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Abstract

In variable selection, a selection rule that prescribes the permissible sets of selected variables
(called a “selection dictionary”) is desirable due to the inherent structural constraints among
the candidate variables. Such selection rules can be complex in real-world data analyses, and
failing to incorporate such restrictions could not only compromise the interpretability of the
model but also lead to decreased prediction accuracy. However, no general framework has
been proposed to formalize selection rules and their applications, which poses a significant
challenge for practitioners seeking to integrate these rules into their analyses. In this work,
we establish a framework for structured variable selection that can incorporate universal
structural constraints. We develop a mathematical language for constructing arbitrary se-
lection rules, where the selection dictionary is formally defined. We demonstrate that all
selection rules can be expressed as combinations of operations on constructs, facilitating
the identification of the corresponding selection dictionary. Once this selection dictionary is
derived, practitioners can apply their own user-defined criteria to select the optimal model.
Additionally, our framework enhances existing penalized regression methods for variable se-
lection by providing guidance on how to appropriately group variables to achieve the desired
selection rule. Furthermore, our innovative framework opens the door to establishing new
Lo-based penalized regression techniques that can be tailored to respect arbitrary selection
rules, thereby expanding the possibilities for more robust and tailored model development.

1 Introduction

Variable selection has become an important problem in statistics and data science, especially with large-scale
and high-dimensional data becoming increasingly available. Variable selection can be used to identify covari-
ates that are associated with or predictive of the outcome, remove spurious covariates, and improve prediction
accuracy. (Guyon & Elisseeff] 2003} Reunanen, 2003; Wasserman & Roeder, [2009) General techniques to
conduct statistical variable selection include best subset selection, penalized regression, and nonparametric
approaches like random forest. (Heinze et al.l 2018} |(Chowdhury & Turin) [2020)

When selecting variables for the purpose of developing an interpretable model, understanding and formalizing
the structure of covariates can lead to more interpretable variable selection. Covariates may have a structure
due to



1. Variable type. For example, when including a categorical variable in a regression model, each non-
reference category is represented by a binary indicator. It may be desirable to collectively include
or exclude these binary indicators as a group.

2. Variable hierarchy. For example, one may define a hierarchical structure for sets of covariates A and
B such that if A is selected, then B must be selected. One application is interaction selection with
strong heredity (Haris et al.,[2016)), that is “the selection of an interaction term requires the inclusion
of all main effect terms." A second application is when one covariate is a descriptor of another, such
as medication dose (0-10mL) and medication usage (yes/no).

Such restrictions on the resulting model, which we call “selection rules", can be incorporated into the sta-
tistical variable selection process so that the resulting model satisfies the rules. Practitioners can define any
selection rule based on their a priori knowledge of the covariate structure.

Lasso (Tibshirani{1996)) and best subset selection via optimization (Bertsimas et al.,2016)) are two commonly-
used approaches that do not restrict the composition of the resulting model. However, a variety of existing
variable selection techniques have emerged to accommodate diverse selection rules. For instance, the group
Lasso (Yuan & Linl 2006) can select a group of variables collectively, while the sparse group Lasso (Simon
et al.l 2013)) can perform a bi-level selection. Additionally, the Exclusive Lasso (Campbell & Allen, [2017)
excels at within-group selection by ensuring at least one variable is chosen from each group. However, these
methods have been developed to respect single, specific types of selection rules. Expanding on this, both
overlapping group Lasso (Mairal et al.l |2010) and latent overlapping group Lasso (Obozinski et al., [2011))
can accommodate a more extensive array of (though not all) selection rules by performing the simultaneous
selection or exclusion of overlapping groups of variables.

In this work, we develop a general framework for variable selection that can formally express any selection
rule in a mathematical language, which enables us to systematically compile the exhaustive list of possible
models (i.e. permissible covariate subsets) corresponding to a given selection rule. One practical use of
this exhaustive list of models is that we can directly apply statistical criteria to identify the optimal model
in terms of the observed data. We also discuss two potential avenues for future development. First, the
proposed framework can guide us in how to effectively group variables to follow complex selection rules
within existing penalized regression techniques. Second, given the inherent connection between the £y norm
and our definition of selection rules, our work also directly leads to new ¢y-based penalized regression methods
that can be tailored to accommodate arbitrary selection rules.

This paper is organized as follows. Section [2]is an overview of the key findings with an illustrative example.
In Section [3] we provide a formal introduction to the language used in constructing selection rules, prove
that we can express any arbitrary selection rule within our framework, and give formulas for deriving the list
of all permissible models for any given rule of arbitrary complexity. Last, we discuss the broader implications
of this framework and its potential utility in driving future research advancements.

2 Overview

Suppose that we have a set of candidate variables V. We define a selection rule on this set as the selection
dependencies among all candidate variables. For example, consider a study where we want to investigate
which of the following variables should be included in a model for blood pressure: age (A4), age squared
(A?), and race as a categorical variable with 3 levels, represented by dummy variables B; and B,. We are
also interested in the interaction of age with race (AB;, ABs). So we have V = {A, A%, By, By, AB1, ABs}.
In this example, standard statistical practice requires that the resulting model must satisfy a selection rule
defined by the following three conditions: 1) if the interaction is selected, then both the main terms for age
and race must be selected, 2) if age squared is selected, then age must be selected, 3) the dummy variables
representing race must be collectively selected, and 4) the two categorical interaction terms must also be
collectively selected. The combination of these four rules is the selection rule that must be respected.

We next define a selection dictionary as the set of all subsets of V that respect the selection rule. When we
say a dictionary respects a selection rule, we mean the dictionary is congruent to the selection rule in the



sense that the selection dictionary contains all (rather than some) subsets of V that respect the selection rule.
Theorem [1]in Section [3|states that every selection rule has a unique dictionary. The dictionary for the above
example would be {(Z) ; {A} 5 {Bl,BQ} s {A,Bl,BQ} 5 {A,AQ} s {A,AQ,Bl,BQ} s {A,Bl,BQ,ABl,ABQ} s
{A, A%, By, By, AB1, AB>}}. Despite a total of 64 possible subsets of V, there are only 8 possible models
that can be selected under this rule.

We are interested in the general problem of finding a selection dictionary given an arbitrary selection rule.
We start by defining unit rules as the building blocks of selection rules. For a given set of candidate variables
V with F C V, a unit rule is a selection rule of the form “select a number of variables in F.” The unit rule
depends on the numbers of variables that are allowed to be selected from F. In our running example, one
unit rule is “select zero or two variables from the set F = {Bj, Bo}”. This is equivalent to saying that B
and By must be selected together, i.e. select neither or both. We define C as the set of numbers of variables
that are allowed to be selected in the unit rule. In the unit rule we gave above, C = {0, 2}.

In Theorem [2] we give a formula for the dictionary congruent to a given unit rule. This formula shows that
the dictionary is all unique unions of sets 1) of variables in F where the number of variables is in C and 2)
of variables outside of F. Applying this formula, we can see that the unit rule “select zero or two variables
(that is, C = {0,2}) from the set F = {By, B2}" has a dictionary that is the set incorporating @ and { Bz, B2}
and all unions of ) and {Bj, Ba} with any of the other elements in V, respectively.

We then define five useful operations on selection rules in Table 2] For example, A being applied to two
selection rules indicates that both of the selection rules must be respected. An arrow — indicates if the
selection rule on the left hand side is being respected, then the selection rules on the right hand side must be
respected. For each operation, we can show how the operation on selection rules is related to an operation on
the respective dictionaries. Therefore if we are combining or constructing more complex rules from operations
on unit rules, we can always derive the resulting dictionary. Our most important result is Theorem [3] stating
that any rule can be obtained through operations on unit rules.

To illustrate these ideas in our running example, define unit rules 1) u;: “select zero or two variables in
{AB1,ABs},” 2) uy: “select zero or two variables in {B1, Ba},” 3) us: “select two variables in {AB;, AB2},”
4) ug: “select three variables in {A, By, Ba},” 5) us: “select one variable in {A?},” 6) ug: “select one variable
in {A}”. The same selection rule that we defined when we introduced the example can be expressed through
operations on these unit rules as: (u; Aug) A (ug — ug) A (us — ug).

3 Selection rules and selection dictionaries

In this section, we introduce the mathematical language for expressing selection rules, which enables us to
design algorithms to incorporate selection dependencies into model selection. Two fundamental concepts are
being introduced first: the selection rule and its dictionary. Then we introduce unit rules and operations on
unit rules as the building blocks of selection rules. We show that we can construct any selection rule from
unit rules and also derive the unit dictionary from set operations on the dictionaries belonging to the unit
rules. Finally, we investigate some properties of the resulting abstract structures.

Unless specified otherwise, we use normal math (for example F'), blackboard bold (F/f), Fraktur lowercase
(f), and calligraphy uppercase fonts (F) to represent a random variable, set, rule, and operator respectively.
P(F) represents the power set (collection of all possible subsets) of F, P?(F) denotes the power set of the
power set of F, and |F| represents the cardinality of F. The maximum integer of a set of integers F is denoted
by max(F). We say two sets are equivalent if they contain the same elements, regardless their multiplicity.
For example, {A, A, B, B,C,C} = {A, B,C}. Graphs are helpful to show the dependencies among candidate
covariates. For example, an arrow in a graph can indicate that the children nodes are constructed based on
their parent nodes.

We take two examples to illustrate the concepts throughout this section.
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Figure 1: Graph for Example 1 Figure 2: Graph for Example 2

Example 1. Suppose that we have 4 candidate variables, V = {4, B,C, D}, that have no structural
relationship. The corresponding graph is shown in Figure

Example 2. Suppose we have three variables: a continuous variable A and a three-level categorical variable
B (represented by two dummy indicators B; and Bs). We also consider their interactions represented by
ABj and ABs. The corresponding graph is shown in Figure [2| with nodes V = {A, By, By, AB1, AB2}. The
arrows indicate that the child nodes are derived from their parents.

Next, we introduce the concept of the selection rule.

Definition 1 (Selection rule). A selection rule v of V is defined as selection dependencies among the
variables in V.

The selection dependency is a general concept regarding limitations on which combinations of variables are
allowed to be selected into a model. Table [I] gives some examples of selection rules for a covariate set

V={A,B,C}.

Table 1: Examples of selection rules and their dictionaries, V = {A, B, C'}

t; Selection dependencies D,, Selection dictionaries

t;  Select at least one variable in {A, B}. {{A},{B},{A,B},{A,C},{B,C},{4,B,C}}
to  If A is selected, then B must be selected. {0.{B},{A, B},{C}.{B,C}.{A,B,C}}

t3  Respect both vy and v,. {{B}.{A,B},{B,C},{A,B,C}}

There may be many possible subsets of variables that respect a given selection rule. We define the set of all
possible subsets of V respecting a given selection rule as the corresponding selection dictionary.

Before introducing selection dictionary, we define a general dictionary first.

Definition 2 (Dictionary). Given a finite set of candidate variables V, a dictionary D C P(V) of V is a
set of subset(s) of V.

For example, a dictionary of candidate variables V = {A, B,C, D} can be {{A},{B}}, {0 , {A,B,C,D} ,
{A}} or P(V) etc.

Definition 3 (Selection dictionary). For a given V, a selection dictionary D, is a dictionary that contains
all subsets of V that respect the selection rule t.

The definition stresses that all sets in a selection dictionary must be a subset of P(V). This allows us to list
all “allowable” sets of variables that could result from a variable selection process respecting the selection
rule. Some examples of selection dictionaries corresponding to selection rules are shown in Table[I] When a
selection rule is for example, “select 0 variables from {A, B},” which is coherent but trivial, then the selection
dictionary is the empty set {0}.

By the definitions above, there is a mapping from a selection rule to a selection dictionary. The theorem
below gives the uniqueness of the mapping with proof in Appendix [A]

Theorem 1. Given a selection rule on a set, there is a unique selection dictionary that satisfies this given
selection rule.

We say the unique selection dictionary is congruent to its selection rule, which is denoted by D, = ¢, or
equivalently, v = D.. In our context, it is equivalent to saying a selection dictionary respects a selection rule.



However, it is possible that more than one selection rule results in the same selection dictionary. Therefore,
we define an equivalence class of selection rules below.

Definition 4 (Equivalence class of selection rules). For a given candidate set V, and given a selection rule
vy with selection dictionary D, the equivalence class of vy, denoted by R := {v : v = D}, is a set of all
selection rules in V that are congruent to the same selection dictionary.

Corollary 1. By Definition [f] and Theorem[1], there is a one-to-one mapping from an equivalence class of
a selection rule to a selection dictionary.

For a given (finite) V, we define R as the selection rule space containing all equivalence classes of selection
rules on V. Because the number of possible combinations of selected variables is finite, the number of possible
dictionaries is finite. Thus, because of the one-to-one correspondence between dictionaries and rules, the
space of rules fR is also finite.

The above definitions provide us with a broad view of the language for expressing selection rules generally.
Next we introduce the grammar of this language which allows for the exploration of theoretical properties of
selection rules and of further algorithmic development. We start by defining unit rules and their dictionaries,
and then introduce the operations between unit rules. Then more complex selection rules can be assembled
by unit rules and their operations, and the related selection dictionaries can be determined.

Definition 5 (Unit rule and its dictionary). Define C, a set of numbers. For a given V and a given F CV,
a unit rule uc(F) is a selection rule, where the selection dependency takes the form “select C variables from
F”, and the number of variables to be selected is any value in C. A unit dictionary D, is a dictionary that
contains all subsets of V that respect the unit rule uc(F).

Remark 1. The set C is a set of numbers which constrains the number of variables to be selected in F. For
example, if |F| = 3 and C is {1}, then the rule in uc(F) translates to “there is one variable to be selected"
from F. If C = {0,2}, the unit rule is “there are zero or two variables to be selected" from F. Any C with
elements greater than |F| would result in an incoherent unit rule because variable selection is done without
replacement and so we cannot select more than the cardinality of the set.

In the context where we investigate more than one unit rule for a given V, we use u; to represent uc, (F;)
and number them ¢ = 1,2,.... Among the examples in Table [I} only t; is a valid unit rule, which can be
expressed as (1,2} ({4, B}), and the unit dictionary D, = D, is given.

Given a unit rule and its dictionary, there is a one-to-one mapping from the F in the unit rule to the
corresponding unit dictionary, which is characterized by a unit function fc.

Definition 6 (Unit function). Each unit rule relates to a unit function fc with some input F C V. A unit
function fc maps the subset F to the unit dictionary D, € P?(V) that respects uc(F).

Therefore, for a given unit rule, we can write uc(F) = D, = f¢(F). This is a valid function because a unit
dictionary is defined as the set of all possible subsets of V that respect the unit rule; thus, given a fixed
constraint and set F, there is a unique dictionary output.

The following theorem characterizes unit functions, providing a formula for the unit dictionary, so that when
a unit rule is given on F, the corresponding unit dictionary can be determined.

Theorem 2. Each unit function in V is a C-specific function fc(-), with domain P(V), defined by

{aub:VaCF st. |aj e C,vb CV\F}, if |F| > max(C)

Fr=Du= { 0, otherwise,

where F € P(V).
When |F| > max(C), the unit rule uc(F) is coherent, and the unit function is a bijection with domain
M= {F, s.t. F € P(V),|F| > max(C)} and image {aUb,va C F s.t. |a| € C,¥b C V\ F,VF € M}.

This means that when the unit rule is coherent, the unit dictionary contains all sets that are unions between
a subset of F that respects the constraint C and a subset of the remaining covariates in V (excluding F). The
proof is given in Appendix [B] Corollary [2] gives a special case of Theorem [2] characterizing the mapping of



V to a unit dictionary by a unit function. Corollary [3] gives an interesting property of a unit dictionary. The
proofs are direct consequences of Theorem

Corollary 2. When the input of a unit function is V, with a constraint C resulting in a coherent unit rule,
the resulting unit dictionary is fc(V) = {n € P(V):|n| € C}.

Corollary 3. When C # {0} for a given coherent unit rule, the corresponding unit dictionary Dy satisfies
U;Dy,s =V, where Dy ; is the ith set in D,.

To further investigate the relationships among unit functions with different constraints, we provide the
following corollaries.

Corollary 4. For a given F € P(V), fy(F) is injective with respect to the argument C when at least
one constraint (Cy or Cy) results in a coherent rule applied to F. That is, fc,(F) # fc,(F) whenever
C1 # Cy. This means that two distinct unit functions (related to two distinct unit rules) will result in
different dictionaries even when the inputs are the same.

Corollary 5. For C = {0,...,|F|} then fc(F) = P(V),VYF C V. This means that when there is effectively
no constraint on the selection (i.e. any number of variables can be selected), the unit dictionary is the power
set of V. A consequence is that two different unit functions with nonrestrictive constraints can result in the
same dictionary even when the inputs are different.

The proofs of corollaries [f] and [f] are in Appendix [C| and [D] respectively.

The goal is to build selection rules out of unit rules. This will allow for an algorithm to determine the
resulting selection dependencies and dictionary. To do this, we define some operations among selection rules.
Because a unit rule is also a selection rule, the operations can be applied to unit rules.

Definition 7 (Operations on selection rules). Given selection rules on V, define an operation on selection
rules O as a function that maps a single selection rule or pair of selection rules to another selection rule
to.

Table 2: Operations for selection rules and the resulting selection dictionaries.

Operation Interpretation Do

-ty t1 is not being respected P(V)\ Dy,

T At both t; and vy are being respected D, ND,

T Vo either t; or g, or both is/are being respected D, UD,

T =ty if vy is being respected, then vy is being respected (P(V)\ Dy;) U (Dy, NDy,)

Selection rule t; on V is congruent to Dy, ,7 =1,2.

The rule tp resulting from the operation is congruent to a unique selection dictionary which is congruent to
to, Do. We define five operations in Table [2]

Given an operation on rules, we can derive the corresponding operation on the related dictionaries that
will result in the selection dictionary Do. Table [2] shows the resulting dictionary for each operation. The
derivation of each result is given in Appendix [E} These results allow us to develop algorithms to output
selection dictionaries for complex rules through operations on simpler rules.

We use the running example in Table[T] to illustrate the second and forth operations on unit rules as a special
case.

Define

U = u{1a2}({A7 B}) = Dul = {{A}’7 {B}7 {A’ B}’ {A7 0}7 {B7 C}’ {A7 B’ C}}’

4o = g1 ({4)) 2 Du, = {{A}. {4, B}, {A,C}, {4, B.C}}.

Uz == u{l}({B}) =Dy, = {{B}a {4, B}, {B,C}.{A, B, C}}

The vy in Table |1} is “if A is selected, then B must be selected,” which can be expressed as ty := us — us.
According to Table 2} t; is congruent to {0, {B},{A4, B},{C},{B,C},{A, B,C}}, which is exactly the Dy,
in Table Il



Note that, by Definition [I} the operation on two selection rules results in a selection rule, thus the results
of an operation on two selection rules can be an input of a second operation. We use parentheses to
differentiate the order of operations. The t3 in Table[l]is “select at least one variable in {A, B}” A ta. Thus,
t3 == u; A (ug — ug) is a valid operation resulting in a rule that is congruent to the selection dictionary
{{B},{A,B},{B,C},{A, B,C}} (according to Table , which is exactly the D, in Table

Now we use another example to illustrate the last operation. Suppose V = {A, B,C, D}, and v, is “{A, B}
must be selected collectively and {C, D} must be selected collectively”. That is, t; = ugo 21 ({4, B}) A
ug0,21({C, D}). Suppose ty is “if A is selected, then B must be selected, and if C' is selected, then D must
be selected”. That is, o = {ugy({4}) = wiy({BYH} A {uy({C}) — uy({D})}. If the result after
respecting t; is m = {A, B}, then according to Table [2] the dictionary that is congruent to vy = t2 should
be {0,{B},{A, B}}.

We provide some useful properties of operations below, which can be verified by checking the resulting
dictionaries for both sides of the equations. These properties can be used to identify which selection rules
are in a same equivalence class.

Proposition 1. Given t; # ta # t3 (in the sense that the congruent dictionaries are distinct), then

1. Commutative laws: t1 Aty =ty Aty; t1 Vg =ty V Ty,
2. Associative laws: (tl A tg) Atg =11 A (tg AN t3),’ ('Cl \Y 'CQ) Vig=1t1V (tQ \Y tg),

3. Non-distributive laws: t1 V (ta Ats) # (t1 Vta) A (vy Vt3);
T A (tQ V tg) 7& ('Cl N ‘CQ) V (tl N 'Cg), and

4. Sequential laws (v1 — t2) A (vt1 = t3) =11 — (2 Atg);
('tl — tg) vV (tl — ’C3) =11 — (tg \/tg),

all apply.

The next theorem confirms that, equipped with operations and unit rules, we can now effectively express
any selection rule as operations on unit rules.

Theorem 3. All selection rules can be expressed by either unit rules or operations on unit rules using N
and V.

The proof is given in Appendix [F] This means that we can represent any rule in a mathematical language.
This allows us to develop algorithms to combine multiple rules and generate resulting dictionaries.

Next, we use Examples 1 and 2 with a hypothetical data structure to illustrate how to express some com-
mon selection dependencies by unit rules and operations. The corresponding selection dictionaries are also
provided.

Example 1.1 (Individual selection) In Example 1, suppose all variables are continuous or binary, and no
structure is imposed. We can set the selection rule as selection between 0 to 4 variables v = us 1,2,3.4}(V),
and then D, = P(V). This rule is satisfied by the (adaptive) Lasso (Tibshiranil |1996]).

Example 1.2 (Groupwise selection) In Example 1, suppose we have 2 three-level categorical variables.
Denote F; = {4, B},Fy = {C, D}. Let the variables in F; be the dummy variables representing a categorical
variable, and similarly for the variables in F5. In an analysis, we would like to select F; collectively, same for
F2. We can then set t = ug 9y (F1) Augo 2y (F2). In addition, D, = {0, F1,Fo, F1 UF3}. This rule is satisfied
by the group Lasso (Yuan & Linl |2006)).

Example 1.3 (Within group selection) If variables in F; = {A, B} are one group, and Fy = {C, D} represents
a second group, and the goal is to select at least one variable from both groups, (Campbell & Allen) 2017}
Kong et al.,|2014) then we set t = ugy 23 (F1) Augy 23 (F2), meaning there is at least one variable that must be
selected in F; and F5 respectively. In addition, D, = {{A7 C},{B,C},{A,B,C},{A,D},{B,D},{A, B,D},
{4,C,D},{B,C,D},{A,B,C, D}} This rule is satisfied by the exclusive (group) Lasso (Campbell & Allen),
2017).



Example 2.1 (Categorical interaction selection with strong heredity) In Example 2, because {Bi, Bs}
are dummy variables representing a same categorical variable, they have to be collectively selected. Sim-
ilarly for {AB;, ABs}. In addition, there is a common rule that is being applied in interaction selection,
which is called strong heredity (Haris et al., |2016; [Lim & Hastiel 2015): “if the interaction is selected,
then all of its main terms must be selected”. Define u; = ug2,{B1, B2}, u2 = ugo2,{AB1, AB2},u3 =
Ui {AB1, ABs}, uy = ugy{A, By, B2}. The selection rule v = (u; A uz) A (u3 — uy) satisfies the com-
mon selection dependencies imposed for categorical interaction selection and strong heredity. In addition,
D. = {0,{A},{B1, B2},{A, B1, B2}, {A, By, Ba, AB1, ABs}}. This rule can be satisfied by the overlapping
group Lasso (Jenatton et al. 2011; Yuan et al. |2011]).

Example 2.2 (Categorical interaction selection with weak heredity) Another common rule that can be
applied to interaction selection is weak heredity (Haris et al., 2016]): “if the interaction is selected, then at
least one of its main terms must be selected”. To write weak heredity in terms of operations on unit rules,
we further define us = uyy 33{4, By, B2}. Then with the unit rules defined in Example 2.1, the selection rule
v = (u; Aug) A (u3 — us) satisfies the common selection dependencies imposed for categorical interaction
selection under weak heredity. In addition, the corresponding selection dictionary is the union of the D,
in Example 2.1 and {{A, AB;, AB>},{B1, B2, AB1,AB>}}. This rule is satisfied by the latent overlapping
group Lasso (Obozinski et al., [2011)).

4 Discussion

Covariate structures often exhibit intricate complexities in real-world data analysis, and incorporating those
complex structures into variable selection is instrumental in enhancing both model interpretability and
prediction accuracy. Previous efforts in this domain have typically tackled the issue by developing penalized
regression methods that either incorporate a specific selection rule or impose a particular grouping structure,
yet none have offered a comprehensive solution to address the problem in its full generality.

This manuscript is a first step in addressing this research gap. Our framework allows to define generic
selection rules through a universal mathematical formulation. Furthermore, we have introduced the formal
link between any arbitrary rule and its corresponding selection dictionary, which is the space of all permissible
covariate subsets that respect the selection rule. Our derivation of the properties of these mathematical
objects allowed us to establish these relationships and to identify avenues for future development.

The developed framework offers several valuable applications. Firstly, the resulting selection dictionary can
be employed directly in low-dimensional scenarios to select the optimal model among all permissible models.
This selection process can be guided by user-defined criteria, such as goodness-of-fit metrics like AIC or BIC,
or prediction accuracy measures like cross-validated prediction error. It’s important to note that manually
enumerating the elements of the selection dictionary is a labor-intensive task prone to errors, making our
framework a significant time-saving and error-reducing solution.

Secondly, given a penalized regression method, such as the (latent) overlapping group Lasso, an existing gap
in the literature is a general approach to identifying the grouping structure that respects a given selection
rule. The developed framework enables us first to express the complex selection rule, and then use the
corresponding selection dictionary to guide us in how to group variables. We address this strategy for
building overlapping group Lasso grouping structures in greater detail in ongoing work.

Thirdly, current penalized regression methods tailored for structured variable selection contain limitations
on the selection rules they can satisfy. In particular, they do not allow for the restriction on the number of
covariates to be selected, which we defined as our unit rule. However, we can consider the o norm, which
counts the non-zero elements in a vector, to be used in a penalized regression. A unit rule ug; 93{4, B,C, D}
necessitates selecting fewer than three variables from the set {A, B, C, D}. If we denote the variable vector
(A, B,C, D) as 3, this unit rule can be translated into ||3]|, < 2, which can be introduced as a constraint in a
penalized regression. According to Theorem [3] operations on such constraints enable us to derive a constraint
for any arbitrary selection rule. In light of these capabilities and considering the recent advancements in
algorithms for solving fy-norm penalized regressions (Bertsimas et al.| [2016), the next steps of our work will



develop an £y norm-based penalized regression based on our framework. This will allow for the incorporation
of completely general selection rules into variable selection.

The proposed framework unifies the structured variable selection problem and creates a paradigm where
researchers can view the problem generically rather than starting from a specific class of covariate structure
and rule, excluding all others. Generic guidance for variable selection rules would allow practitioners to
scrutinize the covariate structures in their application carefully and potentially incorporate a larger scope of
desirable selection rules. As the landscape of data and its applications continues to evolve, the emergence
of novel selection rules is inevitable. Our framework is purposefully designed with adaptability at its core,
ensuring its capability to seamlessly integrate these emerging rules and be a useful resource for future
applications.
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A Proof of Theorem [1]

Proof. Suppose D ; and D, 2 respect the same selection rule t. Denote a subset of V by d. If d € D, ;, then
d € D, 2 by Definition [3| Without loss of generality, now suppose d ¢ D; 1, then by Definition [3| d does not
respect t, so d ¢ D, 2. Therefore, Dy 1 = D; 5. Therefore, there is a unique dictionary for a given selection
rule. O

B Proof of Theorem

Proof. When |F| < max(C) then uc(F) is incoherent and the resulting unit dictionary is defined as the 0.

When uc(F) is a coherent unit rule, suppose d € P(V) respects uc(F). Let a=dNF C F such that |a| € C.
Let b=dN(V\F). Thend=aUb e {aub,vaCF s.t. |[aj € C,vb CV\ F}.

Now suppose d € P(V) does not respect uc(F). Then d N F does not respect uc(F). Necessarily, it means
that |[dNF| ¢ C. Therefore dNF ¢ {aUb,Va C F s.t. |a] € C,Vb C V\ F}, which implies d ¢ {a Ub,Va C
F s.t. |a € C,vb C V\ F}.

Now we prove that when uc(F) is a coherent unit rule, the related unit function is a bijection.

We prove by contradiction. Suppose there exists two non-empty sets F; # Fa, necessarily respecting |F1| >
max(C), |Fz| = max(C), such that fc(F1) = fc(F2). Denote M = {aUb:VaC F; s.t. |[a] € C,Vb CV\ Fy},
and N={aUb:Va CFyst. |al € C,Vb CV\Fy}. So that Ym € M, m satisfies [InNF;| € C, and Vn € N,
n satisfies |n N Fz| € C. By the previous result, if fc(F1) = fc(Fz2), then M = N. If F; # Fs, then there
exists some non-empty X such that x C Fy and X € Fo. Suppose that [x| > min(C). Then Jy such that y C X
and |y| = min(C). Such y is necessarily an element of M. Because M = N, y is necessarily an element of N.
According to the definition of N, y = a; U b; where a; satisfies a; C Fo such that |a;] € C, and by CV\ Fa.
So necessarily, |a;| = min(C) and by = @. This contradicts y ¢ Fa, because y = a; C Fa.

Now suppose that |X| < min(C). Because the rule is coherent, there exists m such that X ¢ m C F; and
Im| = min(C). So m € M = N. Because m € N, we have m = a; Ubs, and necessarily |az| = min(C), so by = )
and m = a; C Fy. Therefore, X C Fy, which contradicts x ¢ Fo. O

C Proof of corollary (4]

Proof. Without loss of generality, suppose uc, (F) is a coherent unit rule, and 3¢; € C; such that ¢; ¢ Co.
By Theorem [2| 3d € fc, (F) such that [m N F| = ¢;. Then by Theorem 2] because ¢; ¢ Co, d ¢ fc, (F).

O
D Proof of corollary [5
Proof. By Corollary [2| the property holds when F = V. Now suppose F C V. By Theorem [2| fc(F) =
{aUb,va C F,vb C V\ F} when |F| > max(C), which is P(V). Thus, fc(F) = P(V),¥YF C V. O

E Proof of mapping rules on dictionaries

Proof. For each operation on rules vr; and vo with respective dictionaries D, and D, in Table [2| we prove
that the rule O (t1,t2) is congruent to the operation on dictionaries in the third column.

1. O¢(r1) = —t1: suppose there is a set d € P(V) such that it does not respect t;. Then by Definition 5]
d € P(V)\D,,. Now suppose d is a set that does respect t;. Then d € D,,, and thus d ¢ P(V) \ D,,.
So, the dictionary congruent to =ty is P(V) \ D,.
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2. O(r1,t9) = t1 A ta: suppose there is a set d € P(V) such that it respects v; and vo. Then by
Definition [5} d € D, N D,,. Without loss of generality, now suppose d is a set that does not respect
t1, then d € P(V)\D,,, and thus d ¢ D, ND,,. Thus, the dictionary congruent to t; Atz is Dy, NDy,.

3. O(r1,t2) = t1 V ta: suppose there is a set d € P(V) such that it respects t; and/or ta. Then
by Definition [f], d € D, UD,,. Now suppose d is a set that respects neither v; nor tz, then
de (P(V)\ D) N (P(V)\Dy,), and thus d ¢ D, UD,,. Thus, the dictionary congruent to t; V
is Dy, U Dy,.

4. O(ry,t2) = v1 — to: an arbitrary set d € P(V) falls into one of four categories, 1) d respects both
t; and vy, 2) d respects neither vy nor vy, 3) d respects only ty but not vy, and 4) d respects only t;
but not ta. A set d in the first three categories respects t; — to. We first show that sets d in the
first three categories belong to (P(V) \ Dy, ) U (Dy, NDy,), and a set d in category 4) does not.

(a) If d is in category 1), then d € Dy, N Dy,, which belongs to (P(V) \ D¢, ) U (D, N Dy,).

(b) If d is in category 2), then d € (P(V) \ Dy,) N (P(V) \ Dy,), which belongs to (P(V) \ Dy,) U
(D¢, NDyy).

(c) If d is in category 3), then d € (P(V) \ Dy, ) N D.,, which belongs to (P(V) \ Dy, ) U (D¢, NDy,).

(d) If d is in category 4), then d € Dy, N (P(V) \ Dy, ), which does not belong to (P(V) \ Dy,) U
(D¢, NDyy).

This completes the proof.

F Proof of Theorem [3

Proof. The theorem is equivalent to saying that for a given rule v on V, the related dictionary D can be
obtained by unions and/or intersections of unit dictionaries.

Suppose that the selection dictionary has cardinality 0. Then it is equal to a unit dictionary of an incoherent
unit rule.

Now suppose that the selection dictionary is a set with cardinality 1. Let D, = {F}, for some F C V. Let
Dy, and Dy, be dictionaries corresponding to unit rules u; = ugg3(F) and uy = ugoy(V \ F), respectively.
Then D, can be expressed as Dy, N D,,. Thus, t = u; A ug.

We have demonstrated that we can construct a selection dictionary with a single element using unit dictio-
naries. Selection dictionaries containing more than one element can be constructed by taking the unions of
selection dictionaries with single elements. O
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