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ABSTRACT

Improving the generalization capability of image super-resolution algorithms is a
fundamental challenge when deploying them in real-world scenarios. Prior meth-
ods often relied on the assumption that training on diverse data can improve gen-
eralization capabilities, leading to the development of complex degradation mod-
els that simulate real-world degradation. Unlike previous works, we present a
novel training strategy grounded in cooperative game theory to improve the gen-
eralization capacity of existing image super-resolution algorithms. Within this
framework, we conceptualize all neurons in the network as participants engaged
in a cooperative relationship, where their collective responses determine the final
prediction. As a solution, we propose to awaken suppressed neurons that hinder
the generalization capability through our Erase-and-Awaken Training Strategy
(EATS), thus fostering equitable contributions among all neurons and effectively
improving generalization performance. EATS offers several compelling benefits.
1) Seamless integration with existing architectures: It integrates with existing net-
works to enhance their generalization capability for unseen scenarios. 2) Theoret-
ically feasible strategy: We theoretically prove the effectiveness of our strategy in
enhancing the Shapley value (reflecting each participant’s contributions to predic-
tion). 3) Consistent performance improvements: Comprehensive experiments on
various challenging datasets consistently demonstrate performance improvements
when employing our strategy. The code will be publicly available.

1 INTRODUCTION

Single image super-resolution (SR) is a classical low-level vision task that focuses on restoring
a high-resolution (HR) image from a low-resolution (LR) version. Recently, deep learning-based
SR (Dong et al., 2015; Zhang et al., 2018b; 2019; 2018a; Chen et al., 2022; Zhang et al., 2022; Wang
et al., 2023; Zhang et al., 2022) algorithms have made significant efforts in synthetic environments.
However, overfitting to specific degradations in synthetic scenarios leads to poor generalization
performance when deploying these algorithms in real-world scenarios due to domain gaps.

In response to the mentioned challenge, some efforts have been devoted to diversify the syn-
thetic training data to encompass the broader space of real-world degradation, thereby enhancing
the generalization capabilities of SR models. For example, BSRGAN (Zhang et al., 2021) intro-
duced a complex degradation model involving a random shuffle of degradation orders, while Real-
ESRGAN (Wang et al., 2021) introduced second-order degradation techniques. However, these
efforts operate under the assumption that diversifying the training data can indeed improve gener-
alization capabilities. In contrast to previous works, we contemplate a shift in focus from data to
optimization, aiming to present a flexible training paradigm that fosters the generalization capability
of algorithms.

Observation. To achieve this goal, we conduct an initial exploration into the properties of algo-
rithms when applied to in-the-wild scenes. The co-adaption phenomenon, discussed in this work,
Hinton et al. (2012), provides fundamental insights for our investigation. It suggests that train-
ing over-parameterized networks often leads to the over-activation of specific neuronal connections
while inhibiting others. However, when exposed to unseen real-world scenarios, these established
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Figure 1: The Erase-and-Awaken Training Strategy (EATS) mitigates the co-adaption problem by
promoting equitable contributions among all filters, thereby improving generalization performance.
(a) Co-adaption in SR: We analyze channel responses in unseen scenarios, averaging channel re-
sponses from the 2nd block in SRResNet (Ledig et al., 2017) (trained on Five5K (Bychkovsky et al.,
2011)) across 100 randomly sampled unseen images. We visualize the feature maps and responses
of channel index 10, 29, and 43. It reveals the co-adaption phenomenon (Hinton et al., 2012), where
a few channels are highly activated while others are inhibited, resulting in poor generalization. In
contrast, integrating EATS with SRResNet achieves equitable and activated channel responses. (b)
Generalization performance: Results on Set5 with ×4 scaling under different degradation settings,
showcasing the effectiveness of EATS in improving the network’s generalization capacity.

connections perform inadequately than on the training data, thus limiting the network’s generaliza-
tion capacity. To verify this phenomenon within the SR task, we investigate the average response of
each channel within the same layer on unseen data scenarios. As depicted in Fig. 1(a), we observe
that only a few channel responses are highly activated while the majority remain inhibited. These
dormant channels represent a critical factor hindering algorithms’ generalization performance. This
finding leads to a pivotal question: “How can we ‘awaken’ these dormant channels and encourage
equitable contributions among all filters to prediction for improving the generalization capacity?”

Solution. In this paper, we introduce cooperative game theory to tackle the generalization challenges
in SR algorithms. We present a novel training strategy, denoted as Erase-and-Awaken Training
Strategy (EATS), which offers a distinctive perspective by viewing all neurons within the network
as active participants engaged in a collaborative relationship. Within these networks, intertwined
with complex neuronal connections, their combined responses harmoniously converge to ascertain
the ultimate prediction. To awaken the inhibited participants that hinder generalization performance,
we propose to randomly perturb the responses of the neurons and maximize their contributions
to the prediction. As presented in Fig. 1(a), averaged responses of the initially inhibited channel
(index 10 and 43) have been awakened while an abnormally highly activated channel (index 29) was
suppressed. It demonstrates the ability of EATS to promote equitable contributions from all channels
to the network’s prediction but also attain consistent channel response distribution on unseen images.
Furthermore, in Fig. 1(b), we provide quantitative evidence to show the effectiveness of our EATS
strategy in boosting algorithm’s generalization performance on unseen multi-degraded scenarios.

The main contributions of this work are summarized as follows: (1) We propose a novel training
strategy grounded in cooperative game theory, fostering equitable contributions among all neurons
to enhance the generalization capacity of SR algorithms. (2) Our EATS can seamlessly integrate into
existing super-resolution networks, providing a flexible and effective training paradigm. Theoretical
proof substantiates the effectiveness of our strategy in improving the Shapley value (measuring each
participant’s contribution to predictions). (3) Extensive experiments conducted on various challeng-
ing datasets consistently demonstrate performance improvements via employing our strategy.

2 RELATED WORK

Super-Resolution. Image super-resolution task focuses on restoring a high-resolution image from
its corrupted low-resolution counterpart. Conventional SR networks (Dong et al., 2014; Dai et al.,
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2019a; Kim et al., 2016; Lim et al., 2017; Wang et al., 2018a; Yuan et al., 2018; Dai et al., 2019b;
Xia et al., 2022; Lai et al., 2017; Sajjadi et al., 2017; Johnson et al., 2016; Ma et al., 2020; Liu
et al., 2020; Zhou et al., 2020; Magid et al., 2021) are typically trained on image pairs generated via
bicubic interpolation. However, it may induce overfitting towards the specific degradation, resulting
in limited generalization in real-world degradations. As a solution, a blind SR paradigm involving
degradation prediction and super-resolution is introduced to tackle complex real-world scenarios.
IKC Gu et al. (2019) introduces a predict-and-correct principle, i.e., iteratively correcting the esti-
mated kernel based on the previous SR results. DAN (Huang et al., 2020) proposes an alternating
optimization algorithm for estimating blur kernel and restoring super-resolved image iteratively.
Nevertheless, these techniques are confined to addressing conditions outlined within the predefined
degradation model and often exhibit sub-optimal generalization when encountering images that de-
viate from the degradation model. Therefore, the alternative approach involves enriching the training
set with random combinations of diverse degradations, such as the high-order degradation process in
Real-ESRGAN (Wang et al., 2021) and the degradation shuffle strategy in BSRGAN (Zhang et al.,
2021). However, the aforementioned methods exclusively simulate real-world scenarios by predict-
ing degradations within the predefined model and augmenting the diversity of training data while
neglecting the exploration of more streamlined training strategies.

Generalization in low-level vision. Since the degradations encountered during the training phase
cannot faithfully simulate the complicated degradations inherent in real-world scenarios, the chal-
lenge of generalization in low-level tasks has garnered significant attention. In terms of the general-
ization assessment, Liu et al. (2021) introduces a deep degradation representation as an approximate
evaluation metric for measuring generalization ability, where the worse the degradation clustering
effect means the better generalizability. SRGA Liu et al. (2022) delves into the statistical attributes
of internal features within deep networks to measure their generalization capability. Moreover, many
researchers are dedicated to improving the generalizability of networks. Kong et al. (2022) broke
the common sense that dropout cannot be effectively applied to low-level vision and explored its
working mechanism in SR. Li et al. (2023) introduced a causality training strategy that focuses on
learning the distortion-invariant representations, thereby enhancing the generalization capacity.

3 METHOD

3.1 PRELIMINARY

Shapley value serves as a fundamental tool within cooperative game theory for credit allocation. In
cooperative game theory, a game is defined by a set function where each subset’s value represents the
profit when the associated players participate. Given a cooperative game model, the game consists
of a set N with |N | individual players, denoted as N = {ni}i=|N |

i=1 . The game’s profit is assessed
using a specific metric denoted as v, which takes subsetsM ⊆ N as input and generates a profit
score. Formally, Shapley values for the ith player are calculated as

ϕni
(M, v) =

∑
M⊆N\{ni}

|M|!(|N | − |M| − 1)!

N !
[v(M∪ {ni})− v(M)]. (1)

Intuitively, Eq. 1 quantifies the contribution of a specific player ni, to the overall profits when in-
troducing this player. This quantification averages across all conceivable subsets where ni can be
included. The Shapley value adheres to several rational properties: (1) Additivity: The Shapley
value of each player sum to the profits when all players participate. (2) Symmetry: Players with
equivalent contributions receive equal Shapley value. (3) Dummy players: Players who make no
contribution receive a Shapley value of zero. These properties ensure that Shapley values offer a fair
and justifiable method for evaluating contributions in cooperative game theory.

3.2 PROPOSED ERASE-AND-AWAKEN TRAINING STRATEGY

Our objective is to design a training strategy to alleviate the co-adaption problem in SR algorithms,
which impedes the generalization capacity, and promote equitable contributions of each channel to
predictions. Considering that the prediction in networks relies on the intricate connections among all
filters, we introduce the cooperative game theory to formulate this process. For a fully convolutional
neural network, denoted as fθ, it is composed of L layers, each equipped with nl∈{1,...,L} filters, and
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Figure 2: The paradigm of the Erase-and-Awaken Training Strategy (EATS) consists of erasing and
awakening steps. Erasing: In this step, EATS randomly samples an erased filter and a disruptor
filter in a random layer, near

l and ndis
l in the lth layer. To assess the contribution of the erased filter,

EATS erases nera
l with a duplication of ndis

l and evaluates the performance of networks before and
after erasure. Awakening: An awakening regularization term, Lawa, widens the performance gap
before and after erasure, effectively awakening the contribution of the erased filter. Therefore, EATS
promotes equitable contributions among filters to predicted high-resolution results and alleviates co-
adaption, thereby improving the network’s generalization capability.

ni
l denotes the ith filter in the lth layer. Each filter within the network corresponds to an individual

player in the cooperative game model.

Erasing. To assess the contribution of each filter, we first randomly erase a filter and then evaluate
the performance gap before and after erasure. Instead of directly dropping the filter to be measured,
we opt to randomly sample a disruptor filter within the same layer, and employ the sampled filter
to erase it. This approach reduces the correlations among channels and promotes feature diversity,
as demonstrated in Section 4.3.1. Formally, we define the erased filter as nera

l and the randomly
sampled disruptor as ndis

l . The process of selecting filter nodes nera
l and ndis

l is:

l = max{P (i) ∈ N [0, 1]}, i ∈ {1, ..., L},

P (nj
l = nera

l ) =
1

|nl|
, P (nk

l = ndis
l ) =

1

|nl|
, j, k ∈ {1, ..., |nl|}, j ̸= k

(2)

The networks before and after erasure can be expressed as follows:

{n1
1, ...}, {n1

l , ...n
era
l , ..., ndis

l , ...}, {n1
L, ...} → fθ,

{n1
1, ...}, {n1

1, ..., n
dis
l , ..., ndis

l , ...}, {n1
L, ...} → fθ′ ,

(3)

where fθ denotes the original network and fθ′ represents the network after erasure, P (·) indicates
the probability function and |nl| represents the number of filters in the lth layer.

Awakening. To promote the contribution of the erased filter on the prediction, we introduce an
awakening regularization term, Lawa, aimed at constraining that the predicted high-resolution im-
age of the disrupted network closely approximates a baseline image. In this paper, the baseline is
defined as the upsampled image using bicubic interpolation. Given a low-resolution image, ILR,
an upsampled image via bicubic interpolation, IBic, and the corresponding high-resolution image,
IHR, the awakening regularization term is defined as:

Lawa = ||fθ′ (ILR)− IBic)||1, (4)

where || · ||1 represents ℓ1 norm. The total loss function of the SR network is formulated as: L =
Lori + Lawa, and Lori = ||fθ(ILR) − IHR)||1. The awakening regularization term amplifies
the performance gap between the original network and the disrupted network, thus enhancing the
contribution of the erased filter, nera

l , on the prediction.

Since all filters among all layers should be active participants in the cooperative game model and
contribute equitably to the prediction, we extend the erase-and-awaken training strategy across all
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Algorithm 1: Erase-and-Awaken Training Strategy
Input: Paired data with {ILR, IBic, IHR}, learning rate η, updated network fθ with L layers.
Output: Trained network fθ∗ .
while not converge do

Randomly sample a layer, l from {1, . . . , L} ;
Randomly sample an erased filter, nera

l , and a disruptor filter, ndis
l , from lth layer by Eq. 2 ;

fθ′ ← Obtained by Eq. 3 ;
Lawa← ||fθ′ (ILR)− IBic)||1 ;
Lori← ||fθ(ILR)− IHR)||1 ;
Update θ ← θ − η∇θ(Lawa + Lori)

end

layers. Specifically, we first randomly select a target layer and then apply the awakening regu-
larization term on the randomly sampled erased and disruptor filters within the target layer. Our
main implementation is outlined in Algorithm 1. We also present the analysis in Section 4.3.1 to
demonstrate that our EATS fosters equitable contributions among all filters across all layers.

3.3 THEORETICAL PROOF IN AWAKENING INHIBITED FILTERS

In Section 3.2, we have introduced the training strategy that conceptualizes all filters within the net-
work as active participants engaged in a collaborative game model. Its primary goal is to promote
equitable contributions among all filters, ultimately enhancing overall generalization performance.
Here, we leverage the Shapley value from the collaborative game theory to provide theoretical evi-
dence, supporting the effectiveness of EATS in promoting equitable contributions among all filters.

For a fully convolutional neural network, N , the Shapley value of the the ith filter in the lth layer,
ni
l , is represented as ϕni

l
(M, v), whereM represents the sub-networks within the full network, i.e.,

M⊆ N . To facilitate the proof, we reformulate the Eq. 1 as follows:

ϕni
l
(M, v) =

1

(|N | − 1)!

∑
⟨M⟩=|N |−1

1

|N |
∑
S⊂M

[v(S ∪ {ni
l})− v(S)], (5)

where ⟨M⟩ = |N |−1 represents the set of ordered sequences of length |N |−1 andM encompasses
all consecutive subsequences of an ordered sequence starting from the first item, including the empty
sequence. For example, if we have a set {A,B,C}, |M| = 3 includes the ordered sequence such as
{ABC,ACB,BAC,BCA,CAB,CBA}. For the sequence {ABC}, M = {∅, A,AB,ABC},
and for the sequence {BCA},M = {∅, B,BC,BCA}.
We assume that the contribution of ni

l decreases as the number of filters in lth layer increases (e.g.,
the contribution of A in {ABC} is smaller than that in {AB}), we have:

ϕni
l
(M, v) =

1

(|N | − 1)!

∑
⟨M⟩=|N |−1

1

|N |
∑
S⊂M

[v(S ∪ {ni
l})− v(S)]

≥ 1

(|N | − 1)!

∑
⟨M⟩=|N |−1

1

|N |

|N |∑
k=1

[v(N )− v(N\ni
l)]

≥ v(N )− v(N\ni
l),

(6)

where N corresponds to the original network fθ and N\ni
l corresponds to the model after erasure

fθ′ . Recall that the awakening regularization term widens the performance gap between fθ and fθ′

by effectively constraining the performance of fθ′ . As a result, our EATS strategy plays a crucial
role in awakening the cooperative relationship among all filters and fostering their equitable contri-
butions to the prediction. While the theoretical proof underscores the fundamental effectiveness of
our approach, we delve deeper into its effectiveness in improving generalization capability through
extensive analyses, as detailed in Section 4.3.1.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In the SR community, two predominant settings have gained widespread usage: the single-
degradation setting (Timofte et al., 2017) and the multi-degradation setting (Wang et al., 2021;
Zhang et al., 2021; Cao et al., 2023). We have opted for the second setting, where overfitting to
a specific degradation scenario is no longer a viable option, and the primary challenge revolves
around improving the generalization capacity of SR networks.

Following the configuration in Kong et al. (2022), we adopt the high-order degradation mod-
elling (Wang et al., 2021) to conduct the multi-degradation setting. It involves sophisticated combi-
nations of different degradations, including blur, downsampling, noise, and compression. Notably,
these combinations are not applied singularly, but rather in multiple iterations to generate multi-
faceted degradations. In addition, all factors (e.g., kernels, downsampling scales, noise levels, and
compression parameters) are subject to random sampling throughout the training process, where the
hyper-parameters are identical to Wang et al. (2021); Kong et al. (2022).

We employ the high-quality images from the DIV2K (Agustsson & Timofte, 2017) dataset for train-
ing and the images from Set5 (Bevilacqua et al., 2012), Set14 (Yang et al., 2010), Manga109 (Matsui
et al., 2017), Urban100 (Huang et al., 2015), and BSD100 (Martin et al., 2001) for testing. All mod-
els in this paper are implemented with PyTorch on NVIDIA GTX 3090 GPUs. We employ an Adam
optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999 to update our model with a batch of 16.
The initial learning rate is set to 2 × 10−4 and subsequently modulated using the cosine annealing
strategy. The patch size of the high-resolution is set to 128× 128.

4.2 IMPLEMENTATION DETAILS

We select two representative SR networks, SRResNet Ledig et al. (2017) and RRDB Wang et al.
(2018b), consistent with Kong et al. (2022), for our experimental investigations . To validate the
efficacy of our erase-and-awaken training strategy, we create distinct variants of the baselines:

• Original: the baseline without any modifications;
• Dropout: incorporating the channel-wise dropout before the last convolution layer, where

the drop probability is set to 0.5 and 0.7 for SRResNet and RRDB, respectively, according
to the conclusion in Kong et al. (2022);

• EATS: training the baseline model with our Erase-and-Awaken Training Strategy (EATS).

For fair comparisons, we ensure that each competitive baseline and its variants undergo identical
training configuration and optimization strategy.

4.3 COMPARISON AND ANALYSIS

4.3.1 ANALYSIS OF EATS

EATS encourages channels to contribute more equally to the prediction, alleviating the co-
adapting problem. To provide further insight into the effectiveness of our EATS, we visualize
the feature maps and channel salience maps (CSM) Kong et al. (2022). CSM is a gradient-based
attribution analysis method that quantifies the contribution of each channel to the final result. In
Fig. 3, we present the feature maps and corresponding CSMs for the output convolutional layer of
both SRResNet and SRResNet-EATS. These visualizations demonstrate that integrating our training
strategy can equalize the contributions of each channel to the prediction. This balanced contribution
is crucial in improving the generalization capacity of the network.

EATS reduces correlations among channels. Our EATS randomly erases a filter in the SR network
and constrains a performance drop for the erased network. This strategic approach aims to mitigate
redundancy in the channel dimension while promoting feature diversity. To illustrate this effect, we
conducted an analysis of channel correlations among both shallow and deep features, specifically
focusing on the 2nd and 14th residual blocks of SRResNet and SRResNet-EATS. We utilize cosine
similarity as a metric to measure the correlation of all paired channel responses within the same
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(a) Feature Map

SRResNet-EATS SRResNet SRResNet-EATS

(b) CSM

Figure 3: The feature maps and CSM of SRResNet and SRResNet-EATS. It indicates that our EATS
can promote the baseline to attain equatable channel responses and contributions to the prediction.

(a) 𝟐𝒏𝒅 block of SRResNet (b) 𝟐𝒏𝒅 block of SRResNet-EATS (c) 𝟏𝟒𝒕𝒉 block of SRResNet (d) 𝟏𝟒𝒕𝒉 block of SRResNet-EATS

Figure 4: Cosine similarity among channels of SRResNet and SRResNet-EATS. We select features
from the 2nd and 14th residual blocks as the shallow and deep features. It indicates that integrating
with our EATS reduces the correlation among feature channels and increases feature diversity.

LR (Clean) Original

Dropout EATS

LR (Clean) Original

Dropout EATS

(a) SRResNet (b) RRDBNet

LR (Clean) Original

Dropout EATS

LR (Clean) Original

Dropout EATS

Figure 5: Visual comparison of SRResNet Ledig et al. (2017) and RRDBNet Wang et al. (2018b)
on the Urban100 Huang et al. (2015) dataset.

layer. The visualization, as shown in Fig. 4 reveals that the channel responses of SRResNet exhibit a
higher correlation, indicative of feature redundancy. In contrast, our EATS encourages the baseline
to reduce the correlations in feature channels, thereby enhancing feature abundance.

4.3.2 RESULTS ON MULTI-DEGRADATION SR

To assess the generalization capacity, we create the complex degradations and their combinations
using the high-quality images from the test sets through the data generation pipeline (Wang et al.,
2021). Following Kong et al. (2022), we adopt Gaussian blur (kernel size 21 and standard deviation2,
indicated by ‘b’), bicubic downsampling, Gaussian noise (standard deviation 20, indicated by ‘n’),
and JPEG compression (quality 50, indicated by ‘j’) as the testing degradations. Furthermore, we
generate complicated degradations formed through the combination of the above components.
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Table 1: The PSNR results of SRResNet with ×4 downsampling scales. We apply bicubic, blur,
noise, and jpeg to generate the degradation, e.g., clean means only bicubic, b+n means blur →
bicubic → noise. “Improvement” represents the performance difference between the SRResNet-
EATS and the original SRResNet.

Config
Set5

clean blur noise jpeg b+n b+j n+j b+n+j
Original 24.9697 24.6919 21.9275 23.7601 23.3022 23.4550 23.2996 22.9266
Dropout 25.6368 25.2455 21.9388 24.0995 23.4923 23.6830 23.5182 23.0791
EATS 25.7532 25.3635 22.0025 24.1728 23.5464 23.7347 23.5546 23.1193

Improvement +0.7835 +0.6716 +0.0750 +0.4127 +0.2442 +0.2797 +0.2550 +0.1927
Set14

Original 22.6507 22.5816 20.7185 21.9326 21.9249 21.8599 21.7380 21.5619
Dropout 23.0847 22.9241 20.7914 22.1585 22.0182 22.0442 21.8873 21.6992
EATS 23.1282 22.9352 20.8249 22.2012 22.0533 22.0525 21.9293 21.7322

Improvement +0.4775 +0.3536 +0.1064 +0.2686 +0.1284 +0.1926 +0.1913 +0.1703
BSDS100

Original 23.0997 23.0040 21.0617 22.5547 22.2802 22.4339 22.3151 22.1608
Dropout 23.4201 23.2857 21.1229 22.7574 22.3058 22.6000 22.4333 22.2425
EATS 23.4684 23.3306 21.1497 22.7820 22.3290 22.6195 22.4610 22.2602

Improvement +0.3687 +0.3266 +0.0880 +0.2273 +0.0488 +0.1856 +0.1459 +0.0994
Urban100

Original 21.2966 21.0583 19.5806 20.7325 20.4667 20.4127 20.5519 20.1973
Dropout 21.6198 21.3153 19.6532 20.9153 20.5167 20.5494 20.6743 20.2759
EATS 21.6097 21.3348 19.6771 20.9109 20.5399 20.5525 20.6899 20.2883

Improvement +0.3131 +0.2765 +0.0965 +0.1784 +0.0732 +0.1398 +0.1380 +0.0910
Manga109

Original 18.6740 18.9396 18.3484 18.4986 18.8332 18.7030 18.4797 18.6365
Dropout 19.0441 19.3156 18.4341 18.7711 19.0785 18.9471 18.7104 18.8350
EATS 19.0727 19.3203 18.4707 18.8026 19.0949 18.9529 18.7504 18.8522

Improvement +0.3987 +0.3807 +0.1223 +0.3040 +0.2617 +0.2499 +0.2707 +0.2157

Tables 1 and 2 provide detailed quantitative evaluations of SRResNet and RRDBNet with distinct
configurations across the various degradation conditions, demonstrating the effectiveness of our
erase-and-awaken training strategy. Although dropout has undeniably enhanced the algorithm’s
generalization capability, our EATS exhibits remarkable potential for achieving even more substan-
tial improvements. Comparing the results with the baseline model, we observe that EATS leads to
remarkable improvements, with the maximum enhancement reaching 0.78 dB for SRResNet and
an impressive 0.73 dB for RRDBNet. Furthermore, we compare EATS to dropout, the maximum
gap extends to 0.12 dB for SRResNet and 0.21 dB for RRDB. In addition, visualizations in Fig. 5
provide qualitative evidence of EATS’s effectiveness. By incorporating our EATS with the original
baseline, the super-resolved images achieve more realistic content reconstruction and fine-grained
textures without introducing artifacts.

5 LIMITATIONS

We will validate the effectiveness of the proposed training strategy on a broader spectrum of low-
level tasks, including but not limited to image denoising and image deblurring. As a versatile train-
ing strategy, we encourage the exploration of various comprehensive networks integrated with our
proposed approach. Our research goes beyond the design of a universal strategy for improving
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Table 2: The PSNR results of RRDBNet with ×4 downsampling scale. We apply bicubic, blur,
noise, and jpeg to generate the degradation, e.g., clean means only bicubic, b+n means blur →
bicubic → noise. “Improvement” represents the performance difference between the RRDBNet-
EATS and the original RRDBNet.

Set5
Config

clean blur noise jpeg b+n b+j n+j b+n+j
Original 25.2688 25.2776 22.2421 23.9881 23.3838 23.6890 23.4186 22.9922
Dropout 25.9292 25.5746 22.7143 24.3801 23.5175 23.9188 23.6084 23.1050
EATS 26.0074 25.7857 22.5926 24.4301 23.4469 23.8805 23.6479 23.0888

Improvement +0.7386 +0.5081 +0.3505 +0.4420 +0.0631 +0.1915 +0.2293 +0.0966
Set14

Original 22.9262 22.8528 20.9357 22.1325 22.0795 21.9733 21.9026 21.6333
Dropout 23.2198 23.0626 21.0197 22.3072 22.2244 22.0923 22.0669 21.7556
EATS 23.4922 23.2615 21.2980 22.4989 22.1894 22.1938 22.1133 21.7674

Improvement +0.5660 +0.4087 +0.3623 +0.3664 +0.1099 +0.2205 +0.2107 +0.1341
BSDS100

Original 23.3654 23.3880 21.2915 22.7456 22.3154 22.6020 22.4485 22.2281
Dropout 23.5886 23.5616 21.4746 22.8828 22.3895 22.7058 22.5420 22.2849
EATS 23.6963 23.6864 21.5848 22.9928 22.4043 22.7814 22.5743 22.3039

Improvement +0.3309 +0.2984 +0.2933 +0.2472 +0.0889 +0.1794 +0.1258 +0.0758
Urban100

Original 21.5738 21.4637 19.5775 20.9649 20.4764 20.5970 20.7884 20.3406
Dropout 21.8104 21.6082 19.6290 21.1218 20.5096 20.6922 20.8822 20.3855
EATS 21.9979 21.6462 19.8111 21.2543 20.5088 20.7175 20.9688 20.4000

Improvement +0.4241 +0.1825 +0.2336 +0.2894 +0.0324 +0.1205 +0.1804 +0.0594
Manga109

Original 18.6101 18.8597 18.4166 18.5256 19.0068 18.6980 18.5759 18.6658
Dropout 18.9249 19.0455 18.6042 18.7816 19.1874 18.8970 18.7588 18.7510
EATS 18.9220 19.0082 18.6622 18.8107 19.1926 18.9026 18.7213 18.7592

Improvement +0.3119 +0.1485 +0.2456 +0.2851 +0.1858 +0.2046 +0.1454 +0.0934

the generalization performance of existing networks. It aims to introduce an alternative perspec-
tive, grounded in cooperative games within neural networks, for advancing generalization capacity.
Therefore, our ongoing efforts will be dedicated to demonstrating the effectiveness of this approach
across a wider range of computer vision tasks.

6 CONCLUSION

In this paper, we have introduced cooperative game theory to enhance the generalization capacity
of image super-resolution algorithms in real-world scenarios, and proposed an Erase-and-Awaken
Training Strategy (EATS). It treats all neurons within the network as active participants in a col-
laborative relationship, collectively determining the final prediction. Our EATS strategy effectively
awakens previously suppressed neurons that hinder generalization and promotes equitable contribu-
tions among all neurons, thus alleviating effectively co-adaption problem and improving general-
ization performance. We provide theoretical proof of its effectiveness in promoting the contribution
of each neuron to predictions. Notably, our approach can seamlessly integrate with existing net-
works, reinforcing their ability to generalize across unforeseen scenarios. Extensive experiments
across various unseen datasets with distinct degradations consistently demonstrate the substantial
performance gains achieved by incorporating our strategy.
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APPENDIX

• We further evaluate the effectiveness of our EATS on super-resolution with ×2 scaling.
• We evaluate the effectiveness of our EATS on another attention-based algorithm.
• We discuss the training costs incurred by our proposed EATS.
• We validate the convergence of the awakening regularization in our EATS.
• We conduct the ablation studies to investigate the impact of varying layer ratios in the

erase-and-awaken training strategy on SRResNet.
• We conduct the ablation studies to investigate the impact of the number of involved filters

in each training iteration on SRResNet.
• We analyze the effectiveness of our EATS on reducing correlations among channels on

more layers within SRResNet and RRDBNet.
• We analyze the effectiveness of our EATS on alleviating co-adaption phenomenon in both

shallow and deep layers.
• We present more visualization results on different degradation configurations.

13



Under review as a conference paper at ICLR 2024

A GENERALIZATION PERFORMANCE ON X2 SCALING

Tab. 3 and 4 provide quantitative evaluations of SRResNet and RRDBNet on ×2 scaling, which
further demonstrates the effectiveness of our erase-and-awaken training strategy. Comparing the
results with the baseline model, we observe that EATS leads to remarkable improvements, with the
maximum enhancement reaching 0.53 dB for SRResNet and an impressive 0.66 dB for RRDBNet.
Furthermore, we comare EATS to dropout, the maximum gap extends to 0.15 dB for SRResNet and
0.12 dB for RRDB.

Table 3: The PSNR results of SRResNet with ×2. We apply bicubic, blur, noise and jpeg to generate
the degradation, e.g., clean means only bicubic, b+n means blur→ bicubic→ noise. “Improvement”
represents that the performance enhancement of SRResNet-EATS compared to the SRResNet.

Set5
Config

clean blur noise jpeg b+n b+j n+j b+n+j
Original 26.8084 26.8084 24.1133 26.8350 25.0767 25.8566 26.1467 24.9306
Dropout 27.2030 27.2030 24.2231 27.1348 25.1975 26.1130 26.4176 25.1576
EATS 27.3422 27.3422 24.2282 27.1906 25.2221 26.1967 26.4641 25.1835

Improvement +0.5338 +0.5338 +0.1149 +0.3556 +0.1454 +0.3401 +0.3174 +0.2529
Set14

Original 25.7810 24.7398 22.8671 24.9982 23.5337 23.9898 24.5282 23.4352
Dropout 26.0030 24.8413 22.9801 25.1041 23.5441 24.0763 24.6533 23.5380
EATS 26.0541 24.9154 22.9606 25.1198 23.5664 24.1157 24.6745 23.5584

Improvement +0.2731 +0.1756 +0.0935 +0.1216 +0.0327 +0.1259 +0.1463 +0.1232
BSDS100

Original 25.4314 24.6299 22.6302 24.8488 23.4511 24.1568 24.4636 23.6270
Dropout 25.5721 24.7310 22.7676 24.9370 23.5241 24.2373 24.5331 23.7019
EATS 25.5592 24.7149 22.7614 24.9195 23.5120 24.2211 24.5331 23.6943

Improvement +0.1278 +0.0850 +0.1312 +0.0707 +0.0609 +0.0643 +0.0695 +0.0673
Urban100

Original 24.1966 22.6617 21.7665 23.4633 21.7126 22.0602 23.1523 21.6205
Dropout 24.4202 22.7573 21.8302 23.6326 21.7265 22.1770 23.3069 21.7268
EATS 24.4522 22.8045 21.8139 23.6467 21.7413 22.2080 23.3266 21.7425

Improvement +0.2556 +0.1428 +0.0474 +0.1834 +0.0287 +0.1478 +0.1743 +0.1220
Manga100

Original 25.4198 24.6002 23.2008 24.6422 23.4303 23.7406 24.3533 23.1404
Dropout 25.9607 24.7978 23.3060 24.9350 23.5122 23.8499 24.6198 23.2815
EATS 25.9105 24.8264 23.2846 24.9009 23.5090 23.8747 24.6052 23.2811

Improvement +0.4907 +0.2262 +0.0838 +0.2587 +0.0787 +0.1341 +0.2519 +0.1407
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Table 4: The PSNR results of RRDBNet with ×2. We apply bicubic, blur, noise and jpeg to generate
the degradation, e.g., clean means only bicubic, b+n means blur→ bicubic→ noise. “Improvement”
represents that the performance enhancement of RRDBNet-EATS compared to the RRDBNet.

Set5
Config

clean blur noise jpeg b+n b+j n+j b+n+j
Original 28.1476 27.3172 25.2403 27.1145 24.4877 26.1389 26.4795 25.2270
Dropout 28.7062 28.1439 25.5222 27.4045 25.9662 26.5147 26.7263 25.5055
EATS 28.8104 28.2165 25.6271 27.5202 25.9556 26.5562 26.7342 25.4417

Improvement +0.6628 +0.8993 +0.3868 +0.4057 +1.4679 +0.4173 +0.2547 +0.2147
Set14

Original 24.7354 24.2766 23.1168 24.2496 23.1845 23.5462 23.8335 22.9599
Dropout 24.9120 24.5681 23.2643 24.3428 23.3876 23.7963 23.9163 23.1106
EATS 24.9919 24.5677 23.3152 24.4157 23.3765 23.7612 23.9477 23.0522

Improvement +0.2565 +0.2911 +0.1984 +0.1661 +0.1920 +0.2150 +0.1142 +0.0923
BSDS100

Original 24.4175 24.2773 23.1084 24.0722 23.3309 23.7638 23.4950 23.2252
Dropout 24.5992 24.4672 23.2565 24.1994 23.4885 23.8946 23.8661 23.3335
EATS 24.5628 24.4898 23.2679 24.1741 23.4937 23.8912 23.8320 23.3250

Improvement +0.1453 +0.2125 +0.1595 +0.1019 +0.1628 +0.1274 +0.3370 +0.0998
Urban100

Original 24.3659 23.1373 22.5218 23.7493 21.9898 22.4042 23.3622 21.8094
Dropout 24.6209 23.3539 22.6854 23.9605 22.1361 22.5125 23.5329 21.9296
EATS 24.5982 23.4233 22.7519 23.9508 22.1754 22.5445 23.5341 21.9513

Improvement +0.2323 +0.2860 +0.2301 +0.2015 +0.1856 0.1403 +0.1719 +0.1419
Manga100

Original 19.6360 20.2221 19.9389 19.6657 20.3215 20.1687 19.7929 20.2302
Dropout 19.7362 20.5398 20.0121 19.7291 20.5115 20.4014 19.8055 20.3722
EATS 19.7097 20.4536 20.0801 19.7278 20.4450 20.3553 19.8096 20.3086

Improvement +0.0737 +0.2315 +0.1412 +0.0621 +0.1235 +0.1866 +0.0167 +0.0784
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B PERFORMANCE ON ATTENTION-BASED APPROACH

we have evaluated the effectiveness of our proposed EATS using a lightweight variant of HAN Niu
et al. (2020) with x4 scaling. This lightweight version comprises approximately 1/20 of the param-
eters found in the original network. To maintain consistency with the experimental settings outlined
in the manuscript, we have re-trained both the lightweight HAN and HAN-EATS, incorporating
high-order degradation modeling. The quantitative results are presented in Table 5.

Table 5: The PSNR results of HAN with ×4. We apply bicubic, blur, noise and jpeg to generate the
degradation, e.g., clean means only bicubic, b+n means blur → bicubic → noise. “Improvement”
represents that the performance enhancement of HAN-EATS compared to the HAN.

Set5
Config

clean blur noise jpeg b+n b+j n+j b+n+j
Original 25.4834 25.4207 22.5964 24.1479 23.7007 23.8615 23.5668 23.1275
EATS 26.1176 25.8898 22.8330 24.4354 23.8923 23.9615 23.6703 23.1699

Improvement 0.6342 0.4691 0.2366 0.2875 0.1916 0.1000 0.1035 0.0424
Set14

Original 23.0610 23.1144 21.3902 22.2880 22.3199 22.2746 22.0212 21.7860
EATS 23.4764 23.3560 21.5058 22.4861 22.3971 22.2772 22.1089 21.7872

Improvement 0.4154 0.2416 0.1156 0.1981 0.0772 0.0026 0.0877 0.0012
BSDS100

Original 23.4619 23.4352 21.7799 22.8227 22.5801 22.7466 22.4817 22.2781
EATS 23.6903 23.5756 21.8599 22.9232 22.6394 22.7573 22.5339 22.2937

Improvement 0.2284 0.1404 0.0800 0.1005 0.0593 0.0107 0.0522 0.0156
Urban100

Original 21.6242 21.5168 20.2169 21.0329 20.7608 20.7810 20.7895 20.3836
EATS 21.9152 21.7400 20.2708 21.1839 20.7677 20.8224 20.8381 20.3987

Improvement 0.2910 0.2232 0.0539 0.1510 0.0069 0.0414 0.0486 0.0151
Manga100

Original 18.9412 19.2265 18.6995 18.7634 19.1281 19.0087 18.7372 18.7624
EATS 19.3123 19.5149 18.8154 19.0205 19.2600 19.1412 18.8486 18.9039

Improvement 0.3711 0.2884 0.1159 0.2571 0.1319 0.1325 0.1114 0.1415
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C TRAINING COSTS INCURRED BY OUR EATS

Firstly, it’s essential to emphasize that our proposed Erasing and Awakening Training Scheme
(EATS) does not introduce additional training parameters. Within a training iteration, we conduct a
forward propagation of the original network, fθ, calculating the original loss function, Lori. Subse-
quently, our EATS involves randomly replacing an erased filter with a disrupted filter based on the
original network, resulting in a modified network after erasure, fθ′ ). We then calculate the awak-
ening regularization, Lawa, through a second forward propagation. The network is update based
on the combination of these two loss functions. Therefore, it’s crucial to note that our EATS only
requires two forward propagations, as opposed to employing two separate neural networks.

Secondly, the two forward propagations in our training paradigm marginally increase training times,
approximately by 1.4 times compared to the corresponding original networks. This increment is
deemed acceptable, especially considering the significant improvement in generalization capability.

Lastly, it’s important to highlight that our training paradigm is exclusively applied during the training
process and does not impose any additional computational burden during the inference phase.

D CONVERGENCE OF THE AWAKENING REGULARIZATION

We present the visualizations of the original loss, Lori, and our awakening regularization, Lawa,
during the training process of SRResNet-EATS and RRDBNet-EATS. Through the plots presented
in Fig. 6, it is evident that the awakening regularization progressively decreases and converges with
the training iteration.

(a) SRResNet-EATS (b) RRDBNet-EATS

𝓛𝒐𝒓𝒊
𝓛𝒂𝒘𝒂

𝓛𝒐𝒓𝒊
𝓛𝒂𝒘𝒂

Figure 6: The curves of the original loss and the awakening regularization of SRResNet-EATS and
RRDBNet-EATS during the training process..
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E ABLATION STUDIES ABOUT THE RATION OF INVOLVED LAYERS

Table 6: Ablation studies about the impact of varying layer ratios involved in the erase-and-awaken
training strategy on RRDBNet with × 4 scaling. We apply bicubic, blur, noise and jpeg to generate
the degradation, e.g., clean means only bicubic, b+n means blur→ bicubic→ noise.

Set5Config
clean blur noise jpeg b+n b+j n+j b+n+j

Original 25.2688 25.2776 22.2421 23.9881 23.3838 23.6890 23.4186 22.9922
EATS-20% 25.4705 25.4355 22.0787 24.0810 23.5124 23.7079 23.4250 22.9718
EATS-40% 25.6724 25.7932 22.1805 24.2320 23.6813 23.8129 23.5765 23.0717
EATS-60% 25.7675 25.7484 22.3898 24.2352 23.3675 23.8208 23.5615 23.0379
EATS-80% 25.8453 25.9380 22.4460 24.2615 23.5560 23.8024 23.5686 22.9833

EATS 26.0074 25.7857 22.5926 24.4301 23.4469 23.8805 23.6479 23.0888
Set14

Original 22.9262 22.8528 20.9357 22.1325 22.0795 21.9733 21.9026 21.6333
EATS-20% 23.0829 23.0253 21.0489 22.2179 22.2532 22.0621 21.9563 21.6807
EATS-40% 23.2977 23.2232 21.1205 22.3883 22.3323 22.1927 22.0753 21.7727
EATS-60% 23.3332 23.2649 21.2404 22.3337 22.1578 22.1454 22.0184 21.7227
EATS-80% 23.3325 23.2644 21.2415 22.3583 22.2633 22.1002 22.0565 21.5745

EATS 23.4922 23.2615 21.2980 22.4989 22.1894 22.1938 22.1133 21.7674
BSDS100

Original 23.3654 23.3880 21.2915 22.7456 22.3154 22.6020 22.4485 22.2281
EATS-20% 23.4795 23.5016 21.3462 22.8051 22.4628 22.6454 22.4641 22.2288
EATS-40% 23.5306 23.5857 21.4433 22.8932 22.5713 22.7332 22.5348 22.2917
EATS-60% 23.6355 23.6796 21.4363 22.9088 22.3937 22.7411 22.5395 22.2907
EATS-80% 23.6380 23.7344 21.5845 22.9338 22.5199 22.7489 22.5507 22.2736

EATS 23.6963 23.6864 21.5848 22.9928 22.4043 22.7814 22.5743 22.3039
Urban100

Original 21.5738 21.4637 19.5775 20.9649 20.4764 20.5970 20.7884 20.3406
EATS-20% 21.7343 21.5404 19.6680 21.0606 20.5837 20.6305 20.8302 20.3423
EATS-40% 21.7314 21.6119 19.7038 21.0855 20.6532 20.6820 20.8592 20.3655
EATS-60% 21.8647 21.7017 19.7688 21.1319 20.5048 20.6927 20.8826 20.3864
EATS-80% 21.9305 21.7670 19.7500 21.1860 20.6358 20.6939 20.9345 20.3794

EATS 21.9979 21.6462 19.8111 21.2543 20.5088 20.7175 20.9688 20.4000
Manga100

Original 18.6101 18.8597 18.4166 18.5256 19.0068 18.6980 18.5759 18.6658
EATS-20% 18.7687 18.9854 18.5131 18.6210 19.1806 18.7449 18.6311 18.7002
EATS-40% 18.7363 18.9413 18.5269 18.6576 19.2270 18.8488 18.6335 18.7278
EATS-60% 18.7884 19.0606 18.5614 18.6790 19.2359 18.8396 18.6443 18.7303
EATS-80% 18.7912 18.9745 18.6295 18.6941 19.2364 18.8263 18.6835 18.7262

EATS 19.9220 19.0082 18.6622 18.8107 19.1926 18.9026 18.7213 18.7592
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F ABLATION STUDIES ABOUT THE NUMBER OF INVOLVED FILTERS IN EACH
TRAINING ITERATION

Our experiments explored configurations with 1 (default), 3, and 5 filters engaged in each iteration.
Compared to the default of 1 filter, involving 3 filters achieved only a slight improvement. This
decline may be attributed to increased randomness and instability during the training process.

Table 7: Ablation studies about the number of involved filters in each training iteration on RRDBNet
with × 4 scaling. We apply bicubic, blur, noise and jpeg to generate the degradation, e.g., clean
means only bicubic, b+n means blur→ bicubic→ noise.

Config Set5
clean blur noise jpeg b+n b+j n+j b+n+j

Original 25.2688 25.2776 22.2421 23.9881 23.3838 23.6890 23.4186 22.9922
EATS-1filter (default) 26.0074 25.7857 22.5926 24.4301 23.4469 23.8805 23.6479 23.0888

EATS-3filter 26.0538 25.9900 22.5482 24.4395 23.6294 23.9155 23.5702 23.0095
EATS-5filter 25.8929 25.6534 22.4461 24.2632 23.5130 23.8032 23.5774 23.0124

Set14
Original 22.9262 22.8528 20.9357 22.1325 22.0795 21.9733 21.9026 21.6333

EATS-1filter (default) 23.4922 23.2615 21.2980 22.4989 22.1894 22.1938 22.1133 21.7674
EATS-3filter 23.6219 23.3394 21.3617 22.5045 22.3048 22.1650 22.0960 21.7275
EATS-5filter 23.4872 23.1491 21.2607 22.4014 22.0382 22.1274 22.0476 21.7356

BSDS100
Original 23.3654 23.3880 21.2915 22.7456 22.3154 22.6020 22.4485 22.2281

EATS-1filter (default) 23.6963 23.6864 21.5848 22.9928 22.4043 22.7814 22.5743 22.3039
EATS-3filter 23.7743 23.7075 21.7250 23.0244 22.5536 22.8058 22.5950 22.3234
EATS-5filter 23.5557 23.5699 21.4584 22.9784 22.5033 22.7022 22.5667 22.3020

Urban100
Original 21.5738 21.4637 19.5775 20.9649 20.4764 20.5970 20.7884 20.3406

EATS-1filter (default) 21.9979 21.6462 19.8111 21.2543 20.5088 20.7175 20.9688 20.4000
EATS-3filter 21.9795 21.7051 19.9301 21.2136 20.6727 20.6532 20.9733 20.3649
EATS-5filter 21.8009 21.5756 19.7940 21.1980 20.4379 20.6861 20.9068 20.3656

Manga100
Original 18.6101 18.8597 18.4166 18.5256 19.0068 18.6980 18.5759 18.6658

EATS-1filter (default) 19.9220 19.0082 18.6622 18.8107 19.1926 18.9026 18.7213 18.7592
EATS-3filter 19.9446 19.2506 18.8891 18.8846 19.2921 19.9487 18.7675 18.7990
EATS-5filter 19.8026 18.9324 18.6103 18.8145 19.1652 18.8039 18.7179 18.7605
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G MORE VISUALIZATIONS ABOUT THE FEATURE CORRELATIONS

We visualize more channel correlation matrix on 2nd, 8th, 14th and output layer wihtin the SRRes-
Net and RRDBNet in Fig. 7 and Fig. 8, respectively. We utilize cosine similarity as a metric to
measure the correlation of all paired channel responses within the same layer. The visualization re-
veals that the channel responses of baseline models exhibit higher correlation, indicative of feature
redundancy. In contrast, our EATS encourages the baselines to reduce the correlations in feature
channels, thereby enhancing feature abundance.

(a) 𝟐𝒏𝒅 block (b) 𝟖𝒕𝒉 block (c) 𝟏𝟒𝒕𝒉 block (d) Output block
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Figure 7: Cosine similarity among channels of SRResNet and SRResNet-EATS. We select features
from the 2nd, 8th, 14th and output blocks as the shallow and deep features. It indicates that integrat-
ing with our EATS reduces the correlation among feature channels and increases feature diversity.

(a) 𝟐𝒏𝒅 block (b) 𝟖𝒕𝒉 block (c) 𝟏𝟒𝒕𝒉 block (d) Output block
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Figure 8: Cosine similarity among channels of RRDBNet and RRDBNet-EATS. We select features
from the 2nd, 8th, 14th and output blocks as the shallow and deep features. It indicates that integrat-
ing with our EATS reduces the correlation among feature channels and increases feature diversity.
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H ALLEVIATING CO-ADAPTION IN BOTH SHALLOW AND DEEP LAYERS.

The conclusions draw from the previous work Kong et al. (2022) indicates that employing dropout
only at the last convolutional layer improves generalization performance, while even causing drop
in performance at other layers. Therefore, we conducted a statistical analysis of channel responses
in the 2nd and last output layers of SRResNet Ledig et al. (2017), SRResNet with dropout, and
SRResNet-EATS (all trained on the Five5K Bychkovsky et al. (2011) dataset) across 100 randomly
sampled unseen images. The results, as shown in Fig. 9, indicate that while dropout operation can
alleviate the co-adaptation Hinton et al. (2012) phenomenon in the last layer, it fails to address the
issue in the shallow layers. In contrast, incorporating our training strategy effectively mitigates
co-adaptation and achieves equitable channel responses in both shallow and deep layers.

(a) 𝟐𝒏𝒅 block (b) Output block

Figure 9: The Erase-and-Awaken Training Strategy (EATS) mitigates the co-adaption problem in
both shallow and deep layers, 2th and output block. We analyze channel responses in unseen sce-
narios, averaging channel responses from the 2nd block in SRResNet (trained on Five5K) across
100 randomly sampled unseen images. It reveals the co-adaption phenomenon (Hinton et al., 2012),
where a few channels are highly activated while others are inhibited. As the dropout operation is
strategically applied (only the output layer) Kong et al. (2022), its effectiveness is limited to miti-
gating co-adaptation in deeper layers. Conversely, the integration of EATS with SRResNet yields
balanced and activated channel responses in both shallow and deep layers.
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I MORE VISUALIZATIONS

In this section, we provide additional qualitative results on different degradations to show the ef-
fectiveness of our EATS (see Fig. 10 to Fig.17). Following consistent configurations with the
manuscript, we adopt Gaussian blur (kernel size 21 and standard deviation2, indicated by ”b”), bicu-
bic downsampling, Gaussian noise (standard deviation 20, indicated by ”n”), and JPEG compression
(quality 50, indicated by ”j”) as the testing degradations. In addition to the single degradation, we
synthesize the complicated mixed degradations with the second degradation process Wang et al.
(2021).

(a) HR (b) LR

(c) SRResNet (d) SRResNet-EATS

SRResNet
Clean

Figure 10: Visual comparison of SRResNet Ledig et al. (2017) on the clean-Set5 Bevilacqua et al.
(2012).
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(a) HR (b) LR

(c) SRResNet (d) SRResNet-EATS

SRResNet
Blur

Figure 11: Visual comparison of SRResNet Ledig et al. (2017) on the blur-Urban100 Huang et al.
(2015).

(a) HR (b) LR

(c) SRResNet (d) SRResNet-EATS

SRResNet
Noise

Figure 12: Visual comparison of SRResNet Ledig et al. (2017) on the noise-Urban100 Huang et al.
(2015).
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(a) HR (b) LR

(c) SRResNet (d) SRResNet-EATS

SRResNet
jpeg

Figure 13: Visual comparison of SRResNet Ledig et al. (2017) on the jpeg-Urban100 Huang et al.
(2015).
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(a) HR (b) LR

(c) SRResNet (d) SRResNet-EATS

SRResNet
blur noise

Figure 14: Visual comparison of SRResNet Ledig et al. (2017) on the blur-noise-Urban100 Huang
et al. (2015).
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(a) HR (b) LR

(c) RRDBNet (d) RRDBNet-EATS

RRDBNet
Blur jpeg

Figure 15: Visual comparison of RRDBNet Zhu et al. (2020) on the blur-jpeg-Urban100 Huang
et al. (2015).
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(a) HR (b) LR

(c) RRDBNet (d) RRDBNet-EATS

RRDBNet
noise jpeg

Figure 16: Visual comparison of RRDBNet Zhu et al. (2020) on the noise-jpeg-Urban100 Huang
et al. (2015).
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(a) HR (b) LR

(c) RRDBNet (d) RRDBNet-EATS

RRDBNet
Blur noise jpeg

Figure 17: Visual comparison of RRDBNet Zhu et al. (2020) on the blur-noise-jpeg-
Urban100 Huang et al. (2015).
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