
BeigeMaps: Behavioral Eigenmaps for Reinforcement Learning from Images

Sandesh Adhikary 1 Anqi Li 1 2 Byron Boots 1

Abstract
Training reinforcement learning (RL) agents di-
rectly from high-dimensional image observations
continues to be a challenging problem. Recent
line of work on behavioral distances proposes to
learn representations that encode behavioral simi-
larities quantified by the bisimulation metric. By
learning an isometric mapping to a lower dimen-
sional space that preserves this metric, such meth-
ods attempt to learn representations that group
together functionally similar states. However,
such an isometric mapping may not exist, mak-
ing the learning objective ill-defined. We propose
an alternative objective that allows distortions in
long-range distances, while preserving local met-
ric structure – inducing representations that high-
light natural clusters in the state space. This leads
to new representations, which we term Behav-
ioral Eigenmaps (BeigeMaps), corresponding to
the eigenfunctions of similarity kernels induced
by behavioral distances. We empirically demon-
strate that when added as a drop-in modification,
BeigeMaps improve the policy performance of
prior behavioral distance based RL algorithms.

1. Introduction
Reinforcement learning (RL) from image observations holds
great promise as it enables learning control policies for do-
mains where obtaining low-dimensional state information
is expensive or impossible (Yarats et al., 2019; Yen-Chen
et al., 2020). However, image observations are typically
high-dimensional and contain redundant or task-irrelevant
information. Directly applying RL on image observations
often results in poor sample efficiency and weak generaliza-
tion capability (Laskin et al., 2020a; Zhang et al., 2020).

Central to this challenge is the problem of representation

1Computer Science and Engineering, University of Washington,
Seattle, WA (USA) 2NVIDIA; Work done while AL was affiliated
with the University of Washington. Correspondence to: Sandesh
Adhikary <adhikary@cs.washington.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

learning (Jaderberg et al., 2016; Laskin et al., 2020b; Zhang
et al., 2020; Stooke et al., 2021). The goal of representa-
tion learning is to map high-dimensional observations, e.g.
images, to low-dimensional representations, facilitating the
learning of downstream policies and/or value functions. The
representation can be learned a priori (Lange & Riedmiller,
2010; Lange et al., 2012) or jointly with the policy (Yarats
et al., 2019; Zhang et al., 2020; Lee et al., 2020).

Recently, a set of representation learning approaches
has been proposed using behavioral distances (Zhang
et al., 2020; Castro et al., 2021; Kemertas & Aumentado-
Armstrong, 2021; Castro et al., 2023; Chen & Pan, 2022).
These distances are variants and relaxations of the bisimu-
lation metric (Ferns et al., 2011; Castro, 2020) and capture
state-differences based on expected returns under certain
policies. These approaches not only encourage the low-
dimensional representation to extract task-relevant informa-
tion (Zhang et al., 2020), but also induce value-based metric
structure in the representation space (Castro, 2020; Zhang
et al., 2020). It has been shown that value function learning
can benefit from such metric shaping, as states with simi-
lar values are grouped together in the representation space
(Castro et al., 2021; 2023; Zhang et al., 2020).

Although prior approaches have proposed different behav-
ioral distances, with considerations for computational com-
plexity (Castro et al., 2021), training stability (Kemertas &
Aumentado-Armstrong, 2021), approximation error (Chen
& Pan, 2022), etc., they follow the same recipe when encod-
ing the behavioral metric structure into the representation
space. Namely, learning a representation mapping such that
the low-dimensional representation space is isometric, i.e.,
globally distance preserving, to the space defined by a given
behavioral distance.

Unfortunately, such an objective can be ill-defined – there
may not exist a low-dimensional space with a metric that
exactly matches the behavioral distance (Bourgain, 1985;
Linial et al., 1995; Belkin & Niyogi, 2001; Castro et al.,
2023). This issue may undermine the quality of the
learned representation and induce instability in training
since behavioral distances are computed through bootstrap-
ping (Van Hasselt et al., 2018).

This raises a natural question: if isometry is ill-defined, is
there a certain type of acceptable distortion that still pre-

1

Behavioral Eigenmaps for Reinforcement Learning from Images

serves important geometric structure defined by the behav-
ioral distance? We hypothesize that a good trade-off is to
allow distortion in long-range distances while preserving
the local geometric structure given by states that are closer
together in terms of behavioral distance. This proposal is
further motivated by the fact that locality preserving maps
are known to emphasize natural clusters in data (Belkin &
Niyogi, 2001). Since value-based state aggregation is a key
motivation for behavioral distances (Ferns et al., 2011; Ke-
mertas & Jepson, 2022), it may be beneficial to use locality
preserving embeddings that are inherently better suited for
this purpose.

We propose representations corresponding to the top1 eigen-
functions of kernels defined with respect to behavioral
distances, which we refer to as Behavioral Eigenmaps
(BeigeMaps). These eigenmaps correspond to the simulta-
neous optimal solution for locality preservation (Belkin &
Niyogi, 2001) and state space partitioning (Von Luxburg,
2007). We demonstrate that the BeigeMap representation
can be used as a drop-in modification of existing behavioral
distance algorithms, and that it improves the policy perfor-
mance of these algorithms when evaluated on the DeepMind
Control Suite (Tassa et al., 2018).

2. Related Work
Representation Learning for RL Despite early success
of RL with image inputs (Mnih et al., 2015), learning visual
policies relying only on the return maximizing RL objective
is challenging in domains with less structured visual in-
put (Zhang et al., 2020; Lamb et al., 2022). Representation
learning for RL seeks to improve sample efficiency (Cas-
tro et al., 2021; Laskin et al., 2020a; Yarats et al., 2021a),
robustness (Zhang et al., 2020; Lamb et al., 2022), and gener-
alization capability (Zhang et al., 2020; Laskin et al., 2020a)
by learning a good, often low dimensional, representation.

A group of representation learning for RL approaches fol-
lows largely from self-supervised learning on visual tasks.
Representations are shaped through auxiliary tasks such as
reconstructing image observations (Lange & Riedmiller,
2010; Lange et al., 2012; Hafner et al., 2019a;b; Lee
et al., 2020; Yarats et al., 2019), minimizing contrastive
losses (Oord et al., 2018; Laskin et al., 2020b; Stooke et al.,
2021; Zhang et al., 2022), clustering (Yarats et al., 2021b;
Liu et al., 2023), and encouraging consistency under data
augmentation (Laskin et al., 2020a; Yarats et al., 2021a).
These approaches, however, may suffer when image obser-
vations contain complex distractor signals that are irrelevant
to reward and/or control (Zhang et al., 2020; Fu et al., 2021;
Wang et al., 2022; Lamb et al., 2022).

1We use top/bottom eigenvectors to refer to those correspond-
ing to the largest/smallest non-zero eigenvalues respectively.

Fu et al. (2021) and Wang et al. (2022) propose to ex-
plicitly model distractor signals and factor them out for
control. Another idea is to learn representations through
one-step (Pathak et al., 2017; Badia et al., 2020; Baker
et al., 2022) or multi-step (Efroni et al., 2021; Lamb et al.,
2022) action prediction. Although these approaches re-
duce irrelevant information, they do not explicitly induce
structure in the representation space which directly helps
policy learning (Zhang et al., 2020). Jaderberg et al. (2016)
learn representation through many pseudo-reward functions,
though the relevance of pseudo-rewards may be domain
specific. Our work follows more closely from the line of
work on learning representations based on behavioral dis-
tances (Ferns et al., 2004; Ferns & Precup, 2014), which we
summarize below.

Representation Learning based on Behavioral Distances
Behavioral distances between two states upper bound how
“behaviorally” different they are, either under optimal poli-
cies (Ferns et al., 2004; 2011) or a fixed policy (Castro,
2020). One well-established example is the bisimulation
metric (Ferns et al., 2004; 2011), which encodes both short-
term differences in immediate rewards, and long-term dif-
ferences between future state distributions. Zhang et al.
(2020) incorporate the bisimulation metric into a policy
learning framework where the metric and a corresponding
state-representation are jointly learned. Specifically, they
propose to learn a low-dimensional representation such that
the L1 distance in the representation space matches a learned
approximation of the bisimulation metric. The induced
metric structure facilitates reinforcement learning since the
bisimulation metric provides an upper bound on the differ-
ence in values, which fosters value-based state-aggregation.
New behavioral distances have since been proposed to sim-
plify computation (Castro et al., 2021), improve training
stability (Kemertas & Aumentado-Armstrong, 2021; Kemer-
tas & Jepson, 2022), and reduce distance approximation
errors (Chen & Pan, 2022). Castro et al. (2023) introduce a
kernel interpretation of behavioral distances, yielding a new
avenue for theoretical analysis. We discuss and compare the
technical details of these approaches in later sections.

A crucial limitation of these existing approaches is that
the behavioral distance to be modeled may not be realiz-
able by the distance in the low-dimensional representation
space (Castro et al., 2023). When combined with bootstrap-
ping and function approximators, this realizability issue
may undermine the quality of the learned representation
and induce instability in training. In light of this issue, we
propose focusing on preserving local metric structure, while
allowing long-range distortion. We empirically show that
representations learned to preserve local metric structure
outperform existing approaches which try to preserve global
structure (Zhang et al., 2020; Castro et al., 2023; Kemertas
& Aumentado-Armstrong, 2021; Chen & Pan, 2022).

2

Behavioral Eigenmaps for Reinforcement Learning from Images

Spectral Methods in RL As suggested by the name,
BeigeMaps rely on eigen-decompositions, and fall within
the category of spectral RL methods. Most applications of
spectral methods in RL can be traced back to proto value
functions (PVFs) (Mahadevan & Maggioni, 2007), reward-
agnostic eigenfunctions of Laplacians corresponding to tran-
sition dynamics graphs. Subsequent works have expanded
on these ideas through the use of Krylov subspace methods
(Petrik, 2007; Ghosh & Bellemare, 2020), singular value
decompositions (Duan et al., 2019), spectral graph drawing
(Wu et al., 2019; Wang et al., 2021), action-aware represen-
tations (Ren et al., 2023), and so on (Ghosh & Bellemare,
2020). PVFs are also known to correspond to the (scaled)
eigenvectors of successor representations (Dayan, 1993;
Stachenfeld et al., 2014). The EigenOptions framework
(Machado et al., 2017a;b) builds upon this connection for
option discovery and representation learning. As reward
agnostic representation learning methods, these approaches
attempt to capture the geometry of the transition dynamics
and improve generalization over arbitrary reward functions.

Our proposed BeigeMaps are reward-aware spectral rep-
resentations, and are most closely aligned with Comanici
& Precup (2011), wherein Laplacian eigenmaps with re-
spect to the bisimulation metric are used as state represen-
tations. While BeigeMaps also build upon similar ideas,
our proposal extends the approach in Comanici & Precup
(2011) along multiple directions. Namely, Comanici & Pre-
cup (2011) is restricted to tabular settings with enumerable
states, with the additional constraint that both the policy
and the behavioral metric are known a priori. Instead, we
propose estimating behavioral eigenmaps for continuous
state spaces in an end-to-end fashion where both the be-
havioral distance and the policy are simultaneously learned
from data. These extensions necessitate various changes to
the framework in Comanici & Precup (2011), including the
adoption of on-policy behavioral distances (Castro, 2020),
as well as neural approximations of eigenmaps (Deng et al.,
2022b) to enable generalization in continuous state spaces.

3. Behavioral Distance Learning
We start by defining notation and the problem setting, which
we formalize as a Markov decision process (MDP) defined
by the tuple (X ,A,P,R, γ). Here, X and A are con-
tinuous state and action spaces with dimensions dim(X)
and dim(A), R : X × A → R is the reward function,
and γ ∈ [0, 1) is the discount factor. The distribution
Pa
x = P(x′|x, a) encodes the probability of transition-

ing from state x to x′ under action a. The RL objective
is to train a policy mapping states to a distribution over
actions, that maximizes the expected discounted return
Eπ

[∑H
t=0 γ

traxt

]
, where rax = R(x, a), and H is the (po-

tentially infinite) time horizon. The expectation Eπ is taken
over Pπ

x , the transition distribution under the policy π. A

policy’s value V π(x) = Eπ

[∑H
t=0 γ

traxt
|x0 = x

]
is the

expected return of following π when starting at x.

Behavioral distances define a notion of state dissimilarity
that encodes differences in returns under a sequence of ac-
tions. They are termed “behavioral” precisely because they
capture long-range temporal differences. These distances
use a particular notion of dissimilarity, the bisimulation met-
ric (Ferns et al., 2004; 2011), that forms an upper bound
over state-value differences. This enables learning represen-
tations that group states by their values, which can be useful
for downstream policy learning.

The Bisimulation (Pseudo) Metric The bisimulation met-
ric d∼(x, y) between two states x, y ∈ X is small if they
yield similar immediate rewards, and transition to similar
states (Ferns et al., 2004; 2011). It is defined as the unique
fixed point of the following recursion

d∼(x, y) = max
a∈A

[
|rax − ray |+ γW1(Pa

x ,Pa
y |d∼)

]
.

Here, the 1-Wasserstein distanceW1(·|d∼) lifts the ground
distance d∼ (defined on X) onto a distance between proba-
bility distributions (Peyré & Cuturi, 2018). Despite its name,
d∼ is actually a pseudo-metric since non-identical states can
still have zero distance (Ferns et al., 2011).

Having to enumerate over X makes d∼ intractable for con-
tinuous state spaces. Moreover, the maximization over ac-
tions makes it overly pessimistic – large distances may arise
due to actions rarely executed under a policy (Castro, 2020).
The on-policy bisimulation metric dπ resolves these issues
by swapping the maximization over actions with expecta-
tions over policy-induced transitions (Castro, 2020). It is
the unique fixed point of the following iteration:

dπ(x, y) = |Eπ(rx)− Eπ(ry)|+ γW1(Pπ
x ,Pπ

y |dπ). (1)

The distances d∼ and dπ define upper bounds on the dif-
ferences in optimal values |V ∗(x) − V ∗(y)| ≤ d∼(x, y)
and the given policy’s values |V π(x)− V π(y)| ≤ dπ(x, y)
respectively (Ferns et al., 2011; Castro, 2020). It is this
connection to values that makes bisimulation metrics par-
ticularly useful for representation learning. If states are
embedded in a space where their distances match dπ or d∼,
similarly valued states should be grouped together.

Generalized Behavioral Distances Various modifications
to the on-policy dπ have been proposed to improve com-
putation and sample-based estimation, resulting in new be-
havioral distances (Zhang et al., 2020; Castro et al., 2021;
2023; Kemertas & Aumentado-Armstrong, 2021; Chen &
Pan, 2022) that still retain the same form in Equation 1:

dπ(x, y) = dπR(x, y) + γdπT (Pπ
x ,Pπ

y | dπ). (2)

Here, the first component dπR measures immediate reward-
differences between states, while dπT measures differences
in terms of their transition distributions.

3

Behavioral Eigenmaps for Reinforcement Learning from Images

Behavioral Similarities Offering a kernelized perspec-
tive, Castro et al. (2023) swap distances in Equation 2
for kernel functions k(x, y) that measure similarities be-
tween states x and y. Kernels are often defined with
respect to a distance; for instance, the Gaussian kernel
k(x, y) = exp(−η∥x − y∥22) with bandwidth η > 0 uses
the L2 distance. Kernels can also be defined without di-
rect reference to a distance, as is the case in Castro et al.
(2023). Despite the changes, the similarity measure given
by Castro et al. (2023) still retains the form as Equation 2:
kπ(x, y) = kπR(x, y) + γkT (Pπ

x ,Pπ
y | kπ). Since much of

the literature uses the distance perspective, we follow the
same and discuss the kernel interpretation in Section 6.

Representation Learning In representation learning, we
seek an embedding ϕ : X → Φ onto a feature space
Φ ⊆ RD, ideally with D ≪ dim(X). Behavioral distance
learning algorithms parameterize the distance function in
Equation 2 with a function approximator ϕ, and train it such
that distances in Φ approximate dπ in X .

These algorithms follow a common framework that can be
categorized along three axes. The first is the choice of the
representational distance function dϕ, the distance in Φ.
The second axis is the choice for the reward and transition
distances dπR an dπT . At every iteration, we compute tar-
get distances d∗ between state pairs, using dπR(x, y) and
dπT (Pπ

x ,Pπ
y |dϕ). In this target distance update step, we

bootstrap the current representational distance dϕ as the
ground distance for dπT . Finally, the parameters of ϕ are
updated in the third embedding update step to minimize
an objective Lϕ measuring errors in approximating d∗ with
dϕ. In Algorithm 1, we summarize the basic framework of
behavioral distance algorithms, with an additional policy
update step to simultaneously train a policy π.

Algorithm 1 Behavioral Distance Representation Learning
Data: Replay buffer D, learning rates αd and απ, neural

network ϕ with weights Wϕ

1 # Define parameterized representation distance
2 rep dist(x, y) : return dϕ(x, y)
3 for i = 1 to · · · do
4 {(x, ax, rx, x′), (y, ay, ry, y

′)} ∼ DBuffer
5 # Target distance update
6 d∗(x, y)← dπR(rx, ry) + γdπT (Pπ

x ,Pπ
y |rep dist)

7 # Embedding update via distance loss
8 Wϕ ←Wϕ − αd∇Wϕ

∑
x,y Lϕ(d∗(x, y), dϕ(x, y))

9 # Additional embedding update via policy loss
10 Wϕ ←Wϕ − απ∇Wϕ

PolicyLoss(ϕ)

The Isomap Objective While behavioral distance algo-
rithms have experimented with different representational
distances and target update steps, they all essentially share

the same embedding update step. Namely, the loss Lϕ cor-
responds to finding an isometric mapping from the distance
space (X , dπ) to (Φ, dϕ). Drawing connections to the di-
mensionality reduction algorithm Isomap (Tenenbaum et al.,
2000), we refer to this as the isomap objective defined below
as an expectation over the data D in a replay buffer:

Lϕ
IsoMap(d

∗, dϕ) = Ex,y∼D
[(
d∗(x, y)− dϕ(x, y)

)2]
. (3)

The isomap objective, while simple and intuitive, is unfor-
tunately not well-defined for arbitrary distances; there may
not exist a D-dimensional space Φ such that all pairwise dis-
tances d∗ can be mapped exactly onto its metric (Bourgain,
1985; Linial et al., 1995; Belkin & Niyogi, 2001). Recently,
Castro et al. (2023) tackled this question of embeddability
for the reduced MICO distance, and showed that an iso-
metric embedding is possible with the squared Euclidean
distance in RD with D ≤ dim(X). However, this upper-
bound is much too loose for practical purposes where we
require D ≪ dim(X). In this context, Castro et al. (2023)
show that a lower dimensional isometric embedding with
D < dim(X) is possible if one accepts a certain degree
of distortion in the original metric. This raises a natural
question: if isometry is ill-defined without some distortion,
is there a certain type of acceptable distortion that still pre-
serves important metric structure in X ?

We hypothesize that a good trade-off is to allow distortion
in long-range distances while preserving the local metric
structure of (X , dπ). Besides Lϕ

IsoMap being potentially ill-
defined, this locality preserving relaxation is motivated by
the fact that behavioral distances form an upper-bound on
value differences. While a small behavioral distance im-
plies that the states have similar values, large behavioral
distances do not necessarily imply dissimilar values; they
could even have identical values. Moreover, locality preserv-
ing embeddings are known to emphasize natural clusters
in data (Belkin & Niyogi, 2001), which can be useful for
value-based state aggregation.

Our proposed Behavioral Eigenmap representation replaces
LIsoMap with a new objective LBeigeMap that emphasizes lo-
cality preservation. This objective is minimized by the
eigenfunctions of the Laplacian defined by a behavioral
distance dπ , as described in the next section.

4. BeigeMaps: Behavioral Eigenmaps
We now discuss Laplacian eigenmaps, which emerge as so-
lutions to a locality preservation objective, and also exhibit
additional properties motivating their use as representations
for RL. We then discuss the NeuralEF algorithm (Deng et al.,
2022b) used to approximate eigenfunctions of kernels. The
BeigeMap objective is the NeuralEF objective with respect
to kernels derived from behavioral distances.

4

Behavioral Eigenmaps for Reinforcement Learning from Images

4.1. Laplacian Eigenmaps

A reasonable approach to locality preservation is to use
an objective function with distance-mismatch penalties in-
versely weighted by the distances themselves. Equivalently,
we can encode distances d into similarities via a kernel func-
tion kd(·, ·) such that smaller distances correspond to larger
kernel similarities. We can then use these kernel evaluations
as the weights. If instead of sampling states from D, we just
had a fixed set of states {xi}Ni=1 and the corresponding ker-
nel matrix Kij = kd(xi, xj), we could define the following
locality preserving objective (Belkin & Niyogi, 2001):

argmin
ϕ

N∑
i,j=1

∥ϕ(xi)− ϕ(xj)∥22 Kij , s.t. ΦTDΦ = I, (4)

where Φ ∈ RN×D is a matrix with ϕ(xi)
T stacked along the

rows. Note that this is a slight abuse of notation since we use
Φ to also refer to the representation space – here Φ is being
used to denote a finite set of points in this space. The objec-
tive in Equation 4 is high when similar points (with respect
to d in X) are mapped far apart (with respect to the L2-
distance in Φ) – promoting local neighborhoods in X to re-
main intact in Φ. The orthonormality constraint ΦTDΦ = I
with respect to the degree matrix Dii =

∑N
j=1 Kij , prevents

the trivial solution where all embeddings are identical.

The optimal embeddings for Equation 4, known as Lapla-
cian eigenmaps, are widely used for non-linear dimension-
ality reduction (Belkin & Niyogi, 2001). Given a high-
dimensional dataset that lies on a latent lower-dimensional
manifold, Laplacian eigenmaps provide a compact represen-
tation that captures the geometric structure of the underlying
manifold. These eigenmaps can be computed exactly as the
D bottom eigenvectors of the normalized Laplacian matrix
L = I − D−1K (Belkin & Niyogi, 2001; Von Luxburg,
2007). Specifically, if we stack the D N -dimensional bot-
tom eigenvectors of L into a matrix Φ, the i-th row of Φ is
the optimal embedding for state xi. Since the top eigenvec-
tors of the normalized kernel matrix D−1K correspond to
the bottom eigenvectors of L, we can equivalently find the
normalized kernel’s top eigenvectors; we adopt this kernel
based approach.

Connections to Spectral Clustering Laplacian eigen-
maps are also used as embeddings in spectral clustering
(Shi & Malik, 1997; Ng et al., 2001). Here, Laplacian eigen-
maps embed the data in a feature space Φ that better reveals
cluster structure, so that a simple clustering algorithm can
then be applied on these features. This is motivated by
the fact that Laplacian eigenvectors also solve the relaxed
normalized cut problem of partitioning a graph into bal-
anced clusters (Von Luxburg, 2007). Different clustering
approaches may use different normalizations of the Lapla-
cian, but their eigenmaps retain the same locality preserving

property identified earlier (Von Luxburg, 2007). Since a
key motivation for behavioral distances is to reveal value-
based clusters in the state space, this connection to spectral
clustering provides further motivation in using Laplacian
eigenmaps as behavioral distance based representations.

Preventing Explosions and Collapses We defined the
Laplacian eigenmap objective by relaxing the strict isomet-
ric objective. However, the orthonormality condition in
Equation 4 introduces new constraints as well. So one may
ask if these constraints introduce unwanted biases. Inter-
estingly, they actually resolve known issues identified in
existing behavioral distance algorithms.

Specifically, Kemertas & Aumentado-Armstrong (2021)
find that some existing behavioral distance algorithms are
prone to feature map explosion, where the norm of the em-
beddings grows beyond a required bound, and feature map
collapse, where all embeddings collapse onto a single point
in Φ. With Laplacian eigenmaps, the normalization con-
straint ensures that E(∥ϕ∥22) = D, which prevents feature
map explosion. On the other hand, the orthogonality con-
straint ensures that dim(Φ) = D, preventing collapse to
a sub-space with dimension less than D. These are well-
known properties of Laplacian eigenmaps, and are verified
in Appendix A.1. Thus, the new constraints introduced by
Laplacian eigenmaps are actually beneficial for behavioral
distance based representation learning.

While matrix decompositions solve Equation 4 in closed
form, these methods scale poorly with N and D, and do not
generalize to unseen states. While Equation 4 assumes fixed
data points, in practice, we need to generalize representa-
tions from a batch of samples fromD to arbitrary states. We
now describe the NeuralEF algorithm (Deng et al., 2022b),
which approximates kernel eigenmaps through neural net-
works, enabling out-of-sample generalization.

4.2. Neural Eigenfunctions

Moving beyond matrix decompositions, we now generalize
the notion of eigenvectors of kernel matrices to eigenfunc-
tions of kernel functions. Given a kernel function k(x, y), its
eigenfunctions ϕ are characterized by the eigenvalue equa-
tion

∫
X k(x, x′)ϕ(x′)p(x′)dx′ = µϕ(x), for some measure

p(x) and eigenvalues µ. The Neural Eigenfunctions (Neu-
ralEF) algorithm (Deng et al., 2022a; Deng & Luo, 2023)
approximates the top eigenfunctions of k through neural
networks by optimizing a differentiable objective function,
the specifics of which we present in the next section.

For now, we note that with the use of NeuralEFs, we can
approximate Laplacian eigenmaps through neural networks
that can generalize and scale to infinite dimensional state
spaces. Note that the NeuralEF algorithm provides the top
eigenfunctions of the kernel, which correspond to the bottom
eigenfunctions of the corresponding Laplacian, as required

5

Behavioral Eigenmaps for Reinforcement Learning from Images

in Equation 4. Compared to other existing eigenfunction
approximation algorithms (Pfau et al., 2018; Shaham et al.,
2018), we found NeuralEFs to be particularly useful since
they avoid expensive and potentially unstable matrix de-
compositions. A qualitative comparison with alternative
methods in provided in Appendix A.2. We now describe
our approach of learning behavioral distance based repre-
sentations, trained using the NeuralEF algorithm.

4.3. BeigeMaps

We propose Behavioral Eigenmaps (BeigeMaps) as an alter-
native behavioral distance based representation for RL, and
describe them in terms of the three axes defined in Section 3.

Representational Distance We use the L2 distance in
Φ as the representational distance for BeigeMaps, i.e.,
dϕ(x, y) = ∥ϕ(x) − ϕ(y)∥2. This is because Equation 4
encodes (the inverse of) kernel similarities kd(x, y) into the
L2 norm in Φ – states close together in X with respect to d
are mapped close in Φ with respect to the L2 distance.

Target Distance Update When computing target dis-
tances d∗, we simply kernelize a base behavioral distance.
Given a batch of state pairs {(xi, yi)} and their correspond-
ing target distances d∗(x, y), we compute the batch kernel
matrix Kd∗

(x, y) = exp(−ηd∗(x, y)2), where η > 0 is the
kernel’s bandwidth. While we could choose alternate ker-
nels as well, the Gaussian kernel is geometrically motivated
as it approximates the heat kernel when d∗ is viewed as the
geodesic distance over a manifold (Varadhan, 1967).

We normalize the kernel Kd∗
via the batch degree matrix D.

As discussed earlier, there are multiple choices for how the
kernel matrix is normalized in the dimensionality reduction
and spectral clustering literature. We consider two of the
most common variants of the normalized kernel: Ksym =
D−1/2KD−1/2 (symmetric) and Krw = D−1K (random-
walk), following the nomenclature in Von Luxburg (2007).
In our experiments, models with Ksym outperformed those
with Krw, so we report results using Ksym. We present
comparisons between the two variants in Appendix A.7.

Embedding Update Finally, we compute BeigeMap rep-
resentations by optimizing the following objective, corre-
sponding to the NeuralEF loss (Deng et al., 2022b) applied
to kd

∗
, the target kernel function:

ϕBeigeMap = argmin
ϕ

Lϕ
BeigeMap

= argmin
ϕ

1

B

β

d∑
j=1

j−1∑
i=1

Ĉ2
ij −

d∑
j=1

Cjj

 ,

s.t. E[ϕ⊙ ϕ] = 1⃗ , C = ΦK̂d∗
ΦT , Ĉ = Φ̂K̂d∗

Φ̂T . (5)

Here, β is a positive coefficient, ⊙ is the Hadamard product
(elementwise-multiplication), 1⃗ is the all-ones vector, and
Â corresponds to a matrix A computed with stop-gradients.
The batch kernel matrix Kd∗ ∈ RB×B consists of pair-wise
evaluations of kd

∗
(x, y) over a batch of B states, and Φ ∈

RB×D are their features computed via ϕ. The orthogonality
constraint in Equation 4 has been slacked as a penalty in
the first term scaled by β. To enforce the normalization
constraint E[ϕ⊙ ϕ] = 1⃗, we follow Deng et al. (2022b) and
apply L2 batch normalization after the last layer of ϕ. Note
that while the NeuralEF algorithm does assume a positive
definite kernel, it can also recover the top eigenfunctions of
indefinite kernels as long as it has at least D − 1 positive
eigenfunctions (Deng et al., 2022a).

In summary, the BeigeMap objective is the NeuralEF loss
with respect to Kd∗

, which is, in turn, defined with respect
to the target behavioral distance d∗. The representations
ϕBeigeMap are approximations of locality-preserving Lapla-
cian eigenmaps (Equation 4) with respect to d∗. We have
thus proposed BeigeMaps as a locality-preserving drop-in
replacement for the isometric embedding objective in behav-
ioral distance algorithms. As such, BeigeMaps complement
these algorithms by providing an alternate means of learning
representations from existing behavioral distances. We now
discuss how BeigeMaps can be incorporated into various
behavioral distances proposed in the literature.

5. Algorithms
Behavioral distance based RL algorithms jointly learn a
policy π along with a representation ϕ induced by learned
distances dπ . As shown in Algorithm 1, training repeatedly
iterates over 1) representation updates with respect to the
behavioral distances, 2) policy updates from the underlying
policy learning algorithm, and 3) updates to any additional
components such as a learned dynamics model or a reward
prediction model. While behavioral distance learning is
agnostic to the underlying policy learning method, much
of prior work uses the Soft Actor Critic (SAC) algorithm
(Haarnoja et al., 2018). In Figure 1, we illustrate their
general framework, where blue (dark) boxes correspond to
vanilla SAC components, and dashed boxes indicate various
auxilliary components. The distance based representation
learning components for BeigeMap algorithms are shown in
yellow (light). The corresponding illustration for the base-
line algorithms without BeigeMaps would simply remove
the Kd∗

sym component, and replace Lϕ
BeigeMap with Lϕ

IsoMap.

We now discuss behavioral distance algorithms in the litera-
ture, and their BeigeMap variants. Table 1 summarizes the
representational distance dϕ and target distance updates for
all algorithms. We also present normalized returns averaged
(interquartile median) across 7 DeepMind control environ-
ments in Figure 2 for reference. Experimental details and
further analysis are provided in the next section.

6

Behavioral Eigenmaps for Reinforcement Learning from Images

Table 1: Behavioral Distances The three components of behavioral distance (top) and similarity (bottom) based algorithms.

Algorithm Distance Update d∗ = dπR + γdπT Representational Distance dϕ(x, y) Loss: Lϕ

DBC |rx − ry |+ γ
(
∥µϕ(x) − µϕ(y)∥22 + ∥Σ1/2

ϕ(x)
− Σ

1/2
ϕ(y)

∥2F
)

∥ϕ(x)− ϕ(y)∥1 Lϕ
IsoMap

RobustDBC |rx − ry |+ γ
(
∥µϕ(x) − µϕ(y)∥22 + ∥Σ1/2

ϕ(x)
− Σ

1/2
ϕ(y)

∥2F
)

∥ϕ(x)− ϕ(y)∥2 Lϕ
IsoMap

MICO |rx − ry|+ γdϕ(x
′, y′) 1

2
∥ϕ(x)∥22 + 1

2
∥ϕ(y)∥22 + βθ(ϕ(x), ϕ(y)) Lϕ

IsoMap

RAP
√

|rx − ry |2 − σ2
r(x)− σ2

r(y) + γdϕ(µϕ(x), µϕ(y))
1
2
∥ϕ(x)∥22 + 1

2
∥ϕ(y)∥22 + βθ(ϕ(x), ϕ(y)) Lϕ

IsoMap

X+BeigeMap Same as algorithm X ∥ϕ(x)− ϕ(y)∥2 Lϕ
BeigeMap

Algorithm Kernel Update k∗ = kπR + kπT Representational Kernel kϕ(x, y) Loss: Lϕ

KSME 1− rx−ry
rmax−rmin

+ γkϕ(x, y) ϕ(x)Tϕ(y) E(
[
k∗(x, y)− kϕ(x, y)

]2
)

KSME+Beigemap Same as KSME exp
(
−η∥ϕ(x)− ϕ(y)∥22

)
Lϕ

BeigeMap

Figure 1: BeigeMap Model Components Blue boxes are
components of the underlying SAC model, dashed boxes
are auxiliary components, and yellow boxes are BeigeMap
components.

DBC The Deep Bisimulation for Control (DBC) algo-
rithm was proposed as a gradient-based method to jointly
learn a policy with a behavioral distance based representa-
tion for non-deterministic MDPs (Zhang et al., 2020). To
compute the distance targets d∗, DBC sets the reward-based
distance dπR to the absolute difference in rewards, and the
transition distance dπT to the 2-Wasserstein distanceW2 as
an approximation ofW1 in Equation 1. DBC also trains an
approximate dynamics model parameterized as a Gaussian
N (µϕ(x),Σϕ(x)), with mean µϕ(x) and covariance Σϕ(x),
as well as a reward model predicting rewards from the next
latent states. Using the approximate Gaussian dynamics
model, theW2 distances are calculated in closed-form as
the L2 distance between the means µϕ and the Frobenius
norm distance between the square-root of covariances Σ1/2

ϕ(x)
as shown in Table 1. While simplifying computation, this
approximation introduces a mismatch between the represen-
tational distance dϕ (using L1) and the ground distance for
dπT (using L2) (Kemertas & Aumentado-Armstrong, 2021).

R-DBC The Robust DBC (R-DBC) (Kemertas &
Aumentado-Armstrong, 2021) algorithm corrects some
training instabilities that can arise with DBC. Specifically,
DBC training can diverge due to embedding explosion and
embedding collapse. Embedding explosions are character-

Figure 2: Aggregate Model Performance Interquartile
median of normalized returns averaged over all seeds and
environments. Shaded regions denote 95%-CI.

ized by embedding norms growing beyond the threshold2

rmax−rmin

2(1−γ) , a stability bound derived by the authors. Embed-
ding collapse, on the other hand, can occur for environments
with sparse or near-constant rewards. In such environments,
the representation ϕ can prematurely collapse onto a single
point ϕ(x) = ϕ0∀x ∈ X since the model initially observes
all states to essentially have zero behavioral distance (Ke-
mertas & Aumentado-Armstrong, 2021).

While retaining the behavioral distance in DBC (but fix-
ing distances to L2), R-DBC proposes a few algorithmic
changes. To prevent embedding explosion, R-DBC clips
the embedding norms so they remain under the required
threshold. To prevent embedding collapse, R-DBC learns
an additional inverse dynamics model in the latent space
predicting actions from latent state transitions, and adds
a curiosity-driven intrinsic reward to the original rewards.
This intrinsic reward is set proportional to errors between the
predicted next latent state from the learned dynamics model

2Kemertas & Aumentado-Armstrong (2021) use a general-
ized version of the bisimulation metric leading to the bound
cR(rmax−rmin)

2(1−cT)
for cT ∈ [0, 1), cR ∈ [0,∞). For dπ in Equa-

tion 1, this corresponds to setting cT = γ, cR = 1.

7

Behavioral Eigenmaps for Reinforcement Learning from Images

Figure 3: Preventing Embedding Explosion Mean norm
(and shaded standard deviation) of embeddings during train-
ing, averaged over all environments. The dashed line indi-
cates

√
D =

√
50 ≈ 7.1.

and the actual next latent state, encouraging exploration to
states where dynamics modeling needs improvement.

In Figure 2, we see that the proposed changes do indeed
improve performance over DBC. But we note that both
R-DBC+BeigeMaps and, interestingly, DBC+BeigeMaps
outperform R-DBC. This is likely because embedding ex-
plosion and collapse, the two issues that R-DBC solves,
are both inherently mitigated by BeigeMap’s orthonormal-
ity constraints as discussed in Section 4. Specifically, the
normalization constraint encourages ∥ϕ∥22 ∼ D, and the or-
thogonality penalty encourages dim(Φ) ∼ D. In Figure 3,
we see that ∥ϕ∥2 converges to

√
D for R-DBC+BeigeMap,

while it continues to grow for R-DBC.

KSME Castro et al. (2023) take a kernelized approach to
behavioral distances, defining state similarilaties through
kernel functions as opposed to differences. However,
KSME still follows the same framework we have been us-
ing with certain kernel based modifications. Instead of
representational distances dϕ, KSME defines representa-
tional similarities encoded as the inner-product kϕ(x, y) =
ϕ(x)Tϕ(y). The target distance update step is then re-
placed by a target kernel update step k∗(x, y) = kπR(x, y) +
γkT (Pπ

x ,Pπ
y | kϕ). Corresponding to the reward differ-

ences dπR in other methods, KSME uses the similarity kernel
kπR(x, y) = 1 − rx−ry

rmax−rmin
. The transition-based similar-

ities are encoded in the lifted kernel kT (Pπ
x ,Pπ

y |kϕ) =
E(kϕ(x, y)), where the expectation is taken over x′ ∼ Pπ

x

and y ∼ Pπ
y . Finally, KSME optimizes the kernel equiva-

lent of the isomap objective where we try to match all pair
wise kernel similarities.

Castro et al. (2023) demonstrate that KSME induces a be-
havioral distance equivalent to the reduced MICO (Match-
ing under Independent Couplings) distance, which approxi-
mates theW2 under independent couplings of distributions
(Castro et al., 2021). Moreover, the policies trained using

KSME were shown to be empirically equivalent to those
trained using MICO. Thus, we use KSME as a substitute for
MICO in our experiments.

To define the BeigeMap variant of KSME, we set the rep-
resentational kernel kϕ(x, y) to be the Gaussian kernel as
shown in Table 1. This choice maintains consistency with
other BeigeMap algorithms, and is also geometrically moti-
vated for its connections to the heat kernel. We also replace
the kernel matching objective with the NeuralEF objective
defined over the normalized kernel obtained from KSME’s
target kernel updates.

RAP The Reducing Approximation Gap (RAP) distance
attempts to mitigate various approximation errors in existing
behavioral distance algorithms (Chen & Pan, 2022). Firstly,
RAP replaces theW2 distance in DBC with a sample based
divergence Eax∼π,ay∼π(dϕ(E(x′),E(y′))), where E(x′) =
Ex′∼Pax

x
is an expectation over next states. To estimate this

distributional distance, RAP trains an approximate Gaussian
dynamics model with mean µϕ(x), and sets E(x′) = µϕ(x).
The representational distance dϕ is 1

2∥ϕ(x)∥
2
2+

1
2∥ϕ(y)∥

2
2+

βθ(ϕ(x), ϕ(y)), where θ(·) is the angle between vectors.

Secondly, RAP approximates the reward-based distance
when computing the target d∗ as dπR(x, y) = |Eax∼πr

ax
x −

Eay∼πr
ay
y |, whereas existing algorithms simply use |rax

x −
r
ay
y |. This is estimated through the covariances σr of a

learned Gaussian reward model model N (µr, σr) as shown
in Table 1. Finally, RAP uses a slightly modified objec-
tive LRAP = ED[(dϕ − γdπS(x, y))

2 − dπS
2] to avoid square

roots. Despite this algebriac change, the new objective still
corresponds to finding an isometric mapping ϕ.

6. Experiments
To evaluate the effectiveness of our proposal, we augment
the algorithms in Section 5 with BeigeMaps and demon-
strate improvements in policy learning over all baseline
behavioral distance algorithms.

DM Control Environment We train and evaluate
all algorithms on the DeepMind Control (DMC) suite
(Tassa et al., 2018), a set of continuous control tasks
that has been used as a benchmark for all prior be-
havioral distance algorithms. We picked the follow-
ing 7 environments from the suite to maximize over-
lap with prior work: finger spin, walker stand,
walker walk, cheetah run, cartpole swingup,
cartpole balance, and ball in cup catch. We
use RGB pixel observations of size (3, 88, 88), and stack
3 consecutive frames to account for partial observabil-
ity. All environments are truncated at 1000 steps and
have dense rewards bounded between [0, 1], except for
ball in cup catch which has sparse binary rewards.

8

Behavioral Eigenmaps for Reinforcement Learning from Images

Figure 4: Performance Profiles Comparing algorithms with
respect to multiple performance thresholds.

We normalize the default episodic returns within [0, 1000]
to [0, 1] to standardize all results. Further details on environ-
ment parameters are provided in Appendix A.3.

Model Architectures We use Soft Actor Critic (SAC) as
the underlying RL model for all algorithms (Figure 1). All
algorithms also learn a Gaussian latent dynamics model, pa-
rameterized by an MLP. DBC, R-DBC, and RAP algorithms
also learn a latent reward prediction model parameterized
by an MLP. We fixed all hyperparameters to match those
used by Zhang et al. (2020), which has been a common
baseline for all other prior works. Due to computational con-
straints, we reduced the replay buffer size from 1, 000, 000
to 100, 000. For BeigeMap algorithms, we set the kernel
bandwidth using the median-heuristic (Garreau et al., 2017).
We list all model hyperparameters and network architecture
details in Appendix A.4.

6.1. Results

We compare the performance of all baseline and BeigeMap
algorithms using multiple robust evaluation metrics recom-
mended by Agarwal et al. (2021). For each algorithm, we
used the model parameters that resulted in the highest re-
turn during training, and obtained normalized returns from
the corresponding policies for 30 random evaluation seeds.
We then repeat the process for 3 additional random train-
ing seeds, resulting in a total of 90 evaluations for each
algorithm on every environment. For comparison, we also
present results for the vanilla SAC algorithm. In all plots,
the shaded error bars correspond to 95% confidence inter-
vals obtained through stratified bootstraping over 10, 000
samples with replacement computed using the rliable
library (Agarwal et al., 2021). We also present additional
analyses in Appendix A.8

Interquartile Medians Figure 2 shows the interquartile
median (IQM) normalized returns for all models averaged
over all environments and random seeds. The BeigeMap
variants (yellow) considerably outperform their respec-
tive baselines (blue) for DBC, R-DBC, and KSME. The
RAP+BeigeMap variant does obtain higher average returns
than RAP, but with some confidence-interval overlap. Fi-
nally, the variance between the different BeigeMap mod-
els is lower than that between the baselines. The worst
performing BeigeMap model (R-DBC + BeigeMap) still
outperforms an average baseline model.

Performance Profiles Point estimates such as the IQM
may not be best suited to reveal performance variability
across tasks (Agarwal et al., 2021). Thus, in Figure 4, we
present performance profiles that tend to better capture these
differences. For each model, we calculate the proportion of
trials (across all environments and seeds) where the model’s
returns exceeded various thresholds τ . A model is said
to stochastically dominate another if its curve is strictly
above the latter (Agarwal et al., 2021). BeigeMap variants
stochastically dominate their counter parts for DBC, R-DBC,
and KSME. Moreover, the RAP+BeigeMap curve is strictly
above RAP except for a small range of thresholds. This
provides additional context to the IQM comparisons earlier,
suggesting that BeigeMap+RAP is the better option for most
performance thresholds.

7. Conclusion
We presented BeigeMap, a representation learning method
that replaces the isometric objective in behavioral distance
algorithms with a locality preserving objective that high-
lights natural clusters in the state space. BeigeMaps are
eigenfunctions of kernels induced by behavioral distances,
and can be incorporated as a drop-in replacement for the
representational update step in existing behavioral distance
algorithms. We demonstrated that adding BeigeMaps im-
proved performance for all behavioral distances evaluated.

Limitations and Future Work Prior works have demon-
strated benefits of behavioral distance based representations
in terms of robustness to task-irrelevant distractors in ob-
servations (Zhang et al., 2020; Kemertas & Aumentado-
Armstrong, 2021; Chen & Pan, 2022). In this work, we
focused on demonstrating the effectiveness of BeigeMaps
in RL from images in general. However, the formulation of
BeigeMaps as Laplacian eigenfunctions can be used to de-
fine regularization operators that bias solutions towards func-
tions that exhibit minimal variance within clusters (Smola
& Kondor, 2003). Such regularization could help improve
generalization of the learned representations with respect to
distractors. While this was beyond the scope of our current
work, it offers a fruitful direction for further research.

9

Behavioral Eigenmaps for Reinforcement Learning from Images

Acknowledgements
All experiments were done using the Hyak computing clus-
ter at the University of Washington. We thank the anony-
mous reviewers at ICML 2024 for engaging in discussions
and providing valuable recommendations.

Impact Statement
We present work aimed at advancing methods for reinforce-
ment learning, a field with a broad range of applications
in society and industry. In this work, we have attempted
to provide algorithmic improvements, and have performed
evaluations in simulation – presenting minimal direct so-
cietal impact or ethical concerns. However, as with any
machine learning model, reinforcement learning algorithms
should be deployed with care to prevent biases and harm.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304–29320, 2021.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:
Outperforming the atari human benchmark. In Inter-
national conference on machine learning, pp. 507–517.
PMLR, 2020.

Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information
Processing Systems, 35:24639–24654, 2022.

Belkin, M. and Niyogi, P. Laplacian eigenmaps and spectral
techniques for embedding and clustering. Advances in
neural information processing systems, 14, 2001.

Bourgain, J. On lipschitz embedding of finite metric spaces
in hilbert space. Israel Journal of Mathematics, 52:46–52,
1985.

Castro, P. S. Scalable methods for computing state similarity
in deterministic markov decision processes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 10069–10076, 2020.

Castro, P. S., Kastner, T., Panangaden, P., and Rowland,
M. Mico: Improved representations via sampling-based
state similarity for markov decision processes. In Neural
Information Processing Systems, 2021.

Castro, P. S., Kastner, T., Panangaden, P., and Rowland, M.
A kernel perspective on behavioural metrics for markov

decision processes. Transactions on Machine Learning
Research, 2023.

Chen, J. and Pan, S. Learning representations via a robust
behavioral metric for deep reinforcement learning. Ad-
vances in Neural Information Processing Systems, 35:
36654–36666, 2022.

Comanici, G. and Precup, D. Basis function discovery
using spectral clustering and bisimulation metrics. In
International Workshop on Adaptive and Learning Agents,
pp. 85–99. Springer, 2011.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural computa-
tion, 5(4):613–624, 1993.

Deng, Z. and Luo, Y. Learning neural eigenfunctions for
unsupervised semantic segmentation. Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 551–561, 2023.

Deng, Z., Shi, J., Zhang, H., Cui, P., Lu, C., and Zhu,
J. Neural eigenfunctions are structured representation
learners. ArXiv, abs/2210.12637, 2022a.

Deng, Z., Shi, J., and Zhu, J. Neuralef: Deconstructing
kernels by deep neural networks. In International Con-
ference on Machine Learning, pp. 4976–4992. PMLR,
2022b.

Duan, Y., Ke, T., and Wang, M. State aggregation learn-
ing from markov transition data. Advances in Neural
Information Processing Systems, 32, 2019.

Efroni, Y., Misra, D., Krishnamurthy, A., Agarwal, A., and
Langford, J. Provably filtering exogenous distractors
using multistep inverse dynamics. In International Con-
ference on Learning Representations, 2021.

Ferns, N. and Precup, D. Bisimulation metrics are optimal
value functions. In UAI Conference on Uncertainty in
Artificial Intelligence, pp. 210–219, 2014.

Ferns, N., Panangaden, P., and Precup, D. Metrics for
finite markov decision processes. In AAAI Conference on
Artificial Intelligence, 2004.

Ferns, N., Panangaden, P., and Precup, D. Bisimulation
metrics for continuous markov decision processes. SIAM
J. Comput., 40:1662–1714, 2011.

Fu, X., Yang, G., Agrawal, P., and Jaakkola, T. Learning
task informed abstractions. In International Conference
on Machine Learning, pp. 3480–3491. PMLR, 2021.

Garreau, D., Jitkrittum, W., and Kanagawa, M. Large sam-
ple analysis of the median heuristic. arXiv: Statistics
Theory, 2017.

10

Behavioral Eigenmaps for Reinforcement Learning from Images

Ghosh, D. and Bellemare, M. G. Representations for stable
off-policy reinforcement learning. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 3556–3565. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/ghosh20b.html.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2019a.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. In Inter-
national Conference on Learning Representations, 2016.

Kemertas, M. and Aumentado-Armstrong, T. Towards ro-
bust bisimulation metric learning. Advances in Neural
Information Processing Systems, 34:4764–4777, 2021.

Kemertas, M. and Jepson, A. Approximate policy itera-
tion with bisimulation metrics. Transactions on Machine
Learning Research, 2022.

Lamb, A., Islam, R., Efroni, Y., Didolkar, A. R., Misra,
D., Foster, D. J., Molu, L. P., Chari, R., Krishnamurthy,
A., and Langford, J. Guaranteed discovery of control-
endogenous latent states with multi-step inverse models.
Transactions on Machine Learning Research, 2022.

Lange, S. and Riedmiller, M. Deep auto-encoder neural
networks in reinforcement learning. In The 2010 interna-
tional joint conference on neural networks (IJCNN), pp.
1–8. IEEE, 2010.

Lange, S., Riedmiller, M., and Voigtländer, A. Autonomous
reinforcement learning on raw visual input data in a real
world application. In The 2012 international joint confer-
ence on neural networks (IJCNN), pp. 1–8. IEEE, 2012.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
Advances in neural information processing systems, 33:
19884–19895, 2020a.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020b.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine, S.
Stochastic latent actor-critic: Deep reinforcement learn-
ing with a latent variable model. Advances in Neural
Information Processing Systems, 33:741–752, 2020.

Linial, N., London, E., and Rabinovich, Y. The geome-
try of graphs and some of its algorithmic applications.
Combinatorica, 15:215–245, 1995.

Liu, Q., Zhou, Q., Yang, R., and Wang, J. Robust represen-
tation learning by clustering with bisimulation metrics for
visual reinforcement learning with distractions. In AAAI
Conference on Artificial Intelligence, 2023.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
laplacian framework for option discovery in reinforce-
ment learning. In International Conference on Machine
Learning, pp. 2295–2304. PMLR, 2017a.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro,
G., and Campbell, M. Eigenoption discovery through the
deep successor representation. In ICLR International
Conference on Learning Representations, 2017b.

Mahadevan, S. and Maggioni, M. Proto-value functions:
A laplacian framework for learning representation and
control in markov decision processes. Journal of Machine
Learning Research, 8(10), 2007.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in neural informa-
tion processing systems, 14, 2001.

Nyström, E. J. Über die praktische auflösung von inte-
gralgleichungen mit anwendungen auf randwertaufgaben.
1930.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

11

https://proceedings.mlr.press/v119/ghosh20b.html
https://proceedings.mlr.press/v119/ghosh20b.html

Behavioral Eigenmaps for Reinforcement Learning from Images

Petrik, M. An analysis of laplacian methods for value func-
tion approximation in mdps. In IJCAI, pp. 2574–2579,
2007.

Peyré, G. and Cuturi, M. Computational optimal transport.
Found. Trends Mach. Learn., 11:355–607, 2018.

Pfau, D., Petersen, S., Agarwal, A., Barrett, D. G. T., and
Stachenfeld, K. L. Spectral inference networks: Unifying
deep and spectral learning. In International Conference
on Learning Representations, 2018.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Neural Information Processing Sys-
tems, 2007.

Ren, T., Zhang, T., Lee, L., Gonzalez, J. E., Schuurmans, D.,
and Dai, B. Spectral decomposition representation for re-
inforcement learning. In ICLR International Conference
on Learning Representations, 2023.

Shaham, U., Stanton, K. P., Li, H., Nadler, B., Basri, R., and
Kluger, Y. Spectralnet: Spectral clustering using deep
neural networks. In ICLR International Conference on
Learning Representations, 2018.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 731–
737, 1997.

Smola, A. J. and Kondor, R. Kernels and regularization on
graphs. In Learning Theory and Kernel Machines: 16th
Annual Conference on Learning Theory and 7th Kernel
Workshop, COLT/Kernel 2003, pp. 144–158. Springer,
2003.

Stachenfeld, K. L., Botvinick, M., and Gershman, S. J.
Design principles of the hippocampal cognitive map. Ad-
vances in neural information processing systems, 27,
2014.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling
representation learning from reinforcement learning. In
International Conference on Machine Learning, pp. 9870–
9879. PMLR, 2021.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel,
J., Lefrancq, A., Lillicrap, T. P., and Riedmiller, M. A.
Deepmind control suite. ArXiv, abs/1801.00690, 2018.

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. A
global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, 2000.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Varadhan, S. R. S. On the behavior of the fundamental
solution of the heat equation with variable coefficients.
Communications on Pure and Applied Mathematics, 20
(2):431–455, 1967.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17:395–416, 2007.

Wang, K., Zhou, K., Zhang, Q., Shao, J., Hooi, B., and
Feng, J. Towards better laplacian representation in re-
inforcement learning with generalized graph drawing.
In International Conference on Machine Learning, pp.
11003–11012. PMLR, 2021.

Wang, T., Du, S., Torralba, A., Isola, P., Zhang, A., and Tian,
Y. Denoised mdps: Learning world models better than
the world itself. In International Conference on Machine
Learning, pp. 22591–22612. PMLR, 2022.

Williams, C. K. I. and Seeger, M. W. Using the nyström
method to speed up kernel machines. In Neural Informa-
tion Processing Systems, 2000.

Wu, Y., Tucker, G., and Nachum, O. The laplacian in rl:
Learning representations with efficient approximations.
In ICLR International Conference on Learning Represen-
tations, 2019.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J.,
and Fergus, R. Improving sample efficiency in model-free
reinforcement learning from images. In AAAI Conference
on Artificial Intelligence, 2019.

Yarats, D., Fergus, R., and Kostrikov, I. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In 9th International Conference on Learning
Representations, ICLR 2021, 2021a.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. In Inter-
national Conference on Machine Learning, pp. 11920–
11931. PMLR, 2021b.

Yen-Chen, L., Zeng, A., Song, S., Isola, P., and Lin, T.-Y.
Learning to see before learning to act: Visual pre-training
for manipulation. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 7286–7293.
IEEE, 2020.

Zhang, A., McAllister, R. T., Calandra, R., Gal, Y., and
Levine, S. Learning invariant representations for rein-
forcement learning without reconstruction. International
Conference on Learning Representations, 2020.

Zhang, T., Ren, T., Yang, M., Gonzalez, J., Schuurmans, D.,
and Dai, B. Making linear mdps practical via contrastive
representation learning. In International Conference on
Machine Learning, pp. 26447–26466. PMLR, 2022.

12

Behavioral Eigenmaps for Reinforcement Learning from Images

A. Appendix
A.1. BeigeMaps Prevent Feature Map Collapse and Explosion

Normalization Constraints Prevent Feature Map Explosion The normalization constraints of BeigeMaps constrain the
expected value of the squared L2 norm of the feature maps to be equal to the feature-dimension. Since BeigeMaps naturally
enforce this constraint, additional heuristic clipping is not required.

This follows from standard properties of the normalization constraint of Laplacian eigenmaps. This constraint is enforced
by the NeuralEF algorithm used in BeigeMaps as E(ϕ⃗ ⊙ ϕ⃗) = 1⃗, where ϕ⃗x is the learned eigenmap for state x, 1⃗ is the
all-ones vector, and ⊙ is the element-wise product. Let us now consider the expected value of E(∥ϕ(x)∥22) for a batch of B
embeddings ϕ(x) ∈ RD

E(∥ϕ(x)∥22) =
1

B

∑
x

∥ϕ(x)∥22

=
1

B

∑
x

∑
i

ϕ(x)[i]ϕ(x)[i]

=

d∑
i

1

B

∑
x

ϕ(x)ϕ(x)[i]

=

d∑
i

(
1

B

∑
x

ϕ(x)ϕ(x)

)
[i]

=

d∑
i

E(ϕ(x)⊙ ϕ(x))[i]

=

d∑
i

1⃗[i] from the constraint

= D

Hence, E(∥ϕ(x)∥22) = D. Empirically, this normalization constraint is enforced by the L − 2 batch normalization layer
applied after the last layer of the encoder ϕ. We also confirm the above result experimentally, as shown in Figure 3.

Orthogonality Constraints Prevent Feature Map Collapse Feature map collapse is prevented by the orthogonality
constraint of Laplacian eigenmaps ΦTDΦ = I, where Φ ∈ RB×D is the matrix of feature maps for B states, where the i-th
row is the feature map for the i-th state xi. Here, D is the diagonal degree matrix consisting column sums of the kernel.
Since D is a positive definite matrix, we can write the orthogonality constraint as

ΦTD1/2D1/2Φ = I

(D1/2Φ)T (D1/2Φ) = I

Thus, the matrix D1/2Φ has full-column rank. This implies that Φ has rank D by using the property that rank(AB) =
rank(A) if C is an B×D matrix of rank D. Since the rank of Φ (i.e. the dimension of the sub-space spanned by the feature
map) is constrained to be D, Laplacian eigenmaps naturally prevent feature map collapse. Similar arguments discussing the
dimensionality of Φ can also be found in Belkin & Niyogi (2001). The NeuralEF algorithm used in BeigeMaps applies this
orthogonlization constraint as a penalty in the overall objective.

A.2. Neural Eigenfunction Algorithms

NeuralEFs are not the only approach to learning eigenfunctions capable of out-of-sample generalization. Random Fourier
Features (RFFs) (Rahimi & Recht, 2007) and the Nystrom method (Nyström, 1930; Williams & Seeger, 2000) are some
classic approaches. RFFs are not ideal for non shift-invariant kernels and generally require feature maps with large
dimensionality D. The Nystrom method relies on explicit matrix eigendecomposition, which can be prohibitively expensive
for large N . More recent approaches include Spectral Inference Networks (SpIN) (Pfau et al., 2018) and SpectralNets
(Shaham et al., 2018) . Both of these methods rely on Cholesky decompositions, which is computationally expensive and

13

Behavioral Eigenmaps for Reinforcement Learning from Images

tends to introduce instabilities. We opted for NeuralEFs since they do not suffer from the drawbacks described here, as
well as the fact the NeuralEFs are shown to be applicable to indefinite kernels as well (as long as the kernel has more than
D − 1 positive eigenvalues). Theoretically, BeigeMaps could be learned with any of these or other eigenfunction learning
approaches.

A.3. DeepMind Control Suite Environments

In Table 2, we provide the environment parameters for the DeepMind Control suite environments used in our experiments.
The choice of action repeats for various environments has been noted as important, but can vary across implementations in
the literature. We use the action repeats that were shown to work well in Yarats et al. (2019), which are also listed in Table 2.

Parameter Value
Image Dimension 3 x 88 x 88
Stacked Frames 3

Observation Dimension 9 x 88 x 88
Episode Length 1000

Action Repeats
Finger Spin 2
Walker Walk 2
Walker Stand 2
Cheetah Run 4

Cartpole Swingup 8
Cartpole Balance 8
Ball in Cup Catch 4

Table 2: Parameters used for DMC environments.

A.4. Model Hyperparameters

We use the same model architecture as in Zhang et al. (2020), and attempt to match their implementation and hyperparameters
as closely as possible. In Table 3, we list all model hyperparameter choices – the only difference from Zhang et al. (2022)
is that we use a smaller replay buffer size (100, 000 instead of 1M) due to computational constraints. To enforce the
normalization constraints for BeigeMaps in Equation 5, we apply an L2 normalization layer at the end of the encoder
following Deng et al. (2022b).

A.5. Training Infrastructure

All models were trained using the Hyak computing cluster at the University of Washington. Each model was trained on a
single GPU, which was assigned by the cluster’s scheduling system. Due to the cluster’s scheduling constraints, training
jobs could be paused and passed to a different node at any time. To ensure consistency across all nodes, we used a Docker
container to recreate the same system settings across all machines used during training. Using this computing infrastructure,
each model took about 20−30 hours to train for 1M steps, including potential downtime waiting for the cluster to reschedule
jobs. We did not observe significant difference in computation time for Beigemap and Isomap models, which took an
average of 0.0823 and 0.0824 seconds per training step respectively. Note that the training could potentially be sped up
with parallelization of environment rollouts (e.g. multiple vectorized environments) and model updates. We opted not to
parallelize for better comparison with prior work that did the same.

A.6. Learning Curves

In Figure 5, we present normalized returns obtained from all models during training. As in the main text, the returns (which
are within [0, 1000]) are normalized to be within [0, 1]. During training, we recorded each algorithm’s average returns over 3
evaluation environments with different seeds. We repeat this training for 3 random training seeds, and report the average
over all seeds here. The shaded regions correspond to the standard deviation in these mean estimates.

14

Behavioral Eigenmaps for Reinforcement Learning from Images

-

Hyperparameter Value
Replay buffer capacity 100,000

Batch Size 128
Discount γ 0.99

Critic learning rate 10−5

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.005

Critic encoder soft-update rate τϕ 0.005
Actor learning rate 10−5

Actor update frequency 2
Actor log stddev bounds [-5,2]

Decoder learning rate 10−5

Temperature learning rate 10−4

Temperature Adam’s β1 0.9
Init Temperature 0.1

Dynamics hidden dimension 512
Encoder

Encoder feature dimension 50
Encoder learning rate 10−5

Number of convolutional layers 4
Num filters per convolution 32

Kernel size 3 x 3
Stride 2 for first, 1 for rest

Actor
Actor MLP num layers 2

Actor MLP hidden dimension 256
Critic

Critic MLP layers 2
Critic MLP hidden dimension 256

Gaussian Dynamics Model
MLP num layers 1

MLP hidden dimension 512
Reward Prediction Model

MLP num layers 1
MLP hidden dimension 512

Table 3: Model Hyperparameters

15

Behavioral Eigenmaps for Reinforcement Learning from Images

Figure 5: Learning curves for all environments. Mean normalized returns on evaluation environment averaged over 3
random seeds.

16

Behavioral Eigenmaps for Reinforcement Learning from Images

A.7. Kernel Normalization: Symmetric vs. Random Walk

As discussed in the main text, the literature on spectral clustering and dimensionality tend to use a few variations on how the
Laplacian matrix (or in our case, the kernel matrix) is normalized. While different, all normalizations are intimately related,
and share similar interpretations with respect to locality preservation and clustering. We consider two of the most popular
alternatives: the symmetric normalization Ksym = D−1/2KD−1/2 and the random-walk normalization K = D−1K,
following the nomenclature from Von Luxburg (2007). The relationship between these normalization choices is described in
Proposition 3 in Von Luxburg (2007), which we summarize here.

The Laplacian eigenmaps corroesponding to the locality preserving objective in Equation 4 correspond to bottom solutions
of the generalized eigenvalue problem Lϕ = λDϕ (Belkin & Niyogi, 2001). If (λ, ϕ) is an eigenvalue-eigenvector pair
for the genralized eigenvalue problem, it is also an eigenpairs of the random-walk Laplacian Lrw = D−1K, i.e.Lrwϕ =
λϕ. Moreover, if (λ, ϕ) is an eigenpair of Lrw, then (λ,D1/2ϕ) is an eigenpair of Lsym = D−1/2KD−1/2. Thus the
eigenspectrum of Lrw and Lsym only differ by a factor of D1/2. Note that the bottom eigenvectors of either normalized
Laplacian corresponds to the top eigenvector of the corresponding normalized Kernel. When computing BeigeMaps, we use
the normalized kernel instead of the normalized Laplacian.

In Figure 6, we compare two options for normalized kernels used in BeigeMaps: the symmetric (Sym) normalization
K = D−1/2KD−1/2 and K = D−1K. In the main text, we present results for the symmetric normalization as it generally
outperformed the random-walk normalization for all distances evaluated. Note that while we conducted trials over multiple
seeds for the experiments in the main text, the comparisons in Figure 6 only used a single seed. This was done to maximize
the use of our limited computational resources for the main experiments.

Figure 6: Interquartile median of total normalized returns of BeigeMap algorithms using the symmetric (Sym) normalization
K = D−1/2KD−1/2 and K = D−1K. The symmetric normalization outperformed the random walk variant for all
behavioral distances, which motivates our choice of the symmetric normalization for our experiments.

A.8. Additional Analysis

Probability of Improvement In Figure 7, we plot the probability of BeigeMap algorithms improving upon their baseline
counterparts. Here, the probabilities of improvements correspond to the fraction of trials where one model obtained higher
returns than the other. This measure does not consider the magnitude of differences, but illustrates the robustness of
improvement from one algorithm over another (Agarwal et al., 2021). Improvements are considered significant if their
confidence intervals do not contain 0.5. As shown in Figure 7, all models consistently lie above the 0.5 threshold, with the
only exception of RAP+BeigeMap, whose confidence interval dips below the 0.5 threshold by a small margin. Overall, the
addition of BeigeMaps is likely to improve the performance of current distance based representation learning.

17

Behavioral Eigenmaps for Reinforcement Learning from Images

Figure 7: Probabilities of Improvement Likelihoods of BeigeMap algorithms outperforming their baselines.

18

