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Abstract

This paper presents a systematic study of multi-objective online learning. We first1

formulate the framework of Multi-Objective Online Convex Optimization, which2

encompasses two novel multi-objective regret definitions. The regret definitions3

build upon an equivalent transformation of the multi-objective dynamic regret4

based on the commonly used Pareto suboptimality gap metric in zero-order multi-5

objective bandits, making it amenable to be optimized via first-order iterative6

methods. To motivate the algorithm design, we give an explicit example in which7

equipping OMD with the vanilla min-norm solver for gradient composition will8

incur a linear regret, which shows that only regularizing the iterates, as in single-9

objective online learning, is not enough to guarantee sublinear regrets in the multi-10

objective setting. To resolve this issue, we propose a novel min-regularized-norm11

solver that regularizes the composite weights. Combining min-regularized-norm12

with OMD results in the Doubly Regularized Online Mirror Multiple Descent13

algorithm. We further derive both the static and dynamic regret bounds for the14

proposed algorithm, each of which matches the corresponding optimal bound in the15

single-objective setting. Extensive experiments on both simulation and real-world16

datasets verify the effectiveness of the proposed algorithm.17

1 Introduction18

Traditional optimization methods for machine learning are usually designed to optimize a single19

objective. However, in many real-world applications, we are often required to optimize multiple20

correlated objectives concurrently. For example, in autonomous driving [12, 20], the self-driving21

vehicles need to solve multiple tasks such as self-localization and object identification at the same22

time. In online advertising [21, 22], advertisers need to determine the exposure of items to different23

users to maximize both the Click-Through Rate (CTR) and the Post-Click Conversion Rate (CVR).24

In many multi-objective scenarios, the objectives may conflict with each other [15]. Hence, there may25

not exist any single solution that optimizes all the objectives simultaneously. For example, in online26

advertising, merely optimizing CTR or CVR will degrade the performance of the other [21, 22].27

Multi-objective optimization (MOO) [23, 6] is concerned with optimizing multiple conflicting28

objectives simultaneously. It seeks Pareto optimality, where no single objective can be improved29

without hurting the performance of the others. Many different methods for MOO have been proposed,30

including evolutionary methods [26, 39], scalarization methods [9], and gradient-based iterative31

methods [7]. Recently, the Multiple Gradient Descent Algorithm (MGDA) and its variants have been32

introduced to the training of multi-task deep neural networks and achieved great empirical success33

[29], making them regain a significant amount of research interest [17, 33, 18]. These methods34

compute a composite gradient based on the gradient information of all the individual objectives35

and then apply the composite gradient to update the model parameters. The composite weights are36

determined by a min-norm solver [7] which yields a common descent direction of all the objectives.37
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However, compared to the increasingly wide application prospect, the gradient-based iterative38

algorithms are relatively understudied, especially for the online learning setting. Multi-objective39

online learning is of essential importance due to reasons in two folds. First, due to the data explosion in40

many real-world scenarios such as web applications, making in-time predictions requires performing41

online learning. Second, the theoretical investigation of multi-objective online learning will lay a solid42

foundation for the design of new optimizers for multi-task deep neural networks. This is analogous to43

the single-objective setting, where nearly all the optimizers for training DNNs are initially analyzed44

in the online setting, such as AdaGrad [8], Adam [16], and AMSGrad [28].45

In this paper, we give a systematic study of multi-objective online learning. To begin with, we46

formulate the framework of Multi-Objective Online Convex Optimization (MO-OCO). The first47

major challenge is the lack of regret definitions in the multi-objective setting. To tackle this challenge,48

we need appropriate discrepancy metrics that can be used in the regret definitions, which evaluate the49

gap between any two vector losses by producing scalar values. Intuitively, the Pareto suboptimality50

gap (PSG) metric, which is frequently used in zero-order multi-objective bandits [30, 19], is a very51

promising candidate. It can yield scalarized distances from any vector loss to a given comparator set.52

We can thus define the multi-objective regret by simply plugging in PSG as the discrepancy metric.53

However, as a metric designed purely from the geometric view, PSG is intrinsically difficult to be54

optimized directly via gradient-based iterative methods. To resolve this problem, for the PSG-based55

multi-objective dynamic regret, we derive its equivalent unconstrained max-min form via a highly56

non-trivial transformation. This form is intuitive to the design of first-order multi-objective online57

algorithms, indicating that we should select a convex combination of the gradients at each round.58

Unfortunately, for the PSG-based static variant, such an equivalence does not exist. To remedy this59

issue, we make extensions of the dynamic variant by fixing the comparator set and the composite60

weights, which yields an appropriate definition of the multi-objective static regret.61

Based on the MO-OCO framework, we develop a novel multi-objective online algorithm termed62

Doubly Regularized Online Mirror Multiple Descent. The key module of the algorithm is the gradient63

composition scheme, which calculates a composite gradient in the form of a convex combination of64

the gradients of all objectives. Intuitively, the most direct way to determine the composite weights is65

to apply the min-norm solver [7] commonly used in offline multi-objective optimization. However,66

directly applying min-norm is not workable in the online setting. Specifically, the composite weights67

in min-norm are only determined by the gradients at the current round. In the online setting, since68

the gradients can be adversarial, they may result in undesired composite weights, further producing69

a composite gradient that reversely optimizes the loss. To rigorously verify this point, we give a70

showcase in which equipping OMD with vanilla min-norm even incurs a linear regret, showing that71

only regularizing the iterate, as in OMD, is not enough to guarantee sublinear regrets in the multi-72

objective setting. To fix this issue, we devise a novel min-regularized-norm solver with an explicit73

regularization on composite weights. Equipping it with OMD results in our proposed algorithm.74

We then conduct the theoretical analysis for our proposed algorithm. We derive a multi-objective static75

regret bound O(
√
T ) and a multi-objective dynamic regret bound O(V

1/3
T T 2/3) for DR-OMMD.76

Both bounds match the optimal bounds in the single-objective setting [11, 34]. Our analysis also77

shows that DR-OMMD attains a lower regret than linearization with fixed composite weights.78

To evaluate the effectiveness of DR-OMMD, we conduct extensive experiments on both simulation79

datasets and real-world datasets. We first elaborate simulation experiments, in which we find80

that DR-OMMD attains lower regret than vanilla min-norm and linearization, which verifies the81

superiority of the min-regularized-norm solver. We then realize adaptive regularization via multi-82

objective optimization on real-world datasets, and find that adaptive regularization with DR-OMMD83

significantly outperforms fixed regularization with linearization.84

In summary, in this paper, we give the first systematic study of multi-objective online learning, which85

encompasses a novel framework, a new algorithm, and corresponding non-trivial theoretical analysis.86

We believe that this work paves the way for future research on more advanced multiple-objective87

optimization algorithms, which may inspire the design of new optimizers for multi-task deep learning.88

2 Preliminaries89

In this section, we briefly review the necessary background knowledge of online convex optimization90

and multi-objective optimization.91
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2.1 Online Convex Optimization92

Online Convex Optimization (OCO) [38, 11] is the most commonly adopted framework for93

designing online learning algorithms. It can be viewed as a structured repeated game between a94

learner and an adversary. At each round t ∈ {1, . . . , T}, the learner is required to generate a decision95

xt from a convex compact set X ⊂ Rn. Then the adversary replies the learner with a convex function96

ft : X → R and the learner suffers the loss ft(xt). The goal of the learner is to minimize the regret97

with respect to the best fixed decision in hindsight, i.e.,98

RS(T ) =
∑T

t=1
ft(xt)− min

x∗∈X

∑T

t=1
ft(x

∗).

Note that the above regret is the static regret [10], which compares the learner’s cumulative loss99

with that of a fixed decision. There is another version of regret, namely the dynamic regret [10, 34],100

which compares the learner’s cumulative loss with that of a sequence of local optimal decisions, i.e.,101

RD(T ) =
∑T

t=1
ft(xt)−

∑T

t=1
min
x∗
t∈X

ft(x
∗
t ).

Any meaningful regret is required to be sublinear in T , i.e., limT→∞ RS/D(T )/T = 0, which implies102

that when T is large enough, the learner can perform as well as the best fixed decision in hindsight103

(for static regret) or the local optimal decision at each round (for dynamic regret).104

Online Mirror Descent (OMD) [11] is a classic first-order online learning algorithm. At each round105

t ∈ {1, . . . , T}, OMD yields its decision using the following formula106

xt+1 = argmin
x∈X

η⟨∇ft(xt), x⟩+BR(x, xt),

where η is the step size, R : X → R is the regularization function, and BR(x, x
′) = R(x)−R(x′)−107

⟨∇R(x′), x− x′⟩ is the Bregman divergence induced from R. As a meta-algorithm, by instantiating108

different regularization functions, OMD can induce two important algorithms, i.e., Online Gradient109

Descent [38, 13] and Online Exponentiated Gradient [11].110

2.2 Multi-Objective Optimization111

Multiple-objective optimization (MOO) is concerned with solving the problems of optimizing112

multiple objectives simultaneously [39, 29]. In general, since different objectives may conflict with113

each other, there is no single solution that can optimize all the objectives at the same time. Instead,114

MOO seeks to find solutions that achieve Pareto optimality. Next, we exposit Pareto optimality and115

related definitions more formally using a vector-valued loss H = (h1, . . . , hm)⊤ as objectives, where116

m ≥ 2 and hi : K → R, i ∈ {1, . . . ,m}, K ⊂ R, is the i-th loss function.117

Definition 2.1 (Pareto optimality). (a) For any two solutions x, x′ ∈ K, we say that x dominates118

x′, denoted as x ≺ x′ or x′ ≻ x, if hi(x) ≤ hi(x′) for all i, and there exists one i such that119

hi(x) < hi(x′); otherwise, we say that x does not dominate x′, denoted as x ⊀ x′ or x′ ⊁ x.120

(b) A solution x∗ ∈ K is called Pareto optimal if it is not dominated by any other solution in K.121

There may exist multiple Pareto optimal solutions. For example, it is easy to show that the optimizer122

of any single objective, i.e., x∗
i ∈ argminx∈K hi(x), i ∈ {1, . . . ,m}, is Pareto optimal. Different123

Pareto optimal solutions reflect different trade-offs among the objectives [17].124

Definition 2.2 (Pareto front). (a) All Pareto optimal solutions form the Pareto set PK(H).125

(b) The image of PK(H) constitutes the Pareto front, denoted as P(H) = {H(x) | x ∈ PK(H)}.126

Now that we have established the notion of optimality in MOO, we proceed to introduce the metrics127

that measure the discrepancy of an arbitrary solution x ∈ K from being optimal. Recall that, in the128

single-objective setting with merely one loss function h : Q → R, where Q ⊂ R, for any z ∈ Q,129

the loss gap h(z) −minz′′∈Q h(z′′) is directly the discrepancy measure. However, in MOO with130

more than one loss, for any x ∈ K, the loss gap H(x) −H(x′′), where x′′ ∈ PK(H), is a vector.131

Intuitionally, the desired discrepancy metric shall scalarize the vector-valued loss gap and yield132

the value 0 for any Pareto optimal solution. In general, there are two commonly used discrepancy133

metrics in MOO, i.e. Pareto suboptimality gap (PSG) [30] and Hypervolume (HV) [4]. As HV is a134

volume-based metric, it is more difficult to optimize or analyze via iterative algorithms [36]. Hence135

in this paper, we adopt PSG, which has been extensively used in multi-objective bandits [30, 19].136
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Definition 2.3 (Pareto suboptimality gap). For any x ∈ K, the Pareto suboptimality gap to a given137

comparator set K∗ ⊂ K, denoted as ∆(x;K∗, H), is defined as the minimal scalar ϵ ≥ 0 that needs138

to be subtracted from all entries of H(x), such that H(x)− ϵ1 is not dominated by any point in K∗,139

where 1 denotes the all-one vector in Rm, i.e.,1140

∆(x;K∗, H) = inf
ϵ≥0

ϵ, s.t. ∀x′′ ∈ K∗,∃i ∈ {1, . . . ,m}, hi(x)− ϵ < hi(x′′).

Clearly, PSG is a distance-based discrepancy metric that motivated from a purely geometric viewpoint.141

In practice, the comparator set K∗ is often set to be the Pareto set PK(H) [30]. Then for any x ∈ K,142

its PSG is always non-negative and equals to zero if and only if x ∈ PK(H).143

Multiple Gradient Descent Algorithm (MGDA) is an offline first-order algorithm for MOO [9, 7].144

At each iteration l ∈ {1, . . . , L} (L is the number of iterations), it first computes the gradient ∇hi(xl)145

for each objective i ∈ {1, . . . ,m}, then derive the composite gradient gcomp
l =

∑m
i=1 λ

i
l∇hi(xl) as146

the convex combination of these multiple gradients; it applies gcomp
l to execute the gradient descent147

step to update the decision, i.e., xl+1 = xl − ηgcomp
l , where η is the step size. The core part of148

MGDA is the module that determines the composite weights λl = (λ1
l , . . . , λ

m
l ), which is given as149

λl = argmin
λl∈Sm

∥
m∑
i=1

λi
l∇hi(xl)∥22,

where Sm = {λ ∈ Rm |
∑m

i=1 λ
i = 1, λi ≥ 0, i ∈ {1, . . . ,m}} denotes the probabilistic simplex in150

Rm. This is a min-norm solver which finds the weights in the simplex that yields the minimum L2151

norm of the composite gradient. Thus MGDA is also called the min-norm method. Existing works152

[7, 29] have shown that MGDA is guaranteed to decrease all the objectives simultaneously until it153

reaches a Pareto optimal decision (under the convex setting where all hi are convex functions).154

3 Multi-Objective Online Convex Optimization155

In this section, we formally formulate the framework of multi-objective optimization in the online156

setting, termed Multi-Objective Online Convex Optimization (MO-OCO).157

Framework overview. We tailor the famous online convex optimization (OCO) framework to the158

multi-objective setting, which can be viewed as a repeated game between an online learner and the159

adversarial environment. At each round t ∈ {1, . . . , T}, the learner generates a decision xt from a160

given convex compact decision set X ⊂ Rn. Then the adversary replies the decision with a vector161

loss function Ft(x) : X → Rm, where its i-th component f i
t (x) : X → R belongs to the i-th162

objective, and the learner suffers the loss Ft(xt) ∈ Rm. The goal of the learner is to generate a163

sequence of decisions {xt}Tt=1 so that the cumulative loss
∑T

t=1 Ft(xt) can be optimized.164

Recall that, in the single-objective setting, the performance metric R(T ) =
∑T

t=1(ft(xt)− ft(zt)),165

i.e., the regret, compares the actual decisions xt with some comparator zt ∈ X at each round t. For166

the static regret, all zt are identically set as the fixed optimal decision x∗ w.r.t. all losses in hindsight,167

i.e., zt ≡ x∗ ∈ argminx∈X
∑T

t=1 ft(x). For the dynamic regret, each zt is selected as the optimal168

decision x∗
t w.r.t. the instantaneous loss ft at that round, i.e., zt = x∗

t ∈ argminx∈X ft(x).169

In analogy, we can define the multi-objective regret as R(T ) =
∑T

t=1 ∆t, where each ∆t compares170

the actual decisions xt with some comparator zt ∈ X . However, in general, no single decision can171

optimize all the objectives at the same time. Hence, it is natural to compare xt with a group of Pareto172

optimal decisions, which constitute a comparator set Ct ⊂ X . To measure the discrepancy between xt173

and Ct, we further introduce the Pareto suboptimality gap (PSG) [30] ∆(xt; Ct, Ft). Then the multi-174

objective regret can be defined as R(T ) =
∑T

t=1 ∆(xt; Ct, Ft). Now we can formulate the static or175

the dynamic variant by specifying the comparator set Ct at each round. Specifically, by setting all Ct to176

be the Pareto set X ∗ of the cumulative loss
∑T

t=1 Ft, we formulate the multi-objective static regret177

RMOS(T ) =
∑T

t=1 ∆(xt;X ∗, Ft). By setting each Ct to be the Pareto set X ∗
t of the instantaneous178

loss Ft, we formulate the multi-objective dynamic regret RMOD(T ) =
∑T

t=1 ∆(xt;X ∗
t , Ft).179

1Our definition of PSG is a bit different from that in [30]. In Appendix B we show that they are equivalent.
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Recall that PSG is a zero-order metric motivated in a purely geometric sense, namely, its calculation180

needs to solve a constrained optimization problem with an unknown boundary f i
t (x

′′),∀x′′ ∈ Ct.181

Hence, it is not straightforward to design a first-order algorithm to optimize PSG, not to mention182

the regret analysis. To motivate algorithm design and analysis, we investigate the two variants in183

more detail. We begin with the dynamic variant, since we find that it has an equivalent form, which is184

intuitive and has a strong implication on the design of effective online multiple gradient algorithms.185

An equivalent form of the dynamic regret. Surprisingly, the multi-objective dynamic regret RMOD186

can be transformed into an unconstrained max-min form. The derivation utilizes Pareto optimality of187

X ∗
t and is highly non-trivial, which is deferred to the appendix due to the space limit.188

Proposition 3.1. The multi-objective dynamic regret has an equivalent form, i.e.,189

RMOD(T ) = sup
x∗
t ∈X∗

t ,

1≤t≤T

inf
λ∗
t ∈Sm,

1≤t≤T

∑T

t=1
λ∗
t
⊤(Ft(xt)− Ft(x

∗
t )).

Remark. (i) The above form can be understood as a variant of the standard dynamic regret regarding190

{λ∗
t
⊤Ft}Tt=1, whereas λ∗

t are unknown to the learner. This provides an intuition that we can gen-191

erate weights λt ∈ Sm at each round and optimize {λtFt}Tt=1 via single-objective techniques. For192

first-order algorithms, it is equivalent to selecting a convex combination of individual gradients and193

then applying the composite gradient to model update. Undoubtedly, how to generate the weights λt194

needs some careful designs, which will be explicated later in the algorithm section.195

(ii) When m = 1, we have Sm = {1} and X ∗
t = argminx∈X Ft(x). Hence RMOD(T ) =196 ∑T

t=1(Ft(xt)−minx∈X Ft(x)), which is exactly the single-objective dynamic regret RD(T ).197

An alternative form of the static regret. Unfortunately, for RMOS, the above equivalence form198

does not exist. Here is the reason. In RMOS, the comparator set X ∗ is the Pareto set of the cumulative199

loss
∑T

t=1 Ft rather than the instantaneous loss Ft. Hence, at some specific round t, the decision200

xt may Pareto dominate all points in X ∗ w.r.t. the instantaneous Ft, and we would expect the201

metric ∆t to be negative. However, PSG (or other commonly used metrics such as Hypervolume)202

always yields non-negative values, so the induced RMOS is not aligned with RS . For example, when203

m = 1, we have RMOS(T ) = supx∗∈X∗
∑T

t=1 max{Ft(xt)−Ft(x
∗), 0}, which can be much looser204

than the static regret RS(T ) = supx∗∈X∗
∑T

t=1(Ft(xt)− Ft(x
∗)). Hence the analysis of RMOS is205

intrinsically complex if we use existing discrepancy metrics that always yield non-negative values.206

Enlightened by Proposition 3.1, we can formulate the static regret in a different way, i.e., by modifying207

the equivalent form of dynamic regret. Recall that in Proposition 3.1, at each round t, the comparator208

x∗
t is selected from the Pareto set X ∗

t of the instantaneous loss Ft, and the weights λ∗
t are generated209

from Sm. To formulate the static variant, we can use a fixed comparator x∗ from the Pareto set X ∗ of210

the cumulative loss
∑

t Ft and fixed weights λ∗ ∈ Sm at all rounds. Now the static variant takes211

RMOS(T ) := sup
x∗∈X∗

inf
λ∗∈Sm

λ∗⊤(
∑T

t=1
Ft(xt)−

∑T

t=1
Ft(x

∗)).

Remark. (i) RMOS(T ) has a clear physical meaning that optimizing it will impose the cumulative212

loss
∑T

t=1 Ft(xt) to reach the Pareto front P∗. See more details in Appendix C.213

(ii) When m = 1, Sm = {1} and X ∗ reduces to argminx∈X
∑T

t=1 Ft(x). Therein RMOS(T ) =214 ∑T
t=1 Ft(xt)−minx∗∈X∗

∑T
t=1 Ft(x

∗), which reduces to the single-objective static regret RS(T ).215

4 Online Mirror Multiple Descent216

In this section, we present the Online Mirror Multiple Descent (OMMD) algorithm, the protocol of217

which is given in Algorithm 1. At each round t, the learner first computes the gradient of the loss218

regarding each objective, then determines the composite weights of all these gradients, and finally219

applies the composite gradient to the online mirror descent step.220

4.1 Vanilla Min-Norm May Incur Linear Regrets221

The core module of OMMD is the composition of multiple gradients. For simplicity, we represent222

the gradients at round t in a matrix form ∇Ft(xt) = [∇f1
t (xt), . . . ,∇fm

t (xt)] ∈ Rn×m. Then the223
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Algorithm 1 Doubly Regularized Online Mirror Multiple Descent (DR-OMMD)
1: Input: Convex set X , time horizon T , regularization parameter αt, learning rate ηt, regulariza-

tion function R, user preference λ0.
2: Initialize: x1 ∈ X .
3: for t = 1, . . . , T do
4: Predict xt and receive a loss function Ft : X → Rm.
5: Compute the multiple gradients ∇Ft(xt) = [∇f1

t (xt), . . . ,∇fm
t (xt)] ∈ Rn×m.

6: Determine the weights for the gradient composition via min-regularized-norm
λt = argmin

λ∈Sm

∥∇Ft(xt)λ∥22 + α∥λ− λ0∥1.

7: Compute the composite gradient gt = ∇Ft(xt)λt.
8: Perform online mirror descent using gt

xt+1 = argmin
x∈X

η⟨gt, x⟩+BR(x, xt).

9: end for

composite gradient is given as gt = ∇Ft(xt)λt, where λt is the composite weights. As illustrated in224

Preliminary, the min-norm method in MGDA [7, 29] is a classic method to determine the composite225

weights in the offline setting, which results in a common descent direction that can descend all the226

losses simultaneously. Thus, it is tempting to consider applying it to the online setting.227

However, directly applying the min-norm method to the online setting is not workable, which may228

even incur linear regrets of the resulting algorithms. The rationale is as follows. In the vanilla229

min-norm method, the composite weights λt are determined solely by the gradients ∇Ft(xt) at the230

current round t, hence they are very sensitive to the instantaneous loss Ft. In the online setting,231

the losses at each round can be adversarially chosen, and thus the corresponding gradients can be232

adversarial. These adversarial gradients may result in undesired composite weights, which may233

further produce a composite gradient that even deteriorates the next prediction. In the following,234

we provide a problem instance in which min-norm incurs a linear regret. We extend OMD to the235

multi-objective setting, where the composite weights are directly yielded by min-norm [11].236

Problem instance. We consider a two-objective problem. The decision domain is X = {(u, v) |237

u+ v ≤ 1
2 , v − u ≤ 1

2 , v ≥ 0} and the loss function at each round is238

Ft(x) =

{
(∥x− a∥2, ∥x− b∥2), t = 2k − 1, k = 1, 2, ...;

(∥x− b∥2, ∥x− c∥2), t = 2k, k = 1, 2, ...,

where a = (−2,−1), b = (0, 1), c = (2,−1). For simplicity, we first analyze the case where the239

total time horizon T is an even number. Then we can compute the Pareto set of the cumulative240

loss
∑T

t=1 Ft, i.e., X ∗ = {(u, 0) | − 1
2 ≤ u ≤ 1

2}, which locates at the x-axis. For conciseness of241

analysis, we instantiate OMD with L2-regularization, which results in the simple OGD algorithm242

[24]. We start at an arbitrary point x1 = (u1, v1) ∈ X satisfying v1 > 0. At each round t, suppose243

the decision xt = (ut, vt) ∈ X , then the gradients of each objective w.r.t. xt can be calculated as244

g1t =

{
(2ut + 4, 2vt + 2), t = 2k − 1;

(2ut, 2vt − 2), t = 2k.
g2t =

{
(2ut, 2vt − 2), t = 2k − 1;

(2ut − 4, 2vt + 2), t = 2k.

Since 0 ≤ vt ≤ 1
2 , we observe that the second entry of either gradient alternates between positive245

and negative. By using min-norm, the composite weights λt can be computed as246

λt =

{
((1− ut − vt)/4, (3 + ut + vt)/4), t = 2k − 1;

((3− ut + vt)/4, (1 + ut − vt)/4), t = 2k.

We observe that both entries of composite weights alternative between above 1
2 and below 1

2 , and247

∥λt+1 − λt∥1 ≥ 1. Recall that ∥λt∥1 = 1, hence the composite weights at two consecutive rounds248

change radically. The resulting composite gradient takes249

gcomp
t =

{
(ut − vt + 1, −ut + vt − 1), t = 2k − 1;

(−ut − vt − 1, −ut − vt − 1), t = 2k.
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The fluctuating composite weights mix with the positive and negative second entries of gradients,250

making the second entry of gcomp
t always negative, i.e., −ut + vt − 1 < 0 and −ut − vt − 1 < 0.251

Hence gcomp
t actually drives xt away from the Pareto set X ∗ that coincides with the x-axis. This252

essentially reversely optimizes the loss, hence increases the regret. In fact, we can prove that it even253

incurs a linear regret2. Due to the lack of space, we leave the proof of linear regret when T is an odd254

number in the appendix. The above results of the problem instance are summarized as follows.255

Proposition 4.1. For OMD equipped with vanilla min-norm, there exists a multi-objective online256

convex optimization problem, in which the resulting algorithm incurs a linear regret.257

Remark. Stability is a basic requirement to guarantee meaningful regrets in online learning [25].258

In the single-objective setting, directly regularizing the iterate xt (e.g., OMD) is already enough.259

However, as shown in the above analysis, only regularizing xt is not enough to attain sublinear regrets260

in the multi-objective setting, since there is another source of instability, i.e., the composite weights,261

that affects the direction of the composite gradient. Therefore, in multi-objective online learning,262

besides regularizing the iterates, we also need to explicitly regularize the composite weights.263

4.2 Doubly Regularized Online Mirror Multiple Descent264

Enlightened by the design of regularization in FTRL [25], we consider the regularizer r(λ, λ0), where265

λ0 is the pre-defined composite weight that may reflect the user preference. This results in a new266

solver called min-regularized-norm, i.e.,267

λt = argmin
λ∈Sm

∥∇Ft(xt)λ∥22 + αr(λ, λ0),

where α is the strength of regularization. Equipping OMD with the new solver, we derive the268

proposed online algorithm. Note that beyond the regularization on the iterate xt that is intrinsic in269

online learning, there is another regularization on the composite weights λt in min-regularized norm.270

Both regularizations are fundamental and they together ensure the stability in the multi-objective271

online setting. Hence we call the algorithm Doubly Regularized OMMD (DR-OMMD).272

In principle, r can take various forms such as L1-norm, L2-norm and KL divergence etc. Here273

we adopt L1-norm since it aligns well with the simplex constraint of λ. Min-regularized-norm274

can be computed very efficiently, since it has a closed-form solution when m = 2. Specifically,275

suppose the gradients at round t are g1t and g2t . Set γL = (g⊤2 (g2 − g1) − α)/∥g2 − g1∥2 and276

γR = (g⊤2 (g2 − g1) + α)/∥g2 − g1∥2. Given any λ0 = (γ0, 1 − γ0) ∈ S2, we can compute the277

composite weights λt as (γt, 1− γt) where278

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL}.

In addition, when m > 2, since the feasible region Sm is a simplex, we can introduce a Frank-Wolfe279

solver [14] to compute the composite weights. See the protocol and more details in Appendix D.280

Compared to vanilla min-norm, the composite weights in min-regularized-norm are not fully deter-281

mined by the adversarial gradients. The resulting relative stability of composite weights make the282

composite gradients more robust to the adversarial environment. In the following, we give a general283

analysis and prove that DR-OMMD indeed guarantees sublinear regrets.284

4.3 Analysis285

We now analyze the static regret and the dynamic regret of DR-OMMD. Our analysis is based on the286

following commonly used assumptions [13, 11].287

Assumption 4.2 (Bregman divergence). The regularization function R is 1-strongly convex. In288

addition, the Bregman divergence is γ-Lipschitz continuous, i.e., BR(x, z) − BR(y, z) ≤ γ∥x −289

y∥,∀x, y, z ∈ domR, where domR is the domain of R and satisfies X ⊂ domR ⊂ Rn.290

Assumption 4.3 (Lipschitz continuity). For each i ∈ {1, . . . ,m}, there exists some positive and291

finite G such that, the i-th loss f i
t at each round t ∈ {1, . . . , T} is G-Lipschitz continuous w.r.t. ∥ · ∥,292

i.e., |f i
t (x)− f i

t (x
′)| ≤ G∥x− x′∥. Note that in the convex setting, this assumption leads to bounded293

gradients, i.e., ∥∇f i
t (x)∥∗ ≤ G for any t ∈ {1, . . . , T}, i ∈ {1, . . . ,m}, x ∈ X .294

2More concisely, here the regret is the multi-objective static regret.
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We first provide the static regret bound. The proof is left to the appendix due to the lack of space.295

Theorem 4.4. Suppose the diameter of X is bounded by D. Assume Ft is bounded, i.e., |f i
t (x)| ≤296

F,∀x ∈ X , t ∈ {1, . . . , T}, i ∈ {1, . . . ,m}. For any λ0 ∈ Sm, DR-OMMD attains297

RMOS(T ) ≤
1

η
BR(x

∗, x1) +
η

2

∑T

t=1
(∥∇Ft(xt)λt∥22 +

4F

η
∥λt − λ0∥1).

Remark. (i) Linearization with weights λ0 ∈ Sm can be viewed as single-objective optimization298

on scalar loss λ⊤
0 Ft, whose gradient is gt = ∇Ft(xt)λ0. Hence we can directly borrow the tight299

bound of OMD (Theorem 6.8 in [27]) and derive a bound 1
ηBR(x

∗, x1) +
∑T

t=1
ηt

2 ∥∇Ft(xt)λ0∥22300

for linearization. In comparison, if we set α = 4F/η in DR-OMMD, then from the formulation of301

λt, the bound becomes 1
ηBR(x

∗, x1) +
η
2

∑T
t=1 minλ∈Sm

{∥∇Ft(xt)λ∥2 + α∥λ− λ0∥1}, which is302

smaller than that of linearization. Note that the lower regret of DR-OMMD compared to linearization303

is also empirically verified in our experiments (see Figure 1).304

(ii) When η =
√
2γD

G
√
T
, α = 4F

η , the bound is in the order of O(
√
T ). It matches the optimal static305

single-objective regret bound w.r.t. T [11] (see more details in Appendix E).306

Then we turn to the dynamic regret. Our analysis relies on an additional assumption [2, 32, 5].307

Assumption 4.5 (Temporal variability). For each i ∈ {1, . . . ,m}, there exists some positive and308

finite VT such that
∑T−1

t=1 supx∈X |f i
t (x)− f i

t+1(x)| ≤ VT .309

Theorem 4.6. Assume the step size satisfies 4VT

G2T ≤ η ≤ 4VT

G2 . Then under all the above assumptions,310

for any preference λ0 ∈ Sm, OMMD with min-regularized-norm attains311

RMOD(T ) ≤
ηG2T

2
+

4γDVT

η2G2
+

η

2

∑T

t=1
(∥∇Ft(xt)λt∥22 +

8FG2T

VT
∥λt − λ0∥1).

Remark. When η = 2
G (γDVT

GT )1/3, α = 8FG2T
VT

, the bound is in the order of O(T 2/3V
1/3
T ), matching312

the best attainable single-objective dynamic regret bound [2, 35] (see more details in Appendix E).313

5 Experiments314

In this section, we conduct extensive experiments to evaluate the effectiveness of DR-OMMD. We315

consider two baselines: (i) linearization performs single-objective online learning on the linearized316

loss λ⊤
0 Ft at each round t, where the weights λ0 ∈ Sm are given beforehand; note that it is equivalent317

to computing composite gradients with fixed weights λt ≡ λ0. (ii) min-norm equips OMD with318

vanilla min-norm [7] for gradient composition.319

5.1 Simulation Experiments: Tracking the Pareto Front320

As summarized in Figure 1 (a), the goal is to track two points ξ1t , ξ
2
t cycling along a circle C = {ξ ∈321

R2 | ∥ξ∥2 = 1}. For each i ∈ {1, 2}, ξit = (cos θit, sin θ
i
t) is determined by some angle θit. We set322

a positive integer P i as the rotating period of ξit , which is unknown to the learner. The two points323

are initialized by θ11 = 0 and θ21 = π/2 and move as follows: at each round t, for each i ∈ {1, 2},324

the adversary independently samples an angle δit from a Gaussian distribution N (2π/P i, 1/
√
P i),325

then moves the i-th point to ξit+1 = (cos θit+1, sin θ
i
t+1) where θit+1 = θit − δit. Note that Eθit+1 =326

θi1 + 2πt/P i, hence in average ξit rotates clockwise with a period of P i. At each round t, the learner327

generates a decision xt from a L2-norm ball X = {x ∈ R2 | ∥x∥2 ≤ 2}. Then it acquires ξ1t , ξ
2
t and328

suffer the losses f i
t (xt) = ∥xt − ξit∥22/2, i ∈ {1, 2}. In this problem, the Pareto set of Ft = (f1

t , f
2
t )329

is exactly the line segment between ξ1t and ξ2t , i.e., X ∗
t = {λξ1t + (1− λ)ξ2t | λ ∈ [0, 1]}. At each330

round t, PSG measures the squared distance between xt and X ∗
t .331

We run T = 10, 000 rounds. To simulate the pattern drift, we set P 1 = 10, P 2 = 20 at the first332

T1 = 3, 000 rounds, and P 1 = 20, P 2 = 10 at the last T2 = 7, 000 rounds. For linearization,333

the weights λ0 = (λ1
0, 1 − λ1

0) are decided via a grid search λ1
0 ∈ {0, 0.1, ..., 1}; we consider334

three variants: lin-1 uses the optimal λ0 for the first T1 rounds, lin-2 uses the optimal λ0 for the335

last T2 rounds, and lin-opt uses the optimal λ0 for all T rounds. For DR-OMMD, for fairness of336
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Figure 1: Simulation setup and results. (a) The
targets ξ1t , ξ

2
t cycle along the circle. The Pareto

set at each round is the line segment [ξ1t , ξ
2
t ];

PSG measures the distance from xt to [ξ1t , ξ
2
t ].

(b) Performance of DR-OMMD and baselines.
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Figure 2: Results to verify the effectiveness of
adaptive regularization on protein. (a) Perfor-
mance of DR-OMMD and linearization under
varying λ0 = (λ1

0, 1− λ1
0). (b) Performance us-

ing the optimal weights λ0 = (0.1, 0.9).

comparison we use the same λ0 of lin-opt. The learning rates η in all algorithms and the parameter337

α in DR-OMMD follow the corresponding theories (e.g., Theorem 4.6). In this experiment, since338

the loss functions are manually designed, the value of VT can be directly calculated. Note that in339

some scenarios where VT is unknown, we can conduct a grid search and utilize a meta-algorithm to340

handle the unknown VT [37, 1], similar to the single-objective setting. From the results in Figure 1341

(b), we find that DR-OMMD achieves the lowest PSG, showing its ability to track the Pareto front;342

meanwhile, min-norm appears very unstable in the online setting, even worse than linearization.343

5.2 Convex Experiments: Adaptive Regularization via Multi-Objective Optimization344

In many real-world online scenarios, regularization is often adopted to avoid overfitting. A standard345

way is to add a term r(x) to the loss ft(x) at each round and optimize the regularized loss ft(x) +346

σr(x) [24], where σ is treated as a hyperparameter that needs to be fixed beforehand. The formalism347

of multi-objective online learning provides a novel way to realize regularization. Since r(x) measures348

the complexity of x, it can be regarded as the second objective alongside the primary goal ft(x). We349

can construct a vector loss Ft(x) = (ft(x), r(x)) at each round and thereby cast regularized online350

learning into a bi-objective online optimization problem. Compared to fixed regularization, the new351

approach effectively chooses the regularization strength σt = λ2
t/λ

1
t in an adaptive way.352

We use two large-scale online benchmark datasets. (i) protein is a bioinformatics dataset for protein353

type classification [31], which has 17 thousand instances with 357 features. (ii) covtype is a biological354

dataset collected from a non-stationary environment for forest cover type prediction [3], which has355

50 thousand instances with 54 features. For both tasks, we set the logistic loss of classification as356

the first objective, and the squared L2-norm of model parameters as the second objective. Since the357

ultimate goal of regularization is to enhance predictive performance, we adopt the average loss as the358

performance metric, namely
∑

t≤T lt(xt)/T , where lt(xt) is the classification loss at round t.359

We adopt a L2-norm ball centered at the origin with diameter K = 100 as the decision set. The360

learning rates are decided by a grid search over {0.1, 0.2, . . . , 3.0}. For DR-OMMD, the parameter α361

is simply set as 0.1. For fixed regularization, the strength σ = (1−λ1
0)/λ

1
0 is determined by the some362

preference λ1
0 ∈ [0, 1], which is essentially linearization with weights λ0 = (λ1

0, 1 − λ1
0). We run363

both algorithms with varying initial weights λ1
0 ∈ {0, 0.1, ..., 1}. In Figure 2, we plot (a) their final364

performance w.r.t. the choice of λ0 and (b) their learning curves with desirable λ0 (e.g., (0.1, 0.9) on365

protein). Other results are deferred to the appendix due to the lack of space. The results show that366

DR-OMMD consistently outperforms fixed regularization.367

6 Conclusions368

In this paper, we give a systematic study of multi-objective optimization in the online setting. We369

first formulate the framework of Multi-Objective Online Convex Optimization. Then we devise370

the Doubly Regularized Online Mirror Multiple Descent algorithm, which has a special design for371

gradient composition in online learning, namely min-regularized-norm. We provide non-trivial regret372

bounds for DR-OMMD and conduct extensive experiments to demonstrate its effectiveness.373

Limitations. As the first step of studying multiple gradient algorithm in online learning, we conduct374

our analysis in the convex setting. Although it does not affect the usage in the non-convex setting375

(see empirical validation in Appendix F), we can give a formal non-convex analysis in the future.376
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