙W0)XiX

⊤
i − ((ℓki 1h)⊙W0)XiX

⊤
i

]
⊙W01

⊤
h = 0.

This simplifies to:

((ℓk1h)⊙W0)

N∑
i=1

XiX
⊤
i =

N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i .

Solving for ℓk, we get:

((ℓk1h)⊙W0) =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

.

ℓk1h =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

W0
.

ℓk1h1
⊤
h =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

W0
1⊤
h .

Finally, since 1h1
⊤
h = h is a scalar, we can solve for ℓk:

ℓk =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

hW0
1⊤
h .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 REGMEAN APPLIED TO CLASSIFICATION HEADS

While each client adapts the pretrained model to the specific task using residual parameter-efficient
modules, the classification head must be re-initialized and trained from scratch. Specifically, follow-
ing the approach of Caccia et al. (2022), we initialize a distinct classification head for each task. This
practice has recently emerged as the de facto standard in Class-Incremental Learning, consistently
providing a performance boost across various methodologies.

In the context of Class-Incremental Learning, all task-specific classification heads must eventually
be merged into a unified classifier. To address this, we aim to minimize the RegMean problem, as
defined in Equation 10, across the classifiers of different tasks. Rather than considering a separate
set of parameters for each client, we now introduce a weight matrix for each task:

minimize Ωcls =

T∑
t=1

∥WXt −WtXt∥22.

Notably, in this case, W and Wt differ in dimensionality, as the classification heads
{W1,W2, . . . ,WT } are trained independently. Specifically, while W and each Wt share the same
number of columns (input dimension), they differ in the number of rows (output dimension). The
total number of rows of W corresponds to the sum of the rows of all Wt, which is equivalent to the
total number of classes C; instead, each Wt has c rows. This structure enables us to decompose Ωcls
into T separate minimization problems:

minimize

T∑
t=1

Ωt
cls, where Ωt

cls = ∥W
ct:c(t+1)Xt −WtXt∥22.

Since the tasks are class-disjoint, each {Ω1
cls,Ω

2
cls, . . . ,Ω

T
cls} operates on distinct rows of W . Con-

sequently, the optimal solution for each Ωt
cls is to assign W

ct:c(t+1) = Wt for each t.

B DETAILS ON DATASETS AND METRICS

B.1 CIFAR-100

For the incremental split of CIFAR-100, we follow the standard partitioning into 10 tasks, each
consisting of 10 classes, as commonly employed in numerous Continual Learning studies (Wang
et al., 2022b;a; Smith et al., 2023). For data augmentation on the training set, we apply bicubic
interpolation to resize each image from 32 × 32 to 224 × 224, followed by random horizontal
flipping and normalization. For the test set, each image is first resized to 256 × 256 using bicubic
interpolation, followed by a center crop to 224× 224, and a final normalization step.

B.2 IMAGENET-R

For the incremental split of ImageNet-R, we employ the widely used partitioning into 10 tasks, each
comprising 20 classes, as is common in various Continual Learning studies (Wang et al., 2022a;
Smith et al., 2023; Zhang et al., 2023a). For data augmentation on the training set, we process each
224 × 224 image with a random horizontal flip, followed by normalization. In the test set, we first
resize each image to 256 × 256 using bicubic interpolation, apply a center crop to 224 × 224, and
then perform normalization.

B.3 EUROSAT

For the incremental split of EuroSAT, we follow a partitioning scheme of 5 tasks, each consisting of
2 classes, consistent with prior Continual Learning studies (Jung et al., 2023; Menabue et al., 2024).
For data augmentation in the training set, each 64× 64 image is resized to 224× 224 using bicubic
interpolation. The same interpolation process is applied to the test set.

B.4 FINAL AVERAGE ACCURACY (FAA)

We evaluate the performance of all methods using the Final Average Accuracy (FAA), a widely
adopted metric in the FCIL literature.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

FAA quantifies the mean accuracy across all tasks at the conclusion of the incremental training
process. Formally, let at represent the accuracy on the tth task after completing the incremental
training. The FAA is defined as:

FAA =
1

T

T∑
t=1

at, (11)

where T represents the total number of tasks.

C ADDITIONAL RESULTS

C.1 STANDARD DEVIATIONS

The standard deviations for all evaluated approaches, based on three runs, are reported for the in-
domain datasets in Table A and for the out-of-domain dataset in Table B.

Table A: In-domain standard deviations. Standard deviations for all evaluated approaches.

CIFAR-100 ImageNet-R
Joint ±0.66 ±1.08

Partition β = 0.5 β = 0.1 β = 0.05 β = 0.5 β = 0.1 β = 0.05

EWC (Kirkpatrick et al., 2017) ±0.95 ±0.57 ±0.83 ±0.89 ±1.09 ±0.83

LwF (Li & Hoiem, 2017) ±0.90 ±0.89 ±0.53 ±0.81 ±0.80 ±0.98

DER++ (Buzzega et al., 2020) ±0.61 ±0.75 ±1.41 ±0.47 ±0.58 ±1.38

L2P (Wang et al., 2022b) ±1.24 ±1.37 ±0.82 ±1.10 ±0.66 ±1.15

CODA-P (Smith et al., 2023) ±0.82 ±0.58 ±0.63 ±0.50 ±1.53 ±0.91

FisherAvg (Matena & Raffel, 2022) ±1.28 ±0.67 ±0.58 ±1.09 ±1.15 ±0.03

RegMean (Jin et al., 2023) ±0.28 ±0.36 ±0.78 ±1.41 ±0.67 ±0.56

CCVR (Luo et al., 2021) ±0.86 ±0.49 ±0.55 ±0.39 ±0.66 ±0.72

TARGET (Zhang et al., 2023b) ±0.54 ±0.60 ±0.47 ±0.23 ±1.33 ±0.94

PILoRA (Guo et al., 2024) ±0.86 ±0.48 ±0.80 ±1.57 ±1.14 ±1.56

LoRM (ours) ±0.73 ±0.62 ±0.59 ±1.36 ±0.70 ±1.46

C.2 ADDITIONAL RESULTS ON EUROSAT

In Table C

D HYPERPARAMETERS

All method-specific parameters not explicitly mentioned follow the settings described in their origi-
nal papers.

D.1 ACRONYMS

List of all the acronyms used:

• lr: learning rate,
• lrpr: learning rate for prototypes,
• λKL: Knowledge Distillation Loss multiplier,
• r: rank for low rank matrices,
• np: number of prompts,
• gep: epochs of training and generation for the generator network,
• γ: decay factor for off-diagonal elements of the Gram matrices.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table B: Out of domain standard deviations. Standard deviations for all evaluated approaches.

EuroSAT
Joint ±0.66

Partition β = 1.0 β = 0.5 β = 0.2

EWC ±1.17 ±0.74 ±0.83

LwF ±0.67 ±0.33 ±0.87

DER++ ±0.94 ±0.82 ±0.85

L2P ±1.69 ±1.18 ±1.36

CODA-P ±0.57 ±1.28 ±0.73

FisherAvg ±1.38 ±0.77 ±0.62

RegMean ±0.17 ±0.78 ±0.98

CCVR ±0.92 ±0.87 ±1.56

TARGET ±0.73 ±0.82 ±0.86

PILoRA ±1.01 ±0.87 ±0.45

LoRM (ours) ±1.04 ±0.73 ±0.81

Table C: Additional EuroSAT comparison. Results in terms of FAA(%).

Joint 93.72

Partition β = 1.0 β = 0.5 β = 0.2

EWC 55.88 46.23 44.16

LwF 23.91 21.31 21.64

CODA-P 62.96 59.20 62.23

FisherAvg 48.83 43.19 42.48

RegMean 27.12 30.80 32.31

D.2 CIFAR-100

D.2.1 DISTRIBUTION β = 0.5

Joint: lr: 1e-3;
EWC: lr: 3e-06;
LwF: lr: 3e-06;
DER++: lr: 3e-06; α:34; β:13
L2P: lr: 3e-02;
CODA-P: lr: 1e-03;
FisherAvg: lr: 3e-06;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16;

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.2.2 DISTRIBUTION β = 0.1

Joint: lr: 1e-03;
EWC: lr: 3e-06;
LwF: lr: 3e-06;
DER++: lr: 1e-4; α: 0.3; β: 0.8
L2P: lr: 3e-02;
CODA-P: lr: 1e-03;
FisherAvg: lr: 3e-06;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 3e-04; r: 16;

D.2.3 DISTRIBUTION β = 0.05

Joint: lr: 1e-03;
EWC: lr: 3e-06;
LwF: lr: 1e-05;
DER++: lr: 3e-06; α: 0.3; β: 0.8
L2P: lr: 3e-02;
CODA-P: lr: 1e-03; np: 100
FisherAvg: lr: 3e-06;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 3e-04; r: 32;

D.3 IMAGENET-R

D.3.1 DISTRIBUTION β = 0.5

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 200
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.3.2 DISTRIBUTION β = 0.1

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 200
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 1e-04;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 32

D.3.3 DISTRIBUTION β = 0.05

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 200
FisherAvg: lr: 1e-05;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

D.4 EUROSAT

D.4.1 DISTRIBUTION β = 1.0

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-04; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 10
FisherAvg: lr: 1e-05;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.4.2 DISTRIBUTION β = 0.5

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 3e-06; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 10
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

D.4.3 DISTRIBUTION β = 0.2

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 10
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL:25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

25

	Introduction
	Background and Motivation
	Preliminaries
	Problem Setting

	Methodology
	A closed-form solution for LoRA merging
	LoRM
	LoRM Characteristics for Federated Class-Incremental Learning

	Experimental Study
	Evaluation settings
	Results
	Ablation Studies

	Relation with prior works
	Conclusions
	Mathematical derivations
	Combination of LoRA and RegMean
	Solving for A by Fixing B
	Solving for B by Fixing A

	Combination of VeRA and RegMean
	Solving for ^d with fixed ^b
	Solving for ^b with fixed ^d

	Combination of (IA)3 and RegMean
	RegMean Applied to Classification Heads

	Details on Datasets and Metrics
	CIFAR-100
	ImageNet-R
	EuroSAT
	Final Average Accuracy (FAA)

	Additional Results
	Standard Deviations
	Additional Results on EuroSAT

	Hyperparameters
	Acronyms
	CIFAR-100
	Distribution = 0.5
	Distribution = 0.1
	Distribution = 0.05

	ImageNet-R
	Distribution = 0.5
	Distribution = 0.1
	Distribution = 0.05

	EuroSAT
	Distribution = 1.0
	Distribution = 0.5
	Distribution = 0.2

