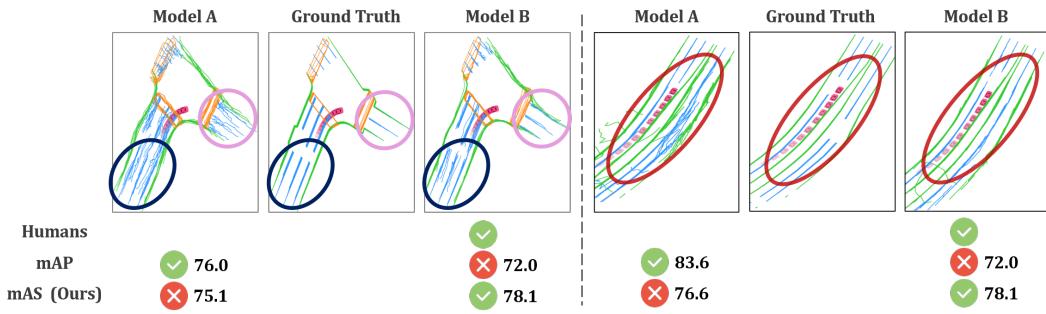


000 001 002 003 004 005 STABILITY UNDER SCRUTINY: BENCHMARKING RE- 006 PRESENTATION PARADIGMS FOR ONLINE HD MAPPING 007 008 009

010
011 **Anonymous authors**
012
013
014
015
016
017
018
019

Paper under double-blind review



020
021 **Figure 1: Evaluating trustworthiness of online mapping models using human judgment, tradi-
022 tional mAP, and our mAS metric.** In each case, the standard accuracy metric (mAP) fails to align
023 with human judgment because it evaluates only single-frame precision, disregarding stability across
024 time. To address this limitation, we propose the first stability benchmark for online vectorized map
025 construction and present a large-scale analysis of contemporary models.

026 ABSTRACT

027 As one of the fundamental modules in autonomous driving, online high-definition
028 (HD) maps have attracted significant attention due to their cost-effectiveness and
029 real-time capabilities. Since vehicles always cruise in highly dynamic environ-
030 ments, spatial displacement of onboard sensors inevitably causes shifts in real-
031 time HD mapping results, and such instability poses fundamental challenges for
032 downstream tasks. However, existing online map construction models tend to
033 prioritize improving each frame’s mapping accuracy, while the mapping stabili-
034 ty has not yet been systematically studied. To fill this gap, this paper presents
035 the first comprehensive benchmark for evaluating the temporal stability of on-
036 line HD mapping models. We propose a multi-dimensional stability evaluation
037 framework with novel metrics for Presence, Localization, and Shape Stability,
038 integrated into a unified mean Average Stability (mAS) score. Extensive experi-
039 ments on 42 models and variants show that accuracy (mAP) and stability (mAS)
040 represent largely independent performance dimensions. We further analyze the
041 impact of key model design choices on both criteria, identifying architectural and
042 training factors that contribute to high accuracy, high stability, or both. To en-
043 courage broader focus on stability, we will release a public benchmark. Our work
044 highlights the importance of treating temporal stability as a core evaluation crite-
045 rion alongside accuracy, advancing the development of more reliable autonomous
046 driving systems. The benchmark toolkit, code, and models will be available at
047 <https://stablehdmap.github.io/>.

048 1 INTRODUCTION

049 High-definition (HD) map is one of the fundamental component of autonomous driving, offering
050 centimeter-level environmental details such as precise coordinates of map elements and vectorized
051 topological structures (Hu et al., 2023; Jiang et al., 2023; Liao et al., 2025a). Although traditional
052 pre-built HD map provides highly accurate representations, its substantial production and mainte-
053 nance costs, coupled with limited adaptability to dynamic road conditions, severely restrict large-
054 scale deployment. To address these limitations, online HD mapping has recently emerged as a

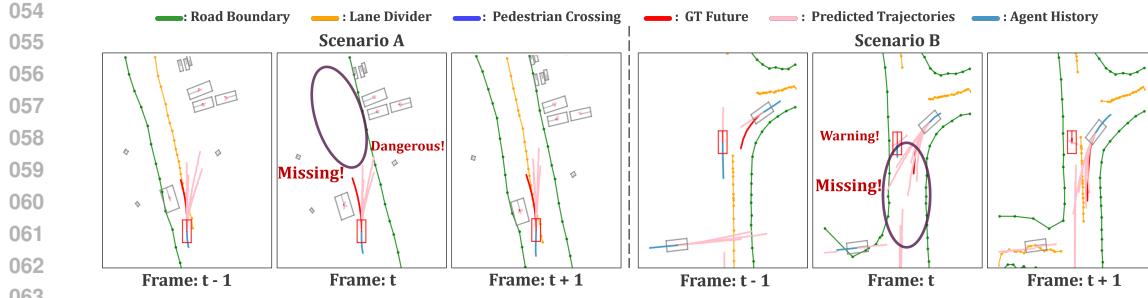


Figure 2: **The Impact of Unstable Map Elements on Downstream Tasks.** In Scenario A, the ego vehicle attempts to overtake, but the forward lane divider suddenly disappears during the maneuver, causing the ego vehicle to steer toward the curb. In Scenario B, another vehicle attempts to change lanes, but due to flickering lane dividers in the ego vehicle’s perception, the ego vehicle interprets the other vehicle’s action as a collision course.

promising alternative (Li et al., 2022; Liao et al., 2022). By leveraging onboard sensors to perceive the environment in real time, this approach dynamically constructs local vectorized maps, thereby reducing dependence on offline HD maps and paving the way toward scalable and generalizable autonomous driving systems.

Recent advances in online mapping have primarily aimed at improving accuracy and efficiency, giving rise to a diverse set of approaches with distinct representational paradigms (Lilja et al., 2024; Liao et al., 2022). The community typically evaluates these methods using metrics such as mean Average Precision (mAP) on benchmark datasets, which has driven continuous improvements in state-of-the-art performance. However, a critical yet underexplored issue in traditional evaluation is the stability of model outputs, a property essential for the safe deployment of autonomous driving systems, as illustrated in Fig. 2. A model that achieves high average precision but produces flickering map boundaries or fails entirely at complex intersections, acting like an “intermittently blind” guide, poses substantial safety risks (Gu et al., 2024; Zhang et al., 2025). Despite its importance, the field currently lacks dedicated benchmarks and metrics to quantitatively assess stability in online HD mapping. This gap hinders systematic evaluation of how different representational paradigms respond to real-world disturbances, ultimately slowing progress toward more reliable next-generation mapping systems.

To bridge this gap, we present the first systematic investigation and benchmark for stability in online HD mapping, under the theme “Beyond Accuracy: Under Scrutiny of Stability”. Our key contributions are threefold:

- **A multi-dimensional stability evaluation framework.** We propose novel temporal stability metrics, including Presence, Localization, and Shape Stability, to quantitatively capture the consistency of map elements across consecutive frames. These are integrated into a comprehensive mean Average Stability (mAS) score, enabling holistic model assessment.
- **Comprehensive benchmarking and analysis.** We conduct large-scale experiments across diverse state-of-the-art models, revealing that accuracy (mAP) and stability (mAS) are largely independent performance dimensions. Our analysis examines how design choices in sensors, 2D backbones, BEV encoders, temporal fusion, and training regimens influence accuracy and stability as distinct evaluation aspects.
- **The first stability centric benchmark.** We establish and will release a public benchmark to catalyze community-wide focus on stability, providing the foundation for developing safer and more robust online mapping systems.

2 RELATED WORK

Online HD Mapping Models. Online HD mapping has become a critical and extensively studied subtask in autonomous driving. Depending on the choice of sensor input, existing methods can be broadly categorized into camera-only (Qiao et al., 2023; Ding et al., 2023; Zhang et al., 2023; Liu et al., 2024a;b), LiDAR-only (Wang et al., 2023), and camera–LiDAR fusion (Li et al., 2022; Liu et al., 2023; Liao et al., 2022; 2025b; Yuan et al., 2024; Zhang et al., 2024b) paradigms, each

108 offering distinct strengths and weaknesses in perception capability and environmental adaptability
 109 (Hao et al., 2024a; Kim et al., 2025; Yan et al., 2025; Li et al., 2025; Kong et al., 2025). While
 110 these paradigms have driven notable progress in mapping accuracy and efficiency, current evaluation
 111 frameworks remain narrowly focused on mean Average Precision (mAP), overlooking the critical
 112 dimension of stability. This omission substantially limits the practical reliability and deployment of
 113 online mapping systems in downstream driving tasks.

114

115

Robustness in Autonomous Driving. Robustness to real-world perturbations has been extensively
 116 explored in core autonomous driving tasks. Established benchmarks exist for 2D (Wang et al., 2020)
 117 or 3D detection (Dong et al., 2023; Zhu et al., 2023; Paek et al., 2022), segmentation (Hong et al.,
 118 2022), and depth estimation (Kong et al., 2023), where models are evaluated under conditions such
 119 as corruption, adverse weather, and occlusion. More recently, RoboBEV has extended to Bird’s-
 120 Eye-View (BEV) perception, revealing vulnerabilities in view transformation techniques such as
 121 LSS and transformers (Xie et al., 2023; 2025). In the context of online HD mapping, early efforts
 122 have examined sensor level robustness, demonstrating that mapping systems are highly sensitive
 123 to corrupted inputs (Hao et al., 2024b; 2025b;a). However, these studies are restricted to static,
 124 single frame analyses and sensor-specific faults. Crucially, the temporal stability of mapping models
 125 under sequential perturbations and the comparative robustness of different representation paradigms
 126 remain unexplored, a gap which our benchmark aims to address.

127

128

Evaluation Metrics for Online HD Mapping. Current evaluation metrics in the field of online
 129 HD map construction are often designed based on single frame geometric accuracy (Li et al., 2022;
 130 Liao et al., 2022), primarily focusing on the geometric similarity between the predicted map and
 131 ground truth in a given frame. Among typical existing metrics, mean Intersection over Union (mIoU)
 132 measures the spatial overlap between the predicted map and the ground truth, while mean Average
 133 Precision (mAP) comprehensively considers both classification accuracy and the localization pre-
 134 cision of map elements. However, a critical yet previously overlooked issue is that the impact of
 135 online mapping on downstream planning tasks depends not only on per-frame geometric accuracy,
 136 but also on the inter-frame dynamic stability of the vectorized map. Jitter in map elements across
 137 frames can significantly impair the decision-making of autonomous driving systems (Zhang et al.,
 138 2025; Gu et al., 2024; Jiang et al., 2023). More seriously, existing metrics completely ignore the
 139 temporal geometric stability of map elements, such as the magnitude of polyline edge jitter and the
 140 frequency of shape mutations, which are crucial safety factors. To the best of our knowledge, our
 141 work is the first to establish a publicly available benchmark dedicated to stability evaluation for
 142 online mapping.

143

144

3 MULTI-DIMENSIONAL MAP STABILITY EVALUATION FRAMEWORK

145

146

147

This section details the proposed framework for multi-dimensional stability evaluation in online HD
 148 mapping. The framework quantifies temporal stability through instance-level matching across con-
 149 secutive frames, specifically designed to assess three critical dimensions: detection consistency, ge-
 150 ometric jitter, and shape preservation. The entire pipeline, consists of four main stages: (1) temporal
 151 sampling of frame pairs, (2) cross-frame instance matching, (3) geometric alignment and resam-
 152 pling, and (4) stability metric computation.

153

154

3.1 TEMPORAL SAMPLING

155

156

157

158

159

160

161

The temporal sampling stage constructs pairs of frames for analyzing stability over varying time
 159 intervals. Given a sequence of L consecutive model output frames $\{D_1, D_2, \dots, D_L\}$ and a pre-
 160 defined maximum temporal interval M , the process is as follows: for each anchor frame D_t
 161 (where $t \leq L - M$), a subsequent frame D_{t+k} is randomly sampled from the future window
 $\{D_{t+1}, \dots, D_{t+M}\}$, forming an evaluation pair (D_t, D_{t+k}) . Repeating this procedure for every
 162 valid anchor frame t results in a comprehensive sample set S of size $|S| = L - M$, which provides the
 163 foundational inputs for subsequent stability analysis. **Testing multiple M values ($M \in \{2, 3, 5, 10\}$)**
 164 **allows our framework to adapt to different application scenarios. Detailed analysis of temporal sam-**
 165 **pling design and frame rate considerations is provided in Appendix C.4.3.**

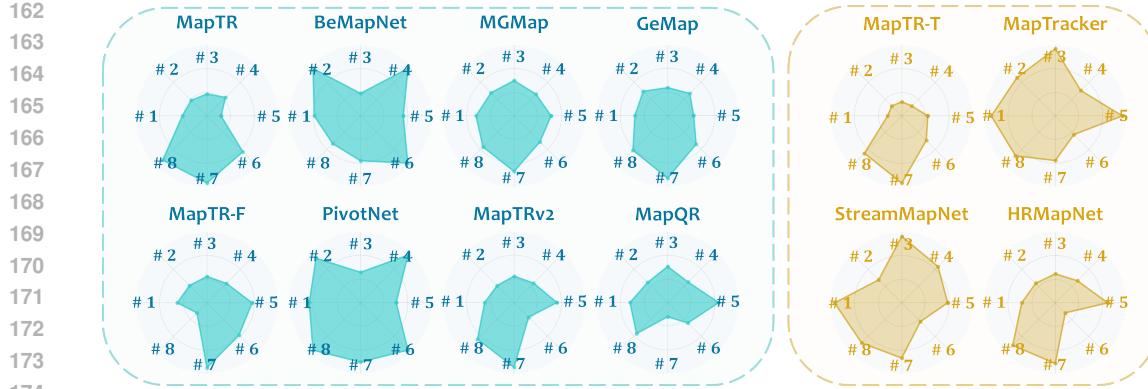


Figure 3: **Radar chart for Basic HD map constructors covering eight evaluation metrics.** The axes of the radar chart correspond to: #1 mAS, #2 Shape, #3 Loc, #4 Presence, #5 mAP, #6 Inference Memory Cost, #7 Parameter Count, #8 FPS.

3.2 CROSS-FRAME INSTANCE MATCHING

Establishing accurate correspondence between map elements across temporal frames is essential for stability assessment. Given the inherent inconsistencies in model predictions, a direct matching approach is prone to error. Instead, a robust indirect strategy is utilized, leveraging the consistent annotations of ground truth (GT) data as a reliable intermediary for association.

For each frame pair (D_t, D_{t+k}) , the matching process comprises two steps:

1. **Frame-to-GT Matching:** Predictions in each frame are independently matched to their respective GT instances using the Hungarian algorithm, which optimizes a cost function based on geometric and semantic similarity.
2. **GT-based Association:** The persistent identification of GT elements across frames enables the linkage of corresponding predictions. Specifically, predictions matched to the same GT instance in different frames are paired, thereby transferring the temporal consistency of the GT to the model outputs.

This procedure yields a set of matched instance pairs $\{(\text{poly}_{t+k}(e), \text{poly}_t(e)) \mid e \in E\}$ for each frame pair, where E represents the set of successfully tracked map elements. The complete algorithmic details are provided in Algorithm 2 of the Appendix. **GT serves as a matching medium rather than an absolute geometric benchmark. Minor GT annotation jitter does not affect stability assessment, as matching is based on persistent GT instance IDs.** Detailed discussion on GT matching robustness and alignment noise handling is provided in Appendix B.

3.3 GEOMETRIC ALIGNMENT AND RESAMPLING

Geometric alignment ensures a fair and spatially consistent comparison between matched polylines $(\text{poly}_{t+k}(e), \text{poly}_t(e))$ by transforming them into a common coordinate system and resampling them uniformly. This process consists of three sequential operations.

Coordinate Transformation. The historical polyline $\text{poly}_t(e)$ is first transformed from the ego coordinate system of its original frame D_t into the ego coordinate system of the current frame D_{t+k} . This spatial normalization is computed as:

$$\text{poly}_{t \rightarrow t+k}(e) = T_{\text{world} \rightarrow t+k} \cdot T_{t \rightarrow \text{world}} \cdot \text{poly}_t(e),$$

where $T_{t \rightarrow \text{world}}$ and $T_{\text{world} \rightarrow t+k}$ denote the transformation matrices from frame D_t to the world frame and from the world frame to frame D_{t+k} , respectively.

Perception Range Filtering. The transformed polyline $\text{poly}_{t \rightarrow t+k}(e)$ is then clipped to the perception range of the model in frame D_{t+k} . A point $p = (x, y)$ is retained for subsequent analysis if and only if it satisfies:

$$x_{\min} \leq x \leq x_{\max}, \quad \text{and} \quad y_{\min} \leq y \leq y_{\max},$$

216 where $[x_{\min}, x_{\max}, y_{\min}, y_{\max}]$ defines the operational perceptual boundaries, ensuring evaluation
 217 consistency with the model’s design.

218 **Uniform Resampling.** Finally, to enable precise point-wise comparison, both the current polyline
 219 $\text{poly}_{t+k}(e)$ and the transformed historical polyline $\text{poly}_{t \rightarrow t+k}(e)$ are resampled along the
 220 ~~x-axis. For their common x-range $[x_{\min}^p, x_{\max}^p]$, N equidistant sample points are generated:~~
 221 ~~$x_i = x_{\min}^p + (i-1) \cdot \frac{x_{\max}^p - x_{\min}^p}{N-1}$, yielding $\text{poly}_{t+k}^{\text{sample}}(e) = \{(x_i, y_{t+k}(x_i)) \mid i = 1, 2, \dots, N\}$ and~~
 222 ~~$\text{poly}_t^{\text{sample}}(e) = \{(x_i, y_t(x_i)) \mid i = 1, 2, \dots, N\}$. This yields two spatially aligned and uniformly~~
 223 ~~sampled point sets, which serve as the direct input for stability metric computation.~~ are resampled
 224 uniformly. We employ a dynamic axis selection mechanism that adaptively determines the primary
 225 sampling axis based on local geometric orientation, rather than using a fixed axis. This ensures
 226 robust resampling for polylines of arbitrary orientations. Detailed implementation is provided in
 227 Appendix B.

229 3.4 STABILITY METRIC COMPUTATION

231 Based on the aligned and resampled point sets $\text{poly}_{t+k}^{\text{sample}}(e)$ and $\text{poly}_t^{\text{sample}}(e)$, the temporal stability
 232 of each matched map element e is quantified from three perspectives.

234 **Presence Stability.** This metric evaluates the detection consistency of an element across frames.
 235 Let $\text{score}(e)$ denote the model’s confidence score for element e and τ be a detection threshold. The
 236 presence stability is defined as:

$$238 \quad \text{Presence}(e) = \begin{cases} 1, & \text{if } \text{score}_{t+k}(e) \geq \tau \text{ and } \text{score}_t(e) \geq \tau, \\ & \text{or } \text{score}_{t+k}(e) < \tau \text{ and } \text{score}_t(e) < \tau; \\ 0.5, & \text{otherwise (flickering).} \end{cases}$$

241 A higher average value across instances indicates better detection consistency.

243 **Localization Stability.** This metric quantifies the point-wise positional jitter of an element. For
 244 the resampled polylines, we compute the average $L1$ distance in the y -coordinate and map it to a
 245 stability score:

$$247 \quad \text{Loc}(e) = 1 - \frac{1}{\beta} \cdot \frac{1}{N} \sum_{i=1}^N |y_{t+k}(x_i) - y_t(x_i)|,$$

251 where β is a scaling parameter. The selection of $\beta = 15$ corresponds to the map’s short-range
 252 radius, representing the distance threshold for complete instability. Ablation studies and detailed
 253 justification are provided in Appendix C. The formula maps the average deviation to a score between
 254 0 (unstable) and 1 (stable).

255 **Shape Stability.** This metric assesses the consistency of an element’s geometric shape by comparing
 256 the curvature of the resampled polylines. We approximate the curvature κ of a polyline as the
 257 average angle between consecutive segments:

$$259 \quad \kappa(\text{poly}) = \frac{1}{N-1} \sum_{j=1}^{N-1} \theta_j, \quad \text{where } \theta_j = \cos^{-1} \left(\frac{\vec{v}_j \cdot \vec{v}_{j+1}}{|\vec{v}_j| \cdot |\vec{v}_{j+1}|} \right).$$

262 The shape stability is then defined as the normalized difference in curvature:

$$264 \quad \text{Shape}(e) = 1 - \frac{|\kappa(\text{poly}_{t+k}^{\text{sample}}(e)) - \kappa(\text{poly}_t^{\text{sample}}(e))|}{\pi}.$$

267 **Comprehensive Stability Index.** The overall stability for a single instance e is computed by com-
 268 bining the three metrics:

$$269 \quad \text{Stability}(e) = \text{Presence}(e) \cdot [\omega \cdot \text{Loc}(e) + (1 - \omega) \cdot \text{Shape}(e)],$$

270 where $\omega \in [0, 1]$ is a weighting parameter (default: 0.7). The class-wise stability is the average over
 271 all instances of that class:

$$273 \quad \text{Stability}_{\text{class}} = \frac{1}{|\mathcal{I}_{\text{class}}|} \sum_{e \in \mathcal{I}_{\text{class}}} \text{Stability}(e).$$

276 Finally, the overall model stability, **mean Average Stability (mAS)**, is the mean of the stability
 277 scores across all classes:

$$278 \quad \text{mAS} = \frac{1}{|\mathcal{C}|} \sum_{\text{class} \in \mathcal{C}} \text{Stability}_{\text{class}}.$$

281 This single score provides a holistic measure of a model’s temporal stability.

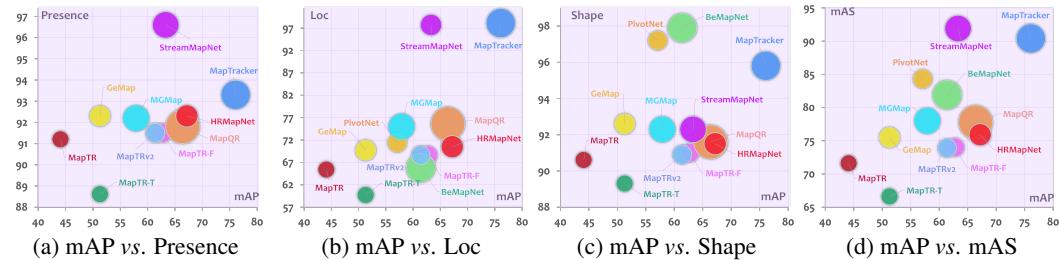
283 4 EXPERIMENTAL ANALYSIS

285 In this section, we present a comprehensive empirical evaluation of our proposed stability assessment
 286 framework. Our experiments are designed to answer the following key questions:

- 288 • **RQ1:** How do state-of-the-art online HD mapping models perform in terms of both con-
 289 ventional accuracy (mAP) and our newly proposed temporal stability (mAS)? Is there an
 290 implicit correlation between them?
- 291 • **RQ2:** How do different representational paradigms influence model stability?
- 292 • **RQ3:** What are the specific strengths and weaknesses of each paradigm under temporal
 293 scrutiny, as revealed by our fine-grained stability metrics (Presence, Localization, Shape)?

295 **Table 1: Basic Benchmarking of HD Map Constructors.** Performance comparison of online HD
 296 mapping methods on nuScenes val set. Models grouped by temporal fusion mechanisms, input
 297 modality, BEV encoder and training epochs. “Temp” denotes the injection of temporal information.
 298 “L” and “C” represent LiDAR and camera respectively, while the 2D and 3D backbones employ
 299 ResNet50 (He et al., 2016) and SECOND (Yan et al., 2018), correspondingly.

301 Method	302 Venue	303 Temp	304 Modal	305 BEV Encoder	306 Epoch	307 mAP↑	308 Presence↑	309 Loc↑	310 Shape↑	311 mAS↑
MapTR (Liao et al., 2022)	ICLR’23	✗	C	GKT	24	44.1	91.2	65.4	90.6	71.6
MapTR (Liao et al., 2022)	ICLR’23	✗	C & L	GKT	24	62.8	91.5	68.6	91.0	74.0
BeMapNet (Qiao et al., 2023)	CVPR’23	✗	C	IPM-PE	30	61.4	100.0	65.8	97.9	81.9
PivotNet (Ding et al., 2023)	ICCV’23	✗	C	PersFormer	30	57.1	100.0	71.4	97.2	84.3
MapTRv2 (Liao et al., 2025b)	IJCV’24	✗	C	BEVPool	24	61.4	91.5	68.6	90.9	73.9
GeMap (Zhang et al., 2024b)	ECCV’24	✗	C	BEVFormer-1	24	51.3	92.3	69.7	92.6	75.5
MGMMap (Liu et al., 2024a)	CVPR’24	✗	C	BEVFormer-1	24	57.9	92.2	75.0	92.3	78.0
MapQR (Liu et al., 2024b)	ECCV’24	✗	C	BEVFormer-3	24	66.4	91.8	75.6	91.6	77.8
MapTR (Liao et al., 2022)	ICLR’23	✓	C	GKT	24	51.3	88.61	59.7	89.3	66.6
StreamMapNet (Yuan et al., 2024)	WACV’24	✓	C	BEVFormer-1	30	63.3	96.6	97.7	92.3	91.9
MapTracker (Chen et al., 2024)	ECCV’24	✓	C	BEVFormer-2	72	75.95	93.3	98.1	95.8	90.4
HRMapNet (Zhang et al., 2024a)	ECCV’24	✓	C	BEVFormer-1	24	67.2	92.3	70.5	91.5	75.9



322 Figure 4: The correlations between the single-frame accuracy metrics mAP and the stability metrics
 323 Presence, Loc, Shape, and mAS. The bubble size represents the model’s parameter count.

324 4.1 BENCHMARK CONFIGURATION
325

326 **Benchmark and Models.** In this work, we conduct a comprehensive evaluation of **42** online HD
327 map constructors and their variants, covering representative methods following diverse representa-
328 tion paradigms, including BeMapNet (Qiao et al., 2023), PivotNet (Ding et al., 2023), MapTR (Liao
329 et al., 2022), MapTRV2 (Liao et al., 2025b), StreamMapNet (Yuan et al., 2024), MGMap (Liu et al.,
330 2024a), GeMap (Zhang et al., 2024b), MapQR (Liu et al., 2024b), MapTracker (Chen et al., 2024),
331 and HRMapNet (Zhang et al., 2024a). These models represent diverse design choices across input
332 modalities, backbone architectures, BEV encoders, temporal fusion mechanisms, historical priors,
333 and training epochs, allowing for a holistic analysis of representational paradigms. Model weights
334 are sourced from official code repositories or retrained using default settings to ensure fairness. Un-
335 fortunately, due to the unavailability of source code for several online mapping approaches, we were
336 unable to include them in our full assessment.

337 **Evaluation Metrics.** We evaluate each model using both the conventional mean Average Preci-
338 sion (mAP) and our proposed multi-dimensional stability metrics: Presence, Localization (Loc),
339 Shape stability, and the comprehensive mean Average Stability (mAS), as defined in Section 3.4.
340 Additional metrics related to inference performance have been incorporated into the evaluation
341 framework, As shown in Fig.3 More detailed evaluation metrics are provided in Section D of the
342 Appendix. **We also evaluate model stability under adverse weather conditions and provide compre-**
343 **hensive ablation studies on hyperparameters. Results are detailed in Appendix C.**

344 4.2 BASIC PERFORMANCE BENCHMARKING (RQ1)

345 The basic benchmarking results are summarized in Table 1. Our analysis reveals two key findings
346 that challenge the sole reliance on accuracy for model evaluation:

347 **Stability constitutes a distinct and critical performance dimension.** A primary observation
348 from our benchmark, as illustrated in Fig.4, is the imperfect correlation between conventional ac-
349 curacy (mAP) and temporal stability (mAS). We observe that models with higher mAP do not nec-
350 cessarily achieve superior mAS, indicating that temporal stability is not an automatic byproduct of
351 high accuracy but rather a unique aspect of model performance. This aspect is crucial for real-world
352 deployment yet is overlooked by conventional metrics.

353 **Significant stability gaps exist among mainstream paradigms.** We observe that the mAS scores
354 span a wide range from 71.6 (MapTR (Liao et al., 2022)) to 91.9 (StreamMapNet (Yuan et al.,
355 2024)), indicating that the choice of representational paradigm profoundly impacts the consistency
356 of the generated map. A majority of existing models, cluster in the lower to mid-range of mAS (71.6
357 - 78.0). This clustering suggests a common challenge faced by current approaches in maintaining
358 output stability across consecutive frames.

362 4.3 IN-DEPTH ANALYSIS OF REPRESENTATIONAL PARADIGMS (RQ2 & RQ3)

363 Table 2: Ablation on the Input Modality.

Method	Modal	mAP	Presence	Loc	Shape	mAS
MapTR ○	C	44.1	91.2	65.4	90.6	71.6
MapTR ●	C & L	62.8	91.5	68.6	91.0	74.0
GeMap ○	C	62.7	91.1	67.5	94.5	74.7
GeMap ●	C & L	66.5	89.1	66.3	92.7	71.8

364 Table 3: Ablation on the BEV Encoder.

Method	Encoder	mAP	Presence	Loc	Shape	mAS
MapTR ○	BEVFormer	41.6	89.6	69.7	90.6	71.3
MapTR ●	GKT	44.1	91.2	65.4	90.6	71.6
MapTR ●	BEVPool	50.1	89.3	69.8	88.5	71.9

365 **Impact of Sensor Modality.** Our analysis reveals a nuanced relationship between sensor modality
366 and temporal stability. As shown in Table 2, while LiDAR fusion consistently improves perception
367 accuracy, increasing MapTR’s (Liao et al., 2022) mAP by 42.6% (from 44.1 to 62.8) and GeMap’s
368 (Zhang et al., 2024b) mAP by 6.1% (from 62.7 to 66.5), its effect on temporal stability demonstrates
369 significant model dependence. MapTR (Liao et al., 2022) benefits from sensor fusion with a 3.4%
370 improvement in mAS (71.6 to 74.0), suggesting that LiDAR’s precise depth measurements can en-
371 hance temporal consistency. In contrast, GeMap (Zhang et al., 2024b) experiences a 3.9% decrease

378 in mAS (74.7 to 71.8) despite accuracy gains, indicating potential architectural limitations in leveraging
 379 multi-modal signals for stable predictions. This divergence highlights that additional sensors
 380 alone cannot guarantee improved stability.
 381

382 **Influence of BEV Encoding Strategies.** Our ablation study on MapTR (Liao et al., 2022) demonstrates
 383 that different BEV encoders achieve similar overall temporal stability, with mAS scores ranging
 384 from 71.3 to 71.9, despite significant variations in accuracy, where mAP values span from 41.6
 385 to 50.1, as summarized in Table 3. Further analysis reveals distinct specialization patterns among
 386 encoders. The GKT (Chen et al., 2022) encoder achieves superior Presence Stability at 91.2, ensuring
 387 consistent detection of map elements across frames. In comparison, BEVFormer (Li et al., 2024)
 388 and BEVPool (Liu et al., 2022) excel in Localization Stability, with scores of 69.7 and 69.8 respectively,
 389 indicating their stronger capability in mitigating geometric jitter. These results highlight that BEV
 390 encoders embody characteristic preferences for different aspects of temporal stability, even
 391 within the same model architecture.
 392

Table 4: Ablation on Temporal Fusion.

Method	Temp	Initial Map	Back.	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑
MapTR ○	✗	✗	R50	GKT	24	44.1	91.2	65.4	90.6	71.6
MapTR ●	✓	✗	R50	GKT	24	51.3	88.6	59.7	89.3	66.6
MapTR ○	✗	✗	R50	BEVFormer	24	41.6	89.6	69.7	90.6	71.3
MapTR ●	✓	✗	R50	BEVFormer	24	53.3	90.4	69.5	91.2	73.0
StreamMapNet ○	✗	✗	R50	BEVFormer-1	30	51.7	87.0	97.8	95.1	83.8
StreamMapNet ●	✓	✗	R50	BEVFormer-1	30	63.3	96.6	97.7	92.3	91.9
MapTracker ○	✗	✗	R18	BEVFormer-2	72	62.8	95.3	97.3	85.9	87.4
MapTracker ●	✓	✗	R18	BEVFormer-2	72	71.9	92.9	98.5	94.8	89.9
MapTracker ○	✗	✗	R50	BEVFormer-2	72	68.3	94.5	97.9	93.8	90.8
MapTracker ●	✓	✗	R50	BEVFormer-2	72	75.95	93.3	98.1	95.8	90.4
HRMapNet ○	✓	✗	R50	BEVFormer-1	24	67.2	92.3	70.5	91.5	75.9
HRMapNet ○	✓	Testing Map	R50	BEVFormer-1	24	73.0	94.9	71.4	93.0	78.4
HRMapNet ●	✓	Training Map	R50	BEVFormer-1	24	83.6	89.9	75.9	93.2	76.7

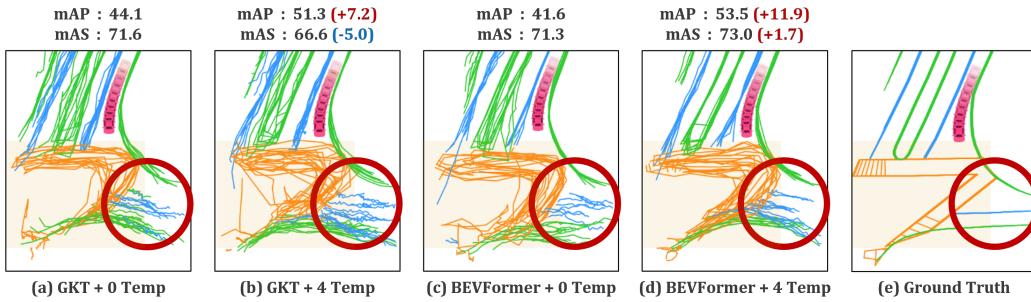


Figure 5: The dual effect of temporal fusion on MapTR with different BEV encoders.

416 **Discussion of Temporal Fusion.** As shown in Table 4, the effectiveness of temporal fusion is
 417 highly dependent on architectural compatibility. Models with native temporal designs demonstrate
 418 robust performance: StreamMapNet (Yuan et al., 2024) achieves exceptional temporal stability
 419 (mAS: 91.9), while MapTracker (Chen et al., 2024) maintains strong stability (mAS: 90.4) alongside
 420 significant mAP improvement (+11.4%). In contrast, adding temporal fusion to architectures not
 421 originally designed for temporal processing yields inconsistent results. MapTR (Liao et al., 2022)
 422 exhibits divergent behaviors depending on its BEV encoder. With the GKT (Chen et al., 2022)
 423 encoder, temporal fusion degrades stability (mAS: -7.0%), whereas with BEVFormer (Li et al.,
 424 2024), it provides balanced improvement (mAS: +2.4%, mAP: +28.1%). This contrast highlights
 425 the critical influence of the encoder’s representation capacity on temporal integration. Furthermore,
 426 HRMapNet (Zhang et al., 2024a) demonstrates that while map priors substantially boost accuracy
 427 (mAP: +24.4% with training map priors), their impact on stability is more limited (mAS: +1.1%).
 428 This suggests that dynamic temporal modeling contributes more significantly to consistency than
 429 static priors. These findings collectively emphasize that effective temporal fusion requires co-design
 430 of architectural components rather than simply appending temporal modules.
 431

432

Table 5: Ablation on the 2D Backbone.

Method	Back.	mAP	Presence	Loc	Shape	mAS
MapTR ○	R18	32.4	87.8	75.0	88.5	72.8
MapTR ●	R50	44.1	91.2	65.4	90.6	71.6
MapTRv2 ○	R18	57.2	91.0	73.2	91.2	75.6
MapTRv2 ●	R50	61.4	91.5	68.6	91.0	74.0
MapQR ○	R18	62.3	88.2	73.1	92.5	74.1
MapQR ●	R50	66.4	91.8	75.6	91.6	77.8
BeMapNet ○	Effi-B0	60.7	100.0	67.9	97.9	82.9
BeMapNet ●	R50	63.6	100.0	65.8	97.9	81.9
BeMapNet ■	Swin-T	64.1	100.0	62.8	98.0	80.4
PivotNet ○	Effi-B0	57.8	100.0	71.8	97.2	84.5
PivotNet ○	R50	57.1	100.0	71.4	97.2	84.3
PivotNet ●	Swin-T	61.6	100.0	71.6	97.2	84.4
GeMap ○	R50	62.7	91.1	67.5	94.5	74.7
GeMap ○	Swin-T	72.0	92.2	74.9	93.3	78.1
GeMap ○	V2-99	72.0	89.2	71.5	82.6	74.2
GeMap ●	V2-99*	76.0	93.4	67.0	93.7	75.1

433

Table 6: Ablation on the Training Epochs.

Method	Epoch	mAP	Presence	Loc	Shape	mAS
MapTR-18 ○	24	32.4	87.8	75.0	88.5	72.8
MapTR-18 ●	110	45.5	86.0	71.7	94.8	71.9
MapTR-50 ○	24	44.1	91.2	65.4	90.6	71.6
MapTR-50 ●	110	50.5	89.8	63.2	91.0	68.2
MapQR-50 ○	24	66.4	91.8	75.6	91.6	77.8
MapQR-50 ●	110	72.6	92.4	75.9	96.4	80.3
GeMap-50 ○	24	51.3	92.3	69.7	92.6	75.5
GeMap-50 ●	110	62.9	91.1	67.5	94.5	74.7
BeMapNet ○	30	64.1	100.0	62.8	98.0	80.4
BeMapNet ●	110	68.3	100.0	64.0	98.2	81.1
PivotNet ○	30	61.6	100.0	71.6	97.2	84.4
PivotNet ●	110	66.4	100.0	72.1	97.4	84.8
MapTracker-18 ○	48	69.3	94.8	98.2	93.8	90.8
MapTracker-18 ●	72	71.9	92.9	98.5	94.8	89.9
MapTracker-50 ○	48	72.96	91.8	98.5	96.0	91.7
MapTracker-50 ●	72	75.95	93.3	98.1	95.8	90.4

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Influence of The 2D Backbone. The impact of the 2D backbone is model-specific as indicated in Table 5. A more powerful backbone consistently improves accuracy (mAP), as seen in MapTR (+36.1%) (Liao et al., 2022) and MapQR (+6.6%) (Liu et al., 2024b). However, its effect on stability (mAS) is less predictable, ranging from a slight decrease in MapTR (-1.6%) (Liao et al., 2022) to an increase in MapQR (+5.0%) (Liu et al., 2024b). We observe a recurring trade-off: stronger backbones often enhance Presence Stability (e.g., +3.4% for MapTR (Liao et al., 2022)) but can reduce Localization Stability (-12.8% for MapTR (Liao et al., 2022)), suggesting a potential focus on semantic over geometric consistency.

448

Impact of Training Regimen. Our analysis reveals distinct patterns in how extended training affects model performance across different architectures. As shown in Table 6, while longer training epochs consistently improve accuracy (mAP increases ranging from +4.3% to +40.1%), the effects on temporal stability vary significantly. We observe three distinct learning behaviors. First, models like MapTR (Liao et al., 2022) exhibit stability erosion, where accuracy gains (+22.8% for MapTR-50) come with stability degradation (-4.7% mAS). Second, architectures such as MapQR (Liu et al., 2024b) and PivotNet (Ding et al., 2023) demonstrate stability saturation, maintaining or slightly improving mAS (+3.2% and +0.5% respectively) while achieving accuracy improvements. Third, complex temporal models like MapTracker (Chen et al., 2024) show optimization sensitivity, where extended training improves mAP (+3.7% to +4.2%) but leads to slight mAS reductions (-1.0% to -1.4%). These patterns underscore that temporal stability responds differently to extended training based on architectural inductive biases, suggesting that stability should be explicitly optimized rather than expected to emerge from accuracy-focused training alone.

468

469

470

4.4 GENERAL DISCUSSION

471

Our benchmark reveals that **temporal stability (mAS) is an independent performance dimension** from accuracy (mAP), challenging the prevailing focus on single-frame precision. Models with high mAP can exhibit significant instability, underscoring the need for dual optimization. **Architectural choices induce distinct stability profiles.** Multi-sensor fusion improves accuracy but affects stability model-dependently. BEV encoders specialize differently: GKT (Chen et al., 2022) favors detection consistency while BEVFormer (Li et al., 2024) variants reduce geometric jitter. Temporal fusion effectiveness hinges on architectural compatibility, with native designs outperforming retrofitted modules. **Training dynamics diverge by architecture.** Extended training improves accuracy consistently but affects stability variably, revealing three patterns: erosion (MapTR (Liao et al., 2022)), saturation (MapQR (Liu et al., 2024b)), and sensitivity (MapTracker (Chen et al., 2024)). This indicates stability requires explicit optimization rather than emerging implicitly from accuracy-focused training.

482

These findings advocate for **co-equal treatment of stability and accuracy** in evaluation and design. The substantial stability gaps among models (mAS: 66.6–91.9) highlight critical improvement opportunities. Future work should develop architectures that explicitly joint-optimize both criteria for trustworthy autonomous driving systems. **mAS is designed to complement mAP, not replace it.**

486 Models with high mAS but low mAP indicate pseudo-stability. Detailed discussion is provided in
 487 Appendix C.
 488

489 **5 CONCLUSION**

491 In this work, we address the critical yet overlooked aspect of temporal stability in online HD map-
 492 ping evaluation. While significant progress has been made in single-frame accuracy, the consistency
 493 of model outputs across sequential frames, which is essential for safe deployment, has remained
 494 largely unquantified. To bridge this gap, we introduce a multi-dimensional stability evaluation
 495 framework with novel metrics for presence, localization, and shape stability, integrated into a unified
 496 mean Average Stability (mAS) score. Extensive benchmarking demonstrates that accuracy (mAP)
 497 and stability (mAS) represent independent performance dimensions, challenging the assumption that
 498 accuracy optimization alone ensures real-world reliability. Our analysis further reveals how archi-
 499 tectural choices, including temporal fusion strategies, sensor modality, training regimens, backbone
 500 designs, and BEV encoders, distinctly influence both accuracy and stability. By establishing the first
 501 stability-centric benchmark, we aim to shift community focus beyond accuracy alone and inspire the
 502 development of next-generation online HD mapping systems that achieve both high accuracy and
 503 temporal consistency, thereby advancing more robust and trustworthy autonomous driving.
 504

505 **Ethics Statement.** This work presents a benchmarking framework for evaluating temporal sta-
 506 bility in online HD mapping. All experiments are conducted on the publicly available nuScenes
 507 dataset (Caesar et al., 2020) under standard research protocols, with no human subjects involved.
 508 While the study itself does not collect sensitive data, we recognize that broader deployment of HD
 509 mapping technology raises important societal considerations: privacy risks from detailed environ-
 510 mental sensing, safety implications if models are overtrusted in autonomous systems, computational
 511 and environmental costs of large-scale model training, and potential performance disparities across
 512 diverse driving environments. We encourage the community to address these concerns through re-
 513 sponsible data practices, robust safety validation, efficient algorithms, and inclusive evaluation. This
 514 work adheres to the ICLR Code of Ethics and aims to promote safer and more reliable autonomous
 515 systems through transparent and reproducible evaluation.

516 **Reproducibility statement.** To ensure the reproducibility of our work, we provide a com-
 517 prehensive benchmark toolkit, including evaluation code and visualization script complete with full
 518 technical documentation, at <https://stablehdmap.github.io/>. The implementation details of all mod-
 519 els, training configurations, and hyperparameters are described in Section 4.1 and the Appendix.
 520 Our stability evaluation framework is fully detailed in Section 3, with algorithmic steps and metric
 521 formulations explicitly defined. The nuScenes dataset (Caesar et al., 2020) used in this study is
 522 publicly available, and all preprocessing steps follow standard practices as cited. We encourage the
 523 community to use our released resources to facilitate fair comparisons and further research.
 524

525 **REFERENCES**

526 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
 527 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
 528 autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
 529 recognition, pp. 11621–11631, 2020.

530 Jiacheng Chen, Yuefan Wu, Jiaqi Tan, Hang Ma, and Yasutaka Furukawa. Maptracker: Track-
 531 ing with strided memory fusion for consistent vector hd mapping. In European Conference on
 532 Computer Vision, pp. 90–107. Springer, 2024.

533 Shaoyu Chen, Tianheng Cheng, Xinggang Wang, Wenming Meng, Qian Zhang, and Wenyu Liu.
 535 Efficient and robust 2d-to-bev representation learning via geometry-guided kernel transformer.
 536 arXiv preprint arXiv:2206.04584, 2022.

537 Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. Pivotnet: Vectorized pivot learning for end-to-
 538 end hd map construction. In Proceedings of the IEEE/CVF International Conference on Computer
 539 Vision, pp. 3672–3682, 2023.

540 Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang, Hang Su, Xingxing
 541 Wei, and Jun Zhu. Benchmarking robustness of 3d object detection to common corruptions.
 542 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 543 1022–1032, 2023.

544 Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic. Producing
 545 and leveraging online map uncertainty in trajectory prediction. In *Proceedings of the IEEE/CVF*
 546 *Conference on Computer Vision and Pattern Recognition*, pp. 14521–14530, 2024.

548 Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, Byun-
 549 gIn Yoo, Haimei Zhao, and Jing Zhang. Mapdistill: Boosting efficient camera-based hd map
 550 construction via camera-lidar fusion model distillation. In *European Conference on Computer*
 551 *Vision*, pp. 166–183. Springer, 2024a.

552 Xiaoshuai Hao, Mengchuan Wei, Yifan Yang, Haimei Zhao, Hui Zhang, Yi Zhou, Qiang Wang,
 553 Weiming Li, Lingdong Kong, and Jing Zhang. Is your hd map constructor reliable under sensor
 554 corruptions? *Advances in Neural Information Processing Systems*, 37:22441–22482, 2024b.

556 Xiaoshuai Hao, Lingdong Kong, Rong Yin, Pengwei Wang, Jing Zhang, Yunfeng Diao, and Shu
 557 Zhao. Safemap: Robust hd map construction from incomplete observations. *arXiv preprint*
 558 *arXiv:2507.00861*, 2025a.

560 Xiaoshuai Hao, Guanqun Liu, Yuting Zhao, Yuheng Ji, Mengchuan Wei, Haimei Zhao, Lingdong
 561 Kong, Rong Yin, and Yu Liu. Msc-bench: Benchmarking and analyzing multi-sensor corruption
 562 for driving perception. *arXiv preprint arXiv:2501.01037*, 2025b.

563 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 564 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 565 770–778, 2016.

567 Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, and Ziwei Liu. Lidar-based 4d panoptic
 568 segmentation via dynamic shifting network. *arXiv preprint arXiv:2203.07186*, 2022.

570 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
 571 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the*
 572 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 17853–17862, 2023.

573 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
 574 Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient
 575 autonomous driving. In *Proceedings of the IEEE/CVF International Conference on Computer*
 576 *Vision*, pp. 8340–8350, 2023.

578 Beomjun Kim, Suhan Woo, Sejong Heo, and Euntai Kim. Bridgeta: Bridging the representation
 579 gap in knowledge distillation via teacher assistant for bird’s eye view map segmentation. *arXiv*
 580 *preprint arXiv:2508.09599*, 2025.

581 Lingdong Kong, Yaru Niu, Shaoyuan Xie, Hanjiang Hu, Lai Xing Ng, Benoit R Cottreau, Liangjun
 582 Zhang, Hesheng Wang, Wei Tsang Ooi, Ruijie Zhu, et al. The robodepth challenge: Methods and
 583 advancements towards robust depth estimation. *arXiv preprint arXiv:2307.15061*, 2023.

585 Lingdong Kong, Wesley Yang, Jianbiao Mei, Youquan Liu, Ao Liang, Dekai Zhu, Dongyue Lu,
 586 Wei Yin, Xiaotao Hu, Mingkai Jia, et al. 3d and 4d world modeling: A survey. *arXiv preprint*
 587 *arXiv:2509.07996*, 2025.

588 Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok Bae, and Jongyoul Park. An energy and
 589 gpu-computation efficient backbone network for real-time object detection. In *Proceedings of the*
 590 *IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 0–0, 2019.

592 Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and
 593 evaluation framework. In *2022 International Conference on Robotics and Automation (ICRA)*,
 pp. 4628–4634. IEEE, 2022.

594 Yang Li, Zongzheng Zhang, Xuchong Qiu, Xinrun Li, Ziming Liu, Leichen Wang, Ruikai Li,
 595 Zhenxin Zhu, Huan-ang Gao, Xiaojian Lin, et al. Reusing attention for one-stage lane topol-
 596 ogy understanding. [arXiv preprint arXiv:2507.17617](#), 2025.

597

598 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng
 599 Dai. Bevformer: learning bird’s-eye-view representation from lidar-camera via spatiotemporal
 600 transformers. [IEEE Transactions on Pattern Analysis and Machine Intelligence](#), 2024.

601 Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and
 602 Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construc-
 603 tion. [arXiv preprint arXiv:2208.14437](#), 2022.

604

605 Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
 606 Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for end-
 607 to-end autonomous driving. In [Proceedings of the Computer Vision and Pattern Recognition](#)
 608 Conference, pp. 12037–12047, 2025a.

609 Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu, Chang Huang, and
 610 Xinggang Wang. Maptrv2: An end-to-end framework for online vectorized hd map construction.
 611 [International Journal of Computer Vision](#), 133(3):1352–1374, 2025b.

612 Adam Lilja, Junsheng Fu, Erik Stenborg, and Lars Hammarstrand. Localization is all you evaluate:
 613 Data leakage in online mapping datasets and how to fix it. In [Proceedings of the IEEE/CVF](#)
 614 Conference on Computer Vision and Pattern Recognition, pp. 22150–22159, 2024.

615

616 Xiaolu Liu, Song Wang, Wentong Li, Ruizi Yang, Junbo Chen, and Jianke Zhu. Mgmap: Mask-
 617 guided learning for online vectorized hd map construction. In [Proceedings of the IEEE/CVF](#)
 618 Conference on Computer Vision and Pattern Recognition, pp. 14812–14821, 2024a.

619 Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end
 620 vectorized hd map learning. In [International Conference on Machine Learning](#), pp. 22352–22369.
 621 PMLR, 2023.

622

623 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 624 Swin transformer: Hierarchical vision transformer using shifted windows. In [Proceedings of the](#)
 625 [IEEE/CVF international conference on computer vision](#), pp. 10012–10022, 2021.

626

627 Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela Rus, and Song Han.
 628 Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. [arXiv](#)
 629 preprint [arXiv:2205.13542](#), 2022.

630

631 Zihao Liu, Xiaoyu Zhang, Guangwei Liu, Ji Zhao, and Ningyi Xu. Leveraging enhanced queries
 632 of point sets for vectorized map construction. In [European Conference on Computer Vision](#), pp.
 633 461–477. Springer, 2024b.

634

635 Dong-Hee Paek, Seung-Hyun Kong, and Kevin Tirta Wijaya. K-radar: 4d radar object detection for
 636 autonomous driving in various weather conditions. [Advances in Neural Information Processing](#)
 637 Systems, 35:3819–3829, 2022.

638

639 Limeng Qiao, Wenjie Ding, Xi Qiu, and Chi Zhang. End-to-end vectorized hd-map construction
 640 with piecewise bezier curve. In [Proceedings of the IEEE/CVF Conference on Computer Vision](#)
 641 and Pattern Recognition, pp. 13218–13228, 2023.

642

643 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
 644 works. 2019.

645

646 Angtian Wang, Yihong Sun, Adam Kortylewski, and Alan L Yuille. Robust object detection under
 647 occlusion with context-aware compositionalnets. In [Proceedings of the IEEE/CVF conference on](#)
 648 [computer vision and pattern recognition](#), pp. 12645–12654, 2020.

649

650 Song Wang, Wentong Li, Wenyu Liu, Xiaolu Liu, and Jianke Zhu. Lidar2map: In defense of
 651 lidar-based semantic map construction using online camera distillation. In [Proceedings of the](#)
 652 [IEEE/CVF Conference on Computer Vision and Pattern Recognition](#), pp. 5186–5195, 2023.

648 Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
 649 Liu. Robobev: Towards robust bird's eye view perception under corruptions. [arXiv preprint](#)
 650 [arXiv:2304.06719](#), 2023.

651 Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei Liu.
 652 Benchmarking and improving bird's eye view perception robustness in autonomous driving. [IEEE](#)
 653 [Transactions on Pattern Analysis and Machine Intelligence](#), 2025.

654 Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. [Sensors](#),
 655 18(10):3337, 2018.

656 Ziyang Yan, Ruihai Li, Zhiyong Cui, Bohan Li, Han Jiang, Yilong Ren, Aoyong Li, Zhenning Li,
 657 Sijia Wen, and Haiyang Yu. Mapkd: Unlocking prior knowledge with cross-modal distillation for
 658 efficient online hd map construction. [arXiv preprint arXiv:2508.15653](#), 2025.

659 Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Streammapnet: Streaming
 660 mapping network for vectorized online hd map construction. In [Proceedings of the IEEE/CVF](#)
 661 [Winter Conference on Applications of Computer Vision](#), pp. 7356–7365, 2024.

662 Gongjie Zhang, Jiahao Lin, Shuang Wu, Zhipeng Luo, Yang Xue, Shijian Lu, Zuoguan Wang,
 663 et al. Online map vectorization for autonomous driving: A rasterization perspective. [Advances in](#)
 664 [Neural Information Processing Systems](#), 36:31865–31877, 2023.

665 Xiaoyu Zhang, Guangwei Liu, Zihao Liu, Ningyi Xu, Yunhui Liu, and Ji Zhao. Enhancing vec-
 666 torized map perception with historical rasterized maps. In [European Conference on Computer](#)
 667 [Vision](#), pp. 422–439. Springer, 2024a.

668 Zhixin Zhang, Yiyuan Zhang, Xiaohan Ding, Fusheng Jin, and Xiangyu Yue. Online vectorized
 669 hd map construction using geometry. In [European Conference on Computer Vision](#), pp. 73–90.
 670 Springer, 2024b.

671 Zongzheng Zhang, Xuchong Qiu, Boran Zhang, Guantian Zheng, Xunjiang Gu, Guoxuan Chi,
 672 Huan-ang Gao, Leichen Wang, Ziming Liu, Xinrun Li, et al. Delving into mapping uncertainty
 673 for mapless trajectory prediction. [arXiv preprint arXiv:2507.18498](#), 2025.

674 Zijian Zhu, Yichi Zhang, Hai Chen, Yinpeng Dong, Shu Zhao, Wenbo Ding, Jiachen Zhong, and
 675 Shibao Zheng. Understanding the robustness of 3d object detection with bird's-eye-view repre-
 676 sentations in autonomous driving. In [Proceedings of the IEEE/CVF Conference on Computer](#)
 677 [Vision and Pattern Recognition](#), pp. 21600–21610, 2023.

678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 Appendix

704 In the appendix, we supply further details on the proposed stability evaluation framework, the bench-
 705 mark setup, experimental analyses, and visualizations that are omitted from the main paper for
 706 brevity. The appendix is structured as follows:

- 708 • Sec. A provides additional statements on the use of Large Language Models (LLMs) in this
 709 work.
- 710 • Sec. B presents implementation details of the stability evaluation algorithm pipeline.
- 711 • Sec. C offers supplementary experimental setups and related ablation studies.
- 712 • Sec. D presents additional analyses from 10 different models.
- 713 • Sec. E displays supplementary visualizations, encompassing additional mAP vs. mAS com-
 714 parisons , and illustrations of how unstable predictions affect downstream tasks.
- 715 • Sec. F discusses the limitations of our work and provides an outlook on future work.

719 A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

721 In the preparation of this paper, large language models (LLMs) were used solely as an assistive tool
 722 for writing refinement and polishing. The core research ideas, theoretical framework, experimental
 723 design, data analysis, and result interpretation were entirely conceived and conducted by the human
 724 authors. The LLM was employed after the intellectual substance of the work was fully established,
 725 specifically to assist with improving grammatical correctness, sentence fluency, and overall clarity of
 726 expression in certain parts of the manuscript. It did not contribute to the scientific ideation, method-
 727 ological development, or conclusions of the research. All final content was thoroughly reviewed,
 728 verified, and approved by the authors.

730 B STABILITY EVALUATION ALGORITHM WITH ADDITIONAL DETAILS

732 This section provides comprehensive algorithmic details for the multi-dimensional map stability
 733 evaluation framework introduced in Section 3. The complete pipeline consists of four main stages:
 734 temporal sampling, cross-frame instance matching, geometric alignment and resampling, and sta-
 735 bility metric computation. Each stage is implemented through carefully designed algorithms that
 736 ensure robust and reproducible evaluation of temporal stability in online HD mapping.

738 B.1 TEMPORAL SAMPLING

740 Algorithm 1 implements the temporal sampling stage that constructs frame pairs for stability anal-
 741 ysis. The algorithm randomly selects subsequent frames within a predefined maximum tempo-
 742 ral interval M for each anchor frame, ensuring comprehensive coverage of temporal variations
 743 while maintaining computational efficiency. This approach generates a sampling set S of size
 744 $|S| = L - M$, providing the foundational inputs for subsequent stability analysis.

746 Algorithm 1 Temporal Sampling Algorithm

747 **Require:** Model output frame sequence $\{D_1, D_2, \dots, D_L\}$, maximum temporal interval M
 748 **Ensure:** Frame pair sampling set S

749 1: // Stage 1: Temporal Sampling

750 2: $S \leftarrow \emptyset$ {Initialize sampling set}

751 3: **for** $t = 1$ to $L - M$ **do**

752 4: $k \leftarrow \text{RandomSample}(1, M)$ {Random sampling within $[1, M]$ range}

753 5: $S \leftarrow S \cup \{(D_t, D_{t+k})\}$ {Add frame pair to sampling set}

754 6: **end for**

755 7: **return** S

756 B.2 CROSS-FRAME INSTANCE MATCHING
757758 Algorithm 2 implements the cross-frame instance matching stage that establishes correspondence
759 between map elements across temporal frames.
760761 **Algorithm 2** Cross-Frame Instance Matching Algorithm

762 **Require:** Frame pair sampling set S
 763 **Ensure:** Matched polyline pairs \mathcal{M}

764 1: // Stage 2: Cross-Frame Instance Matching
 765 2: $\mathcal{M} \leftarrow \emptyset$ {Initialize matching result set}
 766 3: **for** each $(D_t, D_{t+k}) \in S$ **do**
 767 4: // Step 2.1: Frame-to-GT Matching
 768 5: $\text{matches}_t \leftarrow \text{HungarianMatching}(D_t, \text{GT}_t)$
 769 6: $\text{matches}_{t+k} \leftarrow \text{HungarianMatching}(D_{t+k}, \text{GT}_{t+k})$
 770 7: // Step 2.2: GT-based Association
 771 8: $E \leftarrow \text{FindCommonGTInstances}(\text{matches}_t, \text{matches}_{t+k})$
 772 9: **for** each $e \in E$ **do**
 773 10: $\text{poly}_t(e) \leftarrow \text{GetPolyline}(\text{matches}_t, e)$
 774 11: $\text{poly}_{t+k}(e) \leftarrow \text{GetPolyline}(\text{matches}_{t+k}, e)$
 775 12: $\mathcal{M} \leftarrow \mathcal{M} \cup \{(\text{poly}_{t+k}(e), \text{poly}_t(e))\}$
 776 13: **end for**
 777 14: **end for**
 778 15: **return** \mathcal{M}

779 The algorithm employs a two-step strategy: first matching predictions to ground truth within each
780 frame using the algorithm 3, then establishing temporal correspondence through ground truth-based
781 association.782 **Algorithm 3** Hungarian Matching Sub-algorithm

783 **Require:** Prediction frame D , ground truth frame GT, cost function C
 784 **Ensure:** Matching result matches

785 1: $P \leftarrow \text{GetPolygons}(D)$ {Get prediction polygons}
 786 2: $G \leftarrow \text{GetPolygons}(\text{GT})$ {Get ground truth polygons}
 787 3: $n \leftarrow |P|, m \leftarrow |G|$
 788 4: // Build cost matrix
 789 5: $C_{\text{matrix}} \leftarrow \text{zeros}(n \times m)$
 790 6: **for** $i = 1$ to n **do**
 791 7: **for** $j = 1$ to m **do**
 792 8: $C_{\text{matrix}}[i, j] \leftarrow C(P[i], G[j])$ {Geometric and semantic similarity cost}
 793 9: **end for**
 794 10: **end for**
 795 11: // Execute Hungarian algorithm
 796 12: $\text{matches} \leftarrow \text{HungarianAlgorithm}(C_{\text{matrix}})$
 797 13: **return** matches

798 This indirect matching approach leverages the consistency of ground truth annotations to overcome
799 the inherent inconsistencies in model predictions, yielding a set of matched instance pairs for each
800 frame pair.
801

802 B.3 GEOMETRIC ALIGNMENT AND RESAMPLING

803 Algorithm 4 implements the geometric alignment and resampling stage that ensures spatially con-
804 sistent comparison between matched polylines.
805

806 The algorithm transforms historical polylines into the current frame’s coordinate system, applies
 807 algorithm 5 to ensure evaluation consistency, and performs uniform resampling along the x -axis.
 808 This process guarantees spatially aligned and comparable point sets for subsequent stability analysis,
 809 returning a comprehensive set of matched and aligned polyline pairs, each annotated with the

810
811
812
813
814
815
816
817
818
819
820
821
822
823

Algorithm 4 Geometric Alignment and Resampling Algorithm

824
825 **Require:** Matched polyline pairs \mathcal{M} , perception range $[x_{\min}, x_{\max}, y_{\min}, y_{\max}]$, resampling points
826 N
827 **Ensure:** Matched and aligned polyline pairs $\mathcal{M}^{\text{sample}}$
828 1: // Stage 3: Geometric Alignment and Resampling
829 2: $\mathcal{M}^{\text{sample}} \leftarrow \emptyset$ {Initialize sampled polyline pairs set}
830 3: **for** each $(\text{poly}_{t+k}(e), \text{poly}_t(e)) \in \mathcal{M}$ **do**
831 4: // Step 3.1: Coordinate Transformation
832 5: $\text{poly}_{t \rightarrow t+k}(e) \leftarrow T_{\text{world} \rightarrow t+k} \cdot T_{t \rightarrow \text{world}} \cdot \text{poly}_t(e)$
833 6: // Step 3.2: Perception Range Filtering
834 7: $\text{poly}_{t \rightarrow t+k}(e) \leftarrow \text{ClipToPerceptionRange}(\text{poly}_{t \rightarrow t+k}(e), [x_{\min}, x_{\max}, y_{\min}, y_{\max}])$
835 8: // Step 3.3: Dynamic Axis Selection and Uniform Resampling
836 9: $\mathcal{I} \leftarrow \text{DynamicAxisSelection}(\text{poly}_{t+k}(e))$ {Divide polyline into intervals with primary sam-
837 pling axis}
838 10: $\{n_j\}_{j=1}^K \leftarrow \text{AllocateSamplingPoints}(\mathcal{I}, N)$ {Allocate N points proportionally to intervals}
839 11: $\text{poly}_{t+k}^{\text{sample}}(e) \leftarrow \emptyset, \text{poly}_t^{\text{sample}}(e) \leftarrow \emptyset$
840 12: **for** each interval $I_j \in \mathcal{I}$ with n_j sampling points **do**
841 13: **if** I_j is X-sampling interval **then**
842 14: Generate n_j uniform x -values in $[x_{\min}^j, x_{\max}^j]$
843 15: Compute corresponding y -coordinates via linear interpolation
844 16: **else**
845 17: Generate n_j uniform y -values in $[y_{\min}^j, y_{\max}^j]$
846 18: Compute corresponding x -coordinates via linear interpolation
847 19: **end if**
848 20: Add sampled points to $\text{poly}_{t+k}^{\text{sample}}(e)$ and $\text{poly}_t^{\text{sample}}(e)$
849 21: **end for**
850 22: $\mathcal{M}^{\text{sample}} \leftarrow \mathcal{M}^{\text{sample}} \cup \{(\text{poly}_{t+k}^{\text{sample}}(e), \text{poly}_t^{\text{sample}}(e), e)\}$
851 23: **end for**
852 24: **return** $\mathcal{M}^{\text{sample}}$

853
854
855
856
857
858
859
860
861
862
863

864 corresponding map element identifier. The algorithm transforms historical polylines into the current
 865 frame's coordinate system, applies algorithm 5 to ensure evaluation consistency, and performs
 866 uniform resampling using a dynamic axis selection mechanism (detailed below). This process guar-
 867 antees spatially aligned and comparable point sets for subsequent stability analysis, returning a
 868 comprehensive set of matched and aligned polyline pairs, each annotated with the corresponding
 869 map element identifier.

870
 871
 872 **Dynamic Axis Selection Mechanism.** For a map instance composed of a point sequence
 873 $(x_1, y_1), (x_2, y_2), \dots, (x_M, y_M)$, we do not perform resampling along a fixed axis. Instead, we
 874 dynamically determine the primary sampling axis by analyzing its local geometric orientation. The
 875 specific procedure is as follows:

876
 877 1. **Calculation of Local Direction Vectors:** For each consecutive segment \vec{s}_j in the instance,
 878 formed by points p_j and p_{j+1} , its direction vector is computed as $\vec{v}_j = (dx_j, dy_j) =$
 879 $(x_{j+1} - x_j, y_{j+1} - y_j)$.
 880
 881 2. **Determination of the Primary Sampling Axis:** We compute the absolute changes of the
 882 segment along each coordinate axis:

$$\Delta x_j = |dx_j|, \quad \Delta y_j = |dy_j|$$

883 If $\Delta y_j > \Delta x_j$, the segment is considered **vertically oriented** and categorized as an **"X-
 884 sampling interval"**. Conversely, if $\Delta x_j > \Delta y_j$, it is considered **horizontally oriented**
 885 and categorized as a **"Y-sampling interval"**.

886
 887 3. **Determination of the Number of Sampling Points per Interval:** The number of sampling
 888 points in each interval is determined based on its length. First, the instance is divided into K
 889 intervals using the dynamic axis selection method described previously. For each interval
 890 j , we calculate its length along the **primary sampling axis**:

- 891 • **For an X-sampling interval:** $L_j = x_{\max}^j - x_{\min}^j$
- 892 • **For a Y-sampling interval:** $L_j = y_{\max}^j - y_{\min}^j$

893 Subsequently, sampling points are allocated proportionally based on the relative length of
 894 each interval. The initial number of sampling points n_j for each interval is calculated as
 895 follows:

$$n_j = \text{round} \left(N \times \frac{L_j}{\sum_{t=1}^K L_t} \right)$$

896 where $\text{round}(\cdot)$ denotes rounding to the nearest integer.

897
 898 4. **Total Adjustment Mechanism:** Since rounding may cause the total number of points
 899 $\sum_{i=1}^K n_i \neq N$, we introduce an adjustment mechanism:

- 900 • If $\sum_{i=1}^K n_i < N$: Points are incrementally allocated to intervals in descending order
 901 of their length ratio $\frac{L_i}{\sum L_j}$ until the total number of points equals N .
- 902 • If $\sum_{i=1}^K n_i > N$: Points are sequentially removed from intervals in ascending order
 903 of their length ratio until the total number of points equals N .

904
 905 5. **Axial Resampling Execution:**

- 906 • Within an **X-sampling interval**, we uniformly generate n_s sample points x_i across the
 907 x-value range $[x_{\min}^s, x_{\max}^s]$, and compute the corresponding y -coordinates via linear
 908 interpolation:

$$x_i = x_{\min}^s + (i - 1) \cdot \frac{x_{\max}^s - x_{\min}^s}{n_s - 1}, \quad i = 1, 2, \dots, n_s$$

$$\text{poly}^{\text{sample}} = \{(x_i, y(x_i))\}$$

- Within a **Y-sampling interval**, we uniformly generate n_s sample points y_i across the y-value range $[y_{\min}^s, y_{\max}^s]$, and compute the corresponding x -coordinates via linear interpolation:

$$y_i = y_{\min}^s + (i-1) \cdot \frac{y_{\max}^s - y_{\min}^s}{n_s - 1}, \quad i = 1, 2, \dots, n_s$$

$$\text{poly}^{\text{sample}} = \{(x(y_i), y_i)\}$$

This mechanism ensures that, regardless of the map element's orientation, uniform sampling is always performed along its locally dominant direction of extension, thereby establishing a **fair and robust benchmark** for point-to-point geometric comparison. Specifically designed for the **piecewise-smooth polyline structures** prevalent in online HD maps.

Algorithm 5 Perception Range Filtering Sub-algorithm

Require: Transformed polyline $\text{poly}_{t \rightarrow t+k}(e)$, perception range $[x_{\min}, x_{\max}, y_{\min}, y_{\max}]$

Ensure: Filtered polyline $\text{poly}_{\text{filtered}}$

```

1:  $\text{poly}_{\text{filtered}} \leftarrow \emptyset$ 
2: for each point  $(x, y) \in \text{poly}_{t \rightarrow t+k}(e)$  do
3:   if  $x_{\min} \leq x \leq x_{\max}$  AND  $y_{\min} \leq y \leq y_{\max}$  then
4:      $\text{poly}_{\text{filtered}} \leftarrow \text{poly}_{\text{filtered}} \cup \{(x, y)\}$ 
5:   end if
6: end for
7: return  $\text{poly}_{\text{filtered}}$ 

```

B.4 STABILITY METRIC COMPUTATION

Algorithm 6 implements the core stability metric computation that quantifies temporal stability across three dimensions: presence, localization, and shape. The algorithm processes each matched polyline pair to compute individual stability scores, then aggregates these scores at the class and model levels. The presence stability evaluates detection consistency, the localization stability quantifies positional jitter, and the shape stability assesses geometric consistency through curvature comparison.

The specific implementation of the ComputeCurvature function mentioned in Algorithm 6 is detailed in Algorithm 7, which approximates polyline curvature by computing the average angles between consecutive segments, thereby providing a robust geometric measurement method with translation and rotation invariance.

This curvature-based approach enables effective comparison of geometric consistency across temporal frames while capturing subtle shape variations that may indicate instability in the model's predictions.

Upon completion of all sub-metric evaluations, the final mean Average Stability (mAS) score is computed, providing a holistic measure of the model's temporal stability across all evaluated classes.

C FURTHER DETAILS ON THE EXPERIMENTAL SETUP

C.1 SUPPLEMENTAL DETAILS ON THE EXPERIMENTAL SETUP

Prior to conducting experiments, it is necessary to configure certain hyperparameters. This section primarily elaborates on the detailed configurations of these hyperparameters adopted in our study, along with the rationale for these choices:

- Maximum frame interval ($M=2$): The configuration of different frame intervals essentially represents distinct evaluation scenarios for stability assessment, each carrying unique implications. Therefore, in addition to the experiments with $M=2$ presented in the main text, as shown in chapter C.4.3, we have conducted supplementary experiments with $M=3$, $M=5$, and $M=10$ to provide as comprehensive a stability evaluation as possible for existing models.

972

973

974

Algorithm 6 Multi-dimensional Map Stability Evaluation Framework - Stability Metric Computation

975

976

Require: Matched and aligned polyline pairs $\mathcal{M}^{\text{sample}}$, detection threshold τ , weighting parameter ω , scaling parameter β

Ensure: Overall model stability score mAS

- 1: // Stage 4: Stability Metric Computation
- 2: $\mathcal{C} \leftarrow \text{GetAllClasses}(\mathcal{M}^{\text{sample}})$ {Get all classes}
- 3: **for** each class $\in \mathcal{C}$ **do**
- 4: $\mathcal{I}_{\text{class}} \leftarrow \text{GetInstancesofClass}(\mathcal{M}^{\text{sample}}, \text{class})$
- 5: $\text{stability}_{\text{class}} \leftarrow 0$
- 6: **for** each $(\text{poly}_{t+k}^{\text{sample}}(e), \text{poly}_t^{\text{sample}}(e), e) \in \mathcal{I}_{\text{class}}$ **do**
- 7: // Compute Presence Stability
- 8: **if** $\text{score}_{t+k}(e) \geq \tau$ AND $\text{score}_t(e) \geq \tau$ OR $\text{score}_{t+k}(e) < \tau$ AND $\text{score}_t(e) < \tau$ **then**
- 9: $\text{Presence}(e) \leftarrow 1$
- 10: **else**
- 11: $\text{Presence}(e) \leftarrow 0.5$ {Flickering case}
- 12: **end if**
- 13: // Compute Localization Stability
- 14: $\text{avg_deviation} \leftarrow \frac{1}{N} \sum_{i=1}^N |\text{y}_{t+k}(x_i) - \text{y}_t(x_i)|$
- 15: $\text{Loc}(e) \leftarrow \beta \cdot \text{avg_deviation}$
- 16: // Compute Shape Stability
- 17: $\kappa_{t+k} \leftarrow \text{ComputeCurvature}(\text{poly}_{t+k}^{\text{sample}}(e))$
- 18: $\kappa_t \leftarrow \text{ComputeCurvature}(\text{poly}_t^{\text{sample}}(e))$
- 19: $\text{Shape}(e) \leftarrow 1 - \frac{|\kappa_{t+k} - \kappa_t|}{\pi}$
- 20: // Compute Comprehensive Stability
- 21: $\text{Stability}(e) \leftarrow \text{Presence}(e) \cdot [\omega \cdot \text{Loc}(e) + (1 - \omega) \cdot \text{Shape}(e)]$
- 22: $\text{stability}_{\text{class}} \leftarrow \text{stability}_{\text{class}} + \text{Stability}(e)$
- 23: **end for**
- 24: $\text{Stability}_{\text{class}} \leftarrow \frac{\text{stability}_{\text{class}}}{|\mathcal{I}_{\text{class}}|}$
- 25: **end for**
- 26: // Compute Overall Model Stability
- 27: $\text{mAS} \leftarrow \frac{1}{|\mathcal{C}|} \sum_{\text{class} \in \mathcal{C}} \text{Stability}_{\text{class}}$
- 28: **return** mAS

1007

1008

1009

1010

1011

1012

Algorithm 7 Curvature Computation Sub-algorithm

1013

1014

Require: Resampled polyline $\text{poly}^{\text{sample}} = \{(x_i, y_i) \mid i = 1, 2, \dots, N\}$

Ensure: Curvature κ

1015

1016

- 1: $\kappa \leftarrow 0$
- 2: **for** $j = 1$ to $N - 1$ **do**

1017

- 3: $\vec{v}_j \leftarrow (x_{j+1} - x_j, y_{j+1} - y_j)$ {Compute vector \vec{v}_j }

1018

- 4: $\vec{v}_{j+1} \leftarrow (x_{j+2} - x_{j+1}, y_{j+2} - y_{j+1})$ {Compute vector \vec{v}_{j+1} }

1019

- 5: $\theta_j \leftarrow \cos^{-1} \left(\frac{\vec{v}_j \cdot \vec{v}_{j+1}}{|\vec{v}_j| \cdot |\vec{v}_{j+1}|} \right)$ {Compute angle}

1020

- 6: $\kappa \leftarrow \kappa + \theta_j$

1021

- 7: **end for**

1022

- 8: $\kappa \leftarrow \frac{\kappa}{N-1}$ {Compute average curvature}

1023

- 9: **return** κ

1024

1025

- 1026 • Number of resampling points ($N=100$): The purpose of resampling is to adjust the distribution of map points on two instance polylines to be identical, thereby facilitating the calculation of stability metrics. Thus, the value of N should not be set too small to avoid undue influence from individual outliers on the instances in subsequent computations. However, beyond a sufficient threshold, variations in N do not significantly affect stability evaluation outcomes. Conversely, excessively large values of N may substantially reduce computational efficiency. Balancing resampling granularity and computational cost, we ultimately set $N = 100$. This value can be appropriately adjusted in different experimental settings.
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034 • Position Stability Scaling Factor ($\beta=15.0$): The specific implication of this scaling factor is that when the distance between two matched map points (i.e., points sampled at identical x-values on matched map instances) in adjacent frames equals β , their positional stability is considered zero. Consequently, the value of β corresponds to the distance threshold representing extreme instability. Typically, we define such extreme cases using the shorter map radius (half the length of the map's shorter side). In prevailing map construction paradigms, the standard map range is generally defined as $x \in [-15, 15]$, $y \in [-30, 30]$. Therefore, in our experiments, β is set to 15.0.
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041

1042 C.2 DESIGN RATIONALE FOR STABILITY METRICS AND PARAMETER SELECTION

1043 C.2.1 SHAPE STABILITY DESIGN MOTIVATION

1044
 1045
 1046 Our primary objective is to evaluate the temporal stability of map element shapes, rather than to
 1047 compute their precise differential geometric curvature. In the context of online mapping, instability
 1048 typically manifests as noticeable fluctuations or jitter in the polyline contours between consecutive
 1049 frames. A typical example would be a smoothly curved road being temporarily predicted as an
 1050 unnaturally sharp corner in certain frames. This type of macro-level shape flickering represents
 1051 exactly the kind of instability that downstream planning modules are particularly sensitive to.

- 1052 • **The Average Inter-Segment Angle Effectively Captures Macroscopic Instabilities:** The
 1053 average inter-segment angle, defined as $\kappa(\text{poly}) = \frac{1}{N-1} \sum_{j=1}^{N-1} \theta_j$, essentially measures
 1054 the cumulative rate of directional change along the entire curve. Any sudden and unstable
 1055 sharp corner or jagged fluctuation will significantly increase the value of $\sum \theta_j$, and will
 1056 therefore be effectively captured by our Shape Stability metric $(1 - |\Delta\kappa|/\pi)$.
- 1057 • **Robustness to Microscopic Noise:** The sensitivity concern raised by the reviewer is sub-
 1058 stantially mitigated through our fixed and reasonable sampling strategy. By employing a
 1059 **fixed sampling point count ($N=100$)**, we ensure **uniform and consistent sampling** for
 1060 all instances. Under such uniform and consistent sampling conditions, minor variations in
 1061 segment angles caused by sampling artifacts tend to be smoothed out through the averaging
 1062 process, while genuine shape instabilities emerge as significant signals.
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070

1071 Online HD mapping systems place high demands on evaluation efficiency, particularly in large-scale
 1072 benchmarking. It is essential to strike a balance between the discriminative power of a metric and
 1073 its computational cost.

1074 Regarding the Fréchet distance, while it is an excellent metric for curve similarity, its computa-
 1075 tional complexity is relatively high as it typically requires dynamic programming. This becomes a
 1076 bottleneck in benchmarking scenarios that require rapid evaluation of tens of thousands of instance
 1077 pairs.

1078 Concerning curvature signatures, these require denser sampling and more complex local computa-
 1079 tions. They present similar challenges in computational efficiency and implementation complexity,

1080 while also introducing the need for additional parameter selection such as determining the appropriate
 1081 scale for Gaussian smoothing.
 1082

1083 In contrast, our method based on the average inter-segment angle offers distinct advantages. It
 1084 demonstrates high computational efficiency since it involves only vector dot products and inverse
 1085 trigonometric calculations, with a complexity of $O(N)$. This makes it highly suitable for large-scale
 1086 evaluation. Furthermore, it maintains a clear physical interpretation as the output, represented by
 1087 average angular change, is straightforward to understand and visualize, providing intuitive feedback
 1088 for model diagnosis.
 1089

1090 1091 C.2.2 PRESENCE STABILITY DESIGN RATIONALE

1092 We wish to emphasize that **one of the core design objectives of our proposed presence metric
 1093 is precisely to directly capture various types of prediction inconsistencies, including semantic
 1094 flickering.**
 1095

1096 First, the "semantic flickering" mentioned would lead to a **significant decrease in the presence
 1097 metric**, thereby reducing the mAS. When a model exhibits semantic flickering. For example, if a
 1098 map instance is recognized as a "lane divider" at frame t but as a "road boundary" at frame $t + 1$. Our
 1099 presence metric is heavily penalized once such a mismatch occurs.

1100 Furthermore, the presence metric also accurately captures another form of instability: even after
 1101 accounting for range effects, if a map instance is detected at frame t but missed at frame $t + 1$, the
 1102 presence metric similarly incurs a strong penalty.
 1103

1104 1105 C.2.3 LOCALIZATION STABILITY PARAMETER SELECTION

1106 Regarding the scaling coefficient β in the localization stability formula: $\text{Loc}(e) = 1 - \frac{1}{\beta} \cdot$
 1107 $\frac{1}{N} \sum_{i=1}^N |y_{t+k}(x_i) - y_t(x_i)|$. The mAS metric necessarily decreases monotonically as β decreases.
 1108 The selection of $\beta = 15$ in our experimental setup was based on the following reasoning:
 1109

1110 First, we clarify the physical meaning of β . As shown in the formula, when the average distance
 1111 between corresponding map points of two instances reaches $\frac{1}{N} \sum_{i=1}^N |y_{t+k}(x_i) - y_t(x_i)| = \beta$, then
 1112 $\text{Loc}(e) = 0$. Therefore, β represents the distance threshold at which our framework applies the
 1113 maximum penalty to localization stability. Specifically, when the average distance between map points
 1114 of the same instance across two frames reaches β , our metric considers this instance "completely
 1115 unstable" between these frames.

1116 This threshold corresponds to the extreme case of "complete instability." We therefore define this
 1117 threshold as the map's short-range radius, which in the models we evaluated corresponds to $\beta =$
 1118 15. This value represents a distance at which localization errors would be considered critically
 1119 significant for autonomous driving applications.
 1120

1121 Experiments with different values of β were conducted, and the results align with the theoretical
 1122 reasoning, demonstrating that the mAS metric increases monotonically as the value of β increases.
 1123

1124 Based on the theoretical analysis and experimental results presented above, we argue that the value
 1125 of β should not be determined through experimental selection alone, but should instead be chosen
 1126 as a physically meaningful and appropriately justified value.
 1127

1128 C.2.4 COMPREHENSIVE STABILITY INDEX PARAMETER SELECTION

1129 Regarding the balancing coefficient ω used in the comprehensive stability calculation, it serves to
 1130 balance the relative importance between Localization Stability and Shape Stability. Our selection of
 1131 $\omega = 0.7$ was based on the following rationale: In autonomous driving, the localization stability of
 1132 map elements (such as the lateral position of lane lines or boundaries) directly impacts path planning,
 1133 vehicle control, and safety. For instance, localization jitter may cause the vehicle to deviate abruptly
 1134 from its lane, whereas shape variations (such as subtle changes in curvature) generally have a lesser

1134 impact, unless severe distortion occurs. Therefore, we assign a higher weight (70%) to localization
 1135 stability to reflect its greater importance in real-world driving scenarios.
 1136

1137 C.3 EVALUATION UNDER ADVERSE WEATHER CONDITIONS

1140 To ensure a fair and consistent evaluation, we did not introduce a new dataset but instead followed
 1141 the established practice from prior online HD mapping work, PivotNet, by curating a subset of
 1142 challenging scenarios from the nuScenes dataset. Specifically, we selected scenes under overcast,
 1143 rainy, and nighttime conditions, resulting in a total of 78 scenes for evaluation.

1144 Table 7: Evaluation Results Under Adverse Weather Conditions.
 1145

1146 Modal	1147 Temp	1148 Backbone	1149 BEV	1150 Epoch	1151 mAS_{pre}	1152 mAS_{loc}	1153 mAS_{shape}	1154 mAS
1148 Only C	1149 \times	1150 R18	1151 GKT	1152 24	1153 0.5773	1154 0.7035	1155 0.8556	1156 0.4457
1148 Only C	1149 \times	1150 R18	1151 GKT	1152 110	1153 0.5668	1154 0.6958	1155 0.8883	1156 0.4442
1148 Only C	1149 \times	1150 R50	1151 GKT	1152 24	1153 0.5683	1154 0.6062	1155 0.8538	1156 0.4149
1148 Only C	1149 \times	1150 R50	1151 GKT	1152 110	1153 0.5762	1154 0.7033	1155 0.874	1156 0.446
1148 Only C	1149 \times	1150 R50	1151 BEVFormer	1152 24	1153 0.5683	1154 0.7195	1155 0.8543	1156 0.4416
1148 Only C	1149 \times	1150 R50	1151 BEVPool	1152 24	1153 0.5639	1154 0.699	1155 0.8531	1156 0.4319
1148 Only C	1149 \checkmark	1150 R50	1151 GKT	1152 24	1153 0.5624	1154 0.7224	1155 0.872	1156 0.4419
1148 Only C	1149 \checkmark	1150 R50	1151 BEVFormer	1152 24	1153 0.5663	1154 0.7324	1155 0.8673	1156 0.4475
1148 C+L	1149 \times	1150 R50	1151 GKT	1152 24	1153 0.5662	1154 0.7173	1155 0.858	1156 0.4391

1157 Based on the results in the table above, it can be observed that all stability metrics show a significant
 1158 decrease under adverse weather conditions. Moreover, while the stability metrics decrease markedly,
 1159 they also tend to converge across different models. This occurs because under adverse weather
 1160 conditions, model instability manifests more prominently in terms of instance presence stability, that
 1161 is, whether an instance is detected or persists over time, rather than in positional or shape variations.
 1162 As a result, the presence stability metric drops significantly and becomes similar across models. This
 1163 finding aligns with the expected performance drop of existing models under challenging weather
 1164 conditions.

1165 In our metric design, since the location and shape stability metrics can only reflect the stability of
 1166 instances that are consistently present, we incorporated the presence stability as a weighting coeffi-
 1167 cient in the overall metric. This ensures a comprehensive and accurate representation of stability in
 1168 terms of presence, location, and shape. Consequently, when the presence stability is low, variations
 1169 in location and shape stability have a diminished impact on the overall metric. This design leads
 1170 to the overall mAS scores exhibiting a distribution similar to that of the presence metric, showing
 1171 lower values that are closely clustered across different models.

1172 1173 C.4 ABLATION STUDIES ON HYPERPARAMETERS

1174 C.4.1 ABLATION STUDY ON THE LOCALIZATION STABILITY SCALING FACTOR β

1175 Experiments with different values of β were conducted, and the results align with the theoretical
 1176 reasoning, demonstrating that the mAS metric increases monotonically as the value of β increases.

1177 C.4.2 ABLATION STUDY ON THE RESAMPLING DENSITY N

1178 Concerning the resampling density (N), the design principle is to ensure it is **significantly higher**
 1179 than the number of points in the vast majority of original map instances. In current mainstream
 1180 paradigms, this instance point count is typically fixed at 20. The core objective is to **avoid computa-**
 1181 **tional instability caused by an insufficient number of random samples**, thereby ensuring the

Table 8: Ablation Study on the Localization Stability Scaling Factor β .

Model	β	Presence	Loc	Shape	mAS
MapTRv1 noTemp R18-GKT-24	5	0.911	0.4097	0.4097	0.6053
	10	0.8776	0.6768	0.886	0.697
	15	0.8776	0.7499	0.8852	0.7283
	20	0.8776	0.8012	0.886	0.7497
MapTRv1 noTemp R50-GKT-24	5	0.8776	0.5601	0.886	0.6471
	10	0.911	0.561	0.9084	0.6737
	15	0.912	0.6544	0.9063	0.7158
	20	0.911	0.7052	0.9084	0.7393
MapTRv1 Temp R50-GKT-24	5	0.8861	0.3955	0.5812	0.5812
	10	0.8861	0.5017	0.896	0.6265
	15	0.8861	0.5974	0.8928	0.6657
	20	0.8861	0.6325	0.896	0.6824
MapTRv1 Temp R50-BevFormer-24	5	0.9035	0.4885	0.913	0.6382
	10	0.9035	0.6411	0.913	0.7091
	15	0.9035	0.6947	0.9121	0.73
	20	0.9035	0.7931	0.913	0.7751
MapTRv2 noTemp R50-BevPool-24	5	0.9138	0.5231	0.9143	0.67
	10	0.9138	0.6251	0.9143	0.7144
	15	0.9147	0.6861	0.9095	0.7396
	20	0.9138	0.7255	0.9143	0.7579
MGMap noTemp R50-Former-24	5	0.9213	0.5195	0.9256	0.6774
	10	0.9213	0.6645	0.9256	0.7428
	15	0.9221	0.7498	0.9234	0.7801
	20	0.9213	0.8008	0.9256	0.8029
MapQR noTemp R50-Former-24	5	0.9184	0.5865	0.9257	0.7058
	10	0.9184	0.6937	0.9257	0.7553
	15	0.9182	0.7556	0.9156	0.7781
	20	0.9184	0.7981	0.9257	0.8021
GEMap noTemp R50-Former-24	5	0.9227	0.4976	0.929	0.6657
	10	0.9227	0.6186	0.929	0.7198
	15	0.9227	0.6973	0.9258	0.7546
	20	0.9227	0.7603	0.929	0.7851

consistency and repeatability of the stability metric. If N is too small, random variations in individual sample points can disproportionately influence the overall stability score. At the same time, we aim to prevent **computational inefficiency** from an excessively large N . Our experiments confirm that the map stability metric shows no significant variation once the resampling density reaches $N \geq 100$. Therefore, balancing sampling density against computational cost, we selected $N = 100$ to achieve the best overall performance.

C.4.3 ABLATION STUDY ON THE TEMPORAL SAMPLING INTERVAL

Temporal sampling serves as the initial step in the stability evaluation benchmark. In the default configuration, the time interval M is set to 2 to assess the granularity of map changes, as delineated in Table 1. To provide a more comprehensive illustration of our evaluation framework’s performance across different temporal sampling intervals, we conducted further experiments with M values of 3, 5, and 10. The results are presented in Tables 10, 11, and 12 respectively. All other experimental settings remain consistent with Table 1.

The ablation studies reveal several important patterns regarding temporal stability assessment. First, as the temporal interval M increases from 2, 3, 5, 10, most models exhibit a progressive decline in stability scores across all metrics, particularly in Localization Stability. This pattern is consistent across different architectural paradigms and demonstrates the challenge of maintaining consistency over longer time horizons. For instance, MapTR (Liao et al., 2022) with camera-only input shows a reduction in mAS from 71.6 ($M=2$) to 61.9 ($M=10$), primarily driven by decreasing Localization Stability. Similar trends are observed for other non-temporal models, with BeMapNet (Qiao et al., 2023) maintaining superior Presence Stability but experiencing significant Localization Stability degradation from 65.8 ($M=2$) to 41.6 ($M=10$).

1242

1243

1244

1245

Table 9: Ablation Study on the Resampling Density N .

Model	N	Presence	Loc	Shape	mAS
MapTRv1	30	0.88	0.7535	0.8862	0.7318
	50	0.8776	0.7499	0.8852	0.7283
	100	0.8794	0.7541	0.8867	0.7317
	150	0.8783	0.7533	0.8862	0.73
	200	0.8789	0.7524	0.887	0.7305
MapTRv1	30	0.9107	0.6534	0.9078	0.7145
	50	0.912	0.6544	0.9063	0.7158
	100	0.9111	0.6479	0.9052	0.7112
	150	0.9107	0.6473	0.9087	0.7119
	200	0.911	0.6488	0.905	0.7113
MapTRv1	30	0.8964	0.5663	0.8973	0.6624
	50	0.8861	0.5974	0.8928	0.6657
	100	0.8859	0.5769	0.8957	0.6582
	150	0.8965	0.5702	0.8971	0.6625
	200	0.8967	0.569	0.8959	0.6614
MapTRv1	30	0.8839	0.7169	0.9139	0.7284
	50	0.9035	0.6947	0.9121	0.73
	100	0.9012	0.7326	0.9142	0.7481
	150	0.902	0.7359	0.9146	0.7502
	200	0.903	0.7344	0.9146	0.7507
MapTRv2	30	0.9156	0.6714	0.914	0.7342
	50	0.9147	0.6861	0.9095	0.7396
	100	0.9149	0.6853	0.9149	0.7414
	150	0.9147	0.6868	0.9152	0.7426
	200	0.9145	0.6848	0.9147	0.7411
MGMap	30	0.9188	0.7437	0.9249	0.7756
	50	0.9221	0.7498	0.9234	0.7801
	100	0.9217	0.7492	0.925	0.7802
	150	0.9212	0.7472	0.925	0.7789
	200	0.922	0.7476	0.9253	0.7801
MapQR	30	0.9184	0.7559	0.9247	0.7839
	50	0.9182	0.7556	0.9156	0.7781
	100	0.918	0.7539	0.9263	0.7826
	150	0.9173	0.7532	0.9261	0.7818
	200	0.918	0.7541	0.9259	0.7825
GEMap	30	0.9144	0.6985	0.9277	0.752
	50	0.9227	0.6973	0.9258	0.7546
	100	0.92	0.693	0.931	0.7499
	150	0.9233	0.6916	0.9315	0.7504
	200	0.9232	0.6937	0.9309	0.7504

1277

1278

1279

1280

1281

Table 10: Ablation Study on the Temporal Sampling Interval ($M=3$)

Method	Venue	Temp	Modal	BEV Encoder	Epoch	mAP \uparrow	Presence \uparrow	Loc \uparrow	Shape \uparrow	mAS \uparrow
MapTR	ICLR'23	\times	C	GKT	24	44.1	89.3	59.9	90.6	67.6
MapTR	ICLR'23	\times	C & L	GKT	24	62.8	91.0	69.3	91.8	73.7
BeMapNet	CVPR'23	\times	C	IPM-PE	30	61.4	100.0	58.8	97.7	78.2
PivotNet	ICCV'23	\times	C	PersFormer	30	57.1	100.0	45.2	98.3	71.7
MapTRv2	IICV'24	\times	C	BEVPool	24	61.4	90.6	59.5	91.8	69.0
GeMap	ECCV'24	\times	C	BEVFormer-1	24	51.3	90.9	66.6	92.9	73.3
MGMap	CVPR'24	\times	C	BEVFormer-1	24	57.9	91.8	68.8	92.3	74.4
MapQR	ECCV'24	\times	C	BEVFormer-3	24	66.4	89.4	66.9	91.1	73.4
MapTR	ICLR'23	\checkmark	C	GKT	24	51.3	86.8	55.2	89.1	62.9
StreamMapNet	WACV'24	\checkmark	C	BEVFormer-1	30	63.3	96.9	96.6	95.8	93.2
MapTracker	ECCV'24	\checkmark	C	BEVFormer-2	72	75.95	93.7	96.2	93.4	88.7
HRMapNet	ECCV'24	\checkmark	C	BEVFormer-1	24	67.2	91.2	70.4	92.2	75.4

1294

1295

1296 Table 11: Ablation Study on the Temporal Sampling Interval ($M=5$)
1297

Method	Venue	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑
MapTR	ICLR'23	✗	C	GKT	24	44.1	89.0	64.7	90.0	68.8
MapTR	ICLR'23	✗	C & L	GKT	24	62.8	89.4	69.2	91.0	72.1
BeMapNet	CVPR'23	✗	C	IPM-PE	30	61.4	100.0	50.0	97.5	73.7
PivotNet	ICCV'23	✗	C	PersFormer	30	57.1	100.0	41.5	98.3	70.0
MapTRv2	IJCV'24	✗	C	BEVPool	24	61.4	89.0	52.8	90.8	64.8
GeMap	ECCV'24	✗	C	BEVFormer-1	24	51.3	88.8	61.7	91.6	69.3
MGMMap	CVPR'24	✗	C	BEVFormer-1	24	57.9	90.0	67.1	91.5	71.9
MapQR	ECCV'24	✗	C	BEVFormer-3	24	66.4	88.1	59.9	89.6	67.4
MapTR	ICLR'23	✓	C	GKT	24	51.3	85.0	55.8	90.3	61.8
HRMapNet	ECCV'24	✓	C	BEVformer-1	24	67.2	89.6	70.0	92.1	73.8

1308 Table 12: Ablation Study on the Temporal Sampling Interval ($M=10$)
1309

Method	Venue	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑
MapTR	ICLR'23	✗	C	GKT	24	44.1	88.0	47.4	90.1	61.9
MapTR	ICLR'23	✗	C & L	GKT	24	62.8	89.0	58.2	90.9	66.5
BeMapNet	CVPR'23	✗	C	IPM-PE	30	61.4	100.0	41.6	97.5	69.5
PivotNet	ICCV'23	✗	C	PersFormer	30	57.1	100.0	28.3	98.9	63.6
MapTRv2	IJCV'24	✗	C	BEVPool	24	61.4	82.5	49.9	90.3	58.8
GeMap	ECCV'24	✗	C	BEVFormer-1	24	51.3	85.4	61.2	92.3	65.6
MGMMap	CVPR'24	✗	C	BEVFormer-1	24	57.9	89.7	57.5	92.4	68.1
MapQR	ECCV'24	✗	C	BEVFormer-3	24	66.4	84.9	43.8	95.4	59.0
MapTR	ICLR'23	✓	C	GKT	24	51.3	92.8	41.0	92.8	62.3
HRMapNet	ECCV'24	✓	C	BEVFormer-1	24	67.2	83.8	55.8	92.8	62.4

1320 The comparative analysis reveals distinctive robustness characteristics across representation
1321 paradigms. Models with inherent temporal modeling capabilities, such as StreamMapNet (Yuan
1322 et al., 2024) and MapTracker (Chen et al., 2024), demonstrate remarkable resilience to increasing
1323 temporal intervals. StreamMapNet maintains exceptional stability with mAS of 93.2 at $M=3$,
1324 significantly outperforming non-temporal counterparts. This performance advantage is particularly
1325 pronounced in Localization Stability, where temporal models consistently exceed 96.0 even at larger
1326 intervals, compared to the substantial degradation observed in static models.

1327 The studies also reveal paradigm-specific sensitivity patterns. Geometric-prior-based models like
1328 BeMapNet (Qiao et al., 2023) and PivotNet (Ding et al., 2023) maintain perfect Presence Stability
1329 across all intervals but exhibit considerable vulnerability in Localization Stability. In contrast,
1330 learning-based BEV representation models show more balanced degradation across stability dimensions.
1331 The performance variations across intervals provide additional evidence that accuracy (mAP)
1332 and stability (mAS) represent independent evaluation dimensions, as models with comparable mAP
1333 scores exhibit dramatically different stability characteristics under extended temporal intervals.

1334 These findings underscore the importance of evaluating temporal stability across multiple time
1335 scales, as different representation paradigms exhibit distinct degradation patterns. The comprehensive
1336 interval analysis reinforces our central thesis that temporal stability constitutes a fundamental
1337 performance dimension that requires explicit consideration in online HD mapping system design
1338 and evaluation.

1342 D COMPREHENSIVE EVALUATION RESULTS WITH FURTHER DETAILS

1344 We present a detailed analysis of the performance of various online HD mapping models in terms of
1345 both accuracy (mAP) and temporal stability (mAS), based on the comprehensive results summarized
1346 in Tables 13 - Table 22. Our analysis highlights how different architectural choices, including back-
1347 bone networks, temporal modeling, sensor modalities, and BEV encoders, affect these two critical
1348 performance dimensions.

Table 13: Evaluation Results of MapTR

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R18	✗	C	GKT	24	32.4	87.8	75.0	88.5	72.8	15.4M
R18	✗	C	GKT	110	45.5	86.0	71.7	94.8	71.8	15.4M
R50	✗	C	GKT	24	44.1	91.2	65.4	90.6	71.6	36.2M
R50	✗	C	GKT	110	50.5	89.8	63.2	91.0	68.2	36.2M
R50	✗	C	BEVFormer-1	24	41.6	89.6	69.7	90.6	71.3	36.3M
R50	✗	C	BEVPool	24	50.1	89.3	69.8	88.5	71.9	32.3M
R50	✓	C	GKT	24	51.3	88.6	59.7	89.3	66.6	36.2M
R50	✓	C	BEVFormer-1	24	53.3	90.4	69.5	91.2	73.0	36.3M
R50 & Sec.	✗	C & L	GKT	24	62.8	90.1	75.2	90.8	74.9	40.1M

D.1 COMPREHENSIVE ANALYSIS TOWARDS MAPTR

As presented in Table 13, the extensive variants of MapTR (Liao et al., 2022) provide a controlled setting to dissect how distinct representation paradigms influence model behavior. By altering key components while holding the core architecture constant, we can isolate their effects on both accuracy (mAP) and temporal stability (mAS).

Temporal Fusion. The effect of incorporating temporal fusion is not uniform but is mediated by the underlying BEV representation. When applied to the GKT-based (Chen et al., 2022) representation, temporal fusion disrupts its core strength. Presence Stability drops from 91.2 to 88.6, and Localization Stability plummets from 65.4 to 59.7, leading to a significant decrease in mAS (71.6 to 66.6). **This indicates that the representation formed by GKT is not easily aligned or integrated across time; the temporal module may introduce noise rather than useful context.** Based on our experimental data and model architecture analysis, **the core reason lies in the fundamental incompatibility between the static spatial features generated by the GKT encoder and the dynamic representations required for temporal fusion.**

Specifically, the decline in stability stems from the following three interrelated underlying mechanisms:

1. **The feature space solidifies the static scene representation, making dynamic alignment challenging.** The core strength of GKT lies in its efficient construction of single-frame BEV features through geometric priors. However, this makes its features highly dependent on the instantaneous coordinate system at the time of construction. When historical frame features are introduced, due to the cumulative error of ego-motion, these statically generated features from different coordinate systems cannot be precisely aligned in the BEV space. **This inherent misalignment at the feature level directly leads to representational confusion after fusion**, thereby causing detection jitter (drop in Presence stability) and positional jumps (drop in Localization stability) of map elements.
2. **Temporal aggregation of localized fine-grained features amplifies high-frequency jitter.** GKT excels at extracting local, high-resolution geometric details. However, when a simple temporal fusion module (e.g., basic convolution or attention mechanisms) attempts to aggregate these highly localized features, it **not only fails to smooth out their inherent inter-frame variations but even amplifies such high-frequency jitter**. This manifests as instability in the position and shape of map elements after decoding.
3. **The training objective optimized for single-frame performance conflicts with that of the temporal module.** As a non-temporal model, MapTR’s GKT encoder and decoder are strictly optimized to achieve optimal accuracy on individual frames. When a fusion module without temporal consistency constraints is introduced, the entire network falls into an optimization dilemma: the single-frame supervision signal forces the features to maintain overfitting to instantaneous observations, while the newly added temporal parameters, lacking explicit guidance, **disrupt the originally well-optimized feature distribution for single frames**. This ultimately leads to performance degradation in the temporal dimension.

The validity of this analysis is **confirmed unequivocally** by our controlled experiments on MapTR-BEVFormer. As shown in Table 4 of the paper, BEVFormer inherently employs deformable attention for temporal modeling, meaning its **features are designed from the outset for cross-frame alignment and fusion**. Consequently, when a temporal fusion module is incorporated, its features can be integrated smoothly and consistently, leading to simultaneous improvements in both accuracy and stability (mAP increased from 41.6 to 53.3, while mAS rose from 71.3 to 73.0). This demonstrates that temporal fusion acts as a complementary enhancement when applied to representations that are already designed for spatiotemporal modeling. This demonstrates that temporal fusion is most effective when the base representation is inherently compatible with processing sequential data. The effectiveness of temporal fusion is not a standalone property but is contingent on the representational capacity of the BEV encoder. It amplifies the capabilities of a temporally-aware representation (BEVFormer) but can degrade the performance of a primarily spatially-focused one (GKT). Therefore, temporal fusion serves as a force multiplier for representations already predisposed to temporal modeling, but can be detrimental to those that are not.

2D Backbone. Changing the 2D backbone from ResNet-18 to ResNet-50 shifts the model’s representational focus towards more complex visual patterns. This shift has a clear effect: it consistently improves mAP (32.4 to 44.1) by leveraging higher-capacity feature extraction. However, this comes with a redistribution of stability properties: Presence Stability improves (87.8 to 91.2), but Localization Stability worsens significantly (75.0 to 65.4). The deeper network appears to learn a representation that is more sensitive to semantic content but potentially more susceptible to per-frame variations in texture or lighting, which can harm geometric consistency. The backbone network influences the type of features that form the basis of the map representation. More powerful backbones enhance semantic discrimination but can introduce high-frequency noise that undermines geometric stability, suggesting that representations favoring stability may require features that are invariant to superficial appearance changes.

Table 14: Evaluation Results of BeMapNet

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
Effb0	✗	C	IPM-PE	30	60.7	100.0	67.9	97.9	82.9	55.4M
R50	✗	C	IPM-PE	30	61.4	100.0	65.8	97.9	81.9	73.8M
SwinT	✗	C	IPM-PE	30	64.1	100.0	62.8	98.0	80.4	79.6M
R50	✗	C	IPM-PE	110	66.2	100.0	62.1	98.2	80.2	73.8M
SwinT	✗	C	IPM-PE	110	68.3	100.0	64.0	98.2	81.1	79.6M

Table 15: Evaluation Results of PivotNet

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
Effb0	✗	C	PersFormer	30	57.8	100.0	71.8	97.2	84.5	17.1M
R50	✗	C	PersFormer	30	57.1	100.0	71.4	97.2	84.3	41.2M
Swin-T	✗	C	PersFormer	30	61.6	100.0	71.6	97.2	84.4	44.8M
Swin-T	✗	C	PersFormer	110	66.4	100.0	72.1	97.4	84.8	44.8M

D.2 IN-DEPTH ANALYSIS OF BEMAPNET AND PIVOTNET

As shown in Table 14 and Table 15, both BeMapNet(Qiao et al., 2023) and PivotNet(Ding et al., 2023) demonstrate stable mAP and mAS performance, with BeMapNet achieving mAP scores of 60.7 to 68.3 and mAS values of 80.2 to 82.9, while PivotNet demonstrates mAP values of 57.1 to 66.4 and mAS scores of 84.3 to 84.8. This indicates that these two models are insensitive to backbone network selection and training epoch configurations. The difference lies in the fact that PivotNet achieves its highest mAS when using Swin-T(Liu et al., 2021) as the backbone, while BeMapNet attains its peak mAS value with an EfficientNet-B0(Tan & Le, 2019) backbone.

It should be specifically noted that both BeMapNet and PivotNet adopt a “dynamic vectorized sequence” representation for map encoding, which explains their consistently perfect presence metrics (100%). However, this representation format severely limits the localization stability of map instances, resulting in significantly lower performance compared to models like GeMap(Zhang et al., 2024b), MGMap(Liu et al., 2024a), and MapQR(Liu et al., 2024b).

1458
1459
1460 Table 16: Evaluation Results of MapTRv2
1461
1462

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R18	✗	C	BEVPool	24	57.2	91.0	73.2	91.2	75.6	27.9M
R50	✗	C	BEVPool	24	61.4	91.5	68.6	91.0	74.0	40.6M

1463
1464
1465 D.3 EVALUATION AND ANALYSIS OF MAPTRv2
14661467 MapTRv2 (Liao et al., 2025b) improves upon MapTR (Liao et al., 2022) with higher baseline mAP
1468 (57.2–61.4) and mAS (74.0–75.6). Interestingly, the R18 backbone achieves higher mAS (75.6) than
1469 R50 (74.0), despite a lower mAP (57.2 vs. 61.4), as illustrated in Table 13 and Table 16, reinforcing
1470 the independence of accuracy and stability.1471
1472 Table 17: Evaluation Results of GeMap
1473

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R50	✗	C	BEVFormer-1	24	51.3	92.3	69.7	92.6	75.5	44.1M
R50	✗	C	BEVFormer-1	110	62.7	91.1	67.5	94.5	74.7	44.1M
Swin-T	✗	C	BEVFormer-1	110	72.0	92.2	74.9	93.2	78.1	50.5M
V2-99	✗	C	BEVFormer-1	110	72.0	89.2	71.5	92.6	74.2	92.6M
V2-99(DD3D)	✗	C	BEVFormer-1	110	76.0	93.4	66.9	93.7	75.1	92.6M
R50 & second	✗	C & L	BEVFormer-1	110	66.5	89.1	66.3	92.7	71.8	48.0M

1480
1481
1482 D.4 DISCUSSION ON GEMAP
14831484 As illustrated in Table 17, GeMap (Zhang et al., 2024b) presents a particularly instructive case
1485 for examining the complex relationship between accuracy and stability. The model demonstrates
1486 a strong capacity for high accuracy, with its mAP score scaling significantly from 51.3 to a top
1487 score of 76.0 when employing a powerful V2-99 (Lee et al., 2019) backbone and extended training.
1488 However, this pursuit of accuracy often introduces instability, as evidenced by its mAS scores, which
1489 range from a moderate 71.8 to a more competitive 78.1.1490 A critical observation is the divergent effect of LiDAR fusion. While integrating LiDAR data with
1491 a ResNet-50 (He et al., 2016) backbone yields a predictable improvement in mAP (+6.1%, from
1492 62.7 to 66.5), it conversely leads to a decrease in mAS (-3.9%, from 74.7 to 71.8). This result chal-
1493 lenges the conventional wisdom that more sensor data invariably leads to more robust perception.
1494 It suggests that GeMap’s architecture, while effectively leveraging LiDAR for geometric precision
1495 in a single frame, may lack the necessary mechanisms to harmonize the potentially noisy or asyn-
1496 chronous multi-modal signals across time, leading to increased jitter or flickering.1497 Furthermore, the model exhibits high sensitivity to backbone design. The Swin-T (Liu et al., 2021)
1498 backbone strikes the most favorable balance, achieving the highest mAS (78.1) alongside a high
1499 mAP (72.0). In contrast, the larger V2-99 (Lee et al., 2019) backbone, despite achieving the peak
1500 mAP (76.0), produces a lower mAS (75.1). The degradation in Localization Stability (from 74.9
1501 with Swin-T (Liu et al., 2021) to 66.9 with V2-99 (Lee et al., 2019)) is especially notable, implying
1502 that the increased representational power of the larger backbone may overfit to single frame features
1503 at the expense of temporal coherence. This pattern underscores that for stability, simply scaling
1504 up model capacity is not a sufficient strategy and may even be counterproductive without explicit
1505 temporal regularization.1506
1507 Table 18: Evaluation Results of MGMap
1508

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R50	✗	C	BEVFormer-1	24	58.0	92.2	75.0	92.3	78.0	55.9M

1512 D.5 ANALYSIS FOR MGMAP
1513

1514 MGMap (Liu et al., 2024a) achieves a balanced profile (mAP: 58.0, mAS: 78.0) with a ResNet-
1515 50 backbone (He et al., 2016) and BEVFormer (Li et al., 2024) encoder, as presented in Table 18.
1516 Its strong Localization and Shape Stability scores (75.0 and 92.3, respectively) suggest robustness
1517 against geometric jitter.

1518 Table 19: Evaluation Results of MapQR
1519

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R18	✗	C	BEVFormer-3	24	62.3	88.2	73.1	92.5	74.1	112.6M
R50	✗	C	BEVFormer-3	24	66.4	91.8	75.6	91.6	77.8	125.4M
R50	✗	C	BEVFormer-3	110	72.6	92.4	75.9	96.4	80.3	125.4M

1520 D.6 STUDY OF MAPQR
1521

1522 As shown in Table 19, MapQR (Liu et al., 2024b) shows a clear positive scaling trend: larger
1523 backbones and longer training improve both mAP (62.3 to 72.6) and mAS (74.1 to 80.3). This
1524 indicates that the model’s architecture supports stable learning under increased capacity.

1525 Table 20: Evaluation Results of StreamMapNet
1526

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R50	✗	C	BEVFormer-1	30	51.7	87.0	97.8	95.1	83.8	56.0M
R18	✓	C	BEVFormer-1	30	27.8	87.1	98.4	94.6	85.0	42.5M
R50	✓	C	BEVFormer-1	30	63.4	96.6	97.7	92.3	91.9	56.3M
R50	✓	C	BEVFormer-1	24	51.2	97.0	98.5	96.1	94.4	56.3M

1533 D.7 TOWARDS A COMPREHENSIVE ANALYSIS OF STREAMMAPNET
1534

1535 StreamMapNet (Yuan et al., 2024) stands out as the paradigm for temporally stable online mapping,
1536 achieving the highest mAS scores in our benchmark, ranging from 83.8 to an exceptional 94.4. This
1537 performance is primarily driven by its native temporal architecture, which is explicitly designed to
1538 model consistency across frames.

1539 The most striking feature of StreamMapNet is its near-perfect Localization Stability (97.7–98.5),
1540 the highest among all models, as shown in Table 1 and Table 20. This indicates an exceptional
1541 ability to suppress the positional jitter of map elements over time, a critical factor for downstream
1542 planning tasks. The analysis clearly shows that temporal fusion is not merely an optional add-on but
1543 the core determinant of its performance. Enabling temporal modeling (comparing the R50, ✓ vs.
1544 R50, ✗ configurations) results in a dramatic improvement in both mAP (+22.6%, from 51.7 to 63.4)
1545 and mAS (+9.7%, from 83.8 to 91.9). This dual improvement confirms that effectively leveraging
1546 historical context can simultaneously enhance per-frame accuracy and inter-frame consistency.

1547 Table 21: Evaluation Results of MapTracker
1548

Backbone	Temp	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R18	✗	C	BEVFormer-2	72	62.8	95.3	97.3	85.9	87.4	60.7M
R50	✗	C	BEVFormer-2	72	68.3	94.5	97.9	93.8	90.8	74.0M
R18	✓	C	BEVFormer-2	48	69.3	94.8	98.2	94.8	91.5	60.7M
R18	✓	C	BEVFormer-2	72	71.9	92.9	98.5	94.8	89.9	60.7M
R50	✓	C	BEVFormer-2	48	73.0	91.7	98.5	96.0	91.7	74.0M
R50	✓	C	BEVFormer-2	72	76.0	93.3	98.1	95.8	90.4	74.0M

1562 D.8 A COMPREHENSIVE ANALYSIS OF MAPTRACKER
1563

1564 MapTracker (Chen et al., 2024) represents another strong temporal model that successfully balances
1565 state-of-the-art accuracy with high stability, which is shown in Table 1 and Table 21. It achieves the

1566 highest overall mAP (76.0) in our benchmark while maintaining mAS scores above 87.4, peaking at
 1567 91.7.

1568 Similar to StreamMapNet (Yuan et al., 2024), MapTracker’s integration of temporal fusion (“Temp =
 1569 ✓”) consistently boosts mAP (e.g., from 62.8 to 69.3 for R18) while preserving high mAS. This re-
 1570 inforces the conclusion that architectures designed with temporal reasoning in mind from the ground
 1571 up are essential for high-performance online mapping. The model also exhibits very strong Local-
 1572 ization and Shape Stability, often exceeding 98.0 and 94.0, respectively, which is characteristic of
 1573 models that effectively aggregate information over time.

1574 However, MapTracker reveals a nuanced trade-off related to training duration. For both the R18
 1575 and R50 backbones, extending training from 48 to 72 epochs leads to a further increase in mAP
 1576 but a slight decrease in mAS (e.g., R50: mAP 73.0 to 76.0, mAS 91.7 to 90.4). This pattern,
 1577 which we term optimization sensitivity, suggests that as the model continues to minimize a primarily
 1578 accuracy-oriented loss function, it may gradually overfit to single-frame details, thereby sacrificing
 1579 some temporal smoothness. This highlights a key area for future research: the development of loss
 1580 functions or regularization techniques that explicitly penalize temporal instability during training to
 1581 prevent this erosion.

1582
 1583 Table 22: Evaluation Results of HRMapNet
 1584

Backbone	Temp	Initial Map	Modal	BEV Encoder	Epoch	mAP↑	Presence↑	Loc↑	Shape↑	mAS↑	Parameters↓
R50	✓	✗	C	BEVFormer-1	24	67.2	92.3	70.5	91.5	75.9	47.3M
R50	✓	Testing Map	C	BEVFormer-1	24	73.0	94.9	71.4	93.0	78.4	47.3M
R50	✓	Training Map	C	BEVFormer-1	24	83.6	89.9	75.9	93.2	76.7	47.3M
R50	✓	✗	C	BEVFormer-1	110	73.5	90.5	74.1	92.7	75.9	47.3M

1585
 1586
 1587
 1588
 1589
 1590 D.9 DETAILED INVESTIGATION OF HRMAPNET
 1591
 1592 As presented in Table 22, HRMapNet (Zhang et al., 2024a) incorporates a distinct representation
 1593 paradigm by integrating static map priors into a temporal mapping framework. The performance
 1594 variations across its configurations provide critical insights into the interaction between dynamic
 1595 sensory input and static prior knowledge.

1596 The most pronounced effect is observed on single frame accuracy. Utilizing a map prior during
 1597 training yields a substantial improvement in mAP, elevating the score from 67.2 to 83.6. This result
 1598 indicates that the model’s representation effectively internalizes the structural constraints provided
 1599 by the high quality offline map, leading to superior geometric precision in individual frames.

1600 In contrast, the impact of map priors on temporal stability is more complex and less direct. The
 1601 configuration employing a prior only during testing achieves the highest mAS of 78.4 and the highest
 1602 Presence Stability of 94.9. This suggests that an externally provided prior can serve as a stabilizing
 1603 reference during inference, enhancing detection consistency without being fully baked into the
 1604 model parameters.

1605 However, when the model is trained with the map prior, a different pattern emerges. While this
 1606 configuration achieves the highest mAP, its mAS of 76.7 is lower than the testing prior variant. Notably,
 1607 its Presence Stability decreases to 89.9. This indicates that deep integration of the static prior during
 1608 training may lead to a representation that is overly reliant on persistent features, potentially at the
 1609 expense of robustness to real world variations encountered in a temporal sequence. The model may
 1610 become less adept at handling cases where the prior is imperfect or where dynamic scenes deviate
 1611 from the stored map.

1612 Furthermore, extending training to 110 epochs without any initial map prior improves mAP to 73.5
 1613 but leaves mAS unchanged at 75.9. This stability saturation effect underscores that prolonged training
 1614 on a single frame accuracy objective has diminishing returns for temporal consistency. The gain
 1615 in stability achieved through the intelligent use of a testing time prior surpasses that achieved by
 1616 simply training the baseline model longer.

1617 In summary, HRMapNet demonstrates that static map priors constitute a powerful representation for
 1618 enhancing perceptual accuracy. Their utility for improving temporal stability, however, is contingent
 1619 on the method of integration. A prior used as a dynamic guidance signal at inference can bolster

1620 consistency, whereas deeply embedding the prior into the model through training may introduce a
 1621 trade off, favoring accuracy over stability. This highlights that the effective fusion of dynamic and
 1622 static representations remains a key challenge for robust online mapping.
 1623

1624 D.10 SUMMARY OF COMPREHENSIVE EVALUATION

1626 The comprehensive evaluation of ten representative online HD mapping models demonstrates that
 1627 different representation paradigms induce distinct performance characteristics along the accuracy-
 1628 stability spectrum. Our analysis reveals that these two performance dimensions are independently
 1629 influenced by specific architectural choices and their underlying representational biases.

1630 Models incorporating strong geometric priors, such as BeMapNet (Qiao et al., 2023) and PivotNet
 1631 (Ding et al., 2023), achieve exceptional Presence Stability due to their structure-aware representa-
 1632 tions. In contrast, architectures based on learned view transformations like BEVFormer (Li et al.,
 1633 2024) exhibit superior Localization Stability, benefiting from their spatially coherent bird’s eye view
 1634 representations.

1635 Temporal modeling effectiveness shows fundamental dependence on representational compatibility.
 1636 Architectures with native temporal designs demonstrate that explicit sequence modeling produces
 1637 the highest stability scores. However, the integration of temporal modules requires careful alignment
 1638 with the base representation, as evidenced by the varied outcomes when adding temporal compo-
 1639 nents to different BEV encoders.

1640 Multi-modal integration exhibits model-dependent effects on stability. While sensor fusion generally
 1641 enhances accuracy, its impact on temporal consistency varies across architectures, indicating that
 1642 effective multi-modal representation requires specialized design beyond simple feature combination.

1643 The relationship between model capacity and performance reveals consistent patterns. Larger back-
 1644 bones produce substantial accuracy gains but yield inconsistent effects on stability, suggesting that
 1645 representational capacity alone cannot address temporal consistency requirements.

1646 The comparison between static priors and dynamic modeling highlights their complementary roles.
 1647 While static priors significantly boost accuracy, dynamic temporal modeling proves essential for
 1648 achieving temporal stability, indicating that these two approaches address distinct aspects of the
 1649 mapping problem.

1650 These findings collectively suggest that accuracy and stability are governed by different aspects
 1651 of representation design. This understanding points to the need for future architectures that can
 1652 simultaneously support high-fidelity spatial representation and robust temporal consistency through
 1653 integrated design principles.

1655 D.11 ON THE SYNERGISTIC USE OF MAS AND MAP

1656 We would like to clarify that the primary intention behind designing mAS was never to provide
 1657 a standalone metric for evaluating map construction performance in isolation. Instead, it aims to
 1658 reveal the “temporal stability” dimension that conventional mAP overlooks.

1659 Crucially, any model employing strategies like copy pasting or blind temporal smoothing would in-
 1660 evitably suffer a significant drop in precision metrics like mAP, even if it achieved a high localization
 1661 stability score. This is because both copy pasting and heavily smoothing predictions across frames
 1662 introduce substantial deviations from the ground truth for the affected instances.

1663 Therefore, when mAS is examined in conjunction with mAP, such pseudo stable models are eas-
 1664 ily exposed. They exhibit an anomalous profile of high mAS but very low mAP. Identifying and
 1665 cautioning against this exact type of behavior is a key objective of our evaluation framework.

1666 Thus, the value of mAS lies in its synergistic use with inference accuracy metrics like mAP. Together,
 1667 they define a more comprehensive trustworthiness evaluation quadrant, guiding the community to
 1668 pursue models that achieve both high accuracy and high stability, rather than over optimizing for
 1669 either metric alone.

1674
1675
1676

D.12 COMPARISON WITH BASELINE METHODS

1677

First, regarding "inter-frame Chamfer Distance," our proposed **mAS** is a **comprehensive evaluation metric**, whereas traditional geometric measures like Chamfer Distance typically capture only **a single dimension of stability**. As explained in Section 3.4 of the paper, mAS consists of three dimensions: **Presence Stability, Localization Stability, and Shape Stability**. Chamfer Distance essentially measures the overall positional deviation between two point sets, roughly corresponding to the "Localization Stability" in our framework. However, it **completely fails to detect "presence flickering"**, the critical instability where map elements appear and disappear intermittently, and **cannot effectively quantify temporal changes in geometric shape, such as curvature**. A model may exhibit low Chamfer Distance (i.e., minimal positional jitter), but if its predicted lane boundaries frequently appear or vanish (poor presence stability), it remains hazardous and unreliable for downstream planning tasks. mAS is specifically designed to comprehensively diagnose these different types of instabilities.

1688
1689
1690

Second, regarding "temporal consistency loss," **mAS** and "temporal consistency loss" serve **different purposes and are complementary**. The "temporal consistency loss" you mentioned is an **optimization objective used during model training**, aimed at penalizing temporal jitter in model outputs through regularization terms. In contrast, mAS is an **offline evaluation metric for assessing model performance**. Their roles and applications are fundamentally distinct. An optimized loss function does not automatically constitute a comprehensive evaluation system. In fact, our mAS metric **can provide precise evaluation guidance and feedback for designing and optimizing such temporal loss functions**. For example, by analyzing the three sub-metrics of mAS, we can determine whether a temporal loss function effectively improves localization stability or inadvertently sacrifices presence stability.

1701
1702

Furthermore, **the design of mAS is more aligned with the safety requirements of autonomous driving**. The stability issues in online HD map construction manifest their risks in multiple aspects. As demonstrated in Figures 2, 6, and 7 of the paper, as well as the downstream task impact analysis in Appendix E.1, **the disruption caused by presence flickering and shape mutations to the planning module is often as critical as minor positional jitter**. The comprehensiveness of mAS enables it to **simultaneously alert against these three different types of risks**, whereas single geometric metrics like Chamfer Distance overlook key safety-related information.

1710
1711
1712
1713

In summary, we do not dismiss the value of traditional geometric metrics but highlight their **inherent limitations in evaluating complex temporal stability**. The proposal of mAS aims to establish a **more comprehensive and safety-aware evaluation benchmark**, capable of uncovering instability patterns that are overlooked by conventional methods.

1714
1715
1716

E SUPPLEMENTAL VISUALIZATION AND ANALYSIS

1717
1718
1719

E.1 IMPACT OF UNSTABLE MAP PREDICTIONS ON DOWNSTREAM TASKS

1720
1721

In this part, we visualize how temporal fluctuations in online mapping predictions impact downstream tasks, as shown in Figures 6 and 7.

1722
1723

Figure 6 illustrates the effect of map changes between consecutive frames on these tasks.

1724
1725
1726
1727

In Scenario A at time t , the ego vehicle fails to detect an intersection ahead due to occlusion by a leading vehicle, leading it to predict the vehicle will turn left. At time $t+1$, the ego vehicle successfully identifies the intersection, resulting in a corrected prediction of the leading vehicle's trajectory.

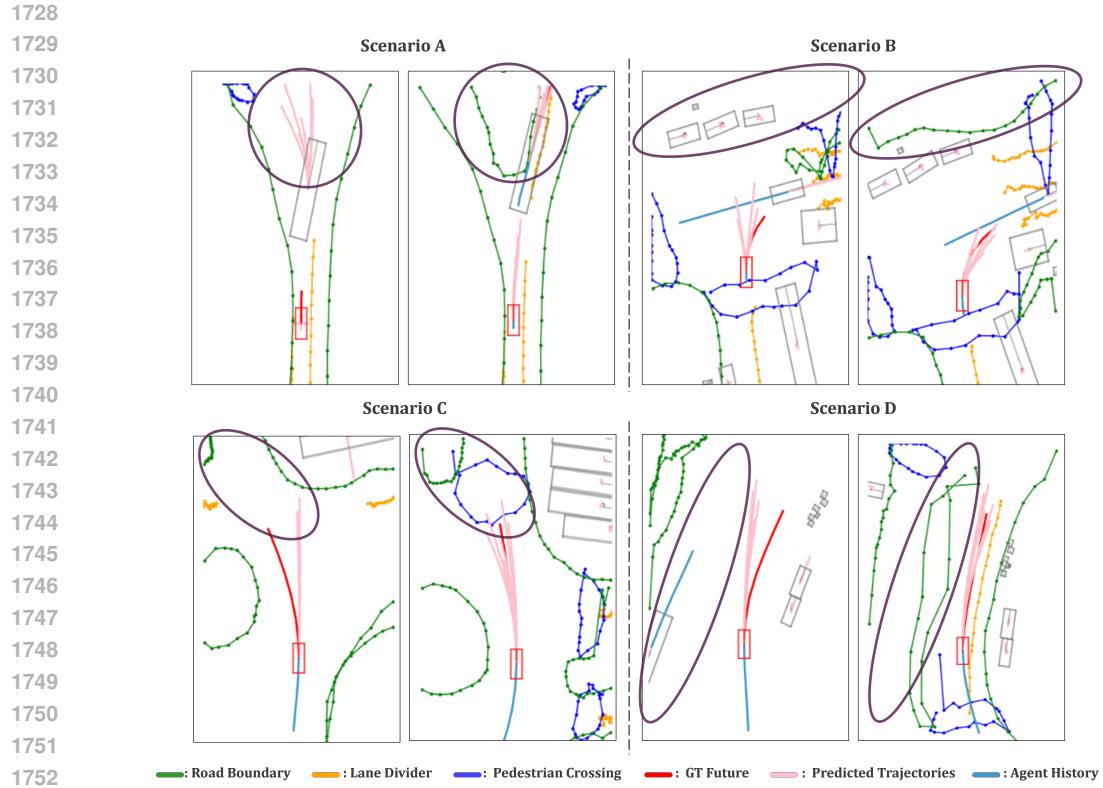


Figure 6: Impact of Temporal Inconsistency in Map Element Presence on Downstream Tasks

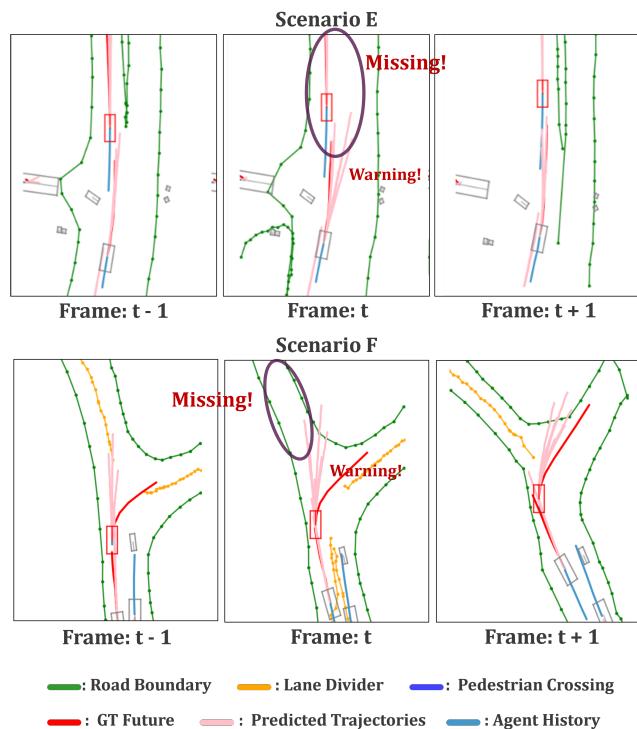


Figure 7: Impact of Flickering in Predicted Map Elements on Downstream Tasks.

1782 In Scenario B, occlusion by three vehicles directly ahead prevents the ego vehicle from detecting
 1783 the road boundary behind them, causing it to plan a straight path that would collide with the curb.
 1784 At time t+1, after moving forward, the ego vehicle observes the previously hidden map element and
 1785 correctly plans a right turn.

1786 In Scenario C at time t, the vehicle does not observe the crosswalk ahead and plans to continue
 1787 straight. After advancing and detecting the map element, the ego vehicle adjusts its plan accordingly.

1788 In Scenario D's initial frame, occlusion by other vehicles prevents the ego vehicle from predicting
 1789 the road boundary to its left, leading to a straight path plan that risks a curb collision. Upon detecting
 1790 the map element on the left in the next frame, it adjusts its trajectory for safe navigation.

1791 Based on the analysis of Figure 6, a key conclusion can be drawn: map elements are critical for
 1792 autonomous systems to perform downstream tasks such as trajectory prediction and planning. Tem-
 1793 poral instability in the perception of these elements can lead to significantly different and potentially
 1794 unsafe predictions and plans.

1795
 1796
 1797
 1798 **Quantitative Evaluation on Trajectory Prediction Tasks.** To quantitatively assess the impact
 1799 of map stability on downstream tasks, we integrate map predictions from different models into
 1800 trajectory prediction pipelines. We evaluate two representative trajectory prediction methods: HiVT
 1801 (?), which leverages map context for multi-agent trajectory forecasting, and DenseTNT (?), which
 1802 uses map topology for goal-oriented trajectory prediction.

1803
 1804 **Table 23: Downstream Task Performance: Trajectory Prediction with DenseTNT.**

Methods	config					DenseTNT			mAS \uparrow
	modality	Temporal	Backbone	BEV Encoder	Epoch	minADE \downarrow	minFDE \downarrow	MR \downarrow	
MapTR	Only C	\times	R50	GKT	24	1.1228	2.2151	0.3726	71.6
StreamMapNet	Only C	\times	R50	BEVFormer	24	1.0639	2.1430	0.3412	83.8

1805
 1806
 1807
 1808
 1809
 1810 **Table 24: Downstream Task Performance: Trajectory Prediction with HiVT.**

Methods	config					HiVT			mAS \uparrow
	modality	Temporal	Backbone	BEV Encoder	Epoch	minADE \downarrow	minFDE \downarrow	MR \downarrow	
MapTR	Only C	\times	R50	GKT	24	0.4015	0.8404	0.0960	71.6
StreamMapNet	Only C	\times	R50	BEVFormer	24	0.3963	0.8223	0.0923	83.8

1811 The experimental results, summarized in Tables 24 and 23, demonstrate a clear correlation between
 1812 map stability (mAS) and downstream task performance. StreamMapNet, with its superior temporal
 1813 stability (mAS: 83.8), consistently outperforms MapTR (mAS: 71.6) across all evaluation metrics
 1814 in both trajectory prediction methods. Specifically:

1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822

- **HiVT Results:** StreamMapNet achieves lower minADE (0.3963 vs. 0.4015), minFDE (0.8223 vs. 0.8404), and Miss Rate (0.0923 vs. 0.0960), indicating more accurate and reliable trajectory predictions.
- **DenseTNT Results:** Similarly, StreamMapNet demonstrates superior performance with lower minADE (1.0639 vs. 1.1228), minFDE (2.1430 vs. 2.2151), and Miss Rate (0.3412 vs. 0.3726).

1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835 These quantitative results validate that temporal stability in map construction directly translates to
 improved performance in downstream autonomous driving tasks. Unstable map predictions intro-
 duce noise and inconsistency that propagate through the pipeline, degrading trajectory prediction
 accuracy and increasing the risk of unsafe maneuvers. This finding reinforces the critical impor-
 tance of evaluating and optimizing temporal stability alongside traditional accuracy metrics.

As shown in Figure 7, we provide further visualization of how flickering map elements impact
 downstream tasks over time.

1836 In Scenario E at frame t-1, the ego vehicle is proceeding normally. However, at frame t, a flicker
 1837 occurs in the predicted road boundary to the right of the lead vehicle, caused by instability in the
 1838 online mapping model. This leads the ego vehicle to perceive an opportunity to overtake on the right,
 1839 resulting in a planning decision to steer right and attempt a pass. By frame t+1, the model correctly
 1840 perceives the road boundary again, causing the ego vehicle to abort the maneuver and resume a
 1841 straight path.

1842 In Scenario F at frame t-1, the ego vehicle observes the lane divider ahead and plans a normal
 1843 trajectory. At frame t, however, the predicted lane divider suddenly disappears, causing the planning
 1844 module to become uncertain and unable to confidently decide between a lane change or continuing
 1845 straight.

1846

1847

1848 E.2 mAP vs. mAS

1849

1850 In this section, we present additional cases where mAP proves to be a misleading indicator for
 1851 evaluating temporal stability, whereas our proposed mAS correctly assesses temporal stability, as
 1852 demonstrated in Figure 8 and Figure 9. These examples clearly show that mAP should not be used
 1853 as a criterion for temporal stability evaluation, whereas mAS provides a more accurate assessment
 1854 of temporal stability.

1855 As shown in Figure 8, model A represents the MapTR (Liao et al., 2022) model integrated with
 1856 temporal features, employing a ResNet-50 backbone (He et al., 2016) and GKT encoder (Chen
 1857 et al., 2022), trained for 24 epochs. Model B represents the MapTR Liao et al. (2022) model without
 1858 temporal features, utilizing the same ResNet-50 backbone (He et al., 2016) and GKT encoder (Chen
 1859 et al., 2022), also trained for 24 epochs. Although model A achieves a relatively high mAP of 51.3,
 1860 its stability is inferior to that of model B. Specifically, in the visualization results of model A, a
 1861 crosswalk flickers into view on the road, and additionally, the leftmost lane divider visualized by
 1862 model A flickers frequently. In contrast, although model B has a lower mAP compared to model A,
 1863 it does not produce sudden flickering of other map elements in the middle of the road and is able to
 1864 consistently predict the lane divider on the roadside in nearly every frame.

1865 As illustrated in Figure 8, both model C and model D represent GeMap (Zhang et al., 2024b) models.
 1866 Model C was trained for 110 epochs using the Swin-T (Liu et al., 2021) backbone network and the
 1867 BEVFormer encoder. Model D was trained for 110 epochs using the V2-99 (DD3D) (Lee et al.,
 1868 2019) backbone network and the BEVFormer encoder (Li et al., 2024). Although the performance
 1869 indicators of model C are superior to those of model D, our mAS evaluation indicates that the
 1870 stability of model C is relatively poor. By visually comparing the outputs of the two, we find that
 1871 model C occasionally detects non-existent pedestrian crossings in individual frames, which is a
 1872 manifestation of poor field stability. This observation result confirms that the stability of model C is
 1873 indeed weaker than that of model D, which is consistent with the mAS evaluation result.

1874 As depicted in Figure 8, model E represents the HRMapNet (Zhang et al., 2024a) model with a
 1875 training map as initial map, employing a ResNet-50 backbone (He et al., 2016) and BevFormer
 1876 encoder (Li et al., 2024), trained for 24 epochs. Model F represents the GeMap model (Zhang
 1877 et al., 2024b), employing a Swin-T backbone (Liu et al., 2021) and BevFormer encoder (Li et al.,
 1878 2024), trained for 110 epochs. Model E achieves a higher mAP value than model F, yet according
 1879 to our mAS metric evaluation, model E exhibits inferior stability compared to model F. A visual
 1880 comparison of their inference results reveals that the crosswalks predicted by model E show more
 1881 pronounced geometric jitter, while other instances remain similar between the two models. This
 1882 observation confirms that model E's stability is indeed poorer than Model F's, consistent with the
 1883 assessment provided by the mAS metric.

1884 As can be seen from Figure 9, both model G and model H represent GeMap (Zhang et al., 2024b)
 1885 models. Model G was trained for 110 epochs using the Swin-T backbone network (Liu et al., 2021)
 1886 and the BEVFormer encoder (Li et al., 2024), while model H was trained using the V2-99 (DD3D)
 1887 backbone network (Lee et al., 2019) and the BEVFormer encoder (Li et al., 2024). It was also
 1888 trained for 110 epochs. Although the performance indicators of model G are superior to those of
 1889 model H, our mAS evaluation indicates that the stability of model G is relatively poor. Through
 1890 visual comparison of the outputs of the two, we find that model G has significant spatial offset and
 1891 morphological fluctuation in the prediction of road boundary lines in consecutive frames, which is

Figure 8: Evaluating trustworthiness of online mapping models using human judgment, traditional mAP, and our mAS metric.

1944 a manifestation of poor field stability. This observation result confirms that the stability of Model G
 1945 is indeed weaker than that of model H, which is consistent with the mAS evaluation result.
 1946

1947 As illustrated in Figure 9, both model I and model J represent GeMap models (Zhang et al., 2024b)
 1948 . Model I was trained for 110 epochs using the Swin-T backbone network (Liu et al., 2021) and the
 1949 BEVFormer encoder (Li et al., 2024). Model J was trained for 110 epochs using the V2-99 (DD3D)
 1950 backbone network (Lee et al., 2019) and the BEVFormer encoder (Li et al., 2024). Model I achieves
 1951 a higher mAP value than model J, yet according to our mAS metric evaluation, model I exhibits
 1952 inferior stability compared to model J. Model J demonstrates superior delineation in the demarcated
 1953 regions, with map instances exhibiting more precise spatial localization, while maintaining compa-
 1954 rable performance to other models in remaining areas. This observed enhancement in output quality
 1955 confirms model J’s higher stability, which aligns consistently with the mAS evaluation results.
 1956

1957 As shown in Figure 9, model K represents the MapTR (Liao et al., 2022) model integrated with
 1958 temporal features, employing a ResNet-50 backbone (He et al., 2016) and GKT encoder (Chen
 1959 et al., 2022), trained for 24 epochs. Model L represent the MapTR Liao et al. (2022) model without
 1960 temporal features, utilizing the same ResNet-50 backbone (He et al., 2016) and GKT encoder (Chen
 1961 et al., 2022), also trained for 24 epochs. Model K achieves a higher mAP value than model L, yet
 1962 according to our mAS metric evaluation, model K exhibits inferior stability compared to model L.
 1963 Model L produces clearer map results in the demarcated areas with more accurate spatial positioning
 1964 of map instances, while maintaining similar performance to other models in remaining regions. This
 1965 demonstrates Model L’s superior stability, which is consistent with the mAS evaluation outcomes.
 1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

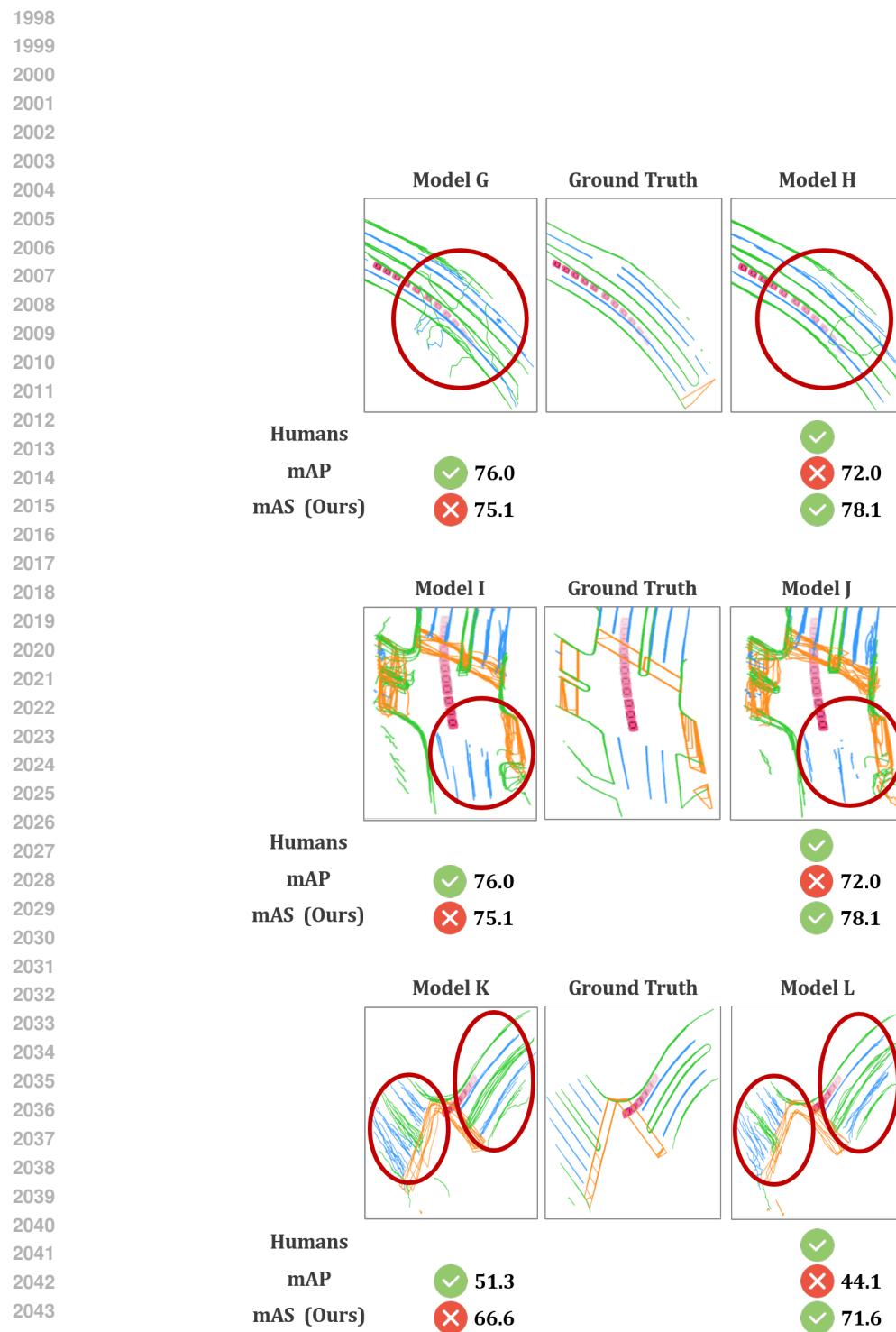


Figure 9: **Evaluating trustworthiness of online mapping models using human judgment, traditional mAP, and our mAS metric.**

2052 F LIMITATIONS AND FUTURE WORK 2053

2054 This study presents the first dedicated benchmark for temporal stability evaluation in online HD
2055 mapping, yet several limitations indicate directions for future research. The current benchmark is
2056 constrained by the scope of existing datasets, particularly in representing complex real-world sce-
2057 narios. Our evaluation primarily relies on standard driving sequences from the nuScenes dataset
2058 (Caesar et al., 2020), which lacks systematic coverage of challenging conditions such as extreme
2059 weather, adverse illumination, and intentional adversarial scenarios. Consequently, the current as-
2060 sessment may not fully reflect model stability under critical edge cases that are essential for safe
2061 autonomous driving.

2062 Another limitation stems from the rapid evolution of this research field. While our benchmark
2063 encompasses 42 model variants representing major architectural paradigms, new methodologies
2064 continue to emerge at a rapid pace. The current static snapshot of model comparisons requires
2065 continuous updates to maintain relevance and comprehensiveness.

2066 To address these limitations, we outline two primary directions for future work. First, we will
2067 establish a continuously maintained benchmark platform that systematically incorporates new re-
2068 search developments. This living benchmark will implement standardized evaluation protocols for
2069 emerging methodologies, ensuring fair comparisons and tracking progress over time. The platform
2070 will feature regular updates to model implementations, evaluation metrics, and dataset expansions,
2071 fostering community-wide collaboration and providing a reliable foundation for assessing advance-
2072 ments in temporal stability.

2073 Second, we will expand the benchmark to include diverse challenging scenarios that better reflect
2074 real-world complexity. This expansion will incorporate data from multiple geographic regions with
2075 varying road infrastructures and traffic patterns. Specifically, we will integrate specialized datasets
2076 containing extreme weather conditions (heavy rain, snow, fog), low-light and night-time driving sce-
2077 narios, and challenging urban environments with complex intersections and dense traffic. Further-
2078 more, we will develop evaluation protocols for synthetic adversarial scenarios designed to stress-test
2079 model stability, such as sensor degradation simulations and challenging weather transitions. These
2080 enhancements will provide a more comprehensive assessment of model robustness under critical
2081 conditions.

2082 We believe these efforts will significantly advance the development of more reliable and robust
2083 online HD mapping systems.

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105