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ABSTRACT

Model merging has emerged as a crucial technique in Deep Learning, enabling
the integration of multiple models into a unified system while preserving perfor-
mance and scalability. In this respect, the compositional properties of low-rank
adaptation techniques (e.g., LoRA) have proven beneficial, as simple averaging
LoRA modules yields a single model that mostly integrates the capabilities of all
individual modules. Building on LoRA, we take a step further by imposing that
the merged model matches the responses of all learned modules. Solving this ob-
jective in closed form yields an indeterminate system with A and B as unknown
variables, indicating the existence of infinitely many closed-form solutions. To ad-
dress this challenge, we introduce LoRM, an alternating optimization strategy that
trains one LoRA matrix at a time. This allows solving for each unknown variable
individually, thus finding a unique solution. We apply our proposed methodology
to Federated Class-Incremental Learning (FCIL), ensuring alignment of model
responses both between clients and across tasks. Our method demonstrates state-
of-the-art performance across a range of FCIL scenarios.

1 INTRODUCTION

Humans naturally excel at learning a diverse array of skills independently, effortlessly acquiring
knowledge across multiple domains throughout their lives. In contrast, the traditional paradigm for
artificial neural networks relies on training a unified model on a single, large dataset. While this ap-
proach facilitates the simultaneous incorporation of different skills, it lacks the capacity for special-
ized or incremental learning, making it less adaptable and responsive to changes in the environment.
To overcome this limitation and mimic human flexibility, various paradigms have been developed to
enhance neural networks’ ability to manage diverse skills effectively. Multi-Task Learning (Caru-
ana, 1997) involves training a model on several tasks simultaneously, promoting the sharing of
representations across tasks, while Continual Learning (CL) (McCloskey & Cohen, 1989) focuses
on enabling models to learn tasks incrementally without forgetting prior knowledge. Federated
Learning (FL) (McMahan et al., 2017), on the other hand, focuses on decentralized training by dis-
tributing data and computation across separate clients, each specializing in their local task. While
each of these scenarios has its own unique characteristics, they all share the common objective of
integrating task-specific modules into a unified framework.

Recently, large pre-trained architectures have facilitated model editing (Ortiz-Jimenez et al., 2024)
and specialization (Bowman et al., 2023), particularly for fine-tuning downstream tasks. In prac-
tice, deep models often leave their parameters fixed, leveraging Parameter-Efficient Fine-Tuning
(PEFT) techniques to adapt to new tasks effectively. Among PEFT methods, Low-Rank Adaptation
(LoRA) (Hu et al., 2022) has emerged as a prominent approach. LoRA introduces residual weights
in the form of ∆W = BA, where B and A are low-rank matrices. These residuals, commonly
referred to as task vectors (Ilharco et al., 2023), form the foundation of the novel model merg-
ing literature, which has introduced various approaches for their integration. For example, Zhang
et al. (2023c) explore the combination of task vectors through linear arithmetic operations, while
other works focus on identifying optimal coefficients for weighting these modules during aggrega-
tion (Yadav et al., 2024; Yang et al., 2024; Wu et al., 2024). In contrast to these methods, we propose
a novel solution that merges LoRA modules in a closed-form.
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To evaluate the feasibility of our approach, we base our investigation on a well-defined empiri-
cal framework, situating our work at the intersection of Federated Learning and Continual Learn-
ing. These two paradigms are ideal for assessing the merging of task vectors, as they encompass
both spatial (across clients) and temporal (over tasks) aggregation. Specifically, in Federated Class-
Incremental Learning (FCIL) (Yoon et al., 2021), tasks are introduced incrementally, and data is
distributed across multiple clients in a decentralized manner.

We introduce a novel approach, termed Low-rank Regression Mean (LoRM), tailored to the FCIL
setting. Our method builds upon RegMean (Jin et al., 2023), a model merging technique derived
from an exactly solvable regression problem. Starting from RegMean’s formulation, we develop a
strategy to merge LoRA modules in closed form. Our derivations result in two key equations — one
for merging matrix A and another one for matrix B. During training, we propose an alternating
optimization procedure, where one matrix is learned while the other remains fixed across models.
In the Federated Class-Incremental Learning setting, spatial aggregation across clients is performed
using this alternating procedure. Conversely, for temporal aggregation, task-specific modules are
merged by applying the RegMean formulation directly to the full residual weights ∆W of all tasks.

In summary, the key contributions of this work are as follows:

• We explore the feasibility of merging LoRA modules using a closed-form solution.
• We introduce LoRM, a novel approach for Federated Class-Incremental Learning that

leverages insights from our exploration.
• We demonstrate the effectiveness of our method across diverse datasets and varying degrees

of data distribution, achieving state-of-the-art results.

2 BACKGROUND AND MOTIVATION

In this section, we present the theoretical foundations behind LoRM, alongside its motivation and
the problem setting in which we situate our empirical evaluation.

2.1 PRELIMINARIES

LoRA (Hu et al., 2022) was introduced to reduce the number of trainable parameters when fine-
tuning pre-trained models. Formally, let W0 ∈ Rd×k represent the matrix of pre-trained weights of
a linear layer, and let x ∈ Rk×1 be the input vector for that layer. The output h is given by:

h = W0x+∆Wx = W0x+BAx, (1)

where ∆W = BA is the residual weight introduced by LoRA, with matrices A and B as the only
components being trained. The efficiency of this approach stems from the low rank r of the matrices,
where B ∈ Rd×r and A ∈ Rr×k, with d and k representing the number of output and input features
of the layer, respectively. Consequently, the number of trainable parameters is r·(d+k), which, since
r ≪ d, constitutes only a fraction of the d · k parameters required for full fine-tuning. Additionally,
B is initialized to 0: i.e., the first forward pass is equivalent to the absence of a LoRA residual.

RegMean (Jin et al., 2023) introduces a method for merging a collection of N linear layers {Wi}Ni=1,
each corresponding to N distinct models trained on distinct inputs {Xi}Ni=1. The goal is to identify
a single linear layer that produces responses that closely match those of the starting layers. Specifi-
cally, the objective function is defined as follows1:

minimize Ω =

N∑
i=1

∥WMXi −WiXi∥22. (2)

By computing the gradient of Ω with respect to WM and setting it equal to zero, a closed-form
solution is obtained. Notably, the merged layer WM is computed as follows:

WM =

(
N∑
i=1

WiXiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

. (3)

1We rework the original formulation to ease subsequent derivations.
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In this context, Xi ∈ Rk×samples represents the input to the i-th layer being merged. Hence, the
Gram matrix XiX

⊤
i has dimensions k × k features.

While RegMean finds a weight matrix that approximates the outputs of all layers considered, it does
not take into account starting from pre-trained weights or the use of low-rank modules (e.g., LoRA).
Given these considerations, we ask whether this method can be suitably adapted to merge LoRA
modules. In other words:

Can we devise a strategy to merge LoRA modules in a closed form?

To further explore this question from an experimental standpoint, we place our investigation in the
context of a Federated Class-Incremental Learning scenario.

2.2 PROBLEM SETTING

In Federated Class-Incremental Learning, the dataset D is first divided into T tasks, each consisting
of a distinct set of classes. Then, each partition Dt corresponding to the t-th task is further dis-
tributed among N clients, resulting in Dt

i for the i-th client. Similar to standard Class-Incremental
Learning (Van de Ven et al., 2022), the task-specific partitions {Dt}t=1,...,T arrive sequentially.

In this federated scenario, the training for each task is conducted over multiple communication
rounds. During each round, clients are restricted to learning only from their local dataset Dt

i . The
local optimization objective for client i, based on the loss function L, can be formally expressed as:

minimize
θi

E(x,y)∼Dt
i
[L(f(x; θi), y)] , (4)

where x and y denote the inputs and corresponding labels, respectively, with θi representing the set
of parameters for client i, and f(·; θi) denoting the associated model.

After completing local updates, each client sends its model parameters θi to the central server, where
they are aggregated with those from other clients. The server then sends the global aggregated model
back to the clients, marking the end of a communication round. This process repeats for several
rounds until the training for task t is completed. Once all rounds for task t have finished, the system
progresses to the next task t+ 1 using the corresponding dataset Dt+1. The ultimate objective is to
obtain a global model, derived from the aggregation of local models performed by the server, that
functions well across all incremental tasks and successfully integrates the distributed knowledge.

3 METHODOLOGY

3.1 A CLOSED-FORM SOLUTION FOR LORA MERGING

Using the same notation as in Equation 2, let W denote the weight matrix of a given layer. Since
LoRA (see Equation 2) is applied to each linear layer across all clients, we express the weight matrix
for the i-th client as Wi = W0 + BiAi, where W0 is the shared pre-trained weight matrix, and
Bi, Ai represent the low-rank matrices specific to the client. This formulation is consistent across
clients, as they all utilize the same model architecture. At the end of each communication round,
after conducting local training on the LoRA matrices, the goal is to merge the corresponding matri-
ces (i.e., A’s with A’s and B’s with B’s) using the closed-form solution derived from RegMean.
Starting from Equation 2, our objective becomes:

Ω =

N∑
i=1

∥(W0 +BMAM )Xi − (W0 +BiAi)Xi∥22. (5)

To find the optimal AM and BM that minimize Ω, we differentiate Ω with respect to each variable,
one at a time, and set the gradients to zero:

∂Ω

∂B
= 0

∂Ω

∂A
= 0

(6)
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Figure 1: Training and aggregation procedure of LoRM. For a generic layer, at the end of the
communication round j or j + 1, we obtain the global BM or AM matrix, respectively, starting
from i) the distributed A’s or B’s, and ii) the gram matrices (XX⊤’s). BM or AM will serve as
the fixed matrix in the next round. Finally, we apply RegMean incrementally to compute ∆W .

However, the system reveals indeterminate, as the two equations exhibit linear dependence on one
another during the calculations. For further mathematical derivations illustrating the infeasibility of
this approach, refer to appendix A.1.

As a solution, we propose freezing one of the two matrices. This means that either A or B is shared
across clients (i.e., treated as a constant), and a single closed-form equation determines how to merge
the trainable matrices across clients. If we choose to share A, the merged BM is obtained as:

BM =

(
N∑
i=1

BiAXiX
⊤
i

)
A⊤

(
A

N∑
i=1

XiX
⊤
i A⊤

)−1

. (7)

Note that A does not have a subscript i, as it is identical for all clients. Instead, if we opt to share
B, the merged AM is computed as:

AM =

(
N∑
i=1

AiXiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

. (8)

For the formal derivation of these equations, refer to appendices A.1.1 and A.1.2.

3.2 LORM

Having established closed-form solutions for weight merging, we now outline the full procedure
of LoRM, illustrated in Figure 1. Each client i begins by optimizing its own Bi, which is learned
during local training, and a shared A, initialized and distributed by the server. In this first round, it
is essential to freeze A, as LoRA’s B is initialized to 0. Freezing B = 0 across all clients would
render the training ineffective. At the end of each round, each client i computes the Gram matrix
XiX

⊤
i with a forward pass on all examples2. Then, it sends Bi and XiX

⊤
i to the server, where the

merging operation (as described in Equation 7) is performed. The resulting BM is then sent back to
the clients, who begin the next communication round.

Alternated optimization. Empirically, we observe that consistently training only the matrix B while
keeping A fixed can be limiting (see Section 4.3 for a detailed analysis). Therefore, to fully exploit
LoRA’s representational potential, we introduce an alternating training approach, where the matrix
to be updated changes at each round. Specifically, after the first round, we freeze B, which is already
synchronized across clients due to the previous server aggregation, and train A instead. Then, at the

2Note that this process provides a Gram matrix for every layer in the network. In this discussion, XiX
⊤
i is

related to the single generic linear layer.
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Algorithm 1 – LoRM, for a generic linear layer Round j Round j + 1

1: Input: T tasks; N clients residual modules ∆Wi = BiAi; layer’s pre-trained weights W0.
2: for each task t ∈ {1, . . . , T} do
3: for each communication round do
4: Clients side:
5: for each client i ∈ {1, . . . , N} in parallel do
6: At = At

M or Bt = Bt
M ▷ Fix either matrix

7: for each epoch do
8: for each input x do
9: h = W0x+Bt

iA
tx or h = W0x+BtAt

ix ▷ Forward pass

10: Optimize Bt
i or Optimize At

i

11: end for
12: end for
13: Send to the server diag(Xt

iX
t⊤
i )

14: Send Bt
i to the server or Send At

i to the server
15: end for
16: Server side:
17: Use Equation 7 and distribute Bt

M or Use Equation 8 and distribute At
M

18: end for
19: end for
20: Use Equation 9 to compute the final residual module ▷ RegMean across tasks

end of the second round, all local A’s are aggregated using Equation 8. This strategy also improves
efficiency, as only one of the two matrices needs to be communicated per round, offering a significant
advantage compared to transmitting the whole LoRA module.

Merge task-specific modules. At the conclusion of the generic task t, the merged matrices Bt
M and

At
M are multiplied to obtain the task-specific residual module: ∆W t = Bt

MAt
M . On the server

side, when aggregating modules from all tasks at the end of the training, we apply the standard
RegMean formulation (Equation 3) to merge the aforementioned residuals as:

∆W =

(
T∑

t=1

Bt
MAt

MXtXt⊤

)(
T∑

t=1

XtXt⊤

)−1

. (9)

To accomplish this, the server stores the task-specific weight {∆W 1, . . . ,∆W T } throughout the
training process, along with the global Gram matrices {XtX1⊤, . . . ,XtXT⊤}. Due to the asso-
ciative property of matrix multiplication, the computation of the latter is straightforward, achieved
by summing the client-specific Gram matrices shared by the clients at the end of each task t:
XtXt⊤ =

∑N
i=1 X

t
iX

t⊤
i . It is worth noting that, for what concerns the classification layer, con-

catenating the task-specific classification heads is equivalent to applying RegMean. We provide a
mathematical derivation of this result in appendix A.4.

The overall procedure yields a final weight residual ∆W that promotes both generalization across
tasks and robustness to knowledge distribution. The pseudocode for LoRM, applied to a generic
linear layer, is presented in Algorithm 1.

3.3 LORM CHARACTERISTICS FOR FEDERATED CLASS-INCREMENTAL LEARNING

In Federated Class-Incremental Learning (FCIL), data privacy, efficiency, and the rate of conver-
gence are crucial concerns. LoRM is specifically designed to address these challenges.

Privacy-preserving. In FCIL, inputs Xi for the i-th client’s generic layer cannot be transmitted
to the central server, as doing so, especially for the first layer, would compromise data privacy by
effectively sharing the dataset. In LoRM, instead of transmitting Xi directly, we send the Gram
matrix XiX

⊤
i , which obfuscates the original data. Furthermore, only the diagonal of the Gram

matrix is communicated, ensuring that no local data is exposed.
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Efficiency. The use of LoRA inherently improves efficiency compared to full fine-tuning, as it ne-
cessitates the communication of only two low-rank matrices for each layer. Additionally, LoRM’s
alternating optimization procedure permits the transmission of only one matrix per communication
round, further reducing overhead. The use of solely the diagonal of the Gram matrix mitigates com-
munication costs even further, as it avoids the need to transmit the full matrix. As a result, at the
conclusion of each communication round, each client transmits a low-rank matrix and a vector to
the server for each layer.

Rate of convergence. Ultimately, LoRM demonstrates faster convergence compared to other FCIL
baselines, as further discussed in Section 4.2.

4 EXPERIMENTAL STUDY

4.1 EVALUATION SETTINGS

Datasets. The importance of evaluating pre-trained models on datasets that deviate significantly
from their pre-training domain is well-established in the literature (Kolesnikov et al., 2020; Korn-
blith et al., 2019). Accordingly, we divide the evaluation of LoRM into two parts: one focusing
on in-domain datasets and the other on an out-of-domain dataset. For in-domain evaluation, we
use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-R (Hendrycks et al., 2021). For out-of-
domain evaluation, we employ EuroSAT (Helber et al., 2018), a satellite dataset recognized by Oh
et al. (2022) as one of the most challenging for domain adaptation from ImageNet-21k pre-training.
CIFAR-100 and ImageNet-R are partitioned into 10 incremental tasks, with each task consisting of
10 and 20 classes, respectively. EuroSAT is divided into 5 tasks, each containing 2 classes. The
data is distributed across 10 clients using the commonly adopted distribution-based label imbal-
ance setting (Li et al., 2022; Yurochkin et al., 2019), where partitioning is governed by a Dirichlet
distribution parameterized by β. A smaller β value corresponds to a more challenging data distri-
bution. We evaluate all methods across three scenarios for each dataset, using β ∈ 0.5, 0.1, 0.05 for
the in-domain datasets and β ∈ 1, 0.5, 0.2 for the out-of-domain one. For further details on data
preprocessing, including the dataset-specific augmentations used, refer to appendix B.

Evaluated approaches. We compare LoRM against 10 competing methods spanning different
fields. From Continual Learning, we evaluate EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem,
2017), DER++ (Buzzega et al., 2020), L2P (Wang et al., 2022b), and CODA-Prompt (Smith et al.,
2023). Following previous studies (Zhang et al., 2023b; Guo et al., 2024), we adapt these methods to
the federated domain by merging client weights using the FedAvg algorithm (McMahan et al., 2017).
We also include FisherAvg (Matena & Raffel, 2022) and RegMean (Jin et al., 2023), from the model
merging literature, and CCVR (Luo et al., 2021), a method from Federated Learning. These ap-
proaches are adapted for Continual Learning by applying Asymmetric Cross-Entropy (ACE) (Cac-
cia et al., 2022), where the classification heads are optimized separately for each task. Additionally,
we evaluate two algorithms specifically designed for Federated Class-Incremental Learning: TAR-
GET (Zhang et al., 2023b) and PLoRA (Guo et al., 2024), the latter representing the current State
Of The Art. Finally, we include Joint results as an upper bound, achieved by training the backbone
on the entire dataset without any federated or incremental partitioning.

Implementation Details. As the backbone for LoRM and all competing approaches, we employ
a pre-trained ViT-B/16 model (Dosovitskiy et al., 2021). Specifically, the model is initialized with
pre-trained weights from ImageNet-21K (Ridnik et al., 2021) for all evaluated datasets. Each task
is trained over 5 communication rounds, with each round consisting of 5 epochs. For a complete
overview of the method-specific hyperparameters, refer to appendix D.

4.2 RESULTS

In Tables 1 and 2, we present the results of the evaluated approaches in terms of Final Average
Accuracy (FAA). For a formal definition of this metric, please refer to appendix B.4. The reported
results are averaged over 3 runs, with standard deviations provided in appendix C.1.

In the context of in-domain datasets (Table 1), models tend to perform better on CIFAR-100 than on
ImageNet-R, indicating the former as a simpler task, partially due to having fewer classes. Contin-
ual Learning techniques such as LwF and EWC exhibit low to moderate performance in scenarios

6
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Table 1: In-domain SOTA comparison. Results are reported in terms of FAA(%). Best-performing
methods are indicated in bold, while the second bests are underlined.

CIFAR-100 ImageNet-R
Joint 91.59 86.31

Partition β = 0.5 β = 0.1 β = 0.05 β = 0.5 β = 0.1 β = 0.05

EWC (Kirkpatrick et al., 2017) 71.31 71.75 63.48 56.77 55.67 53.90

LwF (Li & Hoiem, 2017) 54.18 55.12 42.44 49.78 45.03 41.60

DER++ (Buzzega et al., 2020) 67.90 61.97 55.79 55.83 50.07 45.52

L2P (Wang et al., 2022b) 76.30 52.82 45.41 57.58 46.82 37.57

CODA-P (Smith et al., 2023) 62.00 22.21 16.12 48.02 29.68 21.52

FisherAvg (Matena & Raffel, 2022) 70.43 70.10 67.87 57.05 54.05 51.55

RegMean (Jin et al., 2023) 71.07 64.56 61.47 61.05 57.32 49.22

CCVR (Luo et al., 2021) 73.56 78.04 79.47 68.68 69.55 71.83

TARGET (Zhang et al., 2023b) 69.36 69.18 64.23 57.32 58.75 55.70

PILoRA (Guo et al., 2024) 75.34 73.27 68.34 53.03 51.40 47.33

LoRM (ours) 83.19 82.05 81.21 75.62 70.83 70.18

with limited data heterogeneity. Surprisingly, employing a rehearsal buffer (DER++) offers min-
imal benefit. Prompt-based CL approaches similarly show rapid performance degradation as the
distribution parameter β decreases, although L2P demonstrates strong performance at β = 0.5,
ranking second overall. Among FL and model merging methods, which generally outperform CL
approaches, CCVR emerges as the top performer, achieving state-of-the-art accuracy in one setting
(ImageNet-R, β = 0.05). Interestingly, CCVR exhibits a reverse trend with respect to increasing
data heterogeneity: as heterogeneity grows, its performance improves. TARGET and PILoRA, de-
spite being designed specifically for FCIL, show lower performance relative to the adapted CCVR,
a result we attribute to CCVR’s server-side calibration procedure using centralized synthetic data.
Finally, due to its closed-form merging technique, LoRM achieves state-of-the-art results across all
settings except for one (i.e., Imagenet-R, β = 0.05).

On the EuroSAT dataset (Table 2), the previous experimental findings are reversed for most methods.
Specifically, DER++ emerges as the second-best performer across all levels of increasing hetero-
geneity, highlighting the value of utilizing a memory buffer when adapting to different distributions.
L2P follows closely, benefiting from its prompt pool, which proves crucial when deviating from the
pre-training weights. Conversely, CCVR’s advantage vanishes in this setting, as merely calibrating
the classifier fails to extract meaningful representations. Target and PILoRA perform on par with
CCVR but fall short of the top performer, LoRM, which surpasses all approaches by a significant
margin3.

Rate of convergence. Figure 2 illustrates the convergence rates of LoRM and the FCIL competitors
on the first task of ImageNet-R with β = 0.05. The steeper slope of the curve for LoRM, compared
to that of Target and PILoRA, showcases the faster convergence of our approach. This behavior
stems from the closed-form solution applied for merging LoRA at each communication round, which
accelerates convergence by leveraging its optimality. In contrast, PILoRA applies simple averaging
of LoRA modules, while Target does not utilize PEFT modules at all. Additionally, the slower
convergence of PILoRA compared to Target can be attributed to its prototype-based classification
procedure, which necessitates a higher number of training rounds to achieve well-refined prototypes.

4.3 ABLATION STUDIES

Alternating vs. Only B. We investigate whether training the B matrix only (i.e., following the same
procedure as LoRM but applying solely Equation 7 to merge B matrices) could lead to improved
performance compared to our alternating optimization approach. We conduct an experiment on
EuroSAT with β = 1.0 (see Figure 3), showing that the alternating strategy outperforms the only

3Less relevant methodologies are omitted from Table 2 and are reported in Table C.
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Table 2: Out-of-domain SOTA comparison. Re-
sults are reported in terms of FAA(%).

Joint 93.72

Partition β = 1.0 β = 0.5 β = 0.2

DER++ 66.72 65.20 65.44

L2P 64.31 62.75 64.42

CCVR 47.41 36.07 43.90

TARGET 36.78 37.81 43.69

PILoRA 40.93 34.02 39.64

LoRM 80.44 77.37 75.12

Table 3: LoRM components. Evaluation of the
different components of LoRM. Results are re-
ported in terms of FAA (%).

ImageNet-R EuroSAT
Partition β = 0.5 β = 1.0

FedAvg 57.65 41.04

FedAvg w/ LoRA 57.00 53.14

RegMean 61.05 44.84

LoRM w/o Equation 9 75.08 71.40

LoRM 75.62 77.37

B approach. This result underscores the importance of leveraging the entire LoRA representation
capabilities to achieve superior performance.

LoRM components. To evaluate the contribution of each component to the overall performance of
LoRM, we conduct an ablation study by incrementally introducing each part and comparing it with
baseline methods. These experiments are performed on EuroSAT with β = 1.0 and ImageNet-R
with β = 0.5. The initial baseline for both datasets is FedAvg (McMahan et al., 2017) combined with
ACE (Caccia et al., 2022). Notably, leveraging LoRA leads to a remarkable performance improve-
ment on EuroSAT but does not affect ImageNet-R. Meanwhile, using the closed-form aggregation
of RegMean, enhanced with ACE, establishes an additional baseline. Building upon this, our alter-
nating optimization strategy, when applied without Equation 9 (i.e., simply averaging task-specific
residuals), substantially boosts performance on both datasets, with a more pronounced impact on the
out-of-domain dataset. Finally, applying RegMean to merge task-specific residuals further enhances
robustness in addressing FCIL challenges, resulting in the final form of LoRM.

5 RELATION WITH PRIOR WORKS

PARAMETER-EFFICIENT FINE-TUNING

Adapting deep neural networks to new tasks typically requires full re-training of all parameters,
which is computationally demanding. Parameter-Efficient Fine-Tuning (PEFT) addresses this by
updating only a small subset of the model parameters, leaving the rest of the network unchanged.
One of the earliest methods in this domain is Adapters (Houlsby et al., 2019), which are lightweight
neural modules inserted between the layers of a pre-trained model to facilitate task adaptation. More
recently, a prominent class of PEFT techniques includes Prompt Tuning (Lester et al., 2021) and Pre-
fix Tuning (Li & Liang, 2021), both of which introduce learnable embeddings, or prompts, appended
to the layers’ input tokens. Prompt Tuning prepends these embeddings directly to the initial input
sequence (Wang et al., 2022b;a), whereas Prefix Tuning concatenates them to specific attention lay-
ers (Smith et al., 2023). An alternative approach to prompting is Low-Rank Adaptation (LoRA) (Hu
et al., 2022), which injects residual parameters into the pre-trained weights using low-rank matrices,
significantly reducing the number of learnable parameters. While recent works have explored vari-
ous alternatives to LoRA(Kopiczko et al., 2024; Zhang et al., 2023d; Renduchintala et al., 2024; Liu
et al., 2022), our research is grounded in the original LoRA framework, leveraging its efficiency and
the extensive literature on model merging that goes with it.

MODEL MERGING

Task-specific modules are typically deployed to address individual tasks. However, an alternative
approach involves merging these modules to create a model capable of generalizing across all tasks.
A notable line of research within model merging focuses on combining task vectors (Ilharco et al.,
2023), specifically those generated by LoRA-like methods. Early studies have explored the use
of linear arithmetic operations (e.g., addition and subtraction) to combine these modules (Zhang
et al., 2023c). Expanding on this, subsequent works have focused on optimizing the coefficients
that determine the contribution of each LoRA module during aggregation (Huang et al., 2023; Yang

8
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et al., 2024; Yadav et al., 2024; Wu et al., 2024). Alternatively, RegMean (Jin et al., 2023) introduces
a closed-form solution for merging model weights, though its application to LoRA module merging
has not yet been explored. In this work, we present a novel methodology that leverages this closed-
form solution, specifically tailored for the Federated Class-Incremental Learning setting.

FEDERATED CLASS-INCREMENTAL LEARNING

Federated Class-Incremental Learning (FCIL), introduced by Yoon et al. (2021), addresses the
challenges inherent in Continual Learning, such as Catastrophic Forgetting (Robins, 1995), and
Federated Learning, such as Client Drift (Zhao et al., 2018; Karimireddy et al., 2020), within a
unified framework. Although the FCIL literature is still in its early stages, several studies have
adapted popular Continual Learning methods to the federated paradigm, often by employing the
FedAvg (McMahan et al., 2017) technique for aggregating client model weights. A few approaches,
however, are specifically designed for the FCIL setting. For instance, GLFC (Dong et al., 2022)
incorporates local buffers and a regularization technique to mitigate the effects of gradient updates
related to novel classes, with further refinements in a subsequent work by the same authors (Dong
et al., 2023). TARGET (Zhang et al., 2023b) trains a centralized GAN (Goodfellow et al., 2014) to
populate replay buffers with synthetic samples. Fed-CPrompt (Bagwe et al., 2023) combines local
and global prompts to address both Continual Learning and Federated Learning challenges simul-
taneously. Most recently, PILoRA (Guo et al., 2024) proposed a method that integrates LoRA with
prototypes (i.e., average feature vectors), using the latter for classification instead of relying on the
traditional classification layer. In contrast, our proposed methodology leverages LoRA modules and
aggregates them by aligning their output in both Continual and Federated scenarios in a closed-form.

6 CONCLUSIONS

At the outset of our research, we explored the possibility of a closed-form solution for merging
LoRA modules. Motivated by this question, we identified and validated the existence of such a so-
lution, demonstrating its practicality within the framework of Federated Class-Incremental Learning
(FCIL). We introduced LoRM, a method specifically designed for the FCIL scenario, which sets a
new State of the Art in this domain.

Looking forward, we aim to broaden our exploration to encompass a wider array of PEFT modules.
For modules such as VeRA (Kopiczko et al., 2024) and (IA)3 (Liu et al., 2022), we have already
derived closed-form merging equations, which are detailed in appendices A.2 and A.3, respectively.
Furthermore, given the generality of our derivations beyond the FCIL setting, we also intend to
evaluate the robustness of our equations across various model merging scenarios. Ultimately, we
hope this work will serve not only the Federated Learning and Continual Learning communities but
also contribute to the growing body of research on efficient module compositionally.

9
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SUPPLEMENTARY MATERIAL OVERVIEW

This supplementary document provides detailed mathematical derivations and additional informa-
tion to complement the main text. The contents are organized as follows:

• Section A – Mathematical Derivations: Presents the mathematical foundations and deriva-
tions related to the combination of different Parameter-Efficient Fine-Tuning methods with
RegMean.

– Section A.1 – Combination of LoRA and RegMean: Derives the optimization problem
when integrating Low-Rank Adaptation (LoRA) with RegMean.

* Section A.1.1 – Solving for A by Fixing B: Details the solution for matrix A when
matrix B is held constant.

* Section A.1.2 – Solving for B by Fixing A: Details the solution for matrix B when
matrix A is held constant.

– Section A.2 – Combination of VeRA and RegMean: Extends the derivations to the
Vector-based Random matrix Adaptation (VeRA) method.

– Section A.3 – Combination of (IA)3 and RegMean: Explores how the (IA)3 method
can be combined with RegMean and provides the corresponding derivations.

– Section A.4 – RegMean Applied to Classification Heads: Discusses the application of
RegMean to classification heads in a class-incremental learning setting.

• Section B – Details on Datasets and Metrics: Offers comprehensive details about the
datasets used and the evaluation metric employed.

• Section C – Additional Results: Presents supplementary experimental results and analyses.
– Section C.1 – Standard Deviations: Reports the standard deviations for all evaluated

approaches.
– Section C.2 – Additional Results on EuroSAT: Provides extended results on the Eu-

roSAT dataset.
• Section D – Hyperparameters: Details the hyperparameters used across different experi-

ments.
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A MATHEMATICAL DERIVATIONS

A.1 COMBINATION OF LORA AND REGMEAN

We consider a minimization problem over a single linear layer where Xi represents the input to the
layer. The objective function is defined as:

minimize Ω =

N∑
i=1

∥WXi −WiXi∥22. (10)

Here, W and Wi are the weight matrices for the global model (server) and the local models (clients)
respectively. In the context of a LoRA residual module, we replace W with W0 +BA, where W0

denotes the pre-trained weight matrix and BA represents the learned low-rank difference. The
objective function becomes:

Ω =

N∑
i=1

∥(W0 +BA)Xi − (W0 +BiAi)Xi∥22.

Expanding the previous expression yields:

Ω =

N∑
i=1

∥Wθ0Xi −W0Xi +BAXi −BiAiXi∥22.

Which simplifies the equation to:

Ω =

N∑
i=1

∥BAXi −BiAiXi∥22.

It is important to note that B and A refer to the merged LoRA matrices (BM and AM in the main
paper). For simplicity, we omit the subscript M . To minimize this objective function, we compute
the partial derivatives with respect to the unknown matrices A and B, setting them equal to zero.
This leads to the following system of equations:

∂Ω

∂A
= 0 ⇒

N∑
i=1

2B⊤(BAXi −BiAiXi)X
⊤
i = 0

∂Ω

∂B
= 0 ⇒

N∑
i=1

2(BAXi −BiAiXi)X
⊤
i A⊤ = 0

We can rearrange the equations as:
N∑
i=1

B⊤BAXiX
⊤
i =

N∑
i=1

B⊤BiAiXiX
⊤
i

N∑
i=1

BAXiX
⊤
i A⊤ =

N∑
i=1

BiAiXiX
⊤
i A⊤

Next, we multiply the second equation on the left by B⊤, in order to align it with the structure of
the first equation:

N∑
i=1

B⊤BiAiXiX
⊤
i A⊤ =

N∑
i=1

B⊤BiAiXiX
⊤
i A⊤.

By substituting the left-hand side of the first equation into the second, we obtain:
N∑
i=1

B⊤BiAiXiX
⊤
i A⊤ −

N∑
i=1

B⊤BiAiXiX
⊤
i A⊤ = 0.

This simplifies to 0 = 0, indicating that the system is indeterminate, with infinitely many possible
solutions.
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A.1.1 SOLVING FOR A BY FIXING B

Assuming the matrix B is fixed, we can solve for A. The objective function Ω becomes:

ΩA =

N∑
i=1

∥BAXi −BAiXi∥22.

To minimize ΩA, we set its derivative with respect to A to zero:

∂ΩA

∂A
= 0 ⇒

N∑
i=1

2B⊤(BAXi −BAiXi)X
⊤
i = 0,

which simplifies to:
N∑
i=1

B⊤B(AXi −AiXi)X
⊤
i = 0.

Since BA is designed to be low-rank, the matrix B has more rows than columns. As a result,
provided that no row or column of B is zero, the inverse

(
B⊤B

)−1
exists. By multiplying both

sides of the equation from the left by
(
B⊤B

)−1
, we obtain:

N∑
i=1

(AXi −AiXi)X
⊤
i = 0, ⇒ A

N∑
i=1

XiX
⊤
i =

N∑
i=1

AiXiX
⊤
i .

Finally, solving for A, we get:

A =

(
N∑
i=1

AiXiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

.

A.1.2 SOLVING FOR B BY FIXING A

When the matrix A is fixed, we can solve for B. The objective function Ω becomes:

ΩB =

N∑
i=1

∥BAXi −BiAXi∥22.

To minimize ΩB , we set its derivative with respect to B equal to zero:

∂ΩB

∂B
= 0 ⇒

N∑
i=1

2(BAXi −BiAXi)X
⊤
i A⊤ = 0.

Expanding the equation, we get:

N∑
i=1

BAXiX
⊤
i A⊤ −

N∑
i=1

BiAXiX
⊤
i A⊤ = 0,

which simplifies to:

B

N∑
i=1

AXiX
⊤
i A⊤ =

N∑
i=1

BiAXiX
⊤
i A⊤.

Finally, solving for B, we obtain:

B =

(
N∑
i=1

BiAXiX
⊤
i

)
A⊤

(
N∑
i=1

AXiX
⊤
i A⊤

)−1

.
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A.2 COMBINATION OF VERA AND REGMEAN

Following appendix A.1, we consider the same minimization problem as Equation 10. In the context
of a VeRA residual module, we replace W with W0+ΛbBΛdA, where W0 denotes the pre-trained
weight matrix and ΛbBΛdA represents the learned weight difference. More precisely, B and A are
randomly initialized, while Λb and Λd are learned. The objective function becomes:

Ω =

N∑
i=1

∥(W0 + ΛbBΛdA)Xi − (W0 + Λb,iBΛd,iA)Xi∥22.

While every component of LoRA is a full matrix, here we are considering Λb and Λd, which are
diagonal matrices. In order to enforce this constraint into the previous formulation, we can rewrite
them as column vectors λb and λd:

Ω =

N∑
i=1

∥
(
W0 +

((
λb1b

)
⊙B

) ((
λd1d

)
⊙A

))
Xi − (W0 +

((
λb
i1b

)
⊙B

) ((
λd
i 1d

)
⊙A

)
)Xi∥22,

where 1b and 1d are two row vectors of ones with the same columns as B and A, respectively.
Please note that in our notation, indices of column vectors are denoted as superscripts, while those
of row vectors are represented as subscripts. Expanding this objective, we can write:

Ω =

N∑
i=1

∥W0Xi −W0Xi +
((
λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb
i1d

)
⊙B

) ((
λd
i 1d

)
⊙A

)
Xi∥22.

Which simplifies the equation to:

Ω =

N∑
i=1

∥
((
λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb
i1d

)
⊙B

) ((
λd
i 1d

)
⊙A

)
Xi∥22.

If we compute the partial derivatives with respect to the unknown vectors λb and λd and set them
equal to zero, we obtain an indeterminate system, as similarly discussed in appendix A.1. The
detailed derivation is left to the reader. However, it is still possible to solve for either λb or λd when
the other is known.

A.2.1 SOLVING FOR λd WITH FIXED λb

Assuming the vector λb is fixed, we can solve for λd. The objective function Ω becomes:

Ωλd =

N∑
i=1

∥∥((λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb1b

)
⊙B

) ((
λd
i 1d

)
⊙A

)
Xi

∥∥2
2
.

This can be rearranged as:

Ωλd =

N∑
i=1

∥∥((λb1b

)
⊙B

) [((
λd1d

)
⊙A

)
Xi −

((
λd
i 1d

)
⊙A

)
Xi

]∥∥2
2
.

Since
(
λb1b

)
⊙B is a multiplicative constant, it can be factored out and disregarded, leading to the

following simplified objective:

Ωλd =

N∑
i=1

∥∥((λd1d

)
⊙A

)
Xi −

((
λd
i 1d

)
⊙A

)
Xi

∥∥2
2
.

To minimize Ωλd , we take its derivative with respect to λd and set it to zero:

∂Ωλd

∂λd
= 0 ⇒ 2

N∑
i=1

((λd1d)⊙A)XiX
⊤
i ⊙A1⊤

d −
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i ⊙A1⊤

d = 0.

This simplifies to:

((λd1d)⊙A)

N∑
i=1

XiX
⊤
i =

N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i .
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We then solve for λd as follows:

((λd1d)⊙A) =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

,

λd1d =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

A
,

λd1d1
⊤
d =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

A
1⊤
d .

Since 1d1
⊤
d = d is a scalar, we can finally find:

λd =

(
N∑
i=1

((λd
i 1d)⊙A)XiX

⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

dA
1⊤
d .

A.2.2 SOLVING FOR λb WITH FIXED λd

When the vector λd is fixed, we solve for λb. The objective function Ω becomes:

Ωλb =

N∑
i=1

∥∥((λb1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi −

((
λb
i1b

)
⊙B

) ((
λd1d

)
⊙A

)
Xi

∥∥2
2
.

To minimize Ωλb , we compute its derivative with respect to λb and set it to zero:

∂Ωλb

∂λb
= 0 ⇒ 2

N∑
i=1

[
((λb1b)⊙B)((λd1d)⊙A)XiX

⊤
i −

−((λb
i1b)⊙B)((λd1d)⊙A)XiX

⊤
i

]
((λd1d)⊙A)

⊤ ⊙B1⊤
b = 0.

This simplifies to:

((λb1b)⊙B)

N∑
i=1

AXiX
⊤
i A⊤ =

N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤,

where we use A to denote ((λd1d)⊙A) for simplicity. Solving for λb, we get:

((λb1b)⊙B) =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

,

λb1b =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

⊙ 1

B
,

λb1b1
⊤
d =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

⊙ 1

B
1⊤
d .

Finally, since 1d1
⊤
d = d is a scalar, we can solve for λb:

λb =

(
N∑
i=1

((λb
i1b)⊙B)AXiX

⊤
i A⊤

)(
N∑
i=1

AXiX
⊤
i A⊤

)−1

⊙ 1

dB
1⊤
d ,

where A = ((λd1d)⊙A).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 COMBINATION OF (IA)3 AND REGMEAN

(IA)3 (Liu et al., 2022) adapts the pretrained model by learning multiplicative weight vectors ℓk

that modulate the intermediate activations — where k is the dimension of the considered activation.
Specifically, for each attention layer, these weight vectors are applied to the input keys, values, and
output. Notably, it can be demonstrated that, for a single linear layer, (IA)3 can be expressed as a
residual module (Porrello et al., 2024):

ℓk ⊙ (W0X) =
[
W0 + ((ℓk − 1⊤

k )1h)⊙W0

]
X,

where 1o and 1h represent row vectors of ones, respectively corresponding to the dimensions of the
output and input of the considered layer. For the sake of simplicity, we deviate from the original
formulation, which initializes ℓk as a column vector of ones. Instead, we begin with a column
vector of zeroes at the beginning of training. This adjustment does not affect the outcome, as we
simultaneously modify our formulation as follows:

ℓk ⊙ (W0X) =
[
W0 + (ℓk1h)⊙W0

]
X,

Then, following appendix A.1, we consider the same minimization problem as Equation 10. This
time, we replace W with W0 + (ℓk1h) ⊙ W0, where W0 denotes the pre-trained weight matrix
and (ℓk1h) ⊙W0 represents the learned weight difference and ℓk is zero initialized. The objective
function becomes:

Ω(IA)3 =

N∑
i=1

∥(W0 + (ℓk1h)⊙W0)Xi − (W0 + (ℓki 1h)⊙W0)Xi∥22.

Following appendix A.1, we can rearrange Ω(IA)3 as:

Ω(IA)3 =

N∑
i=1

∥((ℓk1h)⊙W0)Xi − ((ℓki 1h)⊙W0)Xi∥22.

To minimize Ω(IA)3 , we take its derivative with respect to ℓk and set it to zero:

∂Ω(IA)3

∂ℓk
= 0 ⇒ 2

N∑
i=1

[
((ℓk1h)⊙W0)XiX

⊤
i − ((ℓki 1h)⊙W0)XiX

⊤
i

]
⊙W01

⊤
h = 0.

This simplifies to:

((ℓk1h)⊙W0)

N∑
i=1

XiX
⊤
i =

N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i .

Solving for ℓk, we get:

((ℓk1h)⊙W0) =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

.

ℓk1h =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

W0
.

ℓk1h1
⊤
h =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

W0
1⊤
h .

Finally, since 1h1
⊤
h = h is a scalar, we can solve for ℓk:

ℓk =

(
N∑
i=1

((ℓki 1h)⊙W0)XiX
⊤
i

)(
N∑
i=1

XiX
⊤
i

)−1

⊙ 1

hW0
1⊤
h .
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A.4 REGMEAN APPLIED TO CLASSIFICATION HEADS

While each client adapts the pretrained model to the specific task using residual parameter-efficient
modules, the classification head must be re-initialized and trained from scratch. Specifically, follow-
ing the approach of Caccia et al. (2022), we initialize a distinct classification head for each task. This
practice has recently emerged as the de facto standard in Class-Incremental Learning, consistently
providing a performance boost across various methodologies.

In the context of Class-Incremental Learning, all task-specific classification heads must eventually
be merged into a unified classifier. To address this, we aim to minimize the RegMean problem, as
defined in Equation 10, across the classifiers of different tasks. Rather than considering a separate
set of parameters for each client, we now introduce a weight matrix for each task:

minimize Ωcls =

T∑
t=1

∥WXt −WtXt∥22.

Notably, in this case, W and Wt differ in dimensionality, as the classification heads
{W1,W2, . . . ,WT } are trained independently. Specifically, while W and each Wt share the same
number of columns (input dimension), they differ in the number of rows (output dimension). The
total number of rows of W corresponds to the sum of the rows of all Wt, which is equivalent to the
total number of classes C; instead, each Wt has c rows. This structure enables us to decompose Ωcls
into T separate minimization problems:

minimize

T∑
t=1

Ωt
cls, where Ωt

cls = ∥W
ct:c(t+1)Xt −WtXt∥22.

Since the tasks are class-disjoint, each {Ω1
cls,Ω

2
cls, . . . ,Ω

T
cls} operates on distinct rows of W . Con-

sequently, the optimal solution for each Ωt
cls is to assign W

ct:c(t+1) = Wt for each t.

B DETAILS ON DATASETS AND METRICS

B.1 CIFAR-100

For the incremental split of CIFAR-100, we follow the standard partitioning into 10 tasks, each
consisting of 10 classes, as commonly employed in numerous Continual Learning studies (Wang
et al., 2022b;a; Smith et al., 2023). For data augmentation on the training set, we apply bicubic
interpolation to resize each image from 32 × 32 to 224 × 224, followed by random horizontal
flipping and normalization. For the test set, each image is first resized to 256 × 256 using bicubic
interpolation, followed by a center crop to 224× 224, and a final normalization step.

B.2 IMAGENET-R

For the incremental split of ImageNet-R, we employ the widely used partitioning into 10 tasks, each
comprising 20 classes, as is common in various Continual Learning studies (Wang et al., 2022a;
Smith et al., 2023; Zhang et al., 2023a). For data augmentation on the training set, we process each
224 × 224 image with a random horizontal flip, followed by normalization. In the test set, we first
resize each image to 256 × 256 using bicubic interpolation, apply a center crop to 224 × 224, and
then perform normalization.

B.3 EUROSAT

For the incremental split of EuroSAT, we follow a partitioning scheme of 5 tasks, each consisting of
2 classes, consistent with prior Continual Learning studies (Jung et al., 2023; Menabue et al., 2024).
For data augmentation in the training set, each 64× 64 image is resized to 224× 224 using bicubic
interpolation. The same interpolation process is applied to the test set.

B.4 FINAL AVERAGE ACCURACY (FAA)

We evaluate the performance of all methods using the Final Average Accuracy (FAA), a widely
adopted metric in the FCIL literature.
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FAA quantifies the mean accuracy across all tasks at the conclusion of the incremental training
process. Formally, let at represent the accuracy on the tth task after completing the incremental
training. The FAA is defined as:

FAA =
1

T

T∑
t=1

at, (11)

where T represents the total number of tasks.

C ADDITIONAL RESULTS

C.1 STANDARD DEVIATIONS

The standard deviations for all evaluated approaches, based on three runs, are reported for the in-
domain datasets in Table A and for the out-of-domain dataset in Table B.

Table A: In-domain standard deviations. Standard deviations for all evaluated approaches.

CIFAR-100 ImageNet-R
Joint ±0.66 ±1.08

Partition β = 0.5 β = 0.1 β = 0.05 β = 0.5 β = 0.1 β = 0.05

EWC (Kirkpatrick et al., 2017) ±0.95 ±0.57 ±0.83 ±0.89 ±1.09 ±0.83

LwF (Li & Hoiem, 2017) ±0.90 ±0.89 ±0.53 ±0.81 ±0.80 ±0.98

DER++ (Buzzega et al., 2020) ±0.61 ±0.75 ±1.41 ±0.47 ±0.58 ±1.38

L2P (Wang et al., 2022b) ±1.24 ±1.37 ±0.82 ±1.10 ±0.66 ±1.15

CODA-P (Smith et al., 2023) ±0.82 ±0.58 ±0.63 ±0.50 ±1.53 ±0.91

FisherAvg (Matena & Raffel, 2022) ±1.28 ±0.67 ±0.58 ±1.09 ±1.15 ±0.03

RegMean (Jin et al., 2023) ±0.28 ±0.36 ±0.78 ±1.41 ±0.67 ±0.56

CCVR (Luo et al., 2021) ±0.86 ±0.49 ±0.55 ±0.39 ±0.66 ±0.72

TARGET (Zhang et al., 2023b) ±0.54 ±0.60 ±0.47 ±0.23 ±1.33 ±0.94

PILoRA (Guo et al., 2024) ±0.86 ±0.48 ±0.80 ±1.57 ±1.14 ±1.56

LoRM (ours) ±0.73 ±0.62 ±0.59 ±1.36 ±0.70 ±1.46

C.2 ADDITIONAL RESULTS ON EUROSAT

In Table C

D HYPERPARAMETERS

All method-specific parameters not explicitly mentioned follow the settings described in their origi-
nal papers.

D.1 ACRONYMS

List of all the acronyms used:

• lr: learning rate,
• lrpr: learning rate for prototypes,
• λKL: Knowledge Distillation Loss multiplier,
• r: rank for low rank matrices,
• np: number of prompts,
• gep: epochs of training and generation for the generator network,
• γ: decay factor for off-diagonal elements of the Gram matrices.
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Table B: Out of domain standard deviations. Standard deviations for all evaluated approaches.

EuroSAT
Joint ±0.66

Partition β = 1.0 β = 0.5 β = 0.2

EWC ±1.17 ±0.74 ±0.83

LwF ±0.67 ±0.33 ±0.87

DER++ ±0.94 ±0.82 ±0.85

L2P ±1.69 ±1.18 ±1.36

CODA-P ±0.57 ±1.28 ±0.73

FisherAvg ±1.38 ±0.77 ±0.62

RegMean ±0.17 ±0.78 ±0.98

CCVR ±0.92 ±0.87 ±1.56

TARGET ±0.73 ±0.82 ±0.86

PILoRA ±1.01 ±0.87 ±0.45

LoRM (ours) ±1.04 ±0.73 ±0.81

Table C: Additional EuroSAT comparison. Results in terms of FAA(%).

Joint 93.72

Partition β = 1.0 β = 0.5 β = 0.2

EWC 55.88 46.23 44.16

LwF 23.91 21.31 21.64

CODA-P 62.96 59.20 62.23

FisherAvg 48.83 43.19 42.48

RegMean 27.12 30.80 32.31

D.2 CIFAR-100

D.2.1 DISTRIBUTION β = 0.5

Joint: lr: 1e-3;
EWC: lr: 3e-06;
LwF: lr: 3e-06;
DER++: lr: 3e-06; α:34; β:13
L2P: lr: 3e-02;
CODA-P: lr: 1e-03;
FisherAvg: lr: 3e-06;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16;
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D.2.2 DISTRIBUTION β = 0.1

Joint: lr: 1e-03;
EWC: lr: 3e-06;
LwF: lr: 3e-06;
DER++: lr: 1e-4; α: 0.3; β: 0.8
L2P: lr: 3e-02;
CODA-P: lr: 1e-03;
FisherAvg: lr: 3e-06;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 3e-04; r: 16;

D.2.3 DISTRIBUTION β = 0.05

Joint: lr: 1e-03;
EWC: lr: 3e-06;
LwF: lr: 1e-05;
DER++: lr: 3e-06; α: 0.3; β: 0.8
L2P: lr: 3e-02;
CODA-P: lr: 1e-03; np: 100
FisherAvg: lr: 3e-06;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 3e-04; r: 32;

D.3 IMAGENET-R

D.3.1 DISTRIBUTION β = 0.5

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 200
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 3e-06;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16
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D.3.2 DISTRIBUTION β = 0.1

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 200
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 1e-04;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 32

D.3.3 DISTRIBUTION β = 0.05

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 200
FisherAvg: lr: 1e-05;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

D.4 EUROSAT

D.4.1 DISTRIBUTION β = 1.0

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-04; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 10
FisherAvg: lr: 1e-05;
RegMean: lr: 3e-06; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16
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Under review as a conference paper at ICLR 2025

D.4.2 DISTRIBUTION β = 0.5

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 3e-06; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 10
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL: 25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16

D.4.3 DISTRIBUTION β = 0.2

Joint: lr: 1e-03;
EWC: lr: 1e-05;
LwF: lr: 1e-05;
DER++: lr: 1e-05; α: 0.3; β: 0.8
L2P: lr: 3e-04;
CODA-P: lr: 3e-04; np: 10
FisherAvg: lr: 1e-05;
RegMean: lr: 1e-05; γ: 0.5
CCVR: lr: 1e-05;
TARGET: lr: 3e-04; λKL:25; gep: 30
PILoRA: lr: 2e-02; lrpr: 1e-4;
LoRM: lr: 1e-03; r: 16
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