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Abstract

Tactile sensing provides local essential information that is complementary to visual perception,
such as texture, compliance, and force. Despite recent advances in visuotactile representation
learning, challenges remain in fusing these modalities and generalizing across tasks and
environments without heavy reliance on pre-trained vision-language models. Moreover, exist-
ing methods do not study positional encodings, thereby overlooking the multi-stage spatial
reasoning needed to capture fine-grained visuotactile correlations. We introduce ViTaPEs, a
transformer-based architecture for learning task-agnostic visuotactile representations from
paired vision and tactile inputs. Our key idea is a two-stage positional injection: local
(modality-specific) positional encodings are added within each stream, and a global positional
encoding is added on the joint token sequence immediately before attention, providing a
shared positional vocabulary at the stage where cross-modal interaction occurs. We make the
positional injection points explicit and conduct controlled ablations that isolate their effect
before a token-wise nonlinearity versus immediately before self-attention. Experiments on
multiple large-scale real-world datasets show that ViTaPEs not only surpasses state-of-the-art
baselines across various recognition tasks but also demonstrates zero-shot generalization
to unseen, out-of-domain scenarios. We further demonstrate the transfer-learning strength
of ViTaPEs in a robotic grasping task, where it outperforms state-of-the-art baselines in
predicting grasp success. Project page: (link hidden for review)
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Figure 1: Task-accuracy radar comparing visuo-
tactile models. ViTaPEs outperforms all others in
robustness and cross-domain generalization.

Studies across species demonstrate that tactile perception
is essential for the development and expression of intel-
ligence, supporting perception, learning, and decision-
making in living organisms (Banerjee et al., 2023; Dia-
mond & Toso, 2023). For humans, touch is critical for
tasks such as grasping, manipulation, material character-
ization, and detecting environmental changes (Lederman
& Klatzky, 1987; Klatzky & Lederman, 1992). It provides
essential information about object properties like texture,
compliance, and force, which is vital for fine motor skills
and subtle interactions (Calandra et al., 2017). Tactile
sensing can offer local descriptions of deformation at con-
tact points, providing information that other modalities
cannot efficiently capture. When combined with vision,
it enhances perception by offering fine-grained details like
pressure distributions and surface compliance, comple-
menting vision’s global view of object shapes and spatial
relationships (Dahiya et al., 2010; Calandra et al., 2017).
Together, these modalities provide a thorough contextual
understanding of the environment.
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Recent works in visuotactile representation learning have shown the potential for joint models, improving
performance in complex tasks that rely on both modalities (Chen et al., 2022; Yang et al., 2024; Fu et al.,
2024; Lygerakis et al., 2024). Although a number of these methods can effectively learn shared representations,
challenges remain, including aligning data across different sensory scales and handling domain-specific
artifacts (e.g., texture, compliance, localization, scene context) and explicitly modeling positional encodings
for multi-stage spatial alignment of touch with vision.

Transformer EncoderTransformer Encoder

Non-Linear Projection Head g

Linear Projection Linear Projection

Figure 2: ViTaPEs Architecture: The visual and tactile
inputs are projected into separate token spaces, followed
by the addition of modality-specific (green and orange)
and a shared (purple) global PEs for multi-modal fusion,
so vision and touch tokens inhabit a common reference
while preserving each stream’s spatial layout.

Current research in this field often relies on
large, pre-trained visual or vision-language models
(VLMs) (Yang et al., 2024; Fu et al., 2024), where
the visual encoder is frozen and only the tactile
encoder is trained to align with it. This can limit
expressivity and assumes that visual representations
are optimal for tactile alignment, hindering joint
representation learning. A notable ViT-based ex-
ception is VTT (Chen et al., 2022), but it is trained
solely on simulated force-torque feedback, far lower
in resolution and complexity than data from high-
resolution spatial sensors like DIGIT (Lambeta
et al., 2020), GelSight (Yuan et al., 2017a), or
uSkin (Tomo et al., 2018). Moreover, VTT de-
pends on application-specific auxiliary losses, and
its generalization to broader tasks remains untested.

Another key limitation is the narrow scope of most
existing approaches. Current models are typically
fine-tuned for specific downstream tasks, such as
object manipulation, material classification, texture
recognition, or cross-modal generation, reducing
their ability to generalize (Dave et al., 2024; Jang
et al., 2022; Fang et al., 2024; Yang et al., 2023).
As a result, they often lack the versatility needed
for broader applications. A more task-agnostic approach that performs well with little or no fine-tuning
would significantly improve the practical utility of visuotactile representation learning.

We present a cross-modal method that integrates visual and tactile data using a transformer-based architecture
enriched with multi-stage Visuo-Tactile Positional Encodings, namely ViTaPEs. In visuotactile settings,
positional information matters at two complementary points in the computation graph. First, each modality
carries its own spatial layout (e.g., local surface deformation patterns in touch or scene context in vision)
that should remain distinguishable within the stream. Second, cross-modal interaction is realized when the
two token sequences are processed jointly by self-attention; at this fusion stage it is beneficial to expose both
modalities to a shared positional vocabulary so the model can learn correspondences during training, without
assuming a geometrically calibrated alignment.

We operationalize this with two-stage positional injection. Modality-specific local encodings are added within
each stream, then the visual and tactile token sequences are concatenated, and a single learned global positional
encoding is added on the joint sequence immediately before attention. Since vanilla transformers (Vaswani
et al., 2017) are permutation-equivariant without positional signals and large synchronized visuotactile
datasets are scarce, this design supplies an inductive bias by injecting positional information (i) where
token-wise feature extraction occurs and (ii) where cross-modal mixing occurs, guiding attention to discover
useful cross-modal relationships without relying on prohibitively large training corpora.

Our model can be trained in both self-supervised and supervised regimes, facilitating task-agnostic embeddings
while also optimizing for specific downstream tasks. Evaluations on out-of-distribution objects in real-world
scenarios substantiate the efficacy of ViTaPEs in grasp success prediction, object recognition, material
characterization, texture analysis, and hardness assessment. We contribute with:
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• Multi-Stage Positional Encodings: Our ViTaPEs model employs a multi-stage positional design
that encodes spatial structure within each modality and a shared cross-modal reference before
attention, overcoming the inability of previous models to perform multi-stage positional reasoning.

• Scoped consistency analysis for the modified token stem: We formalize a token re-indexing
consistency property for the token-wise stem with positional injection, ensuring the modification
does not introduce unintended order dependence beyond the explicit positional indexing.

• Zero-Shot Generalization and Transferable Representations: We demonstrate the out-
of-distribution generalization capacity of ViTaPEs, trained with self-supervision, highlighting its
robustness across diverse tasks and environments. We further show that ViTaPEs outperforms
baseline methods on a real-world robotic grasping dataset, leveraging its transfer learning capabilities
to adapt effectively to a smaller dataset of 10K samples.

2 Related Work

Visuotactile Representation Learning. Visuotactile representation learning combines vision and touch
to enhance perception in a wide range of tasks, including manipulation, material recognition, and texture
analysis. Recent approaches have leveraged deep learning to jointly model visual and tactile data. Yuan et al.
(2017b) introduced a shared latent space for the two modalities using GelSight sensors (Yuan et al., 2017a) for
fabric classification. Building on this, Yang et al. (2022) and Kerr et al. (2023b) employed contrastive learning
techniques to improve tactile representation learning with GelSight (Yuan et al., 2017a) and DIGIT (Lambeta
et al., 2020) sensors, respectively. Li et al. (2019) addressed the scale gap between visual and tactile signals
using conditional adversarial networks to synthesize tactile data from visual inputs. Luo et al. (2018) improved
cloth texture recognition by focusing on shared features across modalities, while the Visuo-Tactile Transformer
(VTT) (Chen et al., 2022) utilized spatial attention to effectively merge visual and tactile data. More recently,
MViTac (Dave et al., 2024) demonstrated the effectiveness of multimodal contrastive training, learning both
intra- and inter-modal representations to improve material classification and grasp prediction.

Transformer-Based Multimodal Fusion. Transformer-based architectures excel at modeling complex
cross-modal relationships but often rely heavily on pre-trained large language models (LLMs) or vision-
language models (VLMs), which limits their adaptability to visuotactile domains. Unitouch (Yang et al.,
2024) aligns tactile data with embeddings from pre-trained VLMs, achieving multimodal alignment between
language, vision, and touch. However, this comes under the assumption that the visual latent space is optimal,
thereby overlooking tactile-specific richness. Similarly, Fu et al. (2024) leverages pre-trained LLMs and VLMs
to align touch, vision, and language. This approach also forces tactile data to conform to representations
optimized for other modalities, potentially constraining the expressivity and adaptability of the tactile
features.

Positional Encodings in Transformers. Transformers rely on positional encodings to incorporate
structural information, as they lack inherent inductive biases for sequential or spatial data. Absolute PEs,
such as sinusoidal functions or learned embeddings, enable generalization to unseen sequences but fail to
capture relational dependencies (Vaswani et al., 2017). Relative PEs address this limitation by modeling
relationships between elements based on their distances, improving relational reasoning tasks (Shaw et al.,
2018). However, relative PEs are limited by their inability to generalize to arbitrary-length inputs and their
increased computational complexity due to explicit pairwise distance calculations, making them less efficient
for long or high-dimensional data. Rotary PEs (RoPE) (Su et al., 2024; Heo et al., 2025) address these
limitations by encoding relative positions through rotating query and key vectors, offering a more efficient
solution that scales effectively with sequence length. However, RoPE does not explicitly capture multi-stage
spatial relationships or the complex positional dynamics needed for both effective multi-modal integration and
detailed within-modality spatial nuances, limiting its applicability in tasks requiring comprehensive spatial
understanding.
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3 ViTaPEs: Visuotactile Positional Encodings

To address the limitations of existing approaches in visuotactile joint modeling, we propose ViTaPEs , a
unified architecture for integrating visual and vision-based tactile data based on a vision transformer (ViT)
architecture (Dosovitskiy et al., 2021). ViTaPEs incorporates multi-stage PEs to effectively capture both
intra-modal and inter-modal relationships. Specifically, our multi-stage design consists of unimodal PEs
(Section 3.1) that operate on individual modalities and a global PE (Section 3.2) shared across the concatenated
visuotactile token sequence. By leveraging attention mechanisms (Vaswani et al., 2017), ViTaPEs models
complex multimodal interactions, enabling robust joint representation learning to improve performance in
tasks requiring integrated visual and tactile perception.

At the core of ViTaPEs is the ability to process visual and tactile data within a single transformer encoder.
Each modality’s input is patchified into tokens that carry its own spatial layout. However, unlike CNNs,
transformers (Vaswani et al., 2017) do not exploit this structure by default. After patchification and projection,
token embeddings encode only local content, not their position. To restore this information, we add modality-
specific local positional encodings that preserve within-stream geometry. Second, the two streams must meet
in a shared frame so that a visual patch and a tactile patch referring to the same contact can “find” each other
during fusion. We operationalize this by introducing a global cross-modal positional encoding that places
tokens from both streams into a common reference before any attention layers mix them. Local PEs respect
within-modality geometry, and the shared global PE supplies a shared positional vocabulary at the fusion
stage, without assuming a geometrically calibrated coordinate system, thereby promoting stable alignment.

The visual input is represented as V ∈ RNvisual×P , where Nvisual denotes the number of visual patches, and
P is the dimensionality of each flattened patch. Similarly, the tactile input is represented as T ∈ RNtactile×B ,
where Ntactile denotes the number of tactile patches, and B is the dimensionality of each flattened patch.
These patches are mapped into an embedding dimension D via learnable linear transformations to form
tokens:

Xvisual(V ) = V Wvisual, Xtactile(T ) = T Wtactile (1)

where Xvisual ∈ RNvisual×D and Xtactile ∈ RNtactile×D are the token embeddings for the visual and tactile
modalities, respectively. Here, Wvisual ∈ RP ×D and Wtactile ∈ RB×D are learnable weight matrices. These
token embeddings serve as the initial representations for each modality.

3.1 Uni-modal Position Encodings

Each modality carries distinct spatial and semantic characteristics. For instance, standard visual images
typically capture global spatial descriptors aligned with a camera-based view, whereas tactile images may
encode sensor-specific signals such as pressure or contact distribution across a specialized surface. To
accommodate these differences, we assign a separate learnable modal positional encoding to each modality,
thereby providing a dedicated spatial representation for each domain. Specifically, the visual modality employs
PEvisual ∈ RNvisual×D and the tactile modality employs PEtactile ∈ RNtactile×D. To preserve modality-specific
structure, each position encoding is added directly to its corresponding token:

Xvisual
modal(V ) = Xvisual(V ) + PEvisual, Xtactile

modal(T ) = Xtactile(T ) + PEtactile. (2)

These modality-specific PEs enable the transformer encoder to capture the unique spatial priors inherent to
each sensor, before any cross-modal mixing occurs.

3.2 Global Position Encoding

A key part of our design is a global positional encoding added to the joint token sequence immediately before
self-attention, providing a shared positional vocabulary at the stage where cross-modal interaction is realized.
Even though each modality has its own distinct layout, cross-modal tasks benefit from exposing attention to
positional signals on the concatenated sequence when relating tokens across modalities.

We optimize a global positional encoding PEglobal ∈ R(C+N)×D, where N = Nvisual + Ntactile is the total
number of patch tokens across modalities, and C is 1 if a classification token is included (otherwise 0).
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Token-axis concatenation and token-wise stem. We first form the joint patch-token sequence by
token-axis (row-wise) concatenation:

Xconcat(V, T ) =
[
Xvisual

modal(V ) ; Xtactile
modal(T )

]
∈ RN×D. (3)

If a CLS token is used, we prepend it to obtain X̃concat(V, T ) ∈ R(C+N)×D (otherwise X̃concat = Xconcat).

We denote by g : RD → RD a two-layer MLP applied token-wise (row-wise) with shared weights, and we
apply it independently to each token:

X̃projected(V, T ) = g
(
X̃concat(V, T )

)
∈ R(C+N)×D. (4)

Global positional encoding at the fusion stage. We then add PEglobal to obtain the sequence fed to
the transformer:

Xglobal(V, T ) = X̃projected(V, T ) + PEglobal[ 1 : (C + N), :
]
. (5)

While the local and global positional encodings could theoretically be algebraically collapsed if the network
were purely linear, their separation across the non-linear projection head g is structurally intentional. Injecting
local PEs before g allows the optimizer to decouple the learning of non-linear geometric spatial warping
(handled by g) from the linear, cross-modal reference frame alignment (handled by PEglobal). This separation
creates two injection points that affect different parts of the computation graph: local PEs condition token-wise
feature extraction inside g, while the global PE supplies positional signals on the joint sequence immediately
before attention, where cross-modal mixing is realized. For completeness, we state a simple token re-indexing
consistency property for the pre-attention representation in Appendix B.

3.3 Transformer Operations and Cross-Attention for Multi-Modal Integration

Once the positionally-encoded tokens Xglobal are obtained, they are fed into a single transformer encoder.
The transformer architecture comprises standard layers, including multi-head self-attention and feed-forward
networks, adapted to process the combined visual–tactile token sequence.

Given the fused embeddings Xglobal, the self-attention mechanism can capture both intra-modal structure
and cross-modal dependencies, where visual information provides context for tactile details and vice versa.
The self-attention operation is defined as:

Attention(Q, K, V ) = Softmax
(QKT

√
dk

)
V, (6)

where Q, K, and V are the query, key, and value matrices derived from the positionally-encoded tokens,
and dk is the dimensionality of the key vectors for each head in the multi-head attention mechanism, i.e.,
dk = D/h, where h is the number of attention heads.

When the above attention mechanism is applied to the concatenation of visual and tactile tokens, it yields
both self-attention within each modality and cross-attention across modalities (Chen et al., 2022). To make
this explicit, we partition the token sequence into visual and tactile parts and write, for a given head,

Q =
[
Qi

Qt

]
, K =

[
Ki

Kt

]
, V =

[
Vi

Vt

]
,

where (Qi, Ki, Vi) are derived from visual tokens and (Qt, Kt, Vt) from tactile tokens. For the j-th head of
the n-th attention layer, the attention output can be written as:

An
j = Softmax

( 1√
dk

[
Qi

Qt

] [
Ki

Kt

]T ) [
Vi

Vt

]
=

[
Aii Ait

Ati Att

] [
Vi

Vt

]
=

[
AiiVi + AitVt

AtiVi + AttVt

]
, (7)

where the block matrices Aii, Ait, Ati, Att denote the corresponding sub-blocks of the (post-softmax) attention
matrix. Importantly, the softmax normalization is taken over the full joint token sequence, so these blocks are
coupled through the shared denominator; the decomposition is for interpretability rather than a separability
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Table 1: In-domain top-1 accuracy (%) evaluations across various downstream tasks, separated by models
trained with and without SSL. We trained the models on the TAG dataset (Yang et al., 2022) for the category,
hardness, and texture tasks, and on Object Folder Real (Gao et al., 2023) for “OF-Real” identification;
“YCB” column reports performance on YCB-Slide. See Appendix I for details of baseline methods. We
omit supervised results on YCB-Slide in Table 1 because the task saturates under supervision, precluding
meaningful comparative analysis. Numbers are the mean over 5 seeds.

Methods Model
Backbone

Material Property Recognition Object Identification
SSL # params

Category Hardness Texture OF-Real YCB
Vanilla CNN ResNet 46.9 72.3 76.3 89.8 – ✗ 22.3M
VTT (Chen et al., 2022) ViT 77.0 90.6 84.7 83.6 - ✗ 12.0M
RoPE (Heo et al., 2025) ViT 75.7 93.6 84.9 84.7 - ✗ 12.0M
ViTaPEs (Ours) ViT 80.1 94.8 89.7 92.7 - ✗ 12.7M
TAG (Yang et al., 2022) ResNet 54.7 77.3 79.4 81.2 79.3 ✓ 22.3M
SSVTP (Kerr et al., 2023a) ResNet 70.1 88.6 83.6 53.8 76.7 ✓ 22.4M
MViTac (Dave et al., 2024) ResNet 74.9 91.8 84.1 82.3 91.5 ✓ 22.4M
VTT (Chen et al., 2022) ViT 72.4 88.2 83.3 76.8 85.5 ✓ 29.7M
RoPE (Heo et al., 2025) ViT 73.0 89.5 84.0 77.5 81.9 ✓ 29.7M
ViTaPEs (Ours) ViT 75.9 92.2 87.2 85.2 96.9 ✓ 30.6M

claim. The cross-modal interactions are captured by AitVt (visual queries attending to tactile values) and
AtiVi (tactile queries attending to visual values).

The final output of the transformer encoder represents a comprehensive visuotactile feature map, preserving
intra-modal relationships while capturing inter-modal dependencies. This feature map can be pooled or
processed via a classification token for downstream tasks.

4 Experiments

We evaluate ViTaPEs on three types of tasks: material recognition, cross-sensor generalization, and robotic
grasp prediction. Training is performed on TAG (Yang et al., 2022) and OF-Real (Gao et al., 2023), and we
additionally test on YCB-Slide (Suresh et al., 2022) and unseen out-of-domain splits. For manipulation, we
use the grasp prediction dataset from Calandra et al. (2018). Performance is measured by top-1 accuracy
for classification. In the linear-probe setting, the encoder is frozen and only a linear classifier is trained,
while in the zero-shot setting, we train on a source dataset and evaluate directly on a disjoint target without
fine-tuning.

Unless otherwise noted, results are averaged over multiple random seeds. Implementation details, hyperparam-
eters, and augmentations are provided in Appendix C, and we report training cost and inference throughput
in Appendix E.

4.1 Material Property Recognition

We first assess the ability of ViTaPEs to capture material-specific features on the Touch-and-Go (TAG)
dataset (Yang et al., 2022). Alongside standard supervised learning, we employ a masked autoencoder
(MAE) (He et al., 2022) for self-supervised pre-training (SSL) of the ViT-based models, aiming to acquire
robust and task-agnostic representations. To ensure fair comparisons and match the model capacity of other
self-supervised baselines, we employ our Balanced (see Appendix F for the model sizes) ViT encoder for the
MAE. Further details on this architecture and our training choices are provided in Appendix C. The TAG
dataset comprises 20 diverse objects, each providing tactile feedback indicative of distinct material properties
(see Appendix H.1 for dataset details). Following Yang et al. (2022), we evaluate on three tasks: Category
(classifying samples into 20 object types), Hardness, and Texture (both binary classification tasks). These
tasks highlight how local tactile signals and global visual cues collectively characterize material attributes.
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Table 2: Cross-dataset transfer accuracies (%) under linear probing and zero-shot evaluation. Columns
correspond to the two transfer directions: OF-Real→TAG (reported under “TAG”) and TAG→OF-Real
(reported under “OF-Real”). The N/A entries for UniTouch reflect that we evaluate the released checkpoint
but do not retrain this large-scale multi-dataset pretrained model under the controlled single-source OF-
Real→TAG setting.

Methods
Linear Probe Zero-Shot
TAG OF-Real TAG OF-Real

MViTac (Dave et al., 2024) 48.3 50.2 39.5 41.8
UniTouch (Yang et al., 2024) N/A 61.2 N/A 33.2
SigLIP2 (Tschannen et al., 2025) 51.4 56.0 47.6 36.1
VTT (Chen et al., 2022) 49.7 55.0 41.8 45.4
RoPE (Heo et al., 2025) 47.1 52.4 40.0 44.3
ViTaPEs 53.1 68.1 53.8 65.2

Results: Table 1 shows that CNN-based methods (TAG, Vanilla-CNN) underperform, suggesting that ResNet
backbones may struggle to capture the multi-faceted aspects of material recognition. In contrast, ViT-based
models (VTT, RoPE, and ViTaPEs) leverage attention and PEs more effectively, boosting performance
across all tasks. Notably, ViTaPEs, with its multi-stage PEs, consistently exceeds the accuracy of VTT and
RoPE, demonstrating the benefit of leveraging (i) within-modality absolute layout cues (local PEs) and (ii)
fusion-stage positional cues on the joint sequence (global PE). Under supervised training, ViTaPEs reaches
80.1% in Category, 94.8% in Hardness, and 89.7% in Texture, largely outperforming competing approaches.

When integrating self-supervision, all models experience performance changes, though the extent varies. It is
important to note that for ViTaPEs, the supervised model is trained end-to-end with a non-linear MLP head,
whereas the SSL performance reflects a frozen-encoder evaluated via a single linear classifier (linear probe).
Because the SSL encoder is optimized for task-agnostic visuotactile structure rather than being explicitly
fine-tuned for the TAG Category task, its in-domain accuracy is slightly lower than its fully supervised
counterpart. However, this task-agnostic representation yields vastly superior out-of-distribution transfer,
as demonstrated in subsequent sections. ResNet-based methods appear to benefit from SSL, however, their
gains remain modest due to the limited capacity of CNN architectures in capturing complex cross-modal
interactions. VTT and ROPE show a moderate decrease with SSL, falling behind ViTaPEs. Notably, ViTaPEs
achieves the highest performance across all tasks in the self-supervised setting, reaching 75.9% in Category,
92.2% in Hardness, and 87.2% in Texture.

4.2 Object Identification

We evaluate ViTaPEs on object identification using two benchmarks: the Object Folder Real (OF-Real)
dataset (Gao et al., 2023) and the YCB-Slide (YCB) dataset (Suresh et al., 2022). OF-Real features real-world
household objects spanning materials such as wood, glass, plastic, and steel, with tactile readings collected
via the GelSight robotic finger (Yuan et al., 2017a) aligned to synchronized video frames. YCB comprises 21
common objects captured with paired RGB and DIGIT tactile images under varying lighting and backgrounds,
serving as a cross-sensor transfer test for generalization. Both benchmarks challenge models to integrate
localized tactile signals with global visual features, making them ideal for assessing cross-modal alignment
capabilities.

Results: As shown in Table 1, ResNet-based approaches fail to effectively capture the multi-modal com-
plexities of object identification, compared to the ViT counterparts, achieving relatively lower accuracy
on OF-Real. Transformer-based models such as VTT and RoPE improve on these baselines but still lag
behind ViTaPEs, which achieves 92.7% top-1 accuracy in the supervised regime and 85.2% in the SSL setting.
Importantly, on the YCB dataset, used here as a cross-sensor transfer benchmark, ViTaPEs attains 96.9%
top-1 accuracy under SSL, outperforming the next-best method by over 5%, and demonstrating exceptional
generalization across both datasets.
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Table 3: Performance on the Grasp dataset for success prediction. We report accuracy (%) for SSL (fine-tune
and evaluate on Grasp), and transfer via Linear (linear probing) and Zero (zero-shot) after pretraining on
TAG. For large pretrained VLM-style baselines, we report only Linear/Zero results.

Methods SSL Linear Zero
SSVTP (Kerr et al., 2023a) 58.2 59.1 53.6
TAG (Yang et al., 2022) 56.3 57.8 50.9
MViTac (Dave et al., 2024) 60.3 60.7 56.0
UniTouch (Yang et al., 2024) N/A 56.0 56.5
SigLIP2 (Tschannen et al., 2025) N/A 56.4 53.1
VTT (Chen et al., 2022) 56.5 62.9 55.2
RoPE (Heo et al., 2025) 62.6 64.5 57.4
ViTaPEs 70.7 69.3 60.4

4.3 Zero-Shot Generalization

To evaluate out-of-domain generalization, we test models pre-trained with SSL on one dataset and evaluate
their performance on a different one without additional fine-tuning.

We conduct two types of evaluations: linear probing and zero-shot. In linear probing, a linear classifier is
trained on top of the frozen encoders to assess how well the learned representations transfer across datasets.
For zero-shot evaluation, cosine similarity is computed directly from the frozen encoders without additional
training. Table 2 summarizes the results for both setups across the TAG and OF-Real datasets. All ViT-based
baselines (VTT, RoPE, ViTaPEs, and SigLIP2) are pre-trained on the source dataset using the same SSL
recipe; SigLIP2 differs only in that its visual backbone is initialized from a VLM-pretrained checkpoint and is
fine-tuned with a smaller lr (10−5). UniTouch is evaluated via its released checkpoint and is not retrained
under the controlled single-source settings (Appendix I).

Results: ViTaPEs achieves the strongest transfer in both directions and under both evaluation modes. On
OF-Real (pre-trained on TAG), ViTaPEs reaches 68.1% linear and 65.2% zero-shot, outperforming UniTouch
(61.2% / 33.2%) and other transformer baselines (VTT, RoPE). On TAG (pre-trained on OF-Real), ViTaPEs
also leads (53.1% / 53.8%), improving over SigLIP2 (51.4% / 47.6%). We include UniTouch as a strong,
large-scale pretrained baseline using the released checkpoint; however, retraining it under the controlled
single-source setting (OF-Real→TAG) is not applicable, and we therefore report N/A for those entries.

These transfers involve a pronounced domain shift: TAG and OF-Real employ tactile sensors with different
gels and capture conditions, yielding substantially different tactile image statistics. For qualitative intuition,
Appendix Figure 4 shows paired visual–tactile frames across datasets, highlighting the appearance gap induced
by sensor morphology and illumination. The strong zero-shot performance of ViTaPEs indicates that its
learned visuotactile representations remain stable under this sensor-induced shift, supporting deployment in
settings with heterogeneous tactile hardware.

4.4 Robot Grasping Prediction

We evaluate our approach on the Grasp dataset (Calandra et al., 2018) too, a benchmark for predicting grasp
success or failure using tactile data from a parallel-jaw gripper and RGB images. For details on the dataset
and its preprocessing configurations, we refer the readers to Appendix H.4.

To assess the learned visuotactile representations, we report three evaluation schemes: SSL, Linear (linear
probing), and Zero (zero-shot). In all settings, models are initialized from pre-training on the out-of-
distribution TAG dataset (Yang et al., 2022). In the SSL setup, we fine-tune the full model on Grasp and
evaluate on Grasp. In the Linear and Zero setups, we freeze the encoder and follow the same linear-probe
and cosine-similarity evaluation protocol as in Section 4.3. Additional details are provided in Appendix G.

8
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Results: Table 3 shows that ViTaPEs achieves the best performance across all reported settings. It improves
over ResNet-based baselines (SSVTP, TAG, MViTac) and transformer baselines (VTT, RoPE), reaching
70.7% with SSL fine-tuning, 69.3% with linear probing, and 60.4% in the zero-shot transfer setting. Moreover,
ViTaPEs also surpasses VLM-initialized baselines (UniTouch, SigLIP2) under linear and zero-shot evaluation.
These gains are particularly pronounced in this low-data regime (approximately 10K Grasp samples), where
strong inductive biases and transferable visuotactile features are crucial for reliable generalization.

5 Ablation Studies and Discussion

The ViTaPEs approach sets a new state-of-the-art across a wide range of tasks: in Section 4.1 it excels in all
baselines on material category, hardness, and texture; in Section 4.2, it achieves top-1 accuracy on object
identification on both OF-Real and YCB; and in Sections 4.3 and 4.4 it demonstrates exceptional transfer via
linear probing and zero-shot evaluation, surpassing pre-trained VLM baselines such as UniTouch (Yang et al.,
2024) and SigLIP2 (Tschannen et al., 2025). These results confirm that our novel multi-stage PEs enable
robust visuotactile feature fusion and generalization.

Learnable or Sinusoidal Positional Encodings? Table 4 examines how different choices for PEs,
learnable vs. sinusoidal, affect performance on the Category task. The three left columns compare replacing
the learnable local (modality-specific) and/or global positional encodings with fixed sinusoidal encodings.

We observe that relying on sinusoidal encodings for either modal or global PEs yields lower accuracy (76.2–
76.5%) compared to fully learnable PEs. This confirms that learnable embeddings adapt more effectively to
the peculiarities of visual-tactile data. Although sinusoidal encodings can provide a reasonable inductive bias,
the dynamic nature of tactile signals, along with variations in camera perspectives, appears to benefit from
the flexibility of learnable positional parameters.

Table 4: Ablation of positional encodings (PEs) and modality settings on the TAG (Yang et al., 2022) category
task. The first three groups of columns toggle learnable vs. sinusoidal PEs (non-learnable = sinusoidal),
whether each modality uses any PE, and whether vision or touch is active. The rightmost column reports the
full ViTaPEs configuration with all learnable PEs and both modalities enabled, corresponding to the 80.1%
result in Table 1. Numbers are the mean over 5 seeds.

Learnable PE PE Use Modality Use ViTaPEs
Visual ✗ ✓ ✗ ✗ ✓ ✓ ✗
Tactile ✗ ✓ ✗ ✗ ✓ ✗ ✓
Global ✓ ✗ ✗ ✓ ✗

Category 76.5 76.4 76.2 76.9 77.2 70.5 63.8 80.1

Are Both Modal and Global PEs Effective? The ablation in Table 4 reveals that omitting either
modality-specific or global PEs drops accuracy to around 76.9–77.2% (two central columns). This indicates
that each component encodes distinct spatial cues critical for aligning visual and tactile features. By contrast,
employing both (rightmost column) raises accuracy to 80.1%, demonstrating the complementarity of encoding
modality-specific structure (local PEs) alongside a fusion-stage positional reference on the joint sequence
(global PE).

In other words, our multi-stage design, where separate PEs are learned for the visual, tactile, and global
contexts, fosters richer and more discriminative cross-modal representations.

Figure 3 underscores how each learned PE contributes differently. The visual PE (Fig. 3(left)) exhibits a
grid-like pattern, capturing broad spatial dependencies aligned with typical camera-based inputs. Meanwhile,
the tactile PE (Fig. 3(middle)) shows higher-frequency fluctuations, reflecting its attention to localized
texture variations and contact points vital for tactile sensing. Most notably, the global PE (Fig. 3(right))
presents a smooth overarching pattern, yet internal variations suggest it has also learned distinct nuances
from each modality: the segments attending to vision (tokens 1- 196) appear more uniformly distributed,
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while those focusing on tactile signals exhibit finer oscillations. By unifying both modalities under this
shared positional reference used at the cross-modal mixing stage, ViTaPEs effectively leverages large-scale
visual context alongside the subtle deformations captured by tactile feedback. This complementary encoding
ultimately drives the performance gains seen in Table 1, confirming that local (within-modality) cues and a
global reference both play essential roles in robust visuotactile representation learning.
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Figure 3: Learned PEs in ViTaPEs after training: visual, tactile, and global (left to right). Each PE exhibits
a unique spatial structure reflecting modality-specific priors and representational needs.

Role of the Projection Head and Injection Point. To explicitly isolate the effect of our two-stage
positional injection, we ablate the placement and non-linearity of the projection head g. As detailed in
Table 5, we compare the full ViTaPEs model (where local PE is injected before a non-linear g) against three
controlled variants: (i) adding the local PE after g (PE-after-g), (ii) a parameter-matched control where the
activation function is removed so g is linear (Linearized-g), and (iii) removing the stem entirely (No-g). All
variants are trained and evaluated under identical protocols and compute budgets.

Table 5: Ablation of the projection head (g) and the positional encoding injection point. Results show
top-1 accuracy (%) for in-domain TAG Category on SSL, and out-of-domain transfer via linear probing and
zero-shot evaluation on the OF-Real dataset. Numbers are the mean over 5 seeds.

Variant TAG Category OF-Real Linear Probe OF-Real Zero-Shot
ViTaPEs 75.9 68.1 65.2
PE-after-g 71.3 56.2 45.7
Linearized-g 72.4 54.7 51.4
No-g 70.9 52.9 48.1

Performance is strictly maximized when g is non-linear and the local PE is injected before it. Crucially, the
performance gap between ViTaPEs and the parameter-matched Linearized-g control isolates the effect of the
non-linear conditioning, proving that the gain is not simply due to added parameter capacity. This specific
injection mechanism allows the network to learn position-conditioned feature extraction, which is critical for
robust out-of-domain transfer under compound sensor shifts.

Are Both Vision and Touch Important? Another typical question that arises when developing
visuotactile models is the benefit of using both modalities for solving tasks. As shown in the two right
columns of Table 4, models not leveraging both vision and touch achieve lower accuracy compared to those
using both modalities (80.1%). This demonstrates that integrating global visual context with localized tactile
information enhances the model’s discriminative capabilities, highlighting the complementary strengths of
both vision and touch in visuotactile perception.

Sensitivity to Data Variations We assess robustness to missing tactile evidence on TAG by masking at
evaluation a random fraction p∈{0, 20, 40, 60, 80, 100}% of tactile image patches, while keeping the vision
stream intact. The encoder is frozen after masked-autoencoding pretraining (75% masking), and a single
linear classifier is trained on top of it; for each p we report the mean over five seeds.

As shown in Table 6, accuracy degrades monotonically with increasing p for all methods, yet ViTaPEs remains
best at every level, with VTT and RoPE trailing across the entire range.ViTaPEs preserves near-optimal
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Table 6: TAG (Yang et al., 2022) category accuracy (%) under tactile-patch masking at evaluation (linear
probe; encoders frozen after masked-autoencoding pretraining with 75% masking; 5 seeds per p). Higher is
better.

0% 20% 40% 60% 80% 100%
VTT 72.4 72.2 72.0 71.8 69.8 66.7
RoPE 73.0 73.0 72.9 72.6 70.4 66.2
ViTaPEs 75.9 75.2 74.9 74.6 72.4 68.1

performance with up to 40% missing tactile input and retains a 1.4% margin over VTT and RoPE even
when all tactile pixels are removed. This robustness mirrors the masking ratio used during pretraining and
highlights the advantage of our multi-stage positional encoding, which encourages redundancy across visual
and tactile channels.

Scalability and Efficiency of ViTaPEs ViTaPEs scales predictably with encoder capacity while remaining
computationally efficient. Increasing the embedding dimension, depth, and attention heads from the Minimal
(6.7M parameters) to the Extended (90.7M parameters) variant results in an 18% gain in top-1 accuracy
on the TAG category task. The Balanced model (30.6M parameters), used in our main experiments, offers
the best trade-off between performance and model size (see Appendix F). Training costs remain reasonable
at 62.5 GPU-hours (h) on an NVIDIA A100 40 GB, comparable to other ViT baselines like VTT (58.9 h)
and RoPE (66.9 h) (see Appendix E.2). At inference, ViTaPEs runs in 10 ms per visual–tactile pair on an
NVIDIA RTX 4090, with complexity O

(
N2 D

)
(see Appendix E.1). These results show that ViTaPEs is both

scalable and deployment-friendly.

Limitations Despite the explicit architectural design and controlled ablations, the ViTaPEs architecture
has several limitations. First, its reliance on camera-based tactile sensors that appear in the datasets, like
GelSight (Yuan et al., 2017a) and DIGIT (Lambeta et al., 2020), introduces biases, potentially limiting
generalizability to other platforms with different resolutions or properties. Second, our scaling study is confined
to encoders of up to 90 M parameters due to a 62 GPU-hour per-run budget, which precludes assessment of
typical larger ViT scales (e.g., Base, Large (Dosovitskiy et al., 2021)) or more efficient transformer variants
that could further enhance performance or latency. Lastly, the limited availability of diverse, synchronized
multimodal datasets restricts the exploration of larger and more generalizable models.

6 Conclusion

In this paper, we introduced ViTaPEs, a transformer-based architecture enriched with multi-stage visuotactile
positional encodings with explicit injection points (before a token-wise nonlinearity and immediately before
attention) that are validated via controlled ablations. Extensive experiments demonstrate that ViTaPEs sets
new state-of-the-art accuracy on material-property recognition, object identification, and robot-grasp success
prediction while achieving the first strong zero-shot transfer across disparate sensors and demonstrating
robustness to sensor dropout. By effectively integrating visual and tactile signals through both modality-
specific and global PEs, ViTaPEs consistently outperforms state-of-the-art baselines in accuracy, robustness,
and cross-domain adaptability. These results highlight the potential of multi-stage PEs in enhancing cross-
modal alignment and representation learning. Looking ahead, we plan to explore scaling ViTaPEs to larger
transformer architectures to further boost performance and applicability in more complex scenarios, including
closed-loop robotic manipulation.
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A Implementation details and tensor shapes

This appendix summarizes tensor shapes and the fusion specification used in all experiments, using the same
notation as Section 3.

Patch tokens. Let Xvisual ∈ RNvisual×D and Xtactile ∈ RNtactile×D denote the visual and tactile patch
tokens after patch embedding (Eq. 1), where Nvisual and Ntactile are the number of patches per modality and
D is the token dimension.

Local (modality-specific) positional encodings. We use learnable absolute positional encodings
PEvisual ∈ RNvisual×D and PEtactile ∈ RNtactile×D and form the modality-conditioned tokens (Eq. 2):

Xvisual
modal = Xvisual + PEvisual, Xtactile

modal = Xtactile + PEtactile.

Token-axis concatenation and CLS. We concatenate along the token axis (Eq. 3):

Xconcat =
[
Xvisual

modal; Xtactile
modal

]
∈ R(Nvisual+Ntactile)×D.

If a CLS token is used, we prepend it to obtain X̃concat ∈ R(C+N)×D with C = 1 (otherwise C = 0 and
X̃concat = Xconcat), where N = Nvisual + Ntactile.

Token-wise stem and global positional encoding. The stem g : RD → RD is applied token-wise
(row-wise) with shared weights to form X̃projected = g(X̃concat) ∈ R(C+N)×D (Eq. 4). A single learned global
positional encoding PEglobal ∈ R(C+N)×D is then added immediately before self-attention (Eq. 5):

Xglobal = X̃projected + PEglobal.

B Token re-indexing consistency

For completeness, we state a narrowly scoped consistency property for the pre-attention representation used
by ViTaPEs. The statement concerns re-indexing (permuting) the joint token sequence together with the
corresponding rows of the learned global positional-encoding table.

Setup. Let X̃concat ∈ R(C+N)×D be defined as in Eq. 3 (including the optional CLS prepend), and let
PEglobal ∈ R(C+N)×D be the learned global positional encoding. Define the pre-attention representation

Xpre = g(X̃concat) + PEglobal. (8)

Proposition B.1 (Token re-indexing consistency). Let Π ∈ R(C+N)×(C+N) be any permutation matrix. If a
CLS token is present (C = 1), assume Π fixes its index. Then, under consistent re-indexing of the global
positional table,

g(ΠX̃concat) + ΠPEglobal = Π
(

g(X̃concat) + PEglobal
)

. (9)

Proof. Since g is applied independently to each row with shared parameters, it commutes with permutations:
g(ΠU) = Πg(U) for any U ∈ R(C+N)×D. Moreover, addition commutes with permutations, so Πg(X̃concat) +
ΠPEglobal = Π

(
g(X̃concat) + PEglobal). Combining these identities with Eq. equation 8 yields Eq. equation 9.

C Architecture and Training Details

All baselines process visual and tactile inputs as 224 × 224 RGB images. For ViT-based architectures, these
inputs are divided into 16 × 16 non-overlapping patches, resulting in 196 patches per modality. Each patch
is linearly projected into an embedding space of dimension D = 384, with modality-specific tokens further
enriched using positional encodings.
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For multi-stage positional fusion, we employ a non-linear projection layer implemented as:

Linear(D, Dh) → LeakyReLU → Linear(Dh, D),

where Dh = 768 is the hidden dimension. The transformer encoders use standard ViT components, including
multi-head self-attention and feed-forward networks. The multi-head self-attention mechanism comprises h
attention heads, where each head operates on a subspace of dimensionality dk = D/h, facilitating complex
cross-modal interactions. The feed-forward networks are implemented as two-layer perceptrons with GeLU
activations, enabling non-linear transformations of the attention outputs. Layer normalization and residual
connections are applied throughout to stabilize training.

The architecture scales with L transformer layers, configured as 6 layers for supervised tasks and 12 layers for
self-supervised pre-training. We use the same number of heads h as layers L in each setting. We train the
models in both supervised and self-supervised (SSL) paradigms using a learning rate of 1 × 10−4, weight
decay of 0.1, and a cosine warmup scheduler. For supervised classification tasks (e.g., Category, Hardness,
Texture), we employ a batch size of 64, and random augmentation (Cubuk et al., 2020) for data augmentation.
For SSL training with MAE, target an effective batch size of 1024 via gradient accumulation, and apply
random resized cropping as the augmentation strategy. A masking ratio of 75% is used to promote robust
representation learning. Crucially, these augmentations are applied independently to the visual and tactile
streams. This deliberately breaks pixel-level spatial alignment during training, forcing the model to rely on
global, shift-consistent structural correspondences rather than fixed geometric calibration.

D Data Augmentation Strategies

In addition to investigating positional encodings and modality usage, we also examine how different data
augmentation strategies impact performance. As shown in Table 7, Random Augmentation leads to stronger
results in supervised classification, reaching a top-1 accuracy of 80.1% on the Category task. Conversely,
when training with masked autoencoders in a self-supervised setting, Random Resized Crop is more effective,
achieving 75.9% compared to 61.3% under Random Augmentation. These findings highlight the need to
tailor augmentation strategies to the training paradigm, as the requirements of supervised learning can differ
considerably from those of self-supervised objectives.

Table 7: Ablation of augmentation strategies under self-supervised (SSL) pretraining and supervised linear
probing on the TAG Category task.

Augmentation Strategy SSL Category

Random Resized Crop ✓ 75.9
✗ 76.9

Random Augmentation ✓ 61.3
✗ 80.1

E Training & Inference Details

E.1 Inference Throughput and Complexity

ViTaPEs processes a fused visual-tactile input in 10 ms on an RTX 4090, equivalent to 100 pairs/s throughput.
The transformer’s runtime complexity is O((C + N)2D), where C ∈ {0, 1} indicates an optional CLS token,
N = Nv + Nt is the number of patch tokens, and D is the embedding dimension.

E.2 Training Cost Comparison

Table 8 reports the GPU-hour budget required to pre-train each model under identical hardware and data
settings. ResNet-based baselines (SSVTP, MViTac, TAG) cluster around 40 GPU-h, while ViT-based methods
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are costlier: VTT needs 58.9 h, RoPE 66.9 h, and ViTaPEs 62.5 h. Thus, ViTaPEs sits between the two
transformer baselines, slightly slower than VTT yet 7 % faster than RoPE, while delivering the strongest
performance (see Table 1 in the main text).

Table 8: GPU-hour budget for pre-training under identical settings.

Model Backbone GPU-hours
SSVTP ResNet 38.9
MViTac ResNet 40.3
TAG ResNet 39.2
VTT ViT 58.9
RoPE ViT 66.9
ViTaPEs ViT 62.5

F Model Scaling Analysis

We vary the ViT backbone along three axes—embedding dimension (D), depth (L), and number of heads
(h)—holding all other hyperparameters and pretraining protocol fixed.

Table 9: Effect of encoder scale on TAG category accuracy.

Variant Batch D L h Parameters (M) Accuracy (%)
Minimal 64 384 3 3 6.7 60.9
Moderate 64 384 6 6 12.9 67.1
Balanced 64 384 12 12 30.6 75.9
Extended 64 768 12 12 90.7 79.0

Performance grows monotonically with parameter count, with diminishing returns beyond the Balanced model,
the configuration used in our main experiments. Crucially, no architecture-specific tuning is required: the
same multi-stage positional encoding delivers robust gains across all scales, underscoring ViTaPEs’ versatility
for both resource-constrained and high-capacity deployments.

G Transfer Learning Evaluation Protocol

We evaluate the transfer learning capabilities of ViTaPEs and baseline models on the robotic grasping task
using three evaluation schemes: SSL, linear probing, and zero-shot. In the SSL setup, models are initialized
with the pre-trained encoders from Table 1, trained on the Touch and Go (TAG) dataset (Yang et al.,
2022), and then fine-tuned on the Grasp dataset (Calandra et al., 2018) using the standard SSL method
as described in Section C with a learning rate of 0.001. This process enables the models to adapt their
visuotactile representations to grasping-specific features while retaining knowledge from pretraining. For
linear probing, we freeze the same pre-trained encoders and train a simple linear classifier on top using
labeled data from the Grasp dataset, evaluating how well the learned representations transfer with minimal
adaptation. In the zero-shot setting, we assess the frozen encoders without any additional training, using
cosine similarity between test and reference embeddings to predict grasp success. These evaluation strategies
provide a comprehensive assessment of ViTaPEs’ adaptability to new tasks and its effectiveness in real-world
transfer learning scenarios.
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H Datasets

H.1 Touch-and-Go Dataset

The Touch-and-Go (TAG) dataset (Yang et al., 2022) features paired visual and tactile data captured in
naturalistic settings, with tactile sensors interacting with various objects while simultaneously recording
egocentric video. This dataset encompasses approximately 13,900 tactile interactions involving around 4,000
unique objects across 20 material categories, providing a diverse range of real-world scenarios and tactile
features essential for distinguishing material properties.

We evaluate the performance of ViTaPEs on the TAG dataset to address the task of material property
identification. Specifically, we consider three downstream tasks: (1) categorization of materials into 20 distinct
classes, (2) binary classification of hard versus soft surfaces, and (3) binary classification of smooth versus
textured surfaces. For consistency, we adhere to the dataset splits prescribed by the authors of (Yang et al.,
2022), ensuring that our evaluations are directly comparable to prior work and their baselines.

H.2 Object Folder Dataset

The ObjectFolder Real (OF-Real) dataset (Gao et al., 2023) provides comprehensive multisensory data for
100 common household items. Each object is documented through high-quality 3D meshes, HD rotation
videos, and multiple tactile recordings from a GelSight sensor (Yuan et al., 2017a). The tactile recordings
detail gel deformations upon contact, complemented by in-hand and third-view camera angles, enabling a
comprehensive analysis of tactile and visual interplay.

For this work, we selected a balanced subset of 50 objects from the full dataset. The selection was performed
to ensure representative coverage across different material types (e.g., ceramic, wood, glass, metal) and object
categories (e.g., bowls, plates, utensils). This subset preserves the overall balance of material and object
diversity present in the full dataset.

The selected objects are as follows:

• Bowls, Plates, and Utensils: Soup Spoon, Bowl, Salad Plate, Dinner Plate, Blue Bowl, Decorative
Plate, Mixing Bowl, Serving Bowl, Soup Bowl.

• Kitchen Tools: Cutting Boards (Large, Middle, Small), Mixing Bowls (Large, Middle, Small), Fruit
Bowl, Fork (Small, Large), Spoon (Small, Large), Knife (Large, Middle, Small).

• Household Items: Wine Glass, Drinking Cup, Beer Mug, Soup Ladle, Serving Spoon, Salad Fork,
Mixing Spoon, Shovel Toy, Handle Spoon, Round Plate.

• Miscellaneous: Wrenches (Small, Middle, Large), Pestle, Mortar, Flowerpot (Large, Small),
Sculpture, Display Stand.

The dataset was split datapoint-wise into 80% training and 20% testing data. Both vision and tactile
modalities were utilized in this study to exploit the multisensory nature of the dataset.

H.3 YCB-Slide Dataset

The YCB-Slide dataset (Suresh et al., 2022) provides aligned RGB–tactile sliding interactions for 10 standard
YCB objects (e.g., sugar box, tomato soup can, mustard bottle, bleach cleanser, mug, power drill, scissors,
adjustable wrench, hammer, baseball). Data were captured by moving each object over a fixed DIGIT sensor
mount, yielding over 180 000 frames pairing a 224×224 RGB crop with a 64×64 tactile depth image under
varied lighting and background conditions.

H.4 Grasp Dataset

The Grasp dataset Calandra et al. (2018) provides paired tactile data and RGB images captured during
grasping attempts. Tactile data is collected from two sensors attached to the left and right jaws of a
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parallel-jaw gripper, and each trial includes three frames: before, during, and after the grasp. The task is to
predict whether the grasp will succeed or fail based on the during frame, as it provides the most relevant
information about the outcome.

The dataset includes 106 objects, and for this work, we created a randomized datapoint-wise split of 80% for
training and 20% for testing. To ensure data quality, we retained only demonstrations with sufficient grasping
attempts, balancing successful and failed grasps. For fine-tuning (SSL) the models in Section 4.4, the tactile
images from the two sensors were concatenated across the channel dimension, resulting in a 6-channel tactile
input. For the linear and zero-shot probing, we used only one of the two tactile images as input (3-channel) to
the encoder. The during frame (mid-grasp) is used for prediction, as it provides the most relevant information
regarding the success of the attempt.

H.5 Dataset Examples

Figure 4 showcases one RGB frame (left) and the corresponding tactile image (right) for each dataset used
in our study; TAG, Object Folder Real (OF-Real), Grasping, and YCB-Slide. Note the markedly different
gel textures, marker layouts, colour palettes, and contact footprints produced by the three generations of
GelSight sensors (TAG, OF-Real, Grasping) versus the DIGIT sensor (YCB-Slide). These domain shifts
motivate the cross-sensor experiments in Section 4.2.

Touch-and-Go Object Folder Real

Grasping Dataset YCB-Slide

Figure 4: Paired visual (left) and tactile (right) samples across datasets, illustrating the heterogeneous visual
appearance and tactile signal characteristics that ViTaPEs must handle.

I Baselines

To benchmark the performance of ViTaPEs, we compare it against several state-of-the-art baselines, spanning
convolutional neural networks (CNNs), Vision Transformers (ViTs), and specialized visuotactile models. These
baselines include ResNet-based architectures, self-supervised frameworks, and models designed specifically for
tactile or visuotactile tasks. Below, we provide an overview of each baseline:
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Vanilla CNN We use a widely used CNN backbone with 18 layers and residual connections. It serves
as a baseline for tasks involving visual or tactile data, with separate branches used for each modality when
applied to visuotactile inputs. Vanilla CNN as a ResNet architecture (He et al., 2016) is often limited by
its local receptive field and lack of attention-based mechanisms, making it less effective in capturing global
spatial relationships across modalities. It consists the backbone architecture for all ResNet-based baselines in
this paper.

SSVTP (Kerr et al., 2023a) The Self-Supervised Visuotactile Pre-training (SSVTP) framework employs
contrastive learning with the InfoNCE loss to align visual and tactile representations. Visual data is treated
as the query and tactile data as the key, aiming to minimize the distance between embeddings of matching
pairs while maximizing the distance to non-matching pairs. This approach creates a shared visuo-tactile
latent space by leveraging the spatial alignment of the data. However, SSVTP focuses solely on optimizing
the visual-to-tactile direction.

TAG (Yang et al., 2022) Building on the SSVTP framework, Touch-and-Go (TAG) employs a symmetric
contrastive loss that aligns embeddings bidirectionally. In addition to optimizing visual-to-tactile alignment,
TAG also trains the model to match tactile queries to visual keys. This dual-directional alignment combines
both losses, ensuring the latent space captures strong bidirectional associations between the modalities. This
enhanced alignment improves generalization across diverse material properties and multimodal applications,
making TAG well-suited for tasks like tactile-driven image stylization and material recognition.

MViTac (Dave et al., 2024) MViTac enhances TAG by integrating visual and tactile inputs through
parallel ResNet-18-based encoders, using contrastive learning to align their representations in a shared latent
space. Its dual strategy includes intra-modal contrastive learning for modality-specific consistency and
inter-modal contrastive learning for cross-modal alignment, both optimized with InfoNCE loss. A combined
loss function balances these objectives, enabling robust multimodal representation and integration.

UniTouch (Yang et al., 2024) UniTouch aligns tactile representations with pre-trained frozen vision-
language models by leveraging a contrastive learning framework. It aligns tactile embeddings with pre-trained
visual embeddings, which are already associated with other modalities like language and audio. This
alignment is achieved using bidirectional contrastive objectives: tactile-to-vision and vision-to-tactile losses,
combined into a unified loss function. By maximizing cosine similarity for paired visuo-tactile embeddings
and minimizing it for unpaired ones, UniTouch creates a shared multimodal space for tactile, visual, and
other modalities.

SigLIP2 (Tschannen et al., 2025) SigLIP2 is a family of vision–language encoders trained on large-scale
image–text pairs using a sigmoid contrastive objective. It extends this recipe with additional training
components and data curation designed to improve transfer and robustness, yielding more capable image
encoders than earlier SigLIP-style models. We use the released SigLIP2 base image encoder (∼380 parameters)
as a VLM-initialized baseline that has no tactile-aligned pretraining. To adapt SigLIP2 to our visuotactile
setting, we treat tactile frames as standard RGB images and match the same input resolution and preprocessing
used by our ViT-based baselines. We then fine-tune the resulting visuotactile model on the source dataset
(TAG Category and, where applicable, OF-Real) using the same SSL optimization protocol as in Appendix C,
and evaluate transfer with our standard linear probing and zero-shot protocols.

VTT (Chen et al., 2022) The Visuotactile Transformer (VTT) introduces a transformer-based framework
for visuotactile integration. By processing visual and tactile inputs through a shared encoder with cross-modal
attention, VTT captures interdependencies between modalities. This approach enables the model to focus on
critical task features by generating latent heatmap representations.

RoPE (Heo et al., 2025) Relative Positional Encoding (RoPE) augments the transformer architecture
with rotary positional encodings to capture relative spatial relationships within each modality. This method
offers flexibility in sequence length and allows the model to capture decaying inter-token dependencies as
their relative distances increase.
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